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Abstract
We present the systematic design of a testing environment
that uses stressing and fuzzing to reveal errors in GPU appli-
cations that arise due to weak memory effects. We evaluate
our approach on seven GPUs spanning three Nvidia archi-
tectures, across ten CUDA applications that use fine-grained
concurrency. Our results show that applications that rarely or
never exhibit errors related to weak memory when executed
natively can readily exhibit these errors when executed in
our testing environment. Our testing environment also pro-
vides a means to help identify the root causes of such errors,
and automatically suggests how to insert fences that harden
an application against weak memory bugs. To understand
the cost of GPU fences, we benchmark applications with
fences provided by the hardening strategy as well as a more
conservative, sound fencing strategy.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; D.2.5 [Software En-
gineering]: Testing and Debugging

Keywords GPU, CUDA, Nvidia, weak memory, stress test-
ing, memory fences, synchronisation, concurrency

1. Introduction
General purpose programming languages for graphics pro-
cessing units (GPUs), e.g. CUDA [38] and OpenCL [24],
allow applications from a wide spectrum of domains to take
advantage of the computational power and energy efficiency
offered by these devices (see [45, pp. 8-10] for an overview).

GPU applications are prone to concurrency bugs, which
are notoriously difficult to reproduce and fix due to the sheer
number of possible instruction interleavings. Worse, GPUs

have been shown to implement weak memory models, so that
behaviours beyond those obtained from straightforward inter-
leavings are possible [8], making GPU application debugging
even more challenging.

It has been argued, through hand analysis, that certain
deployed CUDA applications can exhibit weak memory bugs
in theory [8], but we are not aware of any existing practical
method for exposing witnesses to weak memory bugs in
GPU applications, i.e. demonstrating erroneous outcomes
from actually running the application on current GPUs. Our
focus in this work is on investigating (a) whether GPU weak
memory bugs can be provoked when running real-world
applications on state-of-the-art hardware, (b) whether such
bugs can be provoked into occurring frequently (to aid in
testing and debugging), and (c) the performance cost of
adding fences to harden GPU applications against such bugs.

We make three main contributions:

1. We develop a novel testing environment designed to reveal
weak memory behaviours in real-world GPU applications.
This environment uses a sophisticated memory stressing
strategy, inspired by prior work on GPU litmus testing [8],
systematically tuned per chip using results from nearly
half a billion micro-benchmark executions. Applying the
testing environment requires no prior knowledge of the
application under test (Sec. 3).

2. We evaluate our approach on seven GPUs spanning three
Nvidia architectures, across ten application case-studies,
showing that we can provoke errors related to weak mem-
ory and discovering previously unknown weak memory
issues in two applications (Sec. 4). Our experiments show
that two straightforward methods for memory stressing
are not effective at exposing weak memory bugs, while
in contrast our novel test environment (tuned per chip) is
often highly effective.

3. We use our testing environment as a fence placement
mechanism, to help understand the root causes of weak
memory bugs, and to harden applications against such
bugs (Sec. 5); we also benchmark the overhead (in terms
of runtime and energy) associated with inserting fences to
harden applications (Sec. 6).



Table 1: The seven Nvidia GPUs that we study

chip architecture short name released
GTX 980 Maxwell 980 2014
Quadro K5200 Kepler K5200 2014
GTX Titan Kepler Titan 2013
Tesla K20 Kepler K20 2013
GTX 770 Kepler 770 2013
Tesla C2075 Fermi C2075 2011
Tesla C2050 Fermi C2050 2010

Unlike previous works for checking applications under weak
memory (see Sec. 7), our technique does not require a formal
memory model description, and requires no modifications to
the compiler or scheduler.

We begin with a high-level overview of our approach.

Running example We use the CUDA code of Fig. 1, ex-
tracted from the dot product case study from [45, ch. A1.2]
which we dub cbe-dot, to illustrate our approach. (Back-
ground on CUDA is provided in Sec. 2.) The application in-
corporates a spinlock, and correctness depends on the source
code ordering between the atomic operations on the lock
(lines 19, 22) and the memory operations in the critical sec-
tion (line 15) being preserved. Reordering these operations
can lead to an incorrect dot product value being computed.
However, no erroneous behaviour is observed when conduct-
ing 1000 executions of the application on a Tesla K20 GPU. A
developer who is not suspicious about weak memory effects
might conclude that the application is correct.

Testing environment We present in Sec. 3 a testing environ-
ment for provoking weak behaviours in applications across
a range of Nvidia GPUs, given in Tab. 1.1 Under our testing
environment, errors (due to weak memory) appear in 102 out
of 1000 executions of cbe-dot on the K20.

The key part of our testing environment is a memory
stressing strategy that targets a completely disjoint region
of memory from the application data (called a scratchpad)
using extra GPU threads disjoint from the threads that execute
the application (the extra threads are called stressing threads).
Because the stressing threads and memory are disjoint from
application threads and data, the set of possible behaviours a
program can exhibit remains the same.

Using nearly half a billion micro-benchmark executions,
the stressing strategy is tuned per GPU to identify where
to stress within the scratchpad, which instructions to apply
during stressing, and how many memory locations to stress
in parallel. Parameters for these values are selected based
on how many weak behaviours they expose in the micro-
benchmarks. For example, micro-benchmarking shows that
for K20 it is effective to apply stress to two memory locations
in parallel, each aligned at 32-word boundaries.

1 We restrict to Nvidia GPUs because the majority of available applications
that exhibit fine-grained concurrency are written using Nvidia’s CUDA.

1 __global__
2 void dot(int *mutex, float *a, float *b, float *c) {
3 int tid = threadIdx.x + blockIdx.x * blockDim.x;
4 int cacheIndex = threadIdx.x;
5 float temp = 0;
6
7 while (tid < N) {
8 temp += a[tid] * b[tid];
9 tid += blockDim.x * gridDim.x; }

10
11 // local computation code omitted
12
13 if (cacheIndex == 0) {
14 lock(mutex);
15 *c += cache[0];
16 unlock(mutex); } }
17
18 __device__ void lock(int *mutex) {
19 while (atomicCAS(mutex, 0, 1) != 0 ); }
20
21 __device__ void unlock(int *mutex) {
22 atomicExch(mutex, 0); }

Figure 1: CUDA code for the cbe-dot application

Weak behaviours in applications We evaluate our testing
environment on ten GPU application case-studies that im-
plement fine-grained concurrency idioms, e.g. mutexes and
concurrent data-structures (Sec. 4). On each of the seven
GPUs of Tab. 1, we executed each application repeatedly for
one hour under our testing environment. For comparison, we
also tested the applications under two more straightforward
stressing environments that are not tuned per chip.

Our results show that our testing environment is able to
provoke erroneous outcomes in 55 out of 70 chip/applica-
tion combinations, leading to the discovery of previously
unknown weak memory issues in two applications. Because
errors are easier to debug when they occur frequently, we
also measure the effectiveness of the testing environment, i.e.,
how frequently bugs are provoked. If a bug appears in more
than 5% of the executions associated with a chip/application
combination, we say the testing framework is effective. Out
of the 55 of applications we observed errors for, our testing
method is effective for 43 of them.

We evaluate our tuned stress against several other straight-
forward stressing methods. We observe these methods are
considerably less able to expose weak behaviours, the most
capable method revealing erroneous runs 13 out of 70 chip/ap-
plication combinations (and effective for only 6).

Hardening applications against weak memory bugs Un-
like in the case of e.g. C11, there is currently no agreed
formal memory for CUDA. Consequently, it is not possible
to provide formal correctness guarantees about CUDA ap-
plications that use fences to eliminate weak memory bugs.
As a pragmatic alternative, we employ our testing method
to suggest a minimal set of memory fences that suffice to
suppress weak memory bugs under our aggressive test envi-
ronment (Sec. 5). This empirical fence insertion starts with a
fence instruction inserted after memory access and repeatedly
attempts to remove fences, using our testing environment to



assess, empirically, whether each removal introduces a bug.
The process converges to a minimal set of fences such that
removing any single fence exposes erroneous behaviours.

While clearly providing no guarantees, the suggested
fences can aid developers in understanding the causes of weak
memory defects, and can aid in hardening the application
against weak memory defects by, at a minimum, making them
less likely to occur. In cbe-dot for K20, the fence insertion
suggested adding a single fence after line 15, suggesting
an error in the unlock function. Prior work, through hand
analysis, identified the same issue and prescribed a fence at
the beginning of the unlock function; this is logically the
same fence identified by our fence insertion.

Evaluating the cost of fences To understand the cost of
adding fences to applications, we benchmark both the run-
time and energy usage of our application case studies (Sec. 6).
We consider three fencing strategies: removing all fences
(unsafe), adding a fence after every memory access (safe,
but conservative), and adding fences suggested by empirical
fence insertion (hardened, but not guaranteed to be safe). This
allows us to investigate the overhead associated with hard-
ening applications via empirical fence insertion, providing a
lower bound on the cost of eliminating weak memory defects,
vs. conservatively guaranteeing absence of weak behaviours
by adding fences after all memory accesses, providing an
upper bound on the cost. The results of cbe-dot for K20
shows that adding fences via empirical fence insertion incurs
a small runtime/energy cost (less than 3%), in comparison
to full fence insertion, which incurs a 145% runtime and a
173% energy cost.

Related GPU memory model testing work Previous work
has applied weak memory testing to GPUs in the context of
short idiomatic tests (i.e. litmus tests) with the tool GPU
LITMUS [8]. GPU LITMUS implements a memory stress
heuristic that inspired this work. However, the method and
aims of [8] are fundamentally different to ours. Specifically,
the aim in [8] was simply to show the existence of weak
behaviours, using carefully crafted tests. In contrast, our aim
is to test applications in a black box manner, with no a priori
knowledge about the application, e.g. the communication
idioms used in the application.

Our aim is also bolder: to be able to provoke errors
frequently, rather than merely show the existence of errors.
Hence optimising for frequency of weak behaviours observed,
with respect to idioms that have classically caused bugs, is at
the heart of our novel stressing strategy.

2. Background
We provide necessary background on memory models and
litmus tests, and a brief overview of the CUDA programming
model including details of memory fences in CUDA.

Memory models For a given architecture and concurrent
program, a memory model determines the values that load

Message Passing (MP)

init: x = 0, y = 0

T1 T2
x← 1;
y← 1;

r1← y;
r2← x;

weak behaviour:
r1 = 1 ∧ r2 = 0

Load Buffering (LB)

init: x = 0, y = 0

T1 T2
r1← x;
y← 1;

r2← y;
x← 1;

weak behaviour:
r1 = 1 ∧ r2 = 1

Store Buffering (SB)

init: x = 0, y = 0

T1 T2
x← 1;
r1← y;

y← 1;
r2← x;

weak behaviour:
r1 = 0 ∧ r2 = 0

Figure 2: MP, LB, and SB weak memory litmus tests

instructions are allowed to return [46, ch. 1]. The strongest
memory model, sequential consistency, only allows execu-
tions that correspond to an interleaving of thread instruc-
tions [25]. Many architectures (e.g. x86, ARM, Nvidia GPUs)
provide weak memory models [7, 8, 46], whereby executions
may not correspond to such an interleaving. We say such
executions exhibit weak behaviour. Weak behaviours can be
disallowed (at a performance cost) by placing memory fences
between memory accesses [6–8, 46].

Weak behaviours can be illustrated by litmus tests: short
concurrent programs with a query about the final state. Three
well-known litmus tests, discussed throughout the paper,
are presented in Fig. 2. The message passing (MP) test
illustrates a handshake protocol where thread 1 writes data to
memory location x and then sets a flag in memory location
y, while thread 2 reads the flag value and then reads the data.
The test exhibits weak behaviour if thread 2 can observe
a set flag (y= 1) but see stale data (x= 0). The weak
behaviour illustrated by the load buffering (LB) test checks
whether load instructions are allowed to be buffered after
store instructions. Store buffering (SB) similarly checks
whether store instructions are allowed to be buffered after
load instructions. These weak behaviours are all allowed on
ARM and IBM Power CPUs, and Nvidia GPUs. The SB
weak behaviour (but not MP nor LB) is also allowed under
the x86 TSO memory model.

We use communication idiom to refer to a configuration
of threads, locations and instructions that could lead to a
weak behaviour, and communication locations/communica-
ting threads to refer to the memory locations/threads involved
in a communication idiom. For example, the MP test of
Fig. 2 describes a communication idiom over communication
locations x and y, with two communicating threads.

The CUDA programming model In the CUDA program-
ming model [38], a program consists of host code that ex-
ecutes on the CPU of the machine, and device code that
executes on the GPU. The device code is called a kernel, and
is executed by many threads in a single instruction, multiple
threads (SIMT) manner. A thread is a basic unit of computa-
tion that executes the kernel. Threads are grouped in disjoint
sets of size 32, called warps, that execute in lock-step: they
synchronously execute the same instruction and share a pro-
gram counter. Warps are grouped into disjoint sets called
blocks; the number of threads (and by extension, warps) in



a block is a parameter of the kernel. Collectively, the blocks
that execute a kernel form a grid; the grid size is also a param-
eter of the kernel. Threads may query their thread id within a
block, their block id within the grid, the number of threads
per block and the number of blocks in the grid, using CUDA
primitives.

Threads in the same block can synchronise at a barrier.
Each thread in the block waits at the barrier until every
thread in the block has reached the barrier, at which point
memory consistency is guaranteed between threads in the
block. Execution of a CUDA barrier has undefined behaviour
unless all threads in a block execute the barrier; violation of
this condition is known as barrier divergence [38, p. 98].

Threads in the same block can communicate using shared
memory, and a single global memory region is accessible to
all threads in the grid.

Memory fences in CUDA In CUDA, weak behaviours for
communication idioms where communicating threads are in
the same block (resp. different blocks) can be disabled using
block level fence (resp. device level fence) instructions [38,
ch. B.5]. In this work we focus exclusively on inter-block
communication idioms because we did not encounter appli-
cations that use communication idioms for which communi-
cating threads are in the same block.

3. The Design of Our Stressing Strategy
Here we describe the systematic development of our memory
stressing strategy, inspired by work in [8] and based on results
of micro-benchmarks, designed to be effective at revealing
weak behaviours. By targeting a scratchpad memory region
using stressing threads, completely disjoint from the memory
and threads of the application, our stressing strategy does
not modify the possible behaviours of the application. We
additionally want our stressing strategy to be agnostic to the
communication idioms (including communicating threads
and locations) inside the application, thus allowing for black
box application testing.

We partition threads into stressing threads and application
threads at the block level (rather than allowing a single block
to contain both kinds of threads) to avoid introducing barrier
divergence (see Sec. 2). We refer to a block of stressing
threads as a stressing block.

We conducted pilot experiments applying different mem-
ory stress to three applications, the cbe-ht, cbe-dot and ct-
octree applications presented in Sec. 4, running on two GPUs,
Titan and C2075 (see Tab. 1). Our findings indicated that
stressing could be effective at provoking erroneous execu-
tions due to weak behaviours, but that the effectiveness of
memory stress is highly dependent on a number of param-
eters. Specifically, the added scratchpad memory provides
many possible locations that can be stressed, stressing can be
applied to many different location combinations, and there
are many choices for the instruction sequences that can be
used to stress these memory locations. We refer to these as

memory stress parameters, and refer to the extent to which
a set of memory stress parameters is able to provoke weak
behaviours running on a particular GPU as effectiveness.

When stressing, we do not consider the base address of
the scratchpad because GPUs use virtual memory addressing
(reported in [31]) and we are unaware of any method for
obtaining the physical address from the virtual address. Thus,
we cannot control the distance between the physical locations
of the scratchpad and the memory used by the application
under test. Because of this, we design our stress so as not to
rely on this distance.

We detail the micro-benchmark design and results used
to obtain effective parameters per chip, guided by insights
gained through our pilot experiments. We present full details
using precise notation to enable others to reproduce our
approach in future work, e.g. for CPU or next-generation
GPU application testing.

3.1 Focusing on Litmus Tests
Our overall aim is to provoke weak behaviours in an appli-
cation without knowledge of the fine-grained idioms that the
application might rely on. Weak behaviours of the MP, LB
and SB tests (Fig. 2) are known sources of bugs; e.g. MP
and LB weak behaviours were shown (via hand analysis)
to be problematic in GPU applications [8], and SB weak
behaviours cause issues in an implementation of Dekker’s
algorithm [46, p. 20]. All weak memory bugs we are aware
of relate to one of these idioms.

Hypothesising that memory stress parameters tuned ac-
cording to these litmus tests are likely to be effective in ex-
posing practical weak memory bugs, we assess the fitness of
memory stress parameters based on their effectiveness at pro-
voking weak behaviours in these litmus tests. While we focus
on the MP, LB and SB tests, our stress may be tuned to any
set of litmus tests. If, in the future, weak memory model bugs
are discovered that correspond to communication idioms not
covered by these three tests, our stress can be re-tuned.

Recall from Fig. 2 that each of the litmus tests involves
two communication locations, x and y. In an application that
implicitly uses one of these idioms, the relative addresses of
communication locations depends on the data layout of the
application. For a litmus test T ∈ {MP, LB,SB}, we thus
consider a variety of test instances, Td, where d is a non-
negative distance indicating the number of memory words
separating the communication locations. We seek memory
stress parameters capable of provoking weak behaviours
in litmus tests for a range of distances, to account for the
unknown distance between relevant locations in applications.

Because we consider applications with inter-block commu-
nication, tests are configured with x and y in global memory,
and communicating threads in distinct blocks.

3.2 Identifying Effective Locations to Stress
In our pilot experiments, we found that the choice of which
scratchpad locations to stress greatly influenced the extent of
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Figure 3: Patch-finding results for MP and LB

observed weak behaviours. On Titan we found it was roughly
equally effective to stress any one of the first “patch” of 32
scratchpad (word-sized) locations, equally effective to stress
any one of the next patch of 32 scratchpad locations, and so
on, but that the effectiveness varied between patches.

We now explain our empirical method for discovering
whether a chip naturally exhibits a patch size, so as to avoid
redundantly stressing multiple locations in the same patch.

Let 〈Td, l〉 denote test instance Td with memory stress ap-
plied at scratchpad location l. For example, 〈LB0, 5〉 denotes
an instance of LB with contiguous communication locations
and stressing applied at scratchpad location 5. Let D and L
denote a maximum distance and scratchpad location to be
considered, respectively, and let C be an execution limit. For
each T ∈ {MP, LB,SB}, 0 ≤ d < D and 0 ≤ l < L, we
conduct C executions of test 〈Td, l〉, recording the number of
times that 〈Td, l〉 yields weak behaviour.

We chose D = 256, L = 256 and C = 1000, leading to
∼196.6M test executions per GPU. Each execution employs
a random number of stressing threads such that the total
number of threads executing the kernel is 50% to 100% of the
maximum threads that can run concurrently on the GPU. Each
stressing thread executes a loop where, on every iteration, the
thread stores to and then loads from location l.

The plots of Fig. 3a illustrate the results of our experiments
for Titan (Kepler architecture). Results for the MP and LB
tests are shown; the results for SB are very similar to those
for LB and are omitted. We show plots for three values
of d: 0, 32 and 64. The x axis is divided into L = 256
segments. For each segment position x, a vertical bar is
plotted. The height of the bar indicates the number of weak
behaviours that were observed during C = 1000 executions
of test 〈Td, x〉 (to avoid cluttering the figure we do not
number the y axis for these plots). In many cases no bar
is visible, indicating that no weak behaviours were observed.
The plots of Figs. 3b and 3c show similar data for C2075

(Fermi) and 980 (Maxwell) chips, respectively, for d ∈
{0, 64, 128}. The raw data and graphs for all experimental
results can be found at http://multicore.doc.ic.
ac.uk/projects/gpuwmmtesting/.

The Titan and C2075 results (Figs. 3a and 3b, respectively)
exhibit similar characteristics: no weak behaviour is observed
when communication locations are contiguous (d = 0); our
full data shows that this is the case for all d < 32 (Titan)
and d < 64 (C2075). After this, patches of weak behaviour
emerge: for d = 32 and d = 64, Fig. 3a shows that the rate of
weak behaviours exhibited by Titan is fairly consistent when
stressing within 32-word contiguous scratchpad regions, but
varies between different regions. For 33 ≤ d < 64, our full
test data shows visually similar plots to the d = 32 plot of
Fig. 3a, with stressing exposing weak behaviour in the same
regions. These regions change at d = 64, remain constant for
65 ≤ d < 96, change again at d = 96, etc. Similar results
are found for C2075, (Fig. 3b) but the patch size is 64.

Results clearly indicating a patch size are observed for
all chips, with the exception of the recent 980 (Maxwell).
Fig. 3c shows that for 980, we consistently observe a small
number of MP weak behaviours for all stressing locations,
even with d = 0; we see LB weak behaviours universally
for 64 ≤ d < 128 (the figure shows the d = 64 case), and
patches of length 64 emerge for LB at d = 128. We observe
only noise levels of MP weak behaviour for d ≤ 256, but after
running some extra experiments on this chip we found that
more significant MP weak behaviours emerge from d = 256
(not depicted in the figure), showing a patch size of 64.

The plots of Figs. 3a and 3b provide intuition for the
idea that a GPU exhibits a natural patch size, which can
differ between architectures. The 980 results of Figs. 3c also
indicate that a minimum threshold of weak behaviour may
need to be considered to identify the patch size for a chip.

We now formalise our method for determining the patch
size of a chip empirically. Let T ∈ {MP, LB,SB} be a test,



Table 2: Stressing parameters and time spent tuning

chip c. patch size sequence spread ~time (mins)
980 64 ld4 st 2 1731
K5200 32 ld3 st ld 2 3069
Titan 32 ld st2 ld 2 3115
K20 32 ld st2 ld 2 4215
770 32 st2 ld2 2 1831
C2075 64 ld st 2 2145
C2050 64 ld st 2 1996

and ε a non-negative noise threshold. A maximal contiguous
sequence of P locations, l1, . . . , lP , for which each 〈Td, li〉
yields more than ε weak behaviours, is called an ε-patch of
size P . A test may exhibit multiple ε-patches for a given P .
If all of MP, LB and SB agree on the value of P for which
the largest number of ε-patches of size P are observed, we
call P the critical patch size for the GPU (w.r.t. to ε).

In our experiments we used a noise threshold of 3. We
found that each GPU exhibited a critical patch size of either
32 or 64; specifically, 32 for Kepler chips, and 64 for Fermi
chips. For Maxwell (980), critical patches for MP did not
appear except in our special additional tests (whereD > 256).
Because of this, we say the critical patch size for 980 is 64,
based on the patterns observed in the extra tests and the patch
sizes observed for LB. The critical patch sizes for all chips
are summarised in Tab. 2.

For brevity, we henceforth omit ε when discussing critical
patch sizes.

3.3 Identifying Effective Access Sequences
We now turn to deriving an effective sequence of instructions
to be issued by stressing threads; our pilot experiments indi-
cated that this could influence exposure of weak behaviour.

Letting ld and st denote load and store instructions, re-
spectively, we assess the effectiveness of stressing using a
variety of access sequences. We do this by instantiating the
loop body executed by the stressing threads with each ac-
cess sequence σ matching the regular expression (ld|st)+,
up to some maximum length N . For a litmus test T , access
sequence σ, distance d (0 ≤ d < D) and stressing location
l (0 ≤ l < L), let 〈Td, σ@l〉 denote the test T instantiated
with distance d between communication locations, and with
access pattern σ used to apply memory stress at location l.

Suppose P is the critical patch size for the GPU of
interest. Because stressing multiple locations in a patch is
not worthwhile, we consider stressing each location in the set
{l : 0 ≤ l < L ∧ P |l}, i.e. the first location in each critical
patch-sized region. For each such location l, we count the
number of weak behaviours observed during C executions of
〈Td, σ@l〉, for each test T , distance d and access sequence σ.

The total number of weak behaviours observed for test
T with access sequence σ, summed over all distances and
stressing locations, allows us to order the effectiveness of the
access sequences with respect to T . An access sequence σ

Table 3: Snippet of σs and scores for Titan

MP LB SB
rank σ score rank σ score rank σ score
1 ld3 st ld 153k 1 st2 ld3 98k 1 st2 ld 138k
2 st ld2 140k 2 st ld3 st 96k 2 ld st2 128k
3 ld st ld 131k 3 ld3 st2 93k 3 ld2 st3 125k
... ... ... ... ... ... ... ...
17 ld st2 ld 104k 17 ld st2 ld 64k 21 ld st2 ld 93k
... ... ... ... ... ... ... ...
61 st 342 61 st5 126 61 st3 674
62 st3 266 62 st2 108 62 st4 520
63 st5 232 63 st3 90 63 st5 348

is maximally effective for a set of GPU test data if no other
sequence σ′ is observed to be more effective than σ with
respect to all three litmus tests; that is, σ is Pareto optimal
over the litmus tests. In our experiments we occasionally
observed two distinct access sequences were maximally
effective; we were able to break such ties by selecting
the sequence that was most effective for two out of the
three litmus tests. After tie-breaking, we have a single most
effective access sequence for the GPU.

In our experiments we chose N = 5 as the maximum
access sequence length (leading to 2n+1 − 1 = 63 possible
access sequences), and D = 256, L = 256 and C = 1000 as
before. With three litmus tests this required running∼387.1M
tests for a GPU with critical patch size P = 32 (∼193.5M
with critical patch size P = 64).

Table 2 shows the most effective sequences for our GPUs,
based on our experimental findings (where ldx denotes a
sequence of x loads, stx is similar). The most effective
sequences match for both Fermi chips (C2075, C2050). For
two of our four Kepler chips (Titan, K20) the most effective
sequence is ld st2 ld, which is equivalent under rotation to
st2 ld2, the most effective sequence for one of the other
Kepler chips (770). We observe that all of the most effective
sequences involve a combination of loads and stores.

In Tab. 3 we give a snapshot of results for Titan. For
the given σ, score shows the number of weak behaviours
observed for the associated test using σ, over all distances
and stressed locations. We show the top- and bottom-three
σs for each test (ranked by score). The disparity between
high and low scores provides evidence that σ influences the
stressing effectiveness. The most effective sequence for the
chip (shown in the middle) is not especially highly ranked for
any one test, but is orders of magnitude more effective than
the lowest-ranked σs. For most chips, the lowest ranked σs
consist exclusively of stores.

Because access sequences are executed in a loop, we
hypothesised that it might be redundant to test two σs that are
equivalent under rotation, e.g. (ld st) and (st ld). However,
our results show that two σs that are equivalent under rotation
can yield remarkably different amounts of weak behaviour.
For example, on Titan, σ = (ld st) gave a score of 79K, while
σ = (st ld) gave a score of 91K. These differences may be



due to interference from loop boundary instructions. Thus, we
opted to test all instruction permutations and did not consider
rotational equivalence.

3.4 Identifying How Many Locations to Stress
Our patch testing results show that some critical patch-sized
regions yield no weak behaviour while others yield a lot of
weak behaviour, varying between distances. Because applica-
tions may exhibit arbitrary distances between communication
locations, it may be sensible to select multiple regions to
stress, to increase the probability of stressing a region that is
effective for the application.

Our pilot experiments showed that simultaneously stress-
ing a spread of 2–8 randomly chosen locations in different
regions worked well, varying between chips. We now con-
sider how to systematically derive an effective spread.

Let T be a test, σ an access sequence, d a distance
and L a set of scratchpad locations. We use 〈Td, σ@L〉 to
denote the litmus test T instantiated with distance d between
communication locations, and with memory stress applied
simultaneously at each location in L with respect to access
sequence σ. The number of stressing threads is chosen
randomly, as before, but at least |L| threads are used, and
the threads are assigned evenly (modulo rounding) to the
locations in L.

To identify an effective spread, we consider a scratchpad
of size P ·M , where P is the critical patch size of the GPU
under consideration, and M is a positive maximum spread.
This yields M distinct critical patch-sized regions to which
stressing can be applied. The set M = {l : 0 ≤ l <
P ·M ∧ P |l} provides the first location in each region.

Let D denote the maximum distance between communi-
cation locations, as before, and let σ be the most effective
access sequence for the GPU under consideration. For each
test T and spread m (1 ≤ m ≤ M) we execute C tests of
the form 〈Td, σ@Lm〉, where for each test Lm is a randomly
selected subset ofM with size m, so that stressing is applied
to m distinct critical patch-sized regions.

We use score for spread m to refer to the number of weak
behaviours observed for test T with spread m, summed over
all distances. A spread m is maximally effective for a set
of GPU test data if it is Pareto optimal with respect to the
idioms (i.e., if no other spread m′ was observed to have a
higher score than m with respect to all three litmus tests).
Our experiments identified a single maximally effective m
for each GPU, with no tie-breaking required.

In our experiments we chose M = 64 as the maximum
spread, and D = 256 and C = 1000 as before. With three
litmus tests, this required running ∼49.2M tests per chip.

Table 2 shows that 2 is the most effective spread for all the
GPUs we tested. Figure 4 illustrates spread-finding results in
more detail for 980 and K20, plotting spread on the x-axis
and score on the y-axis. For 980 we see that 2 is clearly the
most effective spread. The U-shape for K20 is less striking,
yet the highest scores remain with a spread of 2.
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Figure 4: Spread finding for 980 and K20

3.5 Thread Randomisation
To amplify the effectiveness of memory stressing, we apply a
straightforward adaption of the thread randomisation heuris-
tic, originally presented in [8]. Previously used exclusively in
the context of litmus testing, we extend thread randomisation
to apply to black box application testing.

In this heuristic, the GPU thread ids are randomised, but
constrained to honour the GPU programming model. Namely,
randomisation must respect block membership: if two threads
share a common block before randomisation, they must share
a common (but possibly different) block after randomisation.
This is vital if the application uses barriers, as placing pre-
viously co-located threads into different blocks can induce
barrier divergence. Randomisation must also respect warp
membership, as applications may exploit implicit intra-warp
synchronisation to prevent what might otherwise be erro-
neous interleavings (e.g. [32] exploits this implicit intra-warp
synchronisation).

For our case studies, we evaluate the effectiveness of
thread randomisation at revealing weak memory bugs when
applied in isolation and in conjunction with memory stress.

Summary We used nearly half a billion micro-benchmark
executions to identify the critical patch size, an effective
access sequence, and the best number of critical patch-sized
regions to stress simultaneously, for each GPU. Results of our
findings for the GPUs of Tab. 1 are given in Tab. 2, and full
experimental data is given in our companion material. While
we focused on the MP, LB and SB tests in this work, our stress
can be tuned to other litmus tests. For litmus tests that also use
two communication locations, our approach applies directly.
For litmus tests with additional communication locations,
tuning would need to consider multiple distance parameters.
While conceptually straightforward, the tuning time for tests
with more distance parameters may become expensive.

Combined with thread randomisation, we now evaluate
the effectiveness of this test environment at provoking weak
behaviours in real-world GPU applications.

4. Provoking Weak Behaviours in the Wild
We evaluate the testing environment of Sec. 3 w.r.t. ten GPU
applications that are known to use fine-grained concurrency.



We detail the applications (Sec. 4.1), describe our experimen-
tal setup (Sec. 4.2) and present our findings (Sec. 4.3).

4.1 Application Case Studies
We undertook a thorough, best-effort search for CUDA appli-
cations that might be subject to weak behaviours, selecting
applications that met three criteria: (1) their source code is
available, (2) they do not rely on non-portable assumptions,
(3) they appear to exhibit fine-grained concurrency.

We omit applications described in [20, 47] due to source
code unavailability, and some applications of [12, 37, 49] as
they use a non-portable global barrier that depends on precise
occupancy; adding extra stressing blocks and applying thread
randomisation to this construct causes deadlock.

We assess criterion (3) according to whether applications
use mutexes or concurrent data-structures (with which weak
behaviours are often associated, e.g. [26, 36]), or include
fence instructions (an explicit acknowledgment of memory
consistency issues). Most CUDA applications do not meet
this criterion and exhibit no communication between thread
blocks, as they use barriers for intra-block communication;
thus they are not prone to weak behaviours. In these cases,
our approach would provide no benefit. The subset of relevant
applications is small, but the applications are important, and
as interest in the use of fine-grained concurrency increases
we expect the set of relevant applications to grow.

Our approach requires each application to be equipped
with a user-supplied functional post-condition, to check
whether an execution is erroneous; because applications
may exhibit nondeterminism it is not sufficient to check
for repeated computation of an identical result. We omitted
several candidate applications for which, as outsiders, we
could not easily derive suitable post-conditions. For example,
GPU hashtables in [2, 35] drop items if collisions exceed
a certain threshold; we found it hard to formulate a robust
post-condition to capture the intended behaviour. Other such
examples were found in [22, 33].

The evaluated applications are summarised in Tab. 4, a
total of ten applications derived from seven code bases (with
three variants obtained by removing existing fences). We de-
tail the application source, the nature of communication, and
the post-condition used to check correctness. All applications
except for ct-octree, tpo-tm and ls-bh were provided with
a testing harness containing a post-condition. For ct-octree
and tpo-tm, meta-data were gathered during the execution
and used to implement post-condition checks. For ls-bh, we
obtained a reference solution from the conservatively fenced
variation of the application (see Sec. 5). The post-condition
compares the computed values with the reference.

While our environment was developed to expose bugs due
to weak behaviours, other types of bugs were uncovered in
our case studies: improper memory initialisation in ct-octree
and out-of-bounds queue accesses in ct-octree and tpo-tm.
Our experiments are performed on patched versions of these
applications, not showing these issues.

The applications ls-bh-nf , cub-scan-nf , and sdk-red-nf are
manufactured from ls-bh, cub-scan, and sdk-red respectively.
The original applications contained fence instructions which
we removed to create the -nf (no fence) variants. This allows
us to test if the provided fences are (a) experimentally
needed to disallow errors and (b) sufficient to disallow weak
behaviour bugs in the application.

4.2 Experimental Setup
Testing environments We evaluate the effectiveness of our
systematically designed memory stressing strategy, sys-str, by
considering two straightforward memory stressing strategies
to compare against. In the first strategy, rand-str, stressing
threads repeatedly execute a load or store (at random) to
a random location in the scratchpad (using curand [42] to
generate random numbers in CUDA). The second strategy,
cache-str, allocates a scratchpad the size of the GPU L2
cache, and each stressing block then repeatedly performs a
load and store to each location in the scratchpad. The L2
cache-sized scratchpad is an attempt to exploit a hardware
parameter of the chip that we speculate may be relevant for
triggering weak behaviours. For example, reading and writing
to a scratchpad of this size may cause cache thrashing, which
we hypothesised might encourage weak behaviours to appear.
We also consider no-str: the application is executed natively,
without any memory stress.

To evaluate thread randomisation, we experiment with
each stressing strategy both with thread randomisation en-
abled and disabled, indicated by a + (enabled) or - (disabled)
at the end of the stressing strategy name. For example, sys-
str+ denotes systematic stressing with thread randomisation
enabled. This leads to a total of eight testing environments.

Testing parameters Natively, we find that application ex-
ecutions terminate within 8 seconds across all our GPUs,
dominated by initialisation of the CUDA framework with
kernel execution itself accounting for a small fraction of to-
tal time. To catch timeout errors (due to weak behaviours
affecting the termination condition of an application), we
set a timeout limit of 30 seconds per application execution.
When memory stress is enabled, we randomly set the number
of stressing blocks to a value between 15% and 50% of the
number of thread blocks launched by the original application.
To ensure that stressing is applied for at least as long as a
kernel would normally execute, we configure the number of
stressing loop iterations on a per application basis so that the
stressing threads execute for roughly 10 times as long as the
kernel takes to execute. Because kernel execution accounts
for only a fraction of total execution time for an application,
this has little impact on overall execution time.

For each combination of GPU (Tab. 1), application (Tab. 4)
and testing environment, we repeatedly execute the applica-
tion for one hour and record the number of erroneous runs
observed. The number of executions varies between combina-



Table 4: The ten case studies we consider, derived from seven distinct applications

short name description communication post-condition

cbe-ht
Concurrent hashtable given in the book
CUDA by Example [45, ch. A1.3]

Concurrent hashtable insertion pro-
tected by custom mutexes

All elements inserted into the
hashtable are in the final hashtable

cbe-dot
Dot product routine given in the book
CUDA by Example [45, ch. A1.2]

Global final reduction across blocks
protected by a custom mutex

GPU result matches a CPU reference
result

ct-octree
Octree partitioning routine by Ceder-
man and Tsigas [22, ch. 37]

Concurrent access to non-blocking
queues

All original particles are in final octree

tpo-tm
Dynamic task management framework
by Tzeng, Patney, and Owens [48]

Concurrent access to queues protected
by custom mutexes

Expected number of tasks are executed

sdk-red *
Reduction routine from the CUDA 7
SDK [39]

Last block (via atomic counter) com-
bines block-local results

GPU result matches a CPU reference
result

cub-scan *
Prefix scan from the CUB GPU li-
brary [37]

Blocks communicate partial results us-
ing MP-style handshake

GPU result matches a CPU reference
result

ls-bh *
Barnes-Hut N-body simulation from
the Lonestar GPU benchmarks [12]

Various instances across three kernels
Final particle positions match results
from reference implementation

*These apps. contain fence instructions; we also consider variants without fences, using the names sdk-red-nf, cub-scan-nf, and ls-bh-nf

tions, ranging from 160 for Titan/ct-octree/sys-str+ to 10,907
for 980/cbe-dot/no-str.

4.3 Results
The results of running combinations of environments, chips,
and applications are summarised in Tab. 5. For each chip and
environment, a/b means that we could observe erroneous
runs for b applications, and that in a of these cases we
observed errors in more than 5% of the executions, in which
case we say that the environment is effective in exposing
errors for the application and chip. We highlight in bold the
most effective strategy for each chip. For example, sys-str+
is the most effective strategy for K20, observing errors for
eight applications, and exceeding the effectiveness threshold
for seven.

Observed errors We observed weak behaviour in all appli-
cations except sdk-red and cub-scan. Because we observe
weak behaviours in the fenceless versions of these applica-
tions (sdk-red-nf and cub-scan-nf ), it appears that the fences
included in the original applications do prevent errors. In con-
trast, we observed errors in both ls-bh and ls-bh-nf , showing
that the fences included in ls-bh are insufficient.

We observe errors natively (no-str-) only for 3 chip-
application combinations: 770-cbe-ht, K5200-cub-scan-nf
and C2075-ls-bh. Only Titan, using the sys-str- environment
was effective at exposing errors in sdk-red-nf

Comparing strategies Environments with sys-str stress are
always more capable (show errors in more applications and
are effective in more applications) than any of the other
stressing strategies. In many cases, other stressing strategies
are only able to reveal weak behaviours in fewer than two
applications, and are only effective for one application: cbe-ht.
We did not find any applications for which cache-str, rand-str
or no-str were able to reveal (or effectively reveal) errors not
revealed by sys-str.

With the exception of Titan, sys-str+ is the most effective
environment for every chip. For Titan, the sys-str- strategy
is more effective than sys-str+ for one application. On all
chips except 980, sys-str+ revealed weak behaviours in every
application for which any environment could reveal weak
behaviours, and is effective for most applications.

Effectiveness of thread randomisation Thread randomisa-
tion led to modest increases in effectiveness in most cases;
although there were several exceptions, e.g. 980/rand-str.

Reported bugs The errors for ct-octree, cbe-dot, and cbe-ht
provide empirical witnesses for the bugs reported via hand
analysis in [8]. The unreported errors in ls-bh and tpo-tm have
been acknowledged by the authors.

5. Program Hardening
We now turn to the problem of experimentally suppressing
weak memory bugs by adding memory fences. While insert-
ing fences to disallow weak memory bugs has been studied
for CPUs (Sec. 7), these methods require a formal mem-
ory model (e.g. as provided by the GPU languages OpenCL
2.0 [24] and HSA [21]). Though foundations of a model for
PTX [44] (the intermediate representation underlying CUDA)
have been proposed [8], there is no agreed memory model for
CUDA. Thus we have no means of formally validating the
necessity of fences. As a pragmatic alternative, we employ
our testing to suggest a minimal set of fences that suffice
to disallow weak memory bugs under our aggressive testing
environment, a process we call empirical fence insertion; as
discussed in Sec. 1 this can aid in understanding weak mem-
ory bugs, and in hardening applications against such bugs.
In future, the suggested fences could be used as a starting
point for a verification effort if a suitable memory model (and
accompanying verification technique) become available.



Table 5: Summary of the effectiveness of the testing environments we consider with respect to the GPUs of Tab. 1

chip no-str- no-str+ sys-str- sys-str+ rand-str- rand-str+ cache-str- cache-str+
980 0 / 0 0 / 0 1 / 6 4 / 7* 0 / 2 0 / 0 0 / 2 0 / 2
K5200 1 / 1 0 / 0 5 / 7* 7*/ 8* 1*/ 1* 1*/ 2 1*/ 1* 1*/ 1*

Titan 0 / 0 0 / 0 8*/ 8* 7*/ 8* 0 / 2 0 / 2 1*/ 1* 1*/ 2
K20c 0 / 0 0 / 0 7*/ 7* 7*/ 8* 1*/ 1* 0 / 1* 1*/ 1* 1*/ 1*

770 1*/ 1* 0 / 1* 5 / 8* 6 / 8* 1*/ 1* 1*/ 1* 0 / 1* 1*/ 1*

C2075 0 / 1 1 / 2 5 / 8* 6 / 8* 1*/ 2 1*/ 3 1*/ 2 1*/ 4
C2050 0 / 0 1 / 3 5 / 7* 6 / 8* 1*/ 2 1*/ 3 1*/ 1* 1*/ 2

Common sets of applications:

1∗ – The lone application is cbe-ht

8∗ – All applications except
sdk-red and cub-scan

7∗ – All applications except
sdk-red, sdk-red-nf and cub-scan

Algorithm 1 Empirical fence insertion, based on binary and
linear reduction procedures

input: a target application A, a set of empirically stable
fences F , an iteration count I

output: a minimal set of empirically stable fences
1: procedure EMPERICALFENCEINSERTION(A,F, I )
2: do
3: Fb ← BINARYREDUCTION(A,F, I)
4: Fl ← LINEARREDUCTION(A,Fb, I)
5: I ← 2 · I
6: while ¬EmpiricallyStable(A,Fl)
7: return Fl

8: procedure LINEARREDUCTION(A,F, I )
9: for f ∈ F do

10: if CheckApplication(A,F \ {f}, I) then
11: F ← F \ {f}
12: return F

13: procedure BINARYREDUCTION(A,F, I )
14: while |F | > 1 do
15: F1, F2 = SplitFences(F)
16: if CheckApplication(A,F1, I) then
17: F ← F \ F1

18: else if CheckApplication(A,F2, I) then
19: F ← F \ F2

20: else
21: return F
22: return F

We comment on the relation between the fences found by
our insertion method and fences (a) prescribed by prior hand
analysis and (b) already present in the original application.

5.1 Empirical Fence Insertion
We say that an application shows empirically stable behaviour
if we observe no errors when executing the application for one
hour under a testing environment (we use sys-str+). Given
an application A containing no fences, let A + F denote
the application after adding a given set of fences, F . Our
goal is to find a set of fences F such that (a) A + F shows
empirically stable behaviour, and (b) A+ F ′ does not show

empirically stable behaviour for any F ′ ⊂ F , i.e. empirically
unnecessary fences are not present in F . The procedure is
detailed in Alg. 1 and described below.

Starting with an application A and fence set F such that
A+ F shows empirically stable behaviour (in practice, we
take F to be the set of fences inserted after every memory
access), our empirical fence insertion attempts to reduce the
size of F using linear reduction and binary reduction; each
reduction takes an integer-valued iteration argument I .

Linear reduction (line 8) attempts to remove fences one
at a time. For each fence f ∈ F (line 9), A + (F \ {f}) is
executed for I iterations (line 10). This is done through the
CheckApplication(A,F, I) function, which executes applica-
tion A+ F for I iterations and returns true if no errors are
observed and false otherwise. If no errors are observed, f is
immediately removed from F (line 11). The method returns
the updated set of fences F (line 12).

Binary reduction (line 13) iteratively tries to remove
half of the remaining fences: while F contains more than
one fence, the SplitFences(F ) function is used to split F
into halves, F1 and F2 (line 15). In our implementation,
the fences are sorted based on their location in the code.
The first half of the fences go to F1 and the second half
of the fences go to F2. It may be possible to develop a
more informed fence splitting strategy to fully exploit binary
reduction; however, we leave such exploration to future work.
Application A+ (F \ F1) is executed for I iterations. If no
errors are observed, F1 is removed from F , and the process
repeats (lines 16 and 17). Otherwise,A+(F \F2) is executed
for I iterations. If no errors are observed, F2 is removed from
F and the process repeats (lines 18 and 19). Otherwise, binary
reduction terminates returning F (line 21). In the worst case,
binary reduction removes no fences, if A empirically requires
multiple fences that are split between F1 and F2.

At the top level, empirical fence insertion (line 1) uses
binary reduction in an attempt to quickly reduce F , yielding
a set of fences Fb (line 3) to which linear reduction is
then applied, yielding a set of fences Fl (line 4). If A +
Fl is observed to be empirically stable, Fl is returned as
a set of empirically required fences (lines 6 and 7). The
EmpiricallyStable(A,F ) function checks application A+ F
for empirically stable behaviour (i.e. whether A+ F behaves
correctly when repeatedly executed for one hour) and returns



Table 6: Empirical fence insertion results

inserted fences agreeing red. time (mins.)
app. init. red. (Titan) chips min med max
cbe-ht 10 1 5 80 106 127
cbe-dot 4 1 5 62 63 65
ct-octree 33 1 5 67 69 735
tpo-tm 28 1 4 63 67 124
sdk-red-nf 6 1 4 63 72 258
cub-scan-nf 51 2 4 90 116 1407
ls-bh-nf 90 4 0 235 343 t.o

true if no errors are observed, and false otherwise. If the
empirical stability check fails, then the iteration count I
used during reduction was not large enough. In this case,
the reduction process restarts with the original fence set F
and iteration count 2 · I (line 5).

The role of iteration argument I is to attempt to accelerate
fence insertion. Each call to CheckApplication could be
replaced by a call to EmpiricallyStable, which does not use
the iteration count I . Using CheckApplication may lead to
faster convergence because it runs for I iterations, whereas
EmpiricallyStable always runs for one hour. The call to
EmpiricallyStable at line 6 of Alg. 1 ensures that the final set
of fences returned by the algorithm is empirically stable; if the
candidate fence set is not stable then the insertion procedure
essentially restarts with a larger iteration count.

The fences returned by empirical fence insertion are de-
pendent on the effectiveness of the testing environment and
the order in which fences are removed. If the fences are con-
sidered deterministically (i.e. binary reduction splits the fence
set deterministically and linear reduction iterates through the
fences set in a strict order), and if CheckApplication is deter-
ministically able to find bugs, then empirical fence insertion
will deterministically return the same set of fences if applied
multiple times to an application on a given GPU. However,
because CheckApplication is based on testing, and is thus
non-deterministic, the empirically stable fence set returned
by empirical fence insertion may not be deterministic.

5.2 Results
We experiment with the applications that contain no fences
(i.e. omitting sdk-red cub-scan and ls-bh). We use I = 32
initially and sys-str+ as the testing environment (chosen
based on its effectiveness in Sec. 4), using a 24h timeout
per application.

For each application, Tab. 6 shows how many fences
were provided in the initial state, i.e., when inserted after
every memory access, and how many fences remained after
the reduction methods converged on Titan (which often
revealed errors most frequently). We show the number of
cases (maximum of six) where fence insertion on other chips
found the same fences as on Titan, as different chips may
find different fences depending on how often testing reveals
errors. The minimum, median, and maximum times (over

the results for all GPUs) for the reduction processes are
shown. Due to the large amount of time required to run these
experiments, we did not perform multiple runs per GPU for
this experiment.

In the case of all applications except cub-scan-nf and ls-bh-
nf , insertion yielded a single fence on Titan. In most cases, the
reduced fences found on other chips agree with the reduced
fences found on Titan, showing that our method yields similar
results across chips. The outlier chip is 770, which never
found fences that agreed with Titan, often finding fences
immediately following (in program order) the fences found
on Titan. For example, in the cbe-dot application (Fig. 1),
empirical fence insertion on the 770 placed the fence in the
lock function (after line 19). All other chips placed the
lock immediately prior to the unlock function (line 15). If
we consider the lock and unlock functions inlined, the
two fencing solutions are a single memory instruction apart
(line 15). The fence solution found by 770 is incorrect based
on the memory model proposed in [8], as a fence between
the critical section access (line 15) and the unlock operation
(line 22) is required to ensure that the next thread entering
the critical section observes up-to-date values. We have no
hypothesis for why 770 finds such fences and attribute it to a
quirk of the chip.

The other chip that found different fences from the major-
ity was 980, which found no fences for sdk-red-nf and only
one of the two fences for cub-scan-nf . The outlier application
is ls-bh-nf , on which insertion for all chips timed out except
on Titan and K20. The K20 solution is a subset of the Titan
solution, differing by one fence.

In six of the applications, at least half of the chips found a
reduced solution within two hours (median), and the fastest
took just over an hour (recall that one hour is required in order
to check for empirical stability). However we observed cases
where the insertion method was inefficient. The timeouts in
ls-bh-nf are due to both the large number of initial fences
and the location of required fences (found by Titan)—binary
reduction was unable to remove fences at a course level of
granularity.

Evaluating reduced results Here we discuss the fences
found by empirical fence insertion (on Titan) and how they
relate to existing hand analysis and fences existing in the
original application.

Prior hand analysis prescribed two fences for cbe-ht
and cbe-dot [8]. The inserted fence corresponds to one of
these fences; the other prescribed fence is redundant with
a dependency and was not found by insertion. The same
hand analysis prescribed four fences for ct-octree, one of
which corresponds to the inserted fence. The other prescribed
fences were either redundant with dependencies or involved
a sequence of data-structure operations not occurring in the
actual application.

The two inserted fences for cub-scan-nf correspond ex-
actly to the provided fences in cub-scan, giving us high confi-



dence in the empirical solution. The reduced fence for sdk-
red-nf does not correspond to the provided fence in sdk-red;
this solution may be consistent with a temporally bounded
model [34] where extra instructions in one communicating
thread can make up for the lack of fences in the other. The
reduced fences for ls-bh-nf are a superset of the fences in
ls-bh (as ls-bh showed errors with provided fences).

Because empirical fence insertion only hardens applica-
tions, it may give even empirically unsound results; e.g. 770
observes errors for sdk-red-nf (Tab. 5), but due to the in-
frequency of observed errors, empirical fence insertion sug-
gested no fences.

6. The Cost of Fences
To better understand the performance cost associated with
fences in GPU applications, we benchmark the applications of
Sec. 5 when run natively (i.e., without a testing environment)
under two fencing configurations. We compare the runtime
and energy overhead w.r.t. the application containing no
fences. Runtime is measured using CUDA events [41, p.
56]. For energy, NVML [43] is used to query GPU power
usage throughout the execution. The average power reading
is multiplied by the kernel runtime to estimate energy usage.
Only K5200, Titan, K20, and C2075 support power queries.
There are known inaccuracies when measuring GPU power
this way [13, 16], thus we emphasise that our energy results
are estimates. Results are averaged over 100 runs.

The two fencing strategies we consider are: a conservative
fence strategy where a fence is placed after every memory
access (cons fences) and the fences found during empirical
fence insertion (emp fences). We consider emp fences on
a per GPU basis, that is, a given GPU uses the fences it
found during empirical fence insertion. Thus, for a given
application, emp fences may be different across GPUs. We
compare an application with these fencing strategies applied
to the application without fences (no fences). We record
performance results only if the application passes the post-
condition, otherwise the run is discarded and not counted as
part of the 100 runs. Because applications rarely exhibit weak
behaviours when run naively (see Sec. 4), this was not an
issue.

Figure 5 shows two scatter plots (logarithmic scale): the
left graph shows energy consumption (in J) and the right
graph shows runtime (in ms). Each point on the graph is
a chip/application combination. A cross (resp. dot) with
coordinates (x, y) indicates that execution consumed an
estimated x J (left) or took xms (right) with no fences, and an
estimated y J (left) or y ms (right) with emp fences (resp. cons
fences). The distance between a point (above the diagonal)
and the diagonal represents the cost of the fencing strategy.
Points close to the diagonal indicate a low cost associated
with inserting fences, while points further away indicate that
fences carry a higher cost.

102

103

104

102 103

{e
m

p.
,c

on
s.

} 
fe

nc
es

 e
ne

rg
y 

(J
)

no fences energy (J)

cons. fences
emp. fences

101

102

103

104

101 102

{e
m

p.
,c

on
s.

} 
fe

nc
es

 r
un

tim
e 

(m
s)

no fences runtime (ms)

cons. fences
emp. fences

Figure 5: Cost of reduced vs. {no, conservative} fences

There are a total of 93 and 54 data points for runtime and
energy respectively. The graphs omit ten outlier points for
runtime and three for energy. Unsurprisingly, we see no points
below the diagonal, showing fences never decrease cost. We
see that generally cons fences cost more than emp fences,
given that dots appear further from the diagonal than the
crosses. Runtime costs corresponds closely to energy costs
(consistent with findings in, e.g. [50] for CPU systems). We
comment on extreme cases for runtime comparisons (energy
comparisons are similar) and give the median for both runtime
and energy costs.

Comparing the cost of cons fences to no fences, we ob-
serve some dramatic results. The highest chip-application
runtime cost is 35,120% for C2075/cbe-ht. In fact, for the
three oldest chips (770, C2075 and 2050) we observe simi-
larly high costs in several applications. The newer chips show
a less dramatic cost, the highest being 843% for K20/cbe-ht.
The median runtime and energy costs are 174% and 171%
respectively.

Comparing the cost of emp fences to no fences, we observe
substantially lower costs, which is to be expected given that
emp fences are a subset of cons fences. The highest cost is
7052% for 770/cbe-ht. Like the previous comparisons, the
oldest three chips have fairly extreme results; excluding these
chips the highest cost is 131% for K20/cbe-ht. The median
runtime and energy cost of emp fences are both very small
(less than 3%). This can be seen on the graphs of Fig. 5 as
many crosses are very close to the diagonal.

7. Related Work
Memory model testing Testing for weak behaviours on
hardware has largely been for litmus tests. The ARCHT-
EST [15] tool and TSOTOOL [19] ran tests on systems with
the TSO memory model (e.g. x86 CPUs). The LITMUS
tool [3] runs tests on x86, IBM Power, and ARM chips. Lit-
mus testing has recently been applied to GPUs with the tool
GPU LITMUS [8]. Our work is inspired by GPU LITMUS;
the relation between this work and GPU LITMUS is detailed
at the end of Sec. 1.



Fence insertion Alglave et al. [6] survey static methods
for inserting fences to restore sequential consistency in CPU
applications (e.g. [27]), evaluating each method based on
the number of fences inserted and the associated runtime
overhead. They propose a new method based on linear
programming. Joshi and Kroening [23] use bounded model
checking to insert fences, not to restore sequential consistency
but, as in our work, to restore sufficient orderings to satisfy
specifications of the application. Using a demonic scheduler
that delays memory accesses, Liu et al. consider finding and
suppressing weak behaviours-related errors through dynamic
analysis and fence insertion [30].

For GPUs, Feng and Shucai [17] benchmark a global
barrier implementation with and without fences. They report
observing no errors when the fences are omitted and high
runtime costs when fences are included.

GPU program analysis Current GPU program analysis
tools focus on data-race freedom, barrier properties and
memory safety: GKLEE [28] uses concolic execution, while
GPUVERIFY [10, 11] is based on verification conditions and
invariant generation. Extensions of these methods support
atomic operations to a limited extent [9, 14], but neither
provides a precise analysis accounting for weak behaviours.
The CUDA-MEMCHECK [40] tool, provided with the CUDA
SDK, dynamically checks for illegal memory accesses and
data-races, but does not account for weak memory effects.

Weak memory program analysis Several methods exist to
analyse programs under CPU memory models. The CD-
SCHECKER tool [36] buffers loads and stores and is con-
figured to simulate the C++11 memory model. The bounded
model checker CBMC supports reasoning about weak mem-
ory either by transforming code to simulate weak effects,
after which an analysis that assumes sequential consistency
can be applied [4], or via a partial order relaxation of in-
terleavings [5]. The JUMBLE [18] tool creates an execution
environment which intentionally provides stale values (simu-
lating weak behaviours) attempting to crash applications.

8. Conclusions and Future Work
We presented a testing environment, systematically designed
through micro-benchmarking, that is effective in exposing
weak behaviours in GPU applications. Our testing environ-
ment can be used for fence insertion, aiding in understanding
and repairing weak memory bugs.

We see several avenues for future investigation: (a) the
design of GPU weak memory-aware formal program analysis
techniques (to enable verification of our empirically proposed
fixes); (b) architectural investigation of the critical patches
revealed by our micro-benchmarks, building on the insights
into Nvidia GPUs provided by GPGPU-Sim [1]; (c) applying
and evaluating our methods to CPU architectures and applica-
tions; (d) combining our techniques with recent methods for
GPU compiler testing [29] in order to check the correctness

of compilation in the presence of fine-grained concurrency;
(e) combining our techniques with race detectors to help pin-
point communication idioms in applications and developing
targeted testing around these locations.
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