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Abstract. Modern multicore processors, such as the Cell Broadband Engine,
achieve high performance by equipping accelerator cores with small “scratch-
pad” memories. The price for increased performance is higher programming
complexity – the programmer must manually orchestrate data movement using di-
rect memory access (DMA) operations. Programming using asynchronous DMAs
is error-prone, and DMA races can lead to nondeterministic bugs which are hard
to reproduce and fix. We present a method for DMA race analysis which auto-
matically instruments the program with assertions modelling the semantics of a
memory flow controller. To enable automatic verification of instrumented pro-
grams, we present a new formulation of k-induction geared towards software,
as a proof rule operating on loops. We present a tool, SCRATCH, which we ap-
ply to a large set of programs supplied with the IBM Cell SDK, in which we
discover a previously unknown bug. Our experimental results indicate that our k-
induction method performs extremely well on this problem class. To our knowl-
edge, this marks both the first application of k-induction to software verification,
and the first example of software model checking for heterogeneous multicore
processors.

1 Introduction

Heterogeneous multicore processors such as the Cell Broadband Engine (BE) circum-
vent the shared memory bottleneck by equipping cores with small “scratch-pad” mem-
ories [16,18]. These fast, private memories are not coherent with main memory, and
allow independent calculations to be processed in parallel by separate cores without
contention. While this can boost performance,1 it places heterogeneous multicore pro-
gramming at the far end of the concurrent programming spectrum. The programmer
can no longer rely on the hardware and operating system to seamlessly transfer data
between the levels of the memory hierarchy, and must instead manually orchestrate
data movement between memory spaces using direct memory access (DMA). Low-
level data movement code is error-prone: misuse of DMA operations can lead to DMA
races, where concurrent DMA operations refer to the same portion of memory, and
at least one modifies the memory. There is an urgent need for techniques and tools to
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analyse DMA races, which, if undetected, can lead to nondeterministic bugs that are
difficult to reproduce and fix.

We present a method for DMA race analysis which automatically instruments the
program with assertions modelling the semantics of a memory flow controller. The
instrumented programs are amenable to automatic verification by state-of-the-art model
checkers. Recent dramatic advances in SAT/SMT techniques have led to widespread
use of Bounded Model Checking (BMC) [3,5] for finding bugs in software. As well
as detecting DMA races, we are interested in proving their absence. However, BMC
is only complete if the bound exceeds a completeness threshold [19] for the property,
which is often prohibitively large. We overcome this limitation by presenting a novel
formulation of k-induction [24]. The k-induction method has been shown effective for
verifying safety properties of hardware designs. In principle, k-induction can be applied
to software by encoding a program as a monolithic transition function. This approach
has not proven successful due to the loss of control-flow structure associated with such
a naı̈ve encoding, and because important refinements of k-induction (e.g. restriction to
loop-free paths) are not useful for software where the state-vector is very large.

We present a general proof rule for k-induction that is applicable to imperative pro-
grams with loops, and prove correctness of this rule. In contrast to the naı̈ve encoding
discussed above, our method preserves the program structure by operating at the loop
level. Furthermore, it allows properties to be expressed through assertion statements
rather than as explicit invariants. Our experimental results indicate that this method of
k-induction performs very well when applied to realistic DMA-based programs, which
use double- and triple-buffering schemes for efficient data movement: such programs in-
volve regularly-structured loops for which k-induction succeeds with a relatively small
k. We investigate heuristics to further boost the applicability of k-induction when check-
ing for DMA races, and discuss limitations of k-induction in this application domain.

We have implemented our techniques as a tool, SCRATCH, which checks programs
written for the Synergistic Processor Element (SPE) cores of the Cell BE processor. We
present an evaluation of SCRATCH using a set of 22 example programs provided with
the IBM Cell SDK for Multicore Acceleration [18], in which we discover a previously
unknown bug, which has been independently confirmed. Our experiments show the
effectiveness of our methods in comparison to predicate abstraction: k-induction allows
us to prove programs correct that cannot be verified using current predicate abstraction
tools, and bug-finding is orders of magnitude faster. Additionally, SCRATCH is able to
find bugs which go undetected by a runtime race-detection tool for the Cell processor.

In summary, our major contributions are:

– an automatic technique for instrumenting programs with assertions to check for
DMA races, enabling verification of multicore programs with scratch-pad memory.

– a new proof rule for k-induction operating on programs with loops, which we show
to be effective when applied to a large set of realistic DMA-based programs.

To our knowledge, this marks the first application of k-induction to software verifica-
tion, and of software model checking to heterogeneous multicore programs.
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2 Direct Memory Access Operations

We consider heterogeneous multicore processors consisting of a host core, connected to
main memory, and a number of accelerator cores with private scratch-pad memory. A
DMA operation2 specifies that a contiguous chunk of memory, of a given size, should be
transferred between two memory addresses l and h. The address l refers to accelerator
memory (local store), and h to main memory (host memory). A tag (typically an integer
value) must also be specified with a DMA; the operation is said to be identified by
this tag. It is typical for DMA operations to be initiated by the accelerator cores: an
accelerator pulls data into local store, rather than having the host push data. We assume
this scenario throughout the paper.

DMA operations are non-blocking – an accelerator thread which issues a DMA con-
tinues executing while the operation is handled by a specialised piece of hardware called
a memory flow controller. An accelerator thread can issue a wait operation, specifying
a tag t, which causes execution to block until all DMAs identified by t have completed.
A DMA with tag t is pending until a wait operation with tag t is issued.

Although a DMA may complete before an explicit wait operation is issued, this can-
not be guaranteed, thus access by the host or accelerator to memory that is due to be
modified by a pending DMA should be regarded as a bug. Failure to issue a wait op-
eration may result in nondeterministic behaviour: it may usually be the case that the
required data has arrived, but occasionally the lack of a wait may result in reading from
uninitialised memory, leading to incorrect computation. This nondeterminism means
that bugs arising due to misuse of DMA can be extremely difficult to reproduce and fix.

2.1 DMA Primitives and Properties of Interest

We consider the following primitives for DMA operations:

– put(l, h, s, t): issues a transfer of s bytes from local store address l to host address
h, identified by tag t

– get(l, h, s, t): issues a transfer of s bytes from host address h to local store address
l, identified by tag t

– wait(t): blocks until completion of all pending DMA operations identified by tag t

For each accelerator core, we assume hardware-imposed maximum values D and M
for the number of DMAs that may be pending simultaneously and the number of bytes
that may be transferred by a single DMA, respectively. We assume that tags are integers
in the range [0, D − 1]. On the Cell processor, D = 32 and M = 16384 (16K).

We have informally described the notion of memory being corrupted by DMA op-
erations. A special case of memory corruption is where two pending DMAs refer to
overlapping regions of memory, and at least one of the DMAs modifies the region of
memory. We call this a DMA race, and focus our attention on the detection of DMA
races for the remainder of the paper. This focus is for reasons of space only: our tech-
niques can be readily adapted to detect races where the buffer referred to by a pending
DMA is accessed by non-DMA statements.

2 For brevity, we sometimes write “DMA” rather than “DMA operation.”
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#define CHUNK 16384 // Process data in 16K chunks

float buffers[3][CHUNK/sizeof(float)]; // Triple-buffering requires 3 buffers

void process_data(float* buf) { ... }

void triple_buffer(char* in, char* out, int num_chunks) {
unsigned int tags[3] = { 0, 1, 2 }, tmp, put_buf, get_buf, process_buf;

(1) get(buffers[0], in, CHUNK, tags[0]); // Get triple-buffer scheme rolling
in += CHUNK;

(2) get(buffers[1], in, CHUNK, tags[1]);
in += CHUNK;

(3) wait(tags[0]); process_data(buffers[0]); // Wait for and process first buffer
put_buf = 0; process_buf = 1; get_buf = 2;
for(int i = 2; i < num_chunks; i++) {

(4) put(buffers[put_buf], out, CHUNK, tags[put_buf]); // Put data processed
out += CHUNK; // last iteration

(5) get(buffers[get_buf], in, CHUNK, tags[get_buf]); // Get data to process
in += CHUNK; // next iteration

(6) wait(tags[process_buf]); // Wait for and process data
process_data(buffers[process_buf]); // requested last iteration

tmp = put_buf; put_buf = process_buf; // Cycle the buffers
process_buf = get_buf; get_buf = tmp;

}
... // Handle data processed/fetched on final loop iteration

}

Fig. 1. Triple-buffering example, adapted from an example provided with the IBM Cell SDK [18]

Definition 1. Let op1(l1, h1, s1, t1) and op2(l2, h2, s2, t2) be a pair of simultaneously
pending DMA operations, where op1, op2 ∈ {put, get}. The pair is said to be race free
if the following holds:

((op1 = put ∧ op2 = put) ∨ (l1 + s1 ≤ l2) ∨ (l2 + s2 ≤ l1))∧
((op1 = get ∧ op2 = get) ∨ (h1 + s1 ≤ h2) ∨ (h2 + s2 ≤ h1)).

The first conjunct in Definition 1 asserts that the local store regions referred to by op1

and op2 do not overlap, unless both are put operations (which do not modify local
store); the second conjunct asserts that the host memory regions do not overlap, unless
both op1 and op2 are get operations (which do not modify host memory). We say there
is a DMA race when some pair of pending DMA operations is not race free.

2.2 Illustrative Example: Triple-Buffering

Figure 1, adapted from an example provided with the IBM Cell SDK [18], illustrates the
use of DMA operations to stream data from host memory to local store to be processed,
and to stream results back to host memory. Triple-buffering is used to overlap commu-
nication with computation: each iteration of the loop in triple_buffer puts results
computed during the previous iteration to host memory, gets input to be processed next
iteration from host memory, and processes data which has arrived in local memory.

If num_chunks is greater than three, this example exhibits a local store DMA race,
which we can observe by logging the first six DMA operations. To the right of each
operation we record its source code location and, if appropriate, its loop iteration. We
omit host address parameters as they are not relevant to the data race.
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get(buffers[0], . . . , CHUNK, tags[0]) (1)
get(buffers[1], . . . , CHUNK, tags[1]) (2)
wait(tags[0]) (3)

(*) put(buffers[0], . . . , CHUNK, tags[0]) (4), i=2
get(buffers[2], . . . , CHUNK, tags[2]) (5), i=2
wait(tags[1]) (6), i=2
put(buffers[1], . . . , CHUNK, tags[2]) (4), i=3

(*) get(buffers[0], . . . , CHUNK, tags[0]) (5), i=3

At this point in execution the operations marked (*) are both pending, since the only
intervening wait operation uses a distinct tag. The operations are not race free according
to Definition 1 since they use the same region of local store and one is a get. The race
can be avoided by inserting a wait with tag tags[get_buf] before the get at (5).

We discovered this bug using SCRATCH, our automatic DMA analysis tool, described
in §6, which can also show that the fix is correct. The bug occurs in an example provided
with the IBM Cell SDK, and was, to our knowledge, previously unknown. Our bug
report via the Cell BE forum has been independently confirmed. In the remainder of the
paper, we present the new techniques of SCRATCH that enable these results.

3 Goto Programs

We present our results in terms of a simple goto language, which is minimal, but general
enough to uniformly translate C programs like the one in Figure 1. The syntax of the
goto language is shown in the following grammar, in which x ∈ X ranges over integer
variables, a ∈ A over arrays variables, φ and e over boolean and integer expressions (for
which we do not define syntax, assuming the standard operations), and l1, . . . , lk ∈ �
over integers:

Prog ::= Stmt ; . . . ;Stmt VarRef ::= x || a[e]

Stmt ::= VarRef := ∗ || assume φ || assert φ || goto l1, . . . , lk

A goto program is a list of statements numbered from 1 to n.
The language includes assertions, nondeterminisic assignment (VarRef := ∗), as-

sumptions (which can constrain variables to specific values), and nondeterministic go-
tos. Execution of a goto statement, which is given a sequence of integer values as ar-
gument (the goto targets), causes the value of one of these (possibly negative) integers
to be added to the instruction pointer. We use x := e and a[i] := e as shorthands
for assignments to variables and array elements, respectively, which can be expressed
in the syntax above via a sequence of nondeterministic assignments and assumptions.
For simplicity, we assume variables and array elements range over the mathematical
integers, �; when translating C programs into the goto language the actual range of
variables will always be bounded, so SAT-based analysis of goto programs by means of
bit-blasting is possible.

The transition system described by a program α = α1; . . . ; αn is the graph (S, Eα).
S = {(σ, pc) | σ : (X ∪ (A × �)) → �, pc ∈ �} ∪ {�} is the set of program states,
where σ is a store mapping variables and array locations to integer values, pc is the
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instruction pointer, and � is a distinguished state that designates erroneous termination
of a program. Eα is the set of transitions (we write tσ for the value of an expression
given the variable assignment σ, denote the set of all storage locations by L = X ∪
(A ×�), and define tt , ff to be the truth values of boolean expressions):

Eα = {(σ, pc) → (σ′, pc + 1) | αpc = x := ∗, ∀l ∈ L \ {x}. σ(l) = σ′(l)}
∪ {(σ, pc) → (σ′, pc + 1) | αpc = a[e] := ∗, ∀l ∈ L \ {(a, eσ)}. σ(l) = σ′(l)}
∪ {(σ, pc) → (σ, pc + 1) | αpc = assume φ, φσ = tt}
∪ {(σ, pc) → (σ, pc + 1) | αpc = assert φ, φσ = tt}
∪ {(σ, pc) → � | αpc = assert φ, φσ = ff }
∪ {(σ, pc) → (σ, pc + li) | αpc = goto l1, . . . , lk, i ∈ {1, . . . , k}}

Proper termination of α in a state s is denoted by s ↓ and occurs if the instruction
pointer of s does not point to a valid statement: s ↓ ≡ s = (σ, pc) ∧ pc �∈ [1, n]. Note
that no transitions exist from states s with s ↓.

The set traces(α) of (finite and infinite) traces of a program α is defined in terms of
its transition system:

traces(α) =
{

s1 s2 · · · sk | ∃σ. s1 = (σ, 1), sk ↓ or sk = �,
∀i ∈ {1, . . . , k − 1}. si → si+1

}

∪ {s1 s2 · · · | ∃σ. s1 = (σ, 1), ∀i ∈ �. si → si+1}

In particular, no traces exist on which assumptions fail.3 A program α is considered
correct if no trace in traces(α) terminates erroneously, i.e. no trace contains �.

4 Encoding DMA Operations in Goto Programs

We now consider the goto language extended with the DMA primitives of §2.1:

Stmt ::= . . . || get(e, e, e, e) || put(e, e, e, e) || wait(e)

For a goto program with DMAs, we introduce a series of array variables with size D
(see §2.1), which we call tracker arrays. These “ghost variables” log the state of up to D
pending DMA operations during program execution. The tracker arrays are as follows,
with 0 ≤ j < D:

– valid : valid [j] = 1 if values at position j in the other arrays are being used to
track a DMA operation, otherwise valid [j] = 0 and values at position j in the other
arrays are meaningless

– is get : is get [j] = 1 if j-th tracked DMA is a get, otherwise is get [j] = 0
– local , host , size , tag : element j records local store address, host address, size, tag

of j-th tracked DMA, respectively

3 In our context, this is preferable to modelling failed assumptions via a distinguished “blocked
program” state: it simplifies the notion of sequential composition of programs (cf. §5.1).
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Statement Translated form

start of program ∀0≤j<D assume valid [j] = 0;

get(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < D;
∀0≤j<D assert ¬valid [j] ∨ (disjoint(l, s, local [j], size[j])∧

(is get [j] ∨ disjoint(h, s, host [j], size[j])));
assert ¬(valid [0] ∧ valid [1] ∧ · · · ∧ valid [D − 1]);
i := ∗; assume 0 ≤ i < D ∧ ¬valid [i];
valid [i] := 1; is get [i] := 1; local [i] := l; host [i] := h; size[i] := s;

put(l, h, s, t) assert 0 ≤ s ≤ M ∧ 0 ≤ t < D;
∀0≤j<D assert ¬valid [j] ∨ (disjoint(h, s, host [j], size[j])∧

(¬is get [j] ∨ disjoint(l, s, local [j], size[j])));
assert ¬(valid [0] ∧ valid [1] ∧ · · · ∧ valid [D − 1]);
i := ∗; assume 0 ≤ i < D ∧ ¬valid [i];
valid [i] := 1; is get [i] := 0; local [i] := l; host [i] := h; size[i] := s;

wait(t) assert 0 ≤ t < D;
∀0≤j<D valid [j] := valid [j] ∧ ¬(t = tag [j])

Fig. 2. Rules to translate DMA operations into assertions and assignments to tracker arrays. We
use disjoint(a1, s1, a2, s2) as shorthand for a1 + s1 ≤ a2 ∨ a2 + s2 ≤ a1.

To check properties of DMA operations we translate a program with DMA primi-
tives into a standard goto program, where get, put and wait operations are replaced with
assertions about and assignments to the tracker arrays. The translation rules are given in
Figure 2. We use ∀0≤j<D to indicate that the following statement should be duplicated
D times with increasing values for j. Since the rules of Figure 2 replace single state-
ments with multiple statements, it is necessary to perform a re-numbering of program
statements and goto targets after translation; we omit details of this re-numbering.

The encoding of DMAs is based on Definition 1, and is designed to ensure that cor-
rect programs cannot issue DMA operations that are simultaneously pending but not
race free. Note that in our simple goto language we do not model actual movement of
data via DMA. In practice, to achieve soundness, we must set the memory locations
written to by a DMA operation to nondeterministic values. The Cell processor supports
further DMA primitives involving fences and barriers. Our implementation (§6) sup-
ports these operations via extensions of the rules in Figure 2; we do not present the
extended rules due to lack of space.

5 k-Induction for Goto Programs

Our encoding of DMA programs is directly amenable to Bounded Model Checking [3]
as an effective method to discover DMA races. However, BMC alone cannot be used to
verify the (unbounded) absence of DMA races in programs with loops.

The k-induction procedure [24], proposed as a method to allow verification of hard-
ware designs (represented as finite state machines) using a SAT solver, is a stronger
version of the standard invariant approach to verify safety properties. Using normal
invariants, proving that a program satisfies a safety property φ requires showing that
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(i) some formula I (which often is identical to φ) holds in all initial states, (ii) I is
preserved by all state transitions of the program (I is inductive), and (iii) I implies φ.
The main difficulty of this method is the construction of inductive formulae I . The k-
induction principle addresses this difficulty by weakening (ii) to the property that I has
to be preserved only if it held in the previous k states of program execution. In return,
(i) has to be strengthened appropriately.

We describe the principle using the notation of [9]. Let I(s) and T(s, s′) be formulae
encoding the initial states and transition relation for a finite state system, and P(s) a
formula representing states satisfying a safety property. For k ≥ 0, to prove P by k-
induction it is required first to show that P holds in all states reachable from an initial
state within k steps, i.e. that the following formula (the base case) is unsatisfiable:

I(s1) ∧ T(s1, s2) ∧ · · · ∧ T(sk−1, sk) ∧ (P(s1) ∨ · · · ∨P(sk)) .

Secondly, it is required to show that whenever P holds in k consecutive states s1, . . . ,
sk, P also holds in the next state sk+1 of the system. This is established by checking
that the following formula (the step case) is unsatisfiable:

P(s1) ∧ T(s1, s2) ∧ · · · ∧ P(sk) ∧ T(sk, sk+1) ∧ P(sk+1) .

In principle, k-induction can be used for SAT-based software model checking “out-
of-the-box.” A program can be encoded as a monolithic transition function, where the
program counter is an explicit variable. Assertions appearing in the original program
can be gathered together into a single invariant. The encoded program and invariant can
be represented as a SAT formula, to which k-induction can be applied.

This naı̈ve encoding has not shown success in practice due to the loss of structure
associated with the translation process. Furthermore, important refinements which boost
the applicability of k-induction to hardware designs, such as the restriction to loop-free
paths [24], are not useful when dealing with software where the state-vector is large.

To verify absence of DMA races in goto programs, we present a novel formulation
of k-induction, which operates at the loop level, and prove its correctness.

5.1 A Proof Rule for k-Induction with Loops

To present our proof rule for k-induction we require some additional machinery and
notation. Given programs α = α1; . . . ; αm and β = β1; . . . ; βn, the size of α, denoted
|α|, is m, and we define the sequential composition of α and β as follows:

α � β =def α1; . . . ; αm; β1; . . . ; βn .

For i > 0, we use αi to denote the sequential composition of i copies of α, and α0 to
denote the empty program. For a single-statement program of the form α1, we drop the
leading 1:, writing simply α1.

A program α is self-contained, denoted contained(α), if, for each goto statement
goto . . . , l, . . . appearing in α, we have (i + l) ∈ {1, . . . , |α| + 1}. In other words, goto
statements can only change the instruction pointer to the locations of statements inside
α, or to the location immediately following α.

We define a function that replaces all assertions in a program with assumptions.
Given a program α = α1; . . . ; αn, the corresponding program αassume = α′

1; . . . ; α′
n

is defined by: α′
i = assume φ if αi = assert φ, and α′

i = αi otherwise.
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Finally, we present k-induction as a proof rule operating on distinguished loops in a
goto program of the following form:

α � goto 1, (|β| + 2) � β � goto (−|β| − 1) � γ

where α, β and γ are self-contained. The program consists of a prelude α, a loop with
body β and a tail γ. Other than self-containedness, we do not make any assumptions
about the shape of components α, β and γ, which may contain further (nested) loops and
arbitrary control structure. We do not demand the presence of an explicit loop condition:
a loop condition b can be simulated by choosing assume b as the first statement of the
loop body, and assume ¬b as the first statement of the tail. Note that the restriction to
self-contained components is mild, e.g. early exit from the loop via a break statement
can be simulated by a flag together with an appropriate loop condition.

Proof rule for k-induction

contained(α) contained(β) contained(γ) k ≥ 0
α � γ is correct {αassume � βi−1

assume � β � γ is correct}i∈{1,...,k}
βk
assume � β is correct βk

assume � γ is correct

α � goto 1, (|β| + 2) � β � goto (−|β| − 1) � γ is correct

In this rule, the assertions present in the program (e.g. the formulae in Figure 2)
take the role of the inductive invariant needed for verification. The premises include
base cases requiring the program to be shown correct when the prelude, followed by
between zero and k loop iterations, are executed. The premises βk

assume � β is correct
and βk

assume � γ is correct form the induction step, establishing that if it is possible to
execute k loop iterations from an arbitrary state without violating any assertions then it
is possible to successfully execute a further loop iteration, or the loop tail.

Theorem 2 (Correctness). The above proof rule is sound.

By presenting k-induction using a general proof rule, we do not restrict the method to
a SAT-based implementation. Although our practical implementation is SAT-based, the
rule could as well be used in any (possibly interactive) deductive verification system.

5.2 Heuristics to aid k-Induction for DMA Programs

Through our experiments in §6 we observe that k-induction works extremely well for
checking assertions representing DMA race-freeness, generated by the rules in Figure 2.
For realistic example programs written for the Cell processor, the generated assertions
are inductive already for small k, with no further annotations required to verify cor-
rectness. The result is a verification method that is fully automatic and efficient on a
large range of Cell programs. Intuitively, k-induction works well in this application do-
main because DMA operations in loops are typically designed to be pending for only
a bounded number of loop iterations, allowing k-induction to succeed with a value of
k proportional to the bound. This is analogous to the intuition that k-induction works
well for sequential hardware circuits with pipelines, where the k required for induction
to succeed is proportional to the pipeline depth [1].
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For less regular examples, our practical experience has led to the following heuris-
tics which can be applied to help k-induction succeed, or to quickly determine when
the technique is unlikely to work. These heuristics are merely optimisations to our tech-
nique; we are able to verify all benchmarks presented in §6 without use of heuristics.

Bounded lifetimes. In practice, the programmer often knows that no DMA operation
should pend for more than a small number (Z , say) of loop iterations. To take advantage
of this domain specific information, the tracker arrays can be extended with a compo-
nent to record the number x of enclosing loop iterations for which a DMA has been
pending, asserting that x never exceeds Z . When proving the step case for k > Z , this
allows the assumption that only DMAs issued within the last Z iterations are tracked,
eliminating many unreachable states which might otherwise cause the step case to fail.

Free slots. While it is legal for up to D operations to be pending simultaneously, most
practical applications require significantly fewer simultaneous DMAs. Adding an as-
sertion to the start of the loop body requiring at least Z free slots in the tracker arrays
(for some Z > 0) can help k-induction to succeed when it otherwise would not.

Bounded periods of inactivity. Generally, to prove that a DMA operation is race free,
it is necessary to be able to assume that the operation was race free on a previous loop
iteration. If a DMA statement might not to be executed for an arbitrary number of loop
iterations then k-induction is unlikely to work. By introducing extra instrumentation
to check that each DMA statement is executed at least once every Z iterations (for
some Z > 0) we can set up reasonable conditions under which k-induction “gives up,”
resulting in a base case failure identifying a problematic DMA statement.

6 Experimental Evaluation

We have implemented a prototype tool, SCRATCH,4 built on top of the CBMC model
checker [5]. SCRATCH accepts an arbitrary C program written for an SPE core of the
Cell BE processor, and checks for DMA races involving local memory. The translation
described in §4 is applied to transform the input program into a form where DMAs
are replaced with assertions and assignments to tracker arrays. BMC can be applied
to the resulting program to check for DMA races up to a certain depth, and combined
with k-induction, using the formulation of §5, to prove absence of races. Although our
k-induction method is, in principle, applicable to arbitrary nested loops, for implemen-
tation convenience SCRATCH currently applies k-induction only to single loops. We
are able to analyse many interesting examples with this restriction, in some cases by
converting a nest of two loops into a single loop.

We evaluate SCRATCH using a set of 22 benchmarks adapted from examples supplied
with the IBM Cell SDK for Multicore Acceleration [18], categorized as follows:

– x-buf (x ∈ {1, 2, 3}) Data processing programs which use single-, double- or
triple-buffering for data-movement (cf. Figure 1). I/O indicates that separate buffers
are used for input and output. Some variants of these programs use fences/barriers

4 SCRATCH is available online at http://www.cprover.org/scratch/.
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Benchmark
Correct Buggy

Benchmark
Correct Buggy

k D time D time depth k D time D time depth

race check 1 0 2 0.35 1 0.94 34 cpaudio 3 4 5.83 1 0.99 57
race check 2 0 4 0.35 3 0.95 65 3-buf I/O 3 4 12.29 2 0.67 133
sync atomic op 1 1 0.39 1 0.33 64 2-buf + barrier 3 4 3.23 2 0.56 130
sync mutex 1 1 0.43 1 0.34 74 2-buf I/0 3 4 3.53 3 0.76 137
simple dma 1 1 0.39 1 0.36 80 3-buf + fence 3 5 35.94 3 0.7 184
1-buf 1 1 0.41 1 0.43 100 normalize 3 8 71.74 12 2.34 549
1-buf I/O 1 1 0.44 2 0.54 109 Euler complex 3 10 420.54 8 3.91 273
2-buf 1 2 0.66 2 0.54 87 3-buf I/O + barrier 4 2 9.65 3 0.68 160
2-buf + fence 2 4 1.39 2 0.37 130 3-buf I/O + fence 4 4 12.99 3 0.68 159
Euler simple 2 5 4.79 3 1.32 167 checksum 4 4 3.49 4 0.59 53
3-buf 3 3 15.84 3 0.65 160 Julia 2 7 3 32.75 32 2783.4 1955

Fig. 3. Results using SCRATCH for proving correctness via k-induction, and for bug-finding, on
Cell SDK benchmarks

– race check, simple dma Examples which illustrate data races and use of DMA
– sync atomic/mutex Programs illustrating the use of SDK synchronization primi-

tives for atomic operations and mutexes, in conjunction with DMA operations
– cpaudio, normalize Applications which copy one channel of a stereo audio file to

the other, and normalize the volume of a mono audio file, respectively
– checksum Computes a checksum on data in host memory. Multiple buffers are

used to coordinate data-movement efficiently
– Euler simple/complex Particle simulation using Euler integration. The simple ver-

sion uses separate individual buffers for position, velocity and mass data; the com-
plex version uses double-buffering

– Julia n Quaternion Julia set ray-tracing, where an SPE renders n columns of output

Manual program slicing has been applied to each benchmark to remove portions of code
that do not affect DMA operations. This routine slicing could be automated: the sliced
code uses vector datatypes and intrinsic functions specific to the Cell processor, which
the slicer would need to understand.

Figure 3 shows results applying SCRATCH to correct and buggy versions of the
benchmarks.5 With the exception of 3-buf and cpaudio, bugs are injected into the ex-
amples, either by removing a wait operation, changing the tag used to identify a DMA,
or switching an operation from get to put (or vice-versa). The 3-buf benchmark is the
triple-buffering example discussed in §2.2, in which SCRATCH uncovered an existing
bug. A DMA race occurs when the cpaudio benchmark is executed with zero frames of
audio. This is arguably a bug since the precondition that the number of frames should be
positive is not specified. For each benchmark, we give the smallest value of k for which
correctness can be proved using k-induction (without employing the heuristics of §5.2);
the minimum number D of DMAs which it was necessary to track (setting D to a low
value reduces the size of the tracker arrays, which can significantly reduce verifica-
tion complexity; we compute the optimum value for D iteratively for each benchmark,

5 Experiments are performed on a 3GHz Intel Xeon machine running Linux 2.6 (64-bit).
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Fig. 4. Verification time for the Julia benchmark increases cubically with k

starting with D = 1), and the time, in seconds, taken for verification. We also show the
smallest depth of execution required for bug-finding. Results are ordered with respect to
k, Correct-D and Buggy-D. MiniSat 1.14, compiled with full optimisations, is used as
back-end SAT solver. It has been reported to perform comparatively to state-of-the-art
SMT solvers for SMT-BV [7] on this type of workload.

The results of Figure 3 indicate that k-induction provides a tractable method for
proving correctness for this set of benchmarks: verification is achieved in under 10
seconds for 15 of the 22 examples, with only Euler complex taking longer than two
minutes to check. The normalize and Euler complex benchmarks require the largest
values for D, and result in the largest SAT instances for the correct programs, taking
the longest time to verify. The Julia benchmark contains a loop for which the number
of iterations is a fixed parameter n, the columns of a raytraced image to be computed by
one SPE. For this example, k-induction succeeds with k = n+5 (the results in Figure 3
are for the case where n = 2). In Figure 4, we illustrate the scalability of k-induction
by plotting the time taken for verification of the Julia benchmark against the size of k
when we vary parameter n between 1 and 25. Growth is less than cubic, showing that
our k-induction method scales well.

With the exception of Julia, bug-finding is fast, taking less than 4 seconds. The Ju-
lia benchmark is the only example where the bug leads to unbounded issuing of non-
interfering DMAs. Thus an assertion fails only when an attempt is made to issue a DMA
operation when 32 operations are already pending. This situation requires a large search
depth to detect, resulting in a SAT instance with more than 1.5 million variables which
takes considerable time to solve. The “bounded lifetimes” heuristic of §5.2 can be used
to short-circuit the bug-finding process for this example. Requiring that no DMA pends
for more than three loop iterations (which is the case for the correct version of this
benchmark), bug-finding takes just 1.88 s, requiring a search depth of 901.
Comparison with predicate abstraction The translation implemented by SCRATCH op-
erates at the level of control flow graphs. In order to compare with other tools, we have
hand-translated three of our benchmarks, 1-buf, 2-buf and 3-buf, into C programs that
track DMA operations as described in §4. We aimed to compare with BLAST [2] and
SATABS [6] but were unable to obtain results using BLAST due to a bug in the tool,
which we have reported to the BLAST developers.

Figure 5 shows results for proving correctness and finding bugs using SATABS, with
Cadence SMV as a back-end model checker. For each example, we show the number
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Correct Buggy
Benchmark iterations time SCRATCH speedup iterations time SCRATCH speedup

1-buf 15 9.49 23.14 × 3 1.25 2.91 ×
2-buf >100 >1352.43 >417.78 × 20 33.62 59.97 ×
3-buf >100 >4344.98 >120.9 × 69 4969.03 6641.47 ×

Fig. 5. Results applying CEGAR-based verification to three of the Cell SDK examples using
SatAbs, in comparison to bounded model checking with k-induction using CBMC

of refinement iterations required (iterations), the time taken for verification (time), and
the speed-up factor obtained by using SCRATCH over SATABS (obtained by comparing
with the results of Figure 3). For all three examples, SATABS is eventually able to
find the bug, but is three orders of magnitude slower than SCRATCH when applied to
3-buf . The abstraction-refinement process leads to a conclusive verification result when
applied to the correct version of 1-buf, but is an order of magnitude slower than our
k-induction technique. SATABS was not able to prove correctness for correctness of
2-buf or 3-buf within 100 refinement iterations.

Comparison with IBM Race Check library. The IBM Cell SDK [18] comes with a li-
brary for detecting DMA races [17] at runtime. The library maintains a log of pending
operations, checking each new operation against entries in the log. If a DMA race is
detected, then an error message is written to the console.

Using a Sony PlayStation 3 console, which is equipped with a Cell processor, we
tested the Race Check library on each of our buggy examples. DMA races are detected
for all but three benchmarks, and race detection takes less than 0.1 s in each case. The
bug in cpaudio was not detected since the example runs on a specific input file that does
not expose the bug. The Julia bug, where more than 32 DMA operations may be simul-
taneously pending, is beyond the scope of the library. Although the buggy version of
1-buf I/O crashes when executed on the Cell hardware, the Race Check library does not
detect the DMA race responsible for this crash. This false negative appears to be a bug
rather than a fundamental limitation, since 1-buf I/O is similar to examples where the
Race Check library successfully detects DMA races. Note that runtime race detection
cannot be used to prove absence of DMA races, unlike our k-induction method.

7 Related Work

The concept of k-induction was first published in [24,4], targeting the verification of
hardware designs represented by transition relations (although the basic idea had al-
ready been used in earlier implementations [20] and a version of one-induction used
for BDD-based model checking [8]). A major emphasis of these two papers is on the
restriction to loop-free or shortest paths, which we do not consider in our k-induction
rule due to the size of state vectors and the high degree of determinism in software pro-
grams. Several optimisations and extensions to the technique have been proposed, in-
cluding property strengthening to reduce induction depth [25], improving performance
via incremental SAT solving [9], and supporting verification of temporal properties [1].
Applications of k-induction have focused exclusively on hardware designs [24,4,20]
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and synchronous programs [14,13]. A principle related to k-induction has also been
used for circular reasoning about liveness properties [21]. To the best of our knowl-
edge, there has been no previous work on applying k-induction to imperative programs
comparable to our procedure in §5.

Techniques for detecting data races in shared memory multithreaded applications
have been extensively studied. Notable static methods are based on formal type sys-
tems [11], or use classic pointer-analysis techniques; the latter approach is used by tools
such as RACERX [10] and CHORD [22]. The ERASER tool [23] uses binary rewriting to
monitor shared variables and to find failures of the locking discipline at runtime. Other
dynamic techniques include [12], which is based on state-less search with partial-order
reduction, and [15] which is based on a partial-order reduction technique for SystemC
similar to the method of Flanagan and Godefroid [12].

None of these race detection techniques are applicable to software for heterogeneous
multicore processors with multiple memory spaces. The only race detection tool we
are aware of which is geared towards heterogeneous multicore is the IBM Race Check
library [17], which we compare with in §6. The speed of runtime race detection with this
library is attractive, but requires access to commodity hardware and can only be used to
find bugs which are revealed by a particular set of inputs. In contrast, our k-induction
technique can prove absence of DMA races, and BMC is able to detect potential races
by assuming that input parameters may take any value.

8 Summary and Future Work

We have contributed an automatic technique for analysing DMA races in heterogeneous
multicore programs which manage scratch-pad memory. At the heart of our method
is a novel formulation of k-induction. We have demonstrated the effectiveness of this
technique experimentally via a prototype tool, SCRATCH.

We plan to extend this work in the following ways. We intend to generalise and
make precise our intuitions as to why k-induction works well for DMA-based pro-
grams. Our vision is a set of conditions for identifying classes of programs amenable
to verification by k-induction, thus making the technique more broadly applicable for
software analysis. SCRATCH focuses on analysing DMA races for accelerator memory
by analysing accelerator source code in isolation. It is not possible to check meaningful
properties of host memory without some knowledge of how this memory is structured.
To check DMA races for host memory we plan to design a method which analyses
host and accelerator source code side-by-side. A further challenge is the problem of
DMA race checking between concurrently executing accelerator cores in a heteroge-
neous system. A starting point towards this goal could involve combining our methods
with adapted versions of race checking techniques for shared memory concurrent soft-
ware (cf. §7).

Acknowledgement. We are grateful to Matko Botinčan, Leopold Haller and the anony-
mous reviewers for their comments on an earlier draft of this work.
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