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Abstract

We develop a notion of derivative of a real-valued function on a Banach
space, called the L-derivative, which is constructed by introducing a gener-
alization of Lipschitz constant of a map. As with the Clarke gradient, the
values of the L-derivative of a function are non-empty weak* compact and
convex subsets of the dual of the Banach space. The L-derivative, however,
is shown to be upper semi continuous, a result which is not known to hold
for the Clarke gradient. We also formulate the notion of primitive maps dual
to the L-derivative, an extension of Fundamental Theorem of Calculus for
the L-derivative and a domain for computation of real-valued functions on
a Banach space with a corresponding notion of effectivity. For real-valued
functions on finite dimensional Euclidean spaces, the L-derivative can be ob-
tained within an effectively given continuous domain. We also show that
in finite dimensions the L-derivative and the Clarke gradient coincide thus
providing a computable representation for the latter in this case.

This paper is dedicated to the historical memory of Sharaf al-din Tusi (d. 1213),
the Iranian mathematician who was the first to use the derivative systematically to
solve for roots of cubic polynomials and find their maxima.

1 Introduction

The notion of derivative of functions has been the key fundamental concept in
the advent and development of differential calculus and is at the basis of some of
the most crucial branches of mathematics including ordinary and partial differen-
tial equations, dynamical systems, mathematical physics, differential geometry and
differential topology. These comprise what is often referred to as continuous math-
ematics, one of the two main branches of mathematics, with discrete mathematics
as the other distinguished branch.

The first systematic use of the derivative of functions was undertaken by the
Iranian mathematician Sharaf al-din Tusi (d. 1213) who introduced a technique,
algebraically equivalent to what we now call the Ruffini-Horner method, for find-
ing the roots of cubic polynomials by an iterative process using the derivative of
the polynomial [14]. Although he never put a name to it in Arabic, which like
Latin later on in Europe was the language of scholarship in the Muslim world, he
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also used the derivative to find the maxima of polynomials, which until recently
historians of mathematics had attributed to the 16th century French mathematician
François Viète [15, 19]. Sharaf al-din Tusi who died only six years before the cat-
aclysmic Mongol invasion of Iran in 1219 is now considered to be the forerunner
of algebraic geometry.

Nearly two centuries after the ground breaking work of Newton and Leibniz
on the foundation of differential calculus in the 17th century, modern mathemat-
ical analysis was born with the introduction of mathematical limit by Cauchy in
the nineteenth century, which provided a precise notion for the existence of the
derivative of a Function at a point. This led to new and surprising results about the
derivative. In 1872, based on what was by then a rigorous mathematical frame-
work, Weierstrass constructed a continuous function which was nowhere differen-
tiable.

In the early 20th century, the French mathematicians Gâteaux and Fréchet ex-
tended the notion of derivative in two distinct ways to functions of infinite dimen-
sional Banach spaces. These higher dimensional derivatives have now applications
in quantum field theory, but, like the classical derivative of a real-valued function of
a single variable, they may not exist and when they do exist they may not give rise
to continuous functions. A comprehensive modern account of the various notions
of derivative in topological linear spaces is given in [27].

In 1980’s, Frank Clarke, motivated by problems in non-smooth analysis and
control theory, introduced the notion of generalized gradient of a function, which
is now named after him [4]. Clarke’s gradient of a locally Lipschitz real-valued
function on a Banach space always exists and is a set-valued function: on finite
dimensional Euclidean spaces it takes non-empty compact and convex subsets of
the Euclidean space as its values and the gradient is upper semi-continuous. On
an infinite dimensional Banach space, the Clarke gradient is a non-empty weak*
compact and convex subset of the dual of the Banach space. It is however not
known if Clarke’s gradient is also upper semi-continuous on infinite dimensional
Banach spaces [3].

A few decades earlier, following the seminal work of Alan Turing [24, 25] and
the advent of computer science in 1930’s, computable analysis took shape in 1950’s
with the work of Grzegorczyk [17, 18]. A fundamental thesis established in the
subject is that a computable function is necessarily a continuous function [21, 26].
Indeed, if a function is to be computed at a real number, which is given as the limit
of a sequence of rational numbers, then the continuity of the function is required to
be able to compute the value of the function as the limit of its values at the elements
of the sequence.

Since the derivative of functions plays a fundamental role in mathematics, one
would expect a real interest in a notion of derivative which is always continuous
in computability theory. However, surprisingly, no attempt was made to develop a
continuous derivative for functions and the work of Clarke went unnoticed by re-
searchers in computable analysis, who have only worked with the classical deriva-
tive of functions.
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A new approach to differential calculus based on mathematical structures in
computer science, called domains [6, 2, 16] was introduced in [9, 10] first for real-
valued functions of a real variable and then for multivariable functions. The moti-
vation here has arisen from computer science and computable analysis to formulate
and use, in particular, a notion of continuous derivative for functions.

In the domain-theoretic framework, a continuous derivative for functions, a
corresponding notion of primitive maps, an extension of fundamental theorem of
calculus and a domain for differentiable functions have been developed. These
have led to data types for presenting differentiable functions and solving ordinary
differential equations [7, 11], a constructive version of the inverse and implicit
function theorems [12] and a denotational semantics for hybrid systems [13].

The concept of derivative of a real-valued function which was developed in [10]
depends, somewhat unsatisfactorily, on the choice of the coordinate system used.
In fact, the value of the derivative of a locally Lipschitz real valued function on
a finite Euclidean space turns out to be the smallest hyperrectangle, with edges
parallel to the given coordinate axes, containing Clarke’s gradient.

In this paper, inspired by the above domain-theoretic framework, we intro-
duce a coordinate free approach to develop the notion of the L-derivative of a real-
valued function on a Banach space; it is constructed by formulating a generalized
Lipschitz property of functions. The local generalized Lipschitz properties of the
function, which provide finitary information about the rate of growth of the func-
tion in local neighbourhoods, are used to define the L-derivative of the function
globally. Like the Clarke gradient, the values of the L-derivative are non-empty
weak* compact and convex subsets of the dual of the Banach space.

The L-derivative, developed here from the local to the global and from the
discrete to the continuum, is shown to be upper semi-continuous for real-valued
locally Lipschitz functions on any Banach space, a result which is not known for
the Clarke gradient as we have already mentioned above.

For aC1 function, i.e., one with a continuous Fréchet derivative, the L-derivative
and the Fréchet derivative coincide. More generally, when the function fails to be
C1, the L-derivative contains the Clarke gradient, and also the Gâteaux and the
Fréchet derivatives, whenever the latter two exist.

The L-derivative gives rise to an extension of the Fundamental Theorem of
Calculus. The class of functions from the Banach space into the collection of
non-empty weak* compact and convex subsets of the dual of the Banach space,
which are generated by step functions, is dual via the L-derivative to families of
real-valued locally Lipschitz functions on the Banach space. The L-derivative is
also employed to construct a domain of computation for real-valued functions on
Banach spaces which carries an effective structure when the space is separable.
These results extend those for finite dimensions in [9, 10].

For functions on finite Euclidean spaces, the L-derivative is an element of a
countably based continuous domain which can be given an effective structure that
characterizes computable functions with computable L-derivatives. Any continu-
ous function and its L-derivative can be obtained as the supremum of an increasing
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sequence of pairs of finitary and consistent information about the function and its
L-derivative.

Although they are defined using very different techniques, we show here that
in finite dimensions the Clarke gradient and the L-derivative coincide. Thus, in
finite dimensions the construction of the L-derivative provides a new computable
representation for the Clarke gradient.

1.1 Background definitions

For the remainder of this section we will present the basic background definitions
of the various notions of derivative which we will need in this paper.

Let X and Y be Banach spaces and let U ⊂ X be an open subset. We recall
that the (one sided) directional derivative of f : U → Y at x ∈ U in the direction
v ∈ X is

F ′(x; v) = lim
t↓0

f(x+ tv)− f(x)

t
,

if the limit exists. If the above directional derivative exists for all v ∈ X , then
D(f)(x) : X → Y with D(f)(x)(v) := F ′(x; v) is the Gâteaux derivative of f at
x if D(f)(x) is a bounded linear map [27, 20].

The Fréchet derivative [27] of a map f : U → Y at x ∈ U , when it exists, is a
bounded linear map T : X → Y with

lim
‖x−y‖→0

‖f(x)− f(y)− T (x− y)‖
‖x− y‖

= 0.

The linear map T is denoted by f ′(x). When the Fréchet derivative exists at x, so
does the Gâteaux derivative and they are equal. However, the Fréchet derivative at
x can fail to exist even if the Gâteaux derivative exists at x and is a bounded linear
map.

From now on we will assume that Y = R. We next aim to define the gener-
alized (Clarke) gradient of a function [4, Chapter two] and explain its properties.
Let f : U → R be Lipschitz near x ∈ U and v ∈ X . The generalized directional
derivative of f at x in the direction of v is

f◦(x; v) = lim sup
y→x t↓0

f(y + tv)− f(y)

t
.

Let us denote byX∗ the dual ofX , i.e. the set of real-valued continuous linear func-
tions on X . Unless otherwise stated we will consider X∗ with its weak* topology.
Recall that the weak* topology is the weakest topology on X∗ in which for any
x ∈ X the map f 7→ f(x) : X∗ → R is continuous.

The generalized gradient of f at x, denoted by ∂f(x) is the subset ofX∗ given
by

{A ∈ X∗ : f◦(x; v) ≥ A(v) for all v ∈ X}.

It is shown in [4, page 27] that
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• ∂f(x) is a non-empty, convex, weak* compact subset of X∗.

• For v ∈ X , we have:

f◦(x; v) = max{A(v) : A ∈ ∂f(x)}.

There is an alternative characterization of the generalized gradient whenX is finite
dimensional, say X = Rn. In this case, by Rademacher’s theorem [5, p 148], a
locally Lipschitz map f : U → R is Fréchet differentiable almost everywhere
with respect to the Lebesgue measure. If Ωf is the nullset where f fails to be
differentiable then:

∂f(x) = Co{lim f ′(xi) : xi → x, xi /∈ Ωf}, (1)

where Co(S) is the convex hull of a subset S ⊂ Rn [4, page 63]. The above
expression is interpreted as follows. Consider all sequences (xi)i≥0, with xi /∈
Ωf , for i ≥ 0, which converge to x such that the limit f ′(xi) exists. Then the
generalized gradient is the convex hull of all such limits. Note that, in the above
definition, since f is locally Lipschitz at x, it is differentiable almost everywhere
in a neighbourhood of x and thus there are plenty of sequences (xm)m≥0 such that
limm→∞ xm = x and limm→∞ f

′(xm) exists.
Recall that for a Hausdorff spaceZ, we can define three topologies on the set of

non-empty compact subsets of Z as follows. The upper topology has as a base the
collection of subsets of the form �O = {C : C ⊆ O}, whereas the lower topology
has as a subbase the collection of subsets of the form ♦O = {C : C ∩ O 6=
∅}, where O ⊂ Z is an open subset. The Vietoris topology is the refinement of
the upper and lower topologies and is Hausdorff and, when Z is a metric space,
it is equivalent to the topology induced by the Hausdorff metric dh defined by
dh(A,B) = max(d(A,B), d(B,A)), where for compact sets C and D, d(C,D) is
the infimum of positive numbers δ such that C is contained in the δ-parallel body
of D defined as Dδ = {x ∈ Z | ∃y ∈ D. d(x, y) ≤ δ}; see [23, page 737].
We write U(Z), L(Z) and V(Z), respectively, for the three topological spaces or
hyperspaces, called respectively the upper space, the lower space and the Vietoris
space of Z, obtained by considering, respectively, the upper topology, the lower
topology and the Vietoris topology on the set of non-empty compact subsets of Z.
The upper space and the lower space are non-Hausdorff.

In finite dimensions, the Clarke gradient is upper semi-continuous, i.e. it is con-
tinuous with respect to the upper topology on the space of the non-empty compact
subsets of Rn. It is not known if a similar result holds in infinite dimensions [3],
i.e. if the Clarke gradient is continuous with respect to the upper topology on the
space of non-empty weak* compact subsets of X∗.

For X = Rn, we let∇f denote the classical gradient of f , when it exists, i.e.,

(∇f)i(x) =
∂f

∂xi
=
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limx′i→xi
f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x

′
i, . . . , xn)

xi − x′i
,

for 1 ≤ i ≤ n. Recall that, in finite dimensions, if the (Fréchet) derivative exists at
a point then the gradient also exists at that point and is the same linear map.

We also recall that for a function f : U → R, where U is an open subset of Rn,
Dini’s lower and upper partial derivatives, for 1 ≤ i ≤ n, are defined respectively
as

(∇f)li(x) = (2)

lim inf
x′i→xi

f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)

xi − x′i
(∇f)ui (x) = (3)

lim sup
x′i→xi

f(x1, . . . , xi, . . . , xn)− f(x1, . . . , x
′
i, . . . , xn)

xi − x′i
.

Note that the Dini’s lower and upper partial derivatives always exist as extended
real numbers.

2 Some properties related to the dual of a Banach space

Let X be a Banach space. For an open subset U ⊂ X , let U → R be the set of all
continuous functions of type U → R with respect to the norm topology on X . For
x ∈ X and f ∈ X∗, we write f(x) for the real number obtained by the action of f
on x and x(f) for the same real number when x is considered as a linear functional
on X∗.

The operator norm on X∗ extends pointwise to an interval valued map on the
weak* compact subsets of X∗. Note that a weak* compact subset is bounded
with respect to the operator norm. If b is a non-empty weak* compact and convex
subset of X∗ then ‖b‖ = {‖λ‖ : λ ∈ b} with ‖b‖ = [‖b‖−, ‖b‖+] is a compact real
interval. In particular, for X = R, if b ⊂ R is a compact interval, then so also is
|b| = {|r| : r ∈ b}.

We will consider the extension of the action of bounded linear operators on X
(i.e. the mapping X∗ ×X → R given by (f, x) 7→ f(x)) to the three hyperspaces
to obtain three maps EU : U(X∗)×X → U(R), EL : L(X∗)×X → L(R) and
EV : V(X∗) × X → V(R) which are defined with respect to the different three
topologies but have the same action given by (b, x) 7→ {f(x) : f ∈ b}. We write
b(x) = {f(x) : f ∈ b} which is a compact subset as b is weak* compact.

Proposition 2.1 The three maps EU , EL and EV are each continuous separately
in their two arguments with respect to the norm topology on X .

Proof To prove the continuity of the three maps when the second argument is
fixed, let x ∈ X . It is sufficient to show that, for any open set I ⊂ R, the preimage
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of �I is open in U(X∗) and the preimage of ♦I is open in L(X∗). First we
prove that the preimage of �I is open in U(X∗). Let b be a non-empty weak*
compact subset of X∗ with b(x) ⊂ I . Let ε > 0 be such that (b(x))ε ⊂ I .
For any f ∈ b, the weak* open set O(x, f, ε) = {g ∈ X∗ : |f(x) − g(x)| <
ε} gives an open neighbourhood of f . Put O(x, ε) =

⋃
f∈bO(x, f, ε). Then,

we have b ⊂ O(x, ε). If c is a weak* compact set with c ⊂ O(x, ε), then by
compactness there exist a finite number of functions fi ∈ b (i = 1, · · · , n) such
that c ⊂

⋃
1≤i≤nO(x, fi, ε). Then for any g ∈ c, there exists i ∈ {1, · · · , n} such

that fi ∈ b with |fi(x)− g(x)| < ε and thus g(x) ∈ I . It follows that c(x) ⊂ I and
therefore the preimage of �I is open in U(X∗). Next we consider the preimage
of ♦I . Let b be a non-empty weak* compact subset of X∗ with b(x) ∩ I 6= ∅.
Let f ∈ b with f(x) ∈ I take any ε > 0 such that the ε open ball centred at
f(x) is contained in I . Then, b ∩ O(x, f, ε) 6= ∅ and for any weak* compact
subset c of X∗ with c ∩ O(x, f, ε) 6= ∅ we have c(x) ∩ I 6= ∅, which shows that
the pre-image of ♦I is open in L(X∗). Finally, we prove the continuity of the
three maps when the first argument b, say, is fixed. Let b(x) ∈ O where O is
either �I and ♦I for any open subset I ⊂ R. Since any weak* compact subset
of X∗ is bounded with respect the operator norm, ‖b‖ ≤ K for some K > 0.
Hence, for any given ε > 0 and any f ∈ b, the relation ‖x − y‖ < ε/K implies
|f(x)− f(y)| ≤ ‖f‖‖x− y‖ ≤ Kε/K = ε. From this property, the result follows
easily. �

As usual, we consider the upper space U(Z) of any Hausdorff spaceZ partially
ordered with reverse inclusion so that U(Z) becomes a dcpo; we also include in
this dcpo a least element represented by Z. Thus, the map x 7→ {x} : Z → U(Z)
is a topological embedding onto the set of maximal elements of U(Z). We identify
the input and output of this embedding and write {x} simply as x.

We also recall that the Scott topology on any dcpo has as open sets those sets
O which are upper sets (that is x ∈ O and x v y implies y ∈ O) and which are
inaccessible by directed sets, i.e. if supi∈I ai ∈ O for a directed set (ai)i∈I then
there exists i ∈ I such that ai ∈ O [22]. A function f : D → E of dcpo’s D and
E is continuous with respect to the Scott topologies on D and E iff it is monotone
(x v y implies f(x) v f(y)) and preserves the lubs of directed subsets, i.e. for
any directed set (ai)i∈I in D we have: supi∈I f(ai) = f(supi∈I ai).

We then have the following:

Proposition 2.2 [6, Propositions 3.1(iii) and 3.3]

(i) For any Hausdorff space Z, the Scott topology on U(Z) refines the upper
topology.

(ii) If Z is locally compact then U(Z) is a continuous dcpo, on which the Scott
topology and the upper topology coincide. �

Consider the poset, denoted by C(X∗), consisting of X∗ and its nonempty weak*
compact and convex subsets partially ordered by reverse inclusion so that it has
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the least element ⊥ = X∗. Note that C(X∗) is a bounded complete dcpo and a
sub-dcpo of the upper space U(X∗) of X∗.

When X = R, we consider the sub-dcpo of U(R) denoted by IR of all non-
empty compact intervals of R ordered by reverse inclusion; it is a countably based
bounded complete continuous domain. We now restrict the first component of G
in Proposition 2.1 to convex subsets so that the range of G will become non-empty
compact intervals. Restricting to continuity with respect to the Scott topology,
Proposition 2.1 reduces to:

Corollary 2.3 The map G : C(X∗) × X → IR is continuous separately in its
two arguments with respect to the Scott topology on C(X∗) and IR and the norm
topology on X . In particular, for any directed set bi ∈ C(X∗), i ∈ I and v ∈ X ,
we have

⋂
i∈I(bi(v)) = (

⋂
i∈I bi)(v). �

The following result plays a crucial role in the construction of the L-derivative.

Theorem 2.4 Let S and T be disjoint non-empty convex subsets of the dual X∗ of
a Banach space X such that, with respect to the weak* topology, S is closed and
T is compact. Then there exists a hyperplane in X∗ induced by an element of X
which separates S and T , i.e. there exist x ∈ X and c ∈ R such that x(f) < c for
f ∈ S and x(f) > c for f ∈ T .

Proof Since S and T are disjoint closed sets, for each λ ∈ T there exists ε > 0
and a finite number of elements x1, · · ·xn ∈ X such that the open neighbourhood
of λ defined by {α : |xj(α) − xj(λ)| < ε for 1 ≤ j ≤ n}, is disjoint from S.
By compactness of T we can find a finite number of functionals, say, λi ∈ X∗

(1 ≤ i ≤ m) and elements xi1, xi2, · · ·xini ∈ X and εi > 0 for 1 ≤ i ≤ m such
that the open subsets

Ni = {α : |xij(α)− xij(λi)| < εi, for 1 ≤ j ≤ ni},

for 1 ≤ i ≤ m, are disjoint from S and cover T . Define Φ : X∗ → Rn1+n2+···+nm

by:
α 7→

(x11(α), · · · , x1n1(α); · · · ;xi1(α), · · · , xini(α); · · · ;xm1(α), · · · , xmnm(α)).

Then Φ(S) and Φ(T ) are convex subsets of Rn1+n2+···,+nm and Φ(T ) is compact.
Let Pi : Rn1 × · · · × Rni × · · · × Rnm → Rni be the projection onto Rni . Note
that Φ(T ) is contained in the open subset of Rn1+···+nm given by the intersection
of the m infinite open strips Rn1 ×Rn2 × · · · ×Rni−1 ×Ri ×Rni+1 × · · · ×Rnm

where
Ri = {z : ‖z − Pi(Φ(xi)‖ < εi},

with ‖v‖ being the max norm of v ∈ Rni . Therefore, Φ(T ) is disjoint from the
closure of Φ(S). Note that for any two disjoint convex subsets of Rk, with one
closed and the other compact, there exists a hyperplane in Rk which separates
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them (the normal to such a hyperplane is given by the line through two boundary
points of the sets which give the closest distance of the two sets). Thus, there is a
hyperplane

∑
1≤i≤m

∑
1≤j≤ni

cijzij = c in Rn1+n2+···+nm , for some real numbers
c, cij ∈ R (1 ≤ i ≤ m and 1 ≤ j ≤ ni), which separates Φ(T ) from the closure
of Φ(S). Let x =

∑
1≤i≤m

∑
1≤j≤ni

cijxij ∈ X . It follows that the hyperplane
x(α) = c, where α ∈ X∗, separates S and T in X∗. �

3 Ties of functions

The local differential property of a function is formalized in our framework by the
notion of an interval Lipschitz constant. Assume U ⊂ X is an open subset of a
Banach space X .

Definition 3.1 Let f be a real-valued function with domain dom(f) ⊂ U . We say
that f : dom(f) → R has an interval Lipschitz constant b ∈ C(X∗) in a convex
open subset a ⊂ dom(f) if for all x, y ∈ a we have: b(x− y) v f(x)− f(y). The
single tie δ(a, b) of a with b is the collection of all real-valued partial functions f
on U with a ⊂ dom(f) ⊂ U which have an interval Lipschitz constant b in a. We
call a the domain of the single tie.

Since a single tie provides a local Lipschitz property for a family of functions, it
is sufficient in Definition 3.1 to restrict the domain of a single tie to a convex open
subset. As an example, if X = R2 and b is the compact rectangle b1 × b2 (with
compact intervals b1, b2 ⊂ R), the information relation above reduces to:

b1(x1 − y1) + b2(x2 − y2) v f(x)− f(y).

Lemma 3.2 For b ∈ C(X∗) and z ∈ X , we have |b(z)|+ ≤ ‖b‖+‖z‖.

Proof We have |b(z)|+ = |{f(z) : f ∈ b}|+ = {|f(z)| : f ∈ b}+ ≤ {‖f‖ : f ∈
b}+‖z‖ = ‖b‖+‖z‖. �

Proposition 3.3 If f ∈ δ(a, b) for a 6= ∅ and b 6= ⊥, then f : a→ R is Lipschitz:
for all x, y ∈ a we have |f(x)− f(y| ≤ ‖b‖+‖x− y‖.

Proof Suppose f ∈ δ(a, b) and x, y ∈ a. It follows from f(x)− f(y) w b(x− y)
that |f(x)− f(y)| ≤ ‖b‖+‖x− y‖. �

For any topological space Z and any bounded complete dcpo D with bottom
⊥, let Z → D be the bounded complete dcpo of Scott continuous functions from
Z to D. The domain of f : Z → D is defined as dom(f) = {x : f(x) 6= ⊥}. In
particular, for any open subset a ⊂ Z and any non-bottom b ∈ D, the single-step
function a↘ b : Z → D, with (a↘ b)(x) = b if x ∈ a and (a↘ b)(x) = ⊥ if
x /∈ a, is Scott continuous and has domain a. A step function is then the supremum
of any finite set of consistent single-step functions. In the sequel, we consider the
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dcpo U → C(X∗) of Scott continuous functions with U ⊂ X equipped with its
the norm topology.

The following proposition justifies our definition of the interval Lipschitz con-
stant. Let a be a convex open subset of X .

Proposition 3.4 If f : a → R is C1(a) i.e., f is Fréchet differentiable and f ′ :
a → X∗ is continuous, then the following three conditions are equivalent: (i)
f ∈ δ(a, b), (ii) ∀z ∈ a. f ′(z) ∈ b and (iii) a↘ b v f ′.

Proof (i) ⇒ (ii). Suppose, for the sake of a contradiction that for some z ∈ a,
we have L := f ′(z) /∈ b. By Theorem 2.4, there exists a unit vector s ∈ X and
c ∈ R such that (s(L))+ < c and (s(b))− > c. From f ∈ δ(a, b), we obtain for
sufficiently small h that f(z+hs)−f(z)h ∈ s(b). But by Fréchet differentiability at z
we have:

lim
h→0

∣∣∣∣f(z + hs)− f(z)

h
− s(L)

∣∣∣∣ = 0,

which is a contradiction.
(ii)⇒ (i). Assume x, y ∈ a. Then, since the convex set a contains the straight line
from x to y, by the mean value theorem there exists z ∈ a such that f(x)−f(y) =
f ′(z)(x− y) ∈ b(x− y).
(iii) ⇐⇒ (ii). Obvious.�

Note that the convexity of the domain of a single tie is crucial in establishing the
equivalence in Proposition 3.4.

We will now show that ties have a dual property in relation to step functions of
type U → C(X∗).

Proposition 3.5 Suppose a 6= ∅ and b 6= ⊥. We have δ(a, b) ⊇ δ(c, d) iff c ⊇ a
and b v d.

Proof The “if” part follows easily from the definition of δ(a, b). To show the “only
if” part, we take any f ∈ δ(c, d) such that dom(f) = c. Then, since f ∈ δ(a, b), we
have a ⊂ dom(f) = c. On the other hand if b v d does not hold, take γ ∈ d\b and
consider the function f : c→ R with f(x) = γ(x). Then, f ∈ δ(c, d) \ δ(a, b). �

Corollary 3.6 Suppose a, c 6= ∅ and b, d 6= ⊥. We have δ(a, b) = δ(c, d) ⇐⇒
a = c & b = d. Furthermore δ(a, b) ⊇ δ(c, d) iff a↘ b v c↘ d. �

For the rest of this section, we assume we are in an infinite dimensional Banach
space or in the finite dimensional space Rn with n ≥ 2. The case n = 1 is
completely covered in [9].

Definition 3.7 A tie of partial real-valued functions on U is any intersection ∆ =⋂
i∈I δ(ai, bi), for an arbitrary indexing set I . The domain of a non-empty tie ∆ is

defined as dom(∆) =
⋃
i∈I{ai | bi 6= ⊥}.
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If a non-empty tie is given by the intersection of a finite number of single ties,
then it gives us a family of functions with a finite set of consistent differential
properties. Generally, a non-empty tie gives a family of functions with a consistent
set of differential properties.

Similar to Proposition 3.3, we have the following result. Recall that a function
f : U → R defined on the open set U ⊆ X is locally Lipschitz if it is Lipschitz in
a neighbourhood of any point in U .

Proposition 3.8 If ∆ is a tie and f ∈ ∆, then f is locally Lipschitz on dom(∆).

Proof Let x ∈ dom(∆). Then there exists a tie δ(a, b) with x ∈ a and f ∈ ∆ ⊆
δ(a, b) and the result follows from Proposition 3.3 �.

We now collect some fundamental properties of ties, which we will use later. The
next proposition, whose proof uses Theorem 2.4, is the key technical result for the
development of our theory.

Proposition 3.9 For any indexing set I , the family of step functions (ai ↘ bi)i∈I
is consistent if

⋂
i∈I δ(ai, bi) 6= ∅.

Proof Suppose f ∈
⋂
i∈I δ(ai, bi). We will show that every finite subfamily of

(ai ↘ bi)i∈I is consistent, from which the result follows as C(X∗) is bounded
complete. It suffices to prove that for any finite subset J ⊆ I we have

⋂
j∈J bj 6= ∅

if
⋂
j∈J aj 6= ∅. This we will show by induction on the cardinality |J | of J . For

|J | = 1, there is nothing to prove. Suppose now |J | > 1 and
⋂
j∈J aj 6= ∅. Let

k ∈ J . Then by the inductive hypothesis
⋂
j∈J\{k} bj 6= ∅. If

⋂
j∈J bj = ∅, then by

Theorem 2.4 there exists a vector z ∈ X and c ∈ R such that such that the disjoint
non-empty compact convex sets

⋂
j∈J\{k} bj and bk are on the opposite sides of the

affine space {λ : z(λ) = c}. Take elements x, y ∈
⋂
j∈J aj such that x − y = lz

for some l > 0. It follows that the two intervals (
⋂
j∈J\{k} bj)(x−y) and bk(x−y)

are disjoint. But by our assumption that f ∈
⋂
i∈I δ(ai, bi) ⊆

⋂
j∈J δ(aj , bj), we

have bk(x − y) v f(x) − f(y) and bj(x − y) v f(x) − f(y) for j 6= k, which
implies (

⋂
j∈J\{k} bj)(x− y) v f(x)− f(y), a contradiction. �

Corollary 3.10 The family (ai ↘ bi)i∈I is consistent if for any finite subfamily
J ⊆ I we have

⋂
i∈J δ(ai, bi) 6= ∅. �

Proposition 3.11 If a↘ b v supi∈I ai ↘ bi, then δ(a, b) ⊇
⋂
i∈I δ(ai, bi).

Proof Let b v
⋂
ai⊇a bi and assume f ∈

⋂
i∈I δ(ai, bi). Let x, y ∈ a. For each

i ∈ I with ai ⊇ a we have:

bi(x− y) v f(x)− f(y).

Therefore, we get:

b(x− y) v
⋂
ai⊇a

bi(x− y) v f(x)− f(y),

as required. �

11



Corollary 3.12 If supi∈I ai ↘ bi v supi∈J ai ↘ bi, then
⋂
i∈I δ(ai, bi) ⊇

⋂
i∈J δ(ai, bi). �

Let (T(U),⊇) be the partial order of ties of U → X ordered by reverse inclu-
sion.

Proposition 3.13 (T(U) \ {∅},⊇) is a dcpo.

Proof Suppose (∆j)j∈J is a directed set in (T(U)\{∅} with respect to the partial
order ⊇, i.e. ∆j1 ∩ ∆j2 6= ∅ for j1, j2 ∈ J . Let ∆j =

⋂
i∈Ij δ(ai, bi), where we

assume Ij1 ∩ Ij2 = ∅ for j1 6= j2. Consider the collection (δ(ai, bi))i∈
⋃

j∈J Ij
. By

Corollary 3.10, it suffices to show that any finite subfamily of this collection has
non-empty intersection. Suppose it ∈

⋃
j∈J Ij for 1 ≤ t ≤ n. Then δ(ait , bit) ∈

∆jt for some jt ∈ J (1 ≤ t ≤ n). By assumption
⋂

1≤t≤n ∆jt 6= ∅. Hence,⋂
1≤t≤n δ(ait , bit) ⊇

⋂
1≤t≤n ∆jt 6= ∅. �

For any topological space Z and any bounded complete dcpo D, let Z →s

D be the subset of Z → D consisting of Scott continuous functions which are
supremums of step functions, i.e., f = supi∈I ai ↘ bi for a family (ai ↘ bi)i∈I
of step functions with ai an open subset of Z and bi ∈ D. We note that Z →
D is bounded complete continuous dcpo iff the lattice of open subsets of Z is
continuous [16]. Thus, Z →s D is the whole function space Z → D iff the lattice
of open subsets of Z is continuous.

Consider U →s C(X∗). Since any open set a ⊂ X is the union of open balls,
we can assume without loss of generality that the open subsets ai (i ∈ I) in the
expression for f above are convex. It is easy to check that U →s C(X∗) is a dcpo.

We now show that, for any Banach space X , the set of maximal elements of
U →s C(X∗) contains the set of functions of type U → X∗, which are continuous
with respect to the norm topology on U and X∗. Recall that a metric space is
separable if it has a countable dense subset.

Proposition 3.14 (i) If f : U → X∗ is continuous with respect to the norm
topologies on U and X∗, then f ∈ U →s C(X∗). Moreover, if X is sepa-
rable with a countable dense subset P ⊂ X , then f is the lub of single step
functions of the form a↘ b where a is an open ball centred at a point of P
with rational radius whereas b is a closed ball centred at a point of P with a
rational radius.

(ii) If f : U → R is continuous with respect to the norm topology on U , then
f ∈ U →s IR. Moreover, if X is separable with a countable dense subset
P ⊂ X , then f is the lub of single step functions of the form a↘ b where
a is an open ball centred at a point of P with rational radius whereas b is a
rational compact interval.

Proof (i) By continuity of f , for x ∈ U and an open ball Bε(f(x)) of radius ε
around f(x), there exists an open neighbourhood a of x such that f [a] ⊂ Bε(f(x)).
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Since the closed ball Bε(f(x)) is weak* compact by Alaoglu’s theorem, it follows
that a↘ Bε(f(x)) v f . Since ε > 0 is arbitrary and

⋂
ε>0Bε(f(x)) = f(x), we

conclude that f is the supremum of step functions below it. It is easy to check that
the second statement also holds.

(ii) This is proved similar to (i). �

We are finally in a position to define the L-primitives of a Scott continuous
function; in fact now we can do more and define:

Definition 3.15 The L-primitive map
∫

: (U →s C(X∗))→ T(U) is defined by∫
f =

⋂
a↘ bvf

δ(a, b).

We call
∫
f the L-primitives of f . The following result depends crucially on the

fact that the domain of the L-primitive map is defined to be U →s C(X∗) rather
than the bigger function space U → C(X∗).

Proposition 3.16 If f = supi∈I ai ↘ bi, then
∫
f =

⋂
δ(ai, bi).

Proof This follows easily from Corollary 3.12.

The above property leads us to believe that U →s C(X∗), respectively Z → D,
may have wider applications in Banach space theory, respectively abstract domain
theory, beyond this paper.

Proposition 3.17 The L-primitive map is continuous and onto the set of non-empty
tie.

Proof Clearly the primitive map is monotone. Let (gi)i∈I be a directed set in
U →s C(X∗) with gi = supj∈Ii aj ↘ bj . Then,∫

sup
i∈I

gi =

∫
sup
i∈I

sup
j∈Ii

aj ↘ bj =

⋂
i∈I

⋂
j∈Ii

δ(aj , bj) =
⋂
i∈I

∫
gi = sup

i∈I

∫
gi.

By Proposition 3.9, any non-empty tie is the L-primitive of some element. �

If X = Rn, for n ≥ 2 or if X is infinite dimensional, the L-primitive map will
have the empty tie in its range, a situation which does not occur for n = 1. This
is similar to the situation in classical analysis in which a continuous vector field in
Rn for n > 1 may not be an exact differential.

Example 3.18 Let g ∈ R2 → C(R2) be the maximal function given by g(x, y) =
(g1(x, y), g2(x, y)) with g1(x, y) = 1 and g2(x, y) = x. Then ∂g1

∂y = 0 6= 1 = ∂g2
∂x ,

and it will follow as in classical analysis that
∫
g = ∅.
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4 The L-derivative

Given a Scott continuous function f : U → R, the relation f ∈ δ(a, b) provides,
as we have seen, finitary information about the local interval Lipschitz properties
of f . By collecting all such local information, we obtain the complete differential
properties of f , namely its L-derivative.

Definition 4.1 The L-derivative of a continuous function f : U → R is the map

Lf : U → C(X∗),

given by
Lf = sup

f∈δ(a,b)
a↘ b.

Theorem 4.2 (i) The L-derivative is well-defined and Scott continuous.

(ii) If f ∈ C1(U) then Lf = f ′.

(iii) f ∈ δ(a, b) iff a↘ b v Lf .

Proof (i) Let the indexing set I be defined by i ∈ I ⇐⇒ f ∈ δ(ai, bi). Then⋂
i∈I δ(ai, bi) 6= ∅. Hence, (ai ↘ bi)i∈I is consistent by Proposition 3.9. There-

fore, Lf = supi∈I ai ↘ bi is well-defined and is Scott continuous.
(ii) By Proposition 3.4, f ∈ δ(a, b) ⇐⇒ a↘ b v f ′. Hence, f ′ w

supf∈δ(a,b) a↘ b. To show equality, let z ∈ U and put L := f ′(z). By the
continuity of the Fréchet derivative f ′ : U → X∗ at z, for each integer n > 0,
there exists an open ball a ⊂ U with z ∈ a such that f ′(x) ∈ B1/n(L) for x ∈ a,
where Br(L) is the open ball of radius r and centre L ∈ X∗. By Proposition 3.4,
we have f ′ w Lf w a↘ B1/n(L), where Br(L) is the closed ball centred at L
with radius r, which is convex and weak* compact by Alaoglu’s Theorem. Since⋂
n≥0B1/n(L) = f ′(z) we conclude that f ′ = Lf .

(iii) Obvious. �

Since the Scott topology refines the upper topology on C(X∗), we also obtain:

Corollary 4.3 The L-derivative of any continuous function X → R is upper semi-
continuous. �

We now obtain the generalization of Theorem 4.2(iii) to ties, which provides
a duality between the L-derivative and L-primitives and can be considered as a
general version of the Fundamental Theorem of Calculus.

Theorem 4.4 (Fundamental Theorem of Calculus) For any g ∈ U →s C(X∗),

f ∈
∫
g ⇐⇒ g v Lf.
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Proof Let g ∈ U →s C(X∗). Then by Theorem 4.2(iii):

f ∈
∫
g ⇐⇒ f ∈

⋂
a↘ bvg

δ(a, b) ⇐⇒

a↘ b v Lf iff a↘ b v g ⇐⇒ g v Lf. �

We will now show that the Gâteaux derivative, if it exists, is always in the
L-derivative.

Lemma 4.5 For any locally Lipschitz map f : U → R and any x, v ∈ X we have:

(Lf(x))(v) =
⋂
{b(v) : f ∈ δ(a, b), x ∈ a}.

Proof This follows immediately from Corollary 2.3. �

Lemma 4.6 Let U ⊂ X , x ∈ U and f : U → R be locally Lipschitz. Then, for
any v ∈ X .

lim sup
y→x t↓0

f(y + tv)− f(y)

t
≤ (Lf(v))+,

lim inf
y→x t↓0

f(y + tv)− f(y)

t
≥ (Lf(v))−,

Proof If f ∈ δ(a, b) with x ∈ a then for y sufficiently close to x and t > 0
sufficiently small we have: f(y + tv)− f(y) ∈ tb(v) and thus

lim sup
y→x t↓0

f(y + tv)− f(y)

t
≤ (b(v))+

which implies

lim sup
y→x t↓0

f(y + tv)− f(y)

t
≤ inf{(b(v))+ : f ∈ δ(a, b), x ∈ a}.

Since Lf(x) =
⋂
{b : f ∈ δ(a, b), x ∈ a}, the proof of the first inequality follows

from Lemma 4.5. The second inequality is proved in a similar way. �

Corollary 4.7 The Gâteaux derivative of f at x, when it exists, belongs to the
L-derivative. Similarly for the Fréchet derivative. �

In order to obtain the next corollary we first need the following characterization of
the generalized gradient.

Lemma 4.8 For any locally Lipschitz function f we have: A ∈ ∂f(x) iff for all
v ∈ X ,

lim inf
y→x t↓0

f(y + tv)− f(y)

t
≤ A(v) ≤ lim sup

y→x t↓0

f(y + tv)− f(y)

t
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Proof The “if” part follows by definition. For the “only if” part, the second in-
equality is just the definition of the generalized gradient. For the first inequality,
assumeA ∈ ∂f(x) and v ∈ X . Then, by the definition of the generalized gradient,
with v replaced by −v we have:

−A(v) ≤ lim sup
y→x t↓0

f(y − tv)− f(y)

t

or

A(v) ≥ lim inf
y→x t↓0

−f(y − tv) + f(y)

t
.

Setting z = y − tv the latter inequality reduces to

A(v) ≥ lim inf
z→x t↓0

f(z + tv)− f(z)

t
,

as required. �

Corollary 4.9 The generalized (Clarke) gradient is contained in the L-derivative.

Proof This follows from Lemma 4.6 and Lemma 4.8. �

We do not know if the L-derivative and the Clarke gradient coincide on an infinite
dimensional Banach space. We do know however that in finite dimensions they are
the same, as we will show in Section 8.

5 Domain for Lipschitz functions

We will construct a domain for locally Lipschitz functions and forC1(U). The idea
is to use step functions in U →s IR to represent the function and step functions
in U → C(X∗) to represent the differential properties of the function. Note that a
continuous partial function f of typeU → R, as we have considered in defining ties
of functions in Section 3, can be regarded as an element f̂ ofU →s IR with f̂(x) =
f(x) if f(x) is defined and f̂(x) = ⊥ = R otherwise; we always identify f and f̂ .
Furthermore, a function f ∈ U → IR is given by a pair of respectively lower and
upper semi-continuous functions f−, f+ : U → R with f(x) = [f−(x), f+(x)].

Consider the consistency relation

Cons ⊂ (U →s IR)× (U →s C(X∗)),

defined by (f, g) ∈ Cons if ↑f ∩
∫
g 6= ∅. For a consistent (f, g), we think of f

as the function part or the function approximation and g as the derivative part or
the derivative approximation. We will show that the consistency relation is Scott
closed. The proofs of the rest of results in this section are essentially as in [9] for
the case of X = R. We will present them here for a general Banach space X for
the sake of completeness.
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Proposition 5.1 Let g ∈ U →s C(X∗) and (fi)i∈I be a non-empty family of
functions fi : dom(g) → R with fi ∈

∫
g for all i ∈ I . If h1 = infi∈I fi is real-

valued then h1 ∈
∫
g. Similarly, if h2 = supi∈I fi is real-valued, then h2 ∈

∫
g.

Proof Suppose h1 is real-valued. Let a↘ b v g. We have fi(x) − fi(y) ∈
b(x − y) for all i ∈ I . Thus, (b(x − y))− ≤ fi(x) − fi(y) ≤ (b(x − y))+.
Thus, infi∈I fi(x) ≤ fi(y) + (b(x − y))+. Taking infimum again, we obtain
infi∈I fi(x) ≤ infi∈I fi(y)+(b(x−y))+ and hence: h1(x)−h1(y) ≤ (b(x−y))+.
Similarly, (b(x − y))− ≤ h1(x) − h1(y) and the result follows. The case of h2 is
similar. �

Let R[0, 1] be the set of partial maps of [0, 1] into the extended real line. Consider
the two dcpo’s (R[0, 1],≤) and (R[0, 1],≥). Define the maps s : (U →s IR) ×
(U →s C(X∗))→ (R,≤) and t : (U →s IR)× (U →s C(X∗)→ (R,≥) by

s : (f, g) 7→ inf{h : dom(g)→ R |h ∈
∫
g & h ≥ f−}

t : (f, g) 7→ sup{h : dom(g)→ R |h ∈
∫
g & h ≤ f+}.

We use the convention that the infimum and the supremum of the empty set are∞
and −∞, respectively. Note that given a connected component A of dom(g) with
A ∩ dom(f) = ∅, then s(f, g)(x) = −∞ and t(s, f)(x) = ∞ for x ∈ A. In
words, s(f, g) is the least primitive map of g that is greater than the lower part of
f , whereas t(f, g) is greatest primitive map of g less that the upper part of f .

Proposition 5.2 The following are equivalent:

(i) (f, g) ∈ Cons.

(ii) s(f, g) ≤ t(f, g).

(iii) There exists a locally Lipschitz function h : dom(g) → R with g v Lh and
f v h on dom(g).

Proof If dom(f)∩dom(g) = ∅, then the three statements hold trivially. So assume
in the following proof that dom(f) ∩ dom(g) 6= ∅.
(ii)⇒ (i). Suppose s(f, g) ≤ t(f, g). Then, s(f, g) ∈ ↑f ∩

∫
g and hence (f, g) ∈

Cons.
(i)⇒ (ii). Suppose (f, g) ∈ Cons. Assume h ∈ ↑f ∩

∫
g. Then, the induced map

h : dom(g) → R satisfies h ∈
∫
g. Hence, f− ≤ h ≤ f+ and thus s(f, g) ≤

t(f, g).
(ii)⇒ (iii). Suppose s(f, g) ≤ t(f, g). Put h = s(f, g).
(iii)⇒ (ii). We have s(f, g) ≤ h ≤ t(f, g). �

Moreover, s and t are well-behaved:
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Proposition 5.3 The maps s and t are Scott continuous.

Proof Consider the map s. If f1 v f2 and g1 v g2, then we have
∫
g1 ⊇

∫
g2

and f−1 ≤ f−2 and it follows that s(f1, g1) ≤ s(f2, g2). Let {(fi, gi)}i∈I be a
directed set and put f = supi∈I fi and g = supi∈I gi. To show the continuity of
s we need to show that supi∈Is(fi, gi) ≥ s(f, g) on any connected component of
dom(g) =

⋃
i∈I dom(gi). Take any such connected component A ⊆ dom(g). If

A ∩ dom(f) = ∅ then s(f, g) = −∞ on A and the result follows. Assume that
A ∩ dom(f) 6= ∅, i.e., domfi0 ∩ domgi0 6= ∅ for some i0 ∈ I . If s(fi, gi) =∞ on
A∩dom(gi) for some i ≥ i0, then supi∈Is(fi, gi) =∞ onA and the result follows
again. Otherwise, assume without loss of generality that −∞ < s(fi, gi) < ∞
on A ∩ dom(gi) for all i ∈ I . Then from (s(fi, gi))�A∈

∫
gi it follows that ∀i ≥

j. (s(fi, gi))�A∈
∫
gj , and hence, by Proposition 5.1, (supi∈I(s(fi, gi)�A)) ∈

∫
gj .

Thus (supi∈I s(fi, gi))�A∈ supj
∫
gj =

∫
sup gj . On the other hand, s(fi, gi) ≥

f−i on A implies supi∈I s(fi, gi) ≥ f−i on A and hence supi∈I s(fi, gi) ≥ f− on
A. This shows that s is continuous. Similarly t is continuous. �

This enables us to deduce:

Corollary 5.4 The relation Cons is Scott closed.

Proof Let (fi, gi)i∈I ⊂ (U →s IR) × (U →s CRn) be a directed set with
(fi, gi) ∈ Cons for all i ∈ I . Then, by Proposition 5.2, s(fi, gi) ≤ t(fi, gi)
for all i ∈ I . Hence, s(f, g) = supi∈I s(fi, gi) ≤ infi∈I t(fi, gi) = t(f, g). �

We can now sum up the situation for a consistent pair of function and derivative
information.

Corollary 5.5 Let (f, g) ∈ Cons. Then in each connected component A of the
domain of definition of g which intersects the domain of definition of f , there exist
two locally Lipschitz functions s : A→ R and t : A→ R such that s, t ∈ ↑f ∩

∫
g

and for each u ∈ ↑f ∩
∫
g, we have with s(x) ≤ u(x) ≤ t(x) for all x ∈ A.

We now can define a basic construct of this paper:

Definition 5.6 Define

D1(U) = {(f, g) ∈ (U →s IR)× (U →s C(X∗)) : (f, g) ∈ Cons}.

From Corollary 5.4, we obtain:

Corollary 5.7 The poset D1(U) is a bounded complete dcpo.

Proposition 5.8 For any f ∈ (U → R) the element (f,Lf) is a maximal element
of D1(U).
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Proof By Corollary 4.4, we have f ∈
∫
Lf and thus, (f,Lf) ∈ D1U . We now

show that (f,Lf) is maximal. If Lf v g and (f, g) ∈ D1U then we have f ∈
∫
g,

which implies g v Lf , i.e., g = Lf and (f,Lf) is maximal. �

For a locally Lipschitz function f : U → R the L-derivative satisfies Lf(x) 6=
⊥ for all x ∈ U , whereas for a piecewise C1 function f we further have the
property that Lf(x) is maximal except for a finite set of points.

6 L-derivative in finite dimensions

Assume X = Rn and U ⊂ Rn is an open subset. Then we can identify X∗ =
X = Rn. Moreover C(Rn) and U → C(Rn) are both countably based bounded
complete continuous dcpo’s with U →s C(Rn) = U → C(Rn).

In the finite dimensional case, we are able to deduce the following proposition
which relates the L-derivative to its classical counterpart. For any compact subset
c ⊂ Rn we denote its diameter by w(c). For a non-empty compact interval c =
[c−, c+] ⊂ R, we thus have w(c) = c+ − c−. The following result generalizes
Theorem 4.2(i) in finite dimensions; we do not know if it can be extended to infinite
dimensional Banach spaces.

Proposition 6.1 If Lf(y) ∈ C(Rn) is maximal for some y ∈ U , then the Fréchet
derivative of f exists at y and f ′(y) = Lf(y).

Proof Put c := Lf(y) =
⋂
{b | y ∈ a & f ∈ δ(a, b)}. Let ε > 0 be given. Take

a↘ b v Lf with y ∈ a and w(b) < ε. Note that b v c and there exists δ > 0 such
that ‖x− y‖ < δ implies x ∈ a. We have b(x− y) v f(x)− f(y) for x ∈ a, and

w(b(x− y)) ≤ w(b)|x− y| ≤ ε|x− y|.

Since b(x − y) v c(x − y), we obtain |f(x) − f(y) − c(x − y)| ≤ ε|x − y| and
the result follows by the definition of Fréchet derivative. �

We can now obtain the following result in finite dimensions, which is simply
the classical version of the Fundamental Theorem of Calculus.

Corollary 6.2 Suppose g : U → R is a continuous function. Then f ∈
∫
g implies

that f ′ exists in U and we have Lf = f ′ = g.

Proof By Theorem 4.4, g v Lf and thus Lf = g since g is maximal. By Propo-
sition 6.1, we also obtain Lf = f ′.�

We now consider a given Cartesian coordinate system denoted say by ewith ba-
sis (e1, · · · , en). Let Qe(Rn) be the collection of all n dimensional compact hyper-
rectangles with edges parallel with ei’s and define the rectangular L-derivative with
respect to e as
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(Lf)e = sup{a↘ b : f ∈ δ(a, b) & b ∈ Qe(Rn)}.

It immediately follows from the definition that (Lf)e(y), at each point y ∈ U ,
is an n dimensional compact hyper-rectangle with edges parallel to the basis vec-
tors ei. Moreover, if E denotes the collection of all Cartesian coordinate systems
in Rn, we have:

Proposition 6.3 For each point y ∈ U , we have:

Lf(y) =
⋂
e∈E

(Lf)e(y). �

For b ∈ Qe(Rn), i.e., b = b1× . . .×bn, the relation b(x−y) v f(x)−f(y), which
defines the single tie δ(a, b), can be computed in the coordinate system e simply
as
∑n

j=1 bj(xj − yj) v f(x) − f(y). Furthermore, if xj = yj for all j 6= i, the
relation reduces to bi(xi − yi) v f(x)− f(y). This suggests a characterization of
(Lf)e(y) in terms of Dini’s derivatives; in fact we can deduce the following result.

Proposition 6.4 The components of the rectangular L-derivative with respect to
the basis e are given by:

(Lf)ei (x) =

[
lim inf
y→x

(∇f)li(y), lim sup
y→x

(∇f)ui (y)

]
,

when the two limits are finite for all i = 1, · · · , n and Lf(x) = ⊥ otherwise.

Proof If f ∈ δ(a, b) for some a ⊆ U with x ∈ a and b = [b1
−, b1

+] × · · · ×
[bn
−, bn

+], then bi− ≤ (∇f)li(y) ≤ (∇f)ui (y) ≤ bi
+ for y ∈ a, and thus bi− ≤

lim infy→x(∇f)li(y) ≤ lim supy→x(∇f)ui (y) ≤ bi+. It follows that[
lim inf
y→x

(∇f)li(y), lim sup
y→x

(∇f)ui (y)

]
⊆ (Lf)ei (x).

On the other hand, if lim infy→x(∇f)li(y) and lim supy→x(∇f)ui (y) are finite for
all i = 1, · · · , n, then for any ε > 0 there exists an open a ⊆ U containing x such
that, for all y ∈ a and all i = 1, . . . , n,

Ki(x, ε) := lim inf
y→x

(∇f)li(y)− ε < (∇f)li(y)

Li(x, ε) := lim sup
y→x

(∇f)ui (y) + ε > (∇f)ui (y).

Let c be the interior of a hypercube containing x with c ⊂ a and fix i with 1 ≤
i ≤ n. By the first inequality above, we can cover c with a finite number of open
hyper-rectangles such that for any pair of points y ≥ z in each hyper-rectangle
with yj = zj for j 6= i and yi ≥ zi, we have Ki(x, ε)(yi − zi) ≤ f(y) − f(z).
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It thus follows, by adding a finite number of inequalities one for each open hyper-
rectangle, that for all y, z ∈ c with yj = zj for j 6= i and yi ≥ zi, we have
Ki(x, ε)(yi − zi) ≤ f(y) − f(z), and similarly, by using the second inequality
above, f(y) − f(z) ≤ Li(x, ε)(yi − zi). Thus, for all y, z ∈ c with yj = zj for
j 6= i, we have bi(yi − zi) v f(y)− f(z) where bi = [Ki(x, ε), Li(x, ε)]. For any
pair y, z ∈ c, consider the n + 1 points y = p0, p1, p2, . . . pn−1, pn = z, such that
pii = zi and pij = yj for j 6= i. Therefore,

f(y)− f(z) =

(f(p0)−f(p1))+(f(p1)−f(p2))+. . .+(f(pi)+f(pi+1))+. . . (f(pn)−f(pn+1)) w
n∑
i=1

bi(yi − zi).

It follows that f ∈ δ(c, b). Since ε > 0 is arbitrary, we conclude that[
lim inf
y→x

(∇f)li(y), lim sup
y→x

(∇f)ui (y)

]
⊇ (Lf)ei (x). �

The domain-theoretic derivative developed in [10] is indeed (Lf)e, the rectangular
L-derivative with respect to a given coordinate axis e. We do not know if there
is an analogue of the above Proposition for infinite dimensional separable Hilbert
spaces.

7 Computability

Let Z be a topological space with a countable basis M of its open subsets, and
D a bounded complete dcpo with a countable subset E ⊂ D. Let (fi)i≥0 be an
effective enumeration of the class of step functions of Z → D made from single-
step functions a↘ bwhere a ∈M and b ∈ E. We say f ∈ U →s D is computable
with respect to this enumeration if there exists a total recursive function φ : N→ N
such that (fφ(n))n≥0 is an increasing sequence with f = supn≥0 fφ(n).

When, in addition, Z is locally compact and D is a countably based continu-
ous dcpo, then Z → D is a countably based bounded complete continuous dcpo,
which can be given an effective structure. In this case, we obtain the same class
of computable elements with any effective change of a countable basis of D. In
general however, the computable elements will depend on the enumeration of the
countable subset E.

Suppose now that X is a separable Banach space, with a countable dense set
P ⊂ X . Then the collection of open balls centred at points of P with rational
radii provides a countable basis of the norm topology on X . We use the rational
compact intervals as a countable basis of IR and the collection of closed balls of
X∗ with centres at points P with rational radii as a countable subset of C(X∗) to
generate two countable sets, S1 and S2 say, of step functions for the two dcpo’s
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U →s IR and U →s C(X∗). We then obtain an enumeration (fi)i≥0 of S1 and an
enumeration (gi)i≥0 of S2.

By Proposition 3.14, we know that any continuous function f : U → R and any
function g : U → C(X∗) continuous with respect to the norm topology on X and
X∗, is the supremum of step functions in S1 and S2 respectively. We say that f is
computable with respect to the enumeration (fi)i≥0, respectively g is computable
with respect to (gi)i≥0, if f considered as an element of U → IR, respectively
g considered as an element of U → C(X∗), is computable with respect to the
enumeration.

We then use an oracle to decide if (fi, gj) ∈ Cons for i, j ≥ 0, which enables
us to construct an enumeration (hi)i≥0 of a countable set, S3 say, of step functions
of D1(U), where hi = (fp(i), gq(i)) for i ≥ 0 with p, q : N → N total recursive
functions. By Proposition 3.14, we know that if f : U → R is Fréchet differen-
tiable then (f, f ′) is the lub of step functions in S3. We thus say that f and its
Fréchet derivative f ′ are computable with respect to (hi)i≥0 if (f, f ′) considered
as a maximal element of D1(U) is computable with respect to this enumeration.

As we will see in the next section, when X is finite dimensional D1(U) can be
given an effective structure with respect to which Cons is decidable, obviating the
need for an oracle.

7.1 An effectively given domain for Lipschitz functions

In the finite dimensional case, X = Rn, the countably based bounded complete
continuous dcpo’s U → IR and U → C(Rn) have each a canonical basis re-
spectively made from single-step functions a↘ b, where a is an open ball with a
rational radius centred at a point in U with rational coordinates and b is a ratio-
nal compact interval, respectively a convex compact polyhedra in Rn with vertices
having rational coordinates.

In [10], it is shown that, when the rectangular L-derivative (Lf)e with respect
to a given coordinate axis e is used, the corresponding consistency predicate Conse,
defined on (U → IR)× (U → IRn) by (f, g) ∈ Conse if there exists h : U → R
such that f v h and g v (Lh)e is decidable on the basis elements. The proof of
decidability is fairly simple for n = 1 with an algorithm to test consistency, which
is linear in the total number of single-step functions in the function and derivative
parts [7]. In higher dimensions, the existing proof of decidability in [10] is long
and the algorithm to test consistency is super-exponential. First, one checks, by a
generalization of Green’s theorem, if

∫ e
g 6= ∅ where

∫ e is the primitive map dual
to the rectangular L-derivative with respect to e, i.e., f ∈

∫ e
g if g v (Lf)e. If the

test for integrability of g is positive then one checks if se(f, g) ≤ te(f, g) where se

and te are defined as s and t in Section 5 except that
∫ e is used in their definitions.

The technique for proving the decidability of Conse on basis elements can be
extended to prove that Cons is also decidable on basis elements of D1(U). Since
the proof and the corresponding algorithm to test consistency is very long, they
will be presented elsewhere.
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Using the decidability of Cons on basis elements, we can provide an effec-
tive structure for D1(U). In particular this will characterize real-valued func-
tions on U ⊂ Rn which are computable and have a computable L-derivative as
pairs (f,Lf) for which there exists a total recursive function φ : N → N with
(f,Lf) = supi≥0(fp(φ(i)), gq(φ(i))) in the notation of Section 7.

If f : U → R is Cm−1 for some open subset U ⊂ Rn, i.e., if it has continuous
Fréchet derivatives f (d) of order d with 1 ≤ d ≤ m − 1, then the L-derivative
of components of f (m−1) exists. One can extend the construction of D1(U) to
higher derivatives and build a domain Dm(U) for representing and approximating
a function together with its m − 1 Fréchet derivatives and its mth L-derivative
Lf (m−1). The basis of this domain will consist ofm+1 step functions representing
approximations to the function, its first m − 1 Fréchet derivatives and its mth L-
derivative. We will discuss the question of decidability of consistency for basis
elements of this domain in the final section.

8 Relation with generalized gradient

Recall that by Rademacher’s theorem [5, p 148], a function f : U → R which is
Lipschitz in an open neighbourhood ofU ⊂ Rn is differentiable almost everywhere
with respect to the n-dimensional Lebesgue measure in that neighbourhood. Let
Ωf ⊆ U denote the set of points, where f is not differentiable.

We now establish the equality of the L-derivative and the generalized gradient
in finite dimensions..

Theorem 8.1 For any function f : U → R, the rectangular L-derivative with
respect to a given Cartesian coordinate system, at a point where the function is lo-
cally Lipschitz is the smallest hyper-rectangle with sides parallel to the coordinate
planes that contains the generalized gradient at that point.

Proof Fix a Cartesian coordinate system e. By Corollary 4.9 and Proposition 6.3,
we already know that

∂f(x) ⊆ (Lf(x))e. (4)

We show that (Lf(x))e is the smallest hyper-rectangle with sides parallel to the
coordinate planes, which contains ∂f(x). Assume ε > 0 is given, 1 ≤ i ≤ n
and let B ⊂ Rn be the unit closed ball centred at the origin. For 1 ≤ i ≤ n, let
πi : Rn → R be the projection to the i coordinate axis and consider the pointwise
extension of πi to compact subsets of Rn. From Equation 1, we have:

(πi(∂f(x)))+ = lim sup{(∇f)i(y) : y → x, y /∈ Ωf}.

Thus, there exists δ > 0 such that for all y ∈ x + δB, we have (∇f)i(y) ≤
(πi(∂f(x)))+ + ε. Consider the line segment Ly = {y + tei : 0 < t < δ/2},
where ei is the unit vector in the direction of the ith coordinate axis. Since Ωf has
zero n-dimensional Lebesgue measure in x+δB, it follows from Fubini’s theorem
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that for almost all y ∈ x + δ
2B, the line segment Ly meets Ωf in a set of zero

one-dimensional Lebesgue measure. If y is such a point and 0 < t < δ/2, we
obtain:

f(y + tei)− f(y) =

∫ t

0
(∇f)i(y + sei) ds,

since, by Rademacher’s theorem [5, p 148], f ′ exists almost everywhere on Ly. On
the other hand, (∇f)i(y + sei) ≤ (πi(∂f(x)))+ + ε, since ‖y + sei − x‖ < δ for
0 < s < t. Thus,

f(y + tei)− f(y) ≤ t(πi(∂f(x)))+ + ε). (5)

Equation 5 holds for almost all y within δ/2 of x and for all t ∈ (0, δ/2). Since f ,
being Lipschitz, is continuous it follows that Equation 5 holds for all y within δ/2
of x and for all t ∈ (0, δ/2). Thus, (∇f)ui (y) ≤ (πi(∂f(x)))+ + ε for all y within
δ/2 of x and, using Proposition 6.4, we conclude that

((Lf(x))ei )
+ = lim sup

y→x
(∇f)ui (y) ≤ (πi(∂f(x)))+. (6)

Similarly,
((Lf(x))ei )

− = lim inf
y→x

(∇f)li(y) ≥

lim inf{(∇f)i(y) : y → x, y /∈ Ωf} = (πi(∂f(x)))−. (7)

Comparing Equations (6) and (7) with Equation (4), it follows that ∂f(x) touches
all the 2n sides of the hyper-rectangle (Lf(x))e and the proof is complete. �

Corollary 8.2 For any locally Lipschitz map f : U → R, the L-derivative and the
Clarke gradient are equal: Lf = ∂f . �

Thus, in finite dimensions, the L-derivative gives a new representation for the
Clarke gradient and the construction of an effectively given domain for locally
Lipschitz functions provides a new computational framework for its applications.
We note that the proof of Theorem 8.1 uses Proposition 6.4, for which we do not
know any infinite dimensional analogue.

9 Further work and open problems

As already pointed out, it remains an open question if the L-derivative coincides
with the Clarke gradient on infinite dimensional Banach spaces. It is also unknown
if the Clarke gradient is upper semi-continuous in infinite dimensions, a property
which holds for the L-derivative as we have shown in this paper. On the other hand,
it will be interesting to see if the L-derivative can be extended to functions from
a Banach space to a finite dimensional Banach space, for example to the complex
plane, a case which has applications in quantum field theory.
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There are quite a few unsolved problems in finite dimensions. For n = 1, the
algorithm for testing consistency of basis elements in D1(U) is linear as already
mentioned. For D2(U), consistency on basis elements is decidable but the present
algorithm to test it is super-exponential in the total number of single-step functions
for the three approximations of the function part, the derivative part and the second
derivative part. [1]. Decidability of consistency for Dm(U) when m > 2 is un-
known. For n = 2, consistency on basis elements for D1(U) is decidable but the
algorithm to test it in [10] is super-exponential. The complexity of consistency test
in this case is unknown as is the question of decidability of consistency of basis
elements for Dm(U) when m > 1.

Based on the domain-theoretic framework for differential calculus, one can
embark on the task of constructing a domain for orientable Euclidean manifolds,
which would extend the set-theoretic model for computational geometry and solid
modelling presented in [8] to the piecewise smooth setting.
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