
Applying Information Theory
to Efficient SLAM

Margarita Chli

Department of Computing, Imperial College London

Presented for the degree of Doctor of Philosophy
and the Diploma of Imperial College London.

October 2009



ii



Acknowledgements

This thesis would not have been possible without the help andencouragement of a

number of people around me during my years as a PhD student.

First and foremost, I wish to thank my supervisor Andrew Davison for his guidance

and support. His generous offering of ideas and expertise throughout this work have

been the most valuable source of knowledge and inspiration,while his passion for

research and unreserved kindness have made me fight harder. All this put in a few

words, he has been the best supervisor a student could wish for.

I am deeply grateful to José Marı́a Martı́nez Montiel for the intriguing discussions

and the faith he has shown in this research. The numerous conversations I had with

friends and collaborators have been a major stimulus for research and experimentation,

and I thank them for that. My incredible office mates have beenmost supportive

throughout the ups and downs of my PhD making my days in Londonsunnier than

they would otherwise be.

Lastly, I wish to thank my parents and my sister whose love andpatience carried

me through this work.

iii



iv



Abstract

The problem of autonomous navigation of a mobile device is atthe heart of the more

general issue of spatial awareness and is now a well-studiedproblem in the robotics

community. Following a plethora of approaches throughout the history of this research,

recently, implementations have been converging towards vision-based methods. While

the primary reason for this success is the enormous amount ofinformation content en-

crypted in images, this is also the main obstacle in achieving faster and better solutions.

The growing demand for high-performance systems able to runon affordable hard-

ware pushes algorithms to the limits, imposing the need for more effective approxima-

tions within the estimation process. The biggest challengelies in achieving a balance

between two competing goals: the optimisation of time complexity and the preserva-

tion of the desired precision levels. The key is inagile manipulation of data, which is

the main idea explored in this thesis.

Exploiting the power of probabilistic priors in sequentialtracking, we conduct a

theoretical investigation of theinformationencoded in measurements and estimates,

which provides a deep understanding of the map structure as perceived through the

camera lens. Employing Information Theoretic principles to guide the decisions made

throughout the estimation process we demonstrate how this methodology can boost

both the efficiency and consistency of algorithms. Focusingon the most challenging

processes in a state of the art system, we apply our Information Theoretic framework

to local motion estimation and maintenance of large probabilistic maps. Our investi-

gation gives rise to dynamic algorithms for quality map-partitioning and robust fea-

ture matching in the presence of significant ambiguity and variable camera dynamics.

The latter, is further explored to achieve scalable performance allowing dense feature

matching based on concrete probabilistic decisions.
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1
Introduction

Practical spatial awareness for autonomous robots and artificial systems is gradually

becoming a reality and forms the backbone of autonomous navigation. One of the

most important aspects of this is Simultaneous Localisation and Mapping (SLAM)

which addresses the following question:

How can a body navigate in a previously unknown environment while constantly

building and updating a map of its workspace using on-board sensors only?

The capability of images to supply a wealth of data, togetherwith the compactness and

affordability of cameras, have established vision as the dominant choice of sensing in

today’s systems. Despite the long literature of approachesto the problem of SLAM and

the plethora of implementations, robotic devices have not yet quite left the laboratory

to perform everyday tasks. The work in this thesis is about investigating how the

best of these methods work from a scientific perspective in order to understand how

we can deal with real world data in a manageable way. As a meansof exploring the

theoretical aspects of existing algorithms, we employ Information Theory to provide

an insight into the quality and efficiency of their performance with the prospect to

guiding research towards better, even optimal algorithms.

1



2 Introduction

1.1 The Progress and Vision of SLAM Research

Spatial awareness is a key requirement for autonomous robotics and a wealth of other

sensor-carrying systems. In particular, the ‘solution’ toSLAM can provide the ability

of self-controlled navigation attracting major research interest across the world. Real-

ising the inherent uncertainties in all sources of real-world data, it is now well accepted

across the robotics, vision and artificial intelligence communities that probabilistic in-

ference provides the best way to handle them, leading to the probabilistic formulations

of the navigation problem of SLAM.

Throughout the years, a diversity of implementations has emerged in the literature

triggered by the applicability of systems in both specialised sectors and everyday life.

Whether the question is navigation of an indoor domestic robot, an all-terrain mining

vehicle or an underwater exploring device, SLAM forms the core problem that has

to be solved. What differentiates implementations are the means employed to solve

this problem. The nature of the environment and the application requirements are

decisive factors in the choice of sensing modalities and process models to be used.

When highly accurate estimates are a prerequisite for example, laser range-finders can

be used, whereas if affordability is an issue then cameras are a better option. However,

the growing need for generally compatible solutions has letto the establishment of

cameras as the most popular sensor choice at present.

The unique ability of cameras to capture information-rich snapshots of a scene

provides the potential of quality of performance in systems, however it was not until

the advances in hardware that processing of visual data has become feasible. Sub-

stituting laser range-finders with camera rigs, the robotics research community has

started moving towards computer vision algorithms to solvethe estimation problem.

In an impressive breakthrough, it has been shown that even using a single hand-held,

monocular camera it is possible to estimate the trajectory followed in real-time. While

Structure From Motion (SFM) has been studied extensively inphotogrammetry, this

was the first time that the basic idea of estimating the scene from individual images

has been performed online. Monocular SLAM today has seen great improvement with

state of the art systems being able to map small-scale environments, however there is

still a lot to be done before truly robust and dynamic performance becomes reality.

The blend of robotics and vision algorithms through SLAM is only at the begin-

ning, revealing new research avenues towards general and advanced systems. The

prospect of importing amazing techniques from computer vision like dense match-

ing and scene reconstruction, can enrich the ‘perception’ of robots and give rise to

fascinating applications for embedded platforms. However, the employment of such

techniques and more generally the management of visual dataon top of maintaining a

probabilistic map, is still a computationally intensive task. With online performance
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comprising a requirement in most modern systems, great challenges are imposed from

the scientific perspective: while an accurate solution needs careful, extensive process-

ing of all the available data, this is not possible within a real-time framework, which

inevitably leads into a series of necessaryapproximations. Such approximations range

from the assumptions made on the robot motion, the scene structure, the underlying

probability distributions and the perception of the world as a set of small, measurable

entities called ‘features’.

In an attempt to cope with the rising demand for fast motion and bigger, denser

maps, modern SLAM systems often employ ad hoc approximations to the full prob-

lem. These are usually tailored to specific tasks, lacking both generality and theoretical

investigation. In fact, the performance of algorithms depends heavily on both the ex-

tend and quality of sparsifications, determining the speed,robustness and precision of

the implementation. As a result, the challenge we face at this point in the history of

SLAM, is to balance the benefits and losses involved in such approximations. Follow-

ing this rationale, here we use Information Theory as a natural extension to Probability

Theory which provides the ability to quantify uncertainty and information during the

estimation process. While there has been little investigation into the value of this ap-

proach in improving the performance of systems, it has a muchwider role of play

in general Bayesian inference problems. Applying Information Theory in this context,

we aim to explore our theoretical interest on understandinghow SLAM methods really

work which in turn can drive progress towards practical and advanced systems.

1.2 Aims and Goals of this Work

Across the span of existing implementations, the universalconcept of the underlying

‘solution’ of SLAM is to establish correspondences of feature measurements made

throughout the motion of the sensor-carrying body and use them to sequentially es-

timate the current pose. Normally, we identify features as salient aspects of the raw

sensor data and use them to serve as landmarks in the constantly expanding map which

is used to infer the relative trajectory of the moving body. The difficulty lies in uncer-

tainty inherent in the body’s interactions with the real world through noisy sensors and

actuators. Every state estimate and every sensor measurement is uncertain. Therefore,

managing computational complexity, preserving consistency in the map and coping

with online data rates are issues that the SLAM community hasbeen dealing with

since the emergence of this field.

Generally, SLAM systems have now reached considerable maturity, but the ex-

clusive use of visual data in this context is still in its infancy having great potential

for improvement. In this work, we tackle challenges faced invisual SLAM and more
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(a) MI graph (b) Robust matching (c) Underlying structure
Applying Information Theory to quantify uncertainty and information in SLAM. In this work
we apply Information Theoretic analysis on the probabilistic estimates we maintain in SLAM
and employ it to understand how algorithms work, guiding research towards more efficient and
robust algorithms. The figures above give a preview of what will follow, where (a) shows a
complete graph of Mutual Information links between features in measurement space, (b) shows
an example of search for matching consensus, while (c) depicts the underlying tree structure in
this distribution of features used to infer overall map structure.

specifically, we choose to conduct our investigations basedon a monocular SLAM sys-

tem as the most general and perhaps most difficult case under this category. However,

nothing about the ideas and algorithms developed in this thesis precludes their appli-

cation on more complex sensing arrangements. A freely moving, hand-waved camera,

while providing great versatility, makes the problem far less constrained as the inten-

tions of the carrier are hard to model. While powerful monocular implementations now

exist in the literature, the need for bigger and better solutions drives research towards

more effective but at the same time, quality approximations.

The richness of priors encoded in an image which is to be accredited for the suc-

cess of vision-based solutions to date, is twofold: while enough data is available to

infer the trajectory of the robot reliably with respect to the mapped environment, the

processing load involved in converting this data into ‘perception’ is often overwhelm-

ing imposing a bottleneck on online performance. The desireto build more accurate

maps under general tracking conditions pushes algorithms towards more conservative,

careful processing. On the other hand, the strong priors available in high frame rate

tracking can result to more accurate predictions in SLAM, therefore this drives inves-

tigation towards more efficient and faster algorithms able to run on such limited time

budget. On top of this, the need for larger and denser maps comes to add to the chal-

lenge of intelligent manipulation of the prior data available in visual SLAM. With this

in mind, this thesis aims to provide a comprehensive insightinto the value of priors

within the context of SLAM which will form the basis of the decisions we are making

when approximating the full problem to meet the demanding requirements in a modern

system.

Processing an extra piece of data is bound to refine our knowledge of the uncertain

state of the camera and the scene. To assess whether or not it is indeed worth making
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the effort to process it, one has to askhow much moreinformation is this data is

able provide. The answer is far from trivial as it is both relative to some frame of

reference and dynamic with respect to a variety of influential factors. As a means of

quantifying the amount of this information, we employ Information Theory to assign

a value on the additional knowledge that each new piece of data is predicted to give.

Through our investigation on the informational value of candidate measurements in

the context of SLAM, we aim to provide a general understanding of the relationships

between the members of the map and the camera state. The ultimate goal is to exploit

the knowledge about these correlations at runtime to deviseboth efficient and robust

approximations of the SLAM processes.

In order to exploit the probabilistic predictions we so carefully maintain in SLAM,

here we use Information Theoretic techniques to make decisions not about the optimal

motion strategy as done before, but to guidewhereto look for information andhow

to use it. Figure 1.2 gives small taster examples of the work presented in the rest of

this thesis. Tackling the main components comprising a modern visual SLAM system,

we apply an Information Theoretic methodology to both feature matching and map-

partitioning. Good local tracking is a vital asset in a high-performance system since

fusing erroneous estimates or missing matches for featuresthat have actually been

present can result to either inconsistencies in the map or tracking failure. While current

solutions perform successfully in the presence of identifiable and distinctive features,

here the focus is to explore the use of priors for efficient matching in the presence of

outliers and generally more challenging tracking conditions.

All visual SLAM systems depend greatly on the ability to repeatedly measure vi-

sual features from a wide range of viewpoints, therefore tracking more features per

frame is bound to provide more precise estimates about the camera motion. However,

more data translates into more processing which accentuates the need for effective ap-

proximations to the feature matching process. Studying thestructure of feature correla-

tions through an Information Theoretic perspective, we explore their power in driving

scalable matching, but also submapping which is now a heavily employed method for

approximating the structure of large maps.

1.3 Organisation

The following chapter (Chapter 2) provides a general background on the method-

ologies used to attack the problem of SLAM. Discussing seminal works following

the recognition that consistent probabilistic mapping wasa fundamental problem in

robotics, attention is quickly drawn to state of the art systems. The contributions of

this thesis are put into context following an analysis of thechallenges faced in modern
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visual SLAM systems.

Chapter 3 introduces the reader to the framework of Bayesianmonocular SLAM

employed in the system used to demonstrate the ideas and effectiveness of algorithms

presented in this thesis. This system has formed the basis ofresearch and experi-

mentation described in this work as a means of identifying and attacking the current

challenges faced in state of the art systems.

The core theoretical concepts used throughout the rest of the thesis are described

in Chapter 4. This chapter discusses the motivation behind the use of Information

Theoretic principles in SLAM, developing the basic ideas ofthis field within the visual

SLAM framework. Evaluating the knowledge encoded in the probabilistic predictions

we are able to make in sequential tracking, we give taster examples of the power of

Information Theoretic measures fully exploited in subsequent chapters.

Chapter 5 discusses the evolution of a fully Bayesian algorithm for frame-to-frame

matching, which we call Active Matching. Driving decisionsbased on Shannon Infor-

mation Theory while searching for global consensus, the algorithm achieves efficient

and robust matching throughout a frame maintaining the multiple hypotheses natu-

rally arising in real tracking scenarios. The capacity of this methodology is pushed

to the limits exploring its strengths and weaknesses through an extensive performance

analysis.

Chapter 6 tackles the issue of constantly expanding SLAM maps which imposes

computation and consistency limitations on SLAM systems aiming for large maps ei-

ther due to denser representations of the environment or to extended areas of tracking.

Manipulating the correlations progressively built withinthe tracking filter, we illustrate

how Information Theoretic principles can be employed to guide effective partitioning

into submaps achieving quality approximations to the full SLAM map.

Building on the experience of previous chapters in manipulating information

within SLAM, Chapter 7 tackles the problem of increasing complexity in dense feature

matching. The biggest challenge in such scenarios is to contain processing within the

real-time allowance. Dense matching strategies are therefore tailored to optimise for

processing time ignoring part of the available information, in essence trading accuracy

with speed. Aiming to bring the robustness of fully probabilistic techniques towards

the same performance standards as randomised strategies, this chapter describes how

Active Matching can be used as a prototype on top of which approximations are made

based on an Information Theoretic analysis. The CLAM algorithm emerging from

this research achieves online, dense matching through a series of probabilistic and

information-guided decisions.

Finally, Chapter 8 closes this thesis summarising the achievements of the work

presented and giving future work directions.
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1.4 Publications

The biggest part of the work presented in this thesis has beenpeer-reviewed and pre-

sented in conferences. The journal and conference publications emerged from this

research are listed below.

Chli and Davison [2008a]: Active Matching. InProceedings of the10th European

Conference on Computer Vision (ECCV), Marseille, France, October 2008.

Chli and Davison [2008b]: Efficient Data Association in Images using Active Match-

ing. In theworkshop ‘Inside Data Association’ of Robotics: Science and Systems

(RSS), Zurich, Switzerland, June 2008.

Chli and Davison [2009a]: Automatically and Efficiently Inferring the Hierarchical

Structure of Visual Maps. InProceedings of the IEEE International Conference on

Robotics and Automation (ICRA), Kobe, Japan, May 2009.

Chli and Davison [2009b]: Active Matching for Visual Tracking. InSpecial Issue on

‘Inside Data Association’ of Robotics and Autonomous Systems, 2009.
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2
Related Work

This chapter intends to provide the reader with a panorama ofthe state of the art ap-

proaches to the problem of SLAM with particular focus on the challenging case of

tracking with a single, freely moving camera. The contributions of this thesis are

put into context via a discussion of the individual components comprising a modern,

high-performance system as they have been developed following a series of historic

advances throughout the years. Giving a background of both established and more

recent methodologies we discuss their relative strengths and weaknesses, identifying

the questions still open in this area.

2.1 Simultaneous Localisation And Mapping

The process of building a map of the surroundings of a mobile robot while estimating

its relative pose solely on the basis of feeds coming from on-board sensors, is what

we refer to as the Simultaneous Localisation And Mapping (SLAM) problem. While

initial attempts to solve this problem date back more than 20years, this area has been

highly active since. Recent advances focusing on efficient implementations are able

to exhibit real-time performance while demonstrating robustness and maintaining the

9



10 Related Work

Figure 2.1: Formulation of the SLAM problem as a graph. The features in the worldy are
observed using the on-board sensor(s) via measurementsz made from the corresponding pose
x while the robot is moving. In some implementations the odometry inputu which controls the
robot movement is also available and taken into account. In monocular SLAM the on-board
sensor is a single, hand-held camera which implies there is no odometry information. A motion
model is used instead to predict camera motion and the observations of landmarks comprise
of image patches, as observed from each camera viewpoint. Different approaches to SLAM
attempt to optimise this graph by satisfying as many constraints between nodes as possible,
often making approximations to meet real-time limits.

consistency of the map constructed.

Despite the long history of research in this field, we have only recently gained a

new, general understanding of the nature of the problem. A graphical representation

of SLAM as a Bayesian network is depicted in Figure 2.1, capturing the conditional

dependencies formed between features of the world as perceived from different poses

of the robot. It is now understood that via a full, global optimisation of this graph

the best solution to SLAM can be achieved such that the consistency of the depen-

dency constraints is maximised between the robot trajectory and the map built. This

batch procedure of brute-force optimisation is often referred to asbundle adjustment

in the visual SLAM literature, adopted from the field of photogrammetry where this

technique has a long history.

The work by Thrun and Montemerlo [2006] is an example of a standard graphi-

cal formulation approach to the problem of SLAM, hence they name their algorithm

GraphSLAM. Inspired by the work on globally consistent alignment of laser range

scans of Lu and Milios [1997], they translate the data dependencies into a graph of

nonlinear quadratic constraints. Following a nonlinear least-squares optimisation, they

can resolve these constraints into a maximum likelihood mapof landmarks and corre-

sponding robot poses.

Performing bundle adjustment over the whole graph of poses and all the features

ever measured is a computation-hungry process which grows constantly as more data

is collected. As a result a full, batch optimisation can onlybe sustained online for small

data sets so such methods are usually restricted to offline implementations. However,
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(a) MRF: eliminating observations

Approximations for online performance:

(b) Filtering approach (c) Key-frames approach

Figure 2.2: The best solution to SLAM is a full graph optimisation (bundle adjustment)
of the Markov Random Field formulation depicted in (a) whicharises from elimination of
the observation nodes. The constantly expanding set of landmarks and poses incorporated in
the graph and the costly processing of full optimisation render online performance infeasible,
highlighting the need for sparsification techniques. The two most successful approaches for
real-time performance are: the traditional filtering approach in (b) where the state of the map
is summarised in a state vector and associated covariance with respect to the last pose, and
the ‘key-frames’ methodology which chooses to retain the most representative poses along
with their dependency links subject to optimisation, whileignoring all other measurements
and poses.

if the goal is real-time localisation and mapping, often a requirement in modern sys-

tems, sparsifications and approximations to the full graph formulation of SLAM are

necessary. The goal is then to estimate the current momentary pose of the robot, while

a map of the environment is built incrementally. Several implementations approach

real-time performance from different perspectives, but the main two axes spanning the

spectrum of SLAM algorithms are thefiltering andkey-framesapproaches.

2.1.1 Filtering vs. Keyframes for Real-Time Performance

Figure 2.2 shows a graphical representation of the two main sparsification methodolo-

gies used in online systems with respect to the Markov RandomField (MRF) graph

of the SLAM problem. This is equivalent to the moralised graph of the full SLAM

problem illustrated in Figure 2.1 with implicit representation of the feature measure-

ments. It has been realised that for online, sequential positioning and mapping it is

necessary to make approximations to cut down processing costs. The quality of these

approximations determines the closeness of the approach tothe global solution.

While bundle adjustment seeks to fulfil the majority of the constraints imposed

between robot poses and features in the world as depicted in Figure 2.2(a), a filtering

approach reduces this graph by summarising past experiencein a state representation

of a vector with an associated probability distribution with respect to the last estimated
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robot pose. Marginalising out past camera poses in the MRF inducescorrelation links

between the features in the 3D map which will be the key subject of analysis through-

out the rest of this thesis, leading to a broad understandingof the scene and hence the

design of efficient and robust algorithms.

From a totally different point of view, a key-frames approach does retain past robot

poses and their constraints with the world, however it instead chooses to sparsify the

problem by ‘forgetting’ intermediate poses together with their landmark dependency

links. The idea here is to preserve the most representative poses along the trajectory

and subject these to repeated global optimisation, simultaneously refining the scene

geometry encoded in the landmark position estimates with respect to the motion of the

robot. As this is basically a sparsified bundle adjustment approach it benefits from the

closeness it provides to the full graph optimisation, however both quality and speed

depend heavily on the approximation made. Maintaining fewer nodes in the optimi-

sation or restricting optimisation within a sliding windowof poses are both popular

approaches used to improve the time complexity of this method.

2.1.2 Components of a Modern High-Performance System

Irrespective of the sparsification methodology chosen or the application targeted, it

has now become apparent that a SLAM system aiming for online and robust perfor-

mance needs to be equipped with a standard set of components as presented visually

in Figure 2.3. Namely, these are:

• Good local estimate of metric motion. Robust and accurate frame to frame

motion estimation is essential in any modern system and consists of obtaining

persistent correspondences and resolving mismatches. This is a whole research

area on its own since the types of features suitable for tracking vary greatly de-

pending on the sensors on board and the type of environment weare expecting to

track. Data association between features in the map and acquired observations to

resolve the matching consensus is key to robust performancesince mismatches

are inevitable when tracking with real data. Apart from providing robustness,

this component should also be optimised for efficiency sinceit comprises a pro-

cess performed on a per frame basis, therefore fast operation is a requirement.

• Mapping and loop closure detection.The data gathered is constantly expand-

ing as the robot explores new areas. As a result, it is important to have an

efficient way of representing this data in the map. Systems tackling large-scale

tracking in particular need to sparsify into efficient data representations which

allow both fast and sufficiently accurate propagation of information. In long

exploration periods however, the drift due to the composition of errors in the
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(a) Robust local motion estimation

(b) Mapping and loop-closure detection (c) Global optimisation

Figure 2.3: A modern, high-performanceSLAM system ought to have (a) robust local motion
estimation of metric motion, (b) a way of mapping the scene with respect to the estimated
trajectory and a loop-closure detection module, and finally(c) once such a loop-closure is
detected, then full, global optimisation of the robot trajectory and the map constructed should
follow.

Images used for this figure have been taken from Google StreetView and Bing

robot and map estimates is another limiting factor. So it is usually the case that

upon traversal of long loops geometry is no longer reliable enough to recognise

places the robot has visited before. As a result, modern methods also use purely

appearance-based methods to detect suchloop closures.

• Map management and optimisation.Upon the detection of loop closures, new

dependencies are introduced into the map of poses and landmarks. Therefore,

optimisation is necessary then to reach a globally consistent map from both local

metric and global topological constraints.

The SLAM literature has seen a variety of implementations using different sensor

types selected to suit the targeted application. Localisation and mapping underwater

for example, requires special attention to the tracking conditions and types of features
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expected to track; Williams and Mahon [2004] use acoustic and visual sensors while

Ribas et al. [2008] use solely sonar sensing arguing that theuse of vision is reliable

in clear waters and very close to the sea bed restricting the performance of robot nav-

igation. Sensor fusion has been a popular choice for complexenvironments with the

aim of exploiting the benefits of different sensing modalities. Combining GPS feeds

with inertial sensing Kim et al. [2003] perform airborne navigation using Unmanned

Air Vehicles (UAVs), whereas later on Kim and Sukkarieh [2007] instead incorporate

data coming from a single monochrome camera and an inertial measurement unit. The

precision of acceleration and rotation rate estimates promised by inertial sensing to-

gether with the high update rates it provides make it an attractive solution for such

specialised environments. However the drift accumulated in the estimated inertial po-

sition is inevitable (drift rate scales cubicly with time according to Kim and Sukkarieh

[2007]) which imposes the need for supplementary information like visual data. In-

evitably though, when fusing data from different sensors even if they are of the same

type, adds the hassle of data registration which if not handled carefully can lead to fatal

inconsistencies in the acquired map.

Laser range-finders have also received major research interest from early on due

to their ability to provide accurate depth estimates and form dense point clouds resem-

bling the scene structure. Weingarten and Siegwart [2005] use laser data to achieve

scene reconstruction while Bosse and Roberts [2007] perform laser-only SLAM to

tackle the lack of robustness of systems in large unstructured environments. While

laser sensing can provide high precision and dense correspondences, the inherent de-

scriptiveness of data is very poor as is the case with all types of range sensing. As a

result, it has been realised that using appearance information in scenarios with limited

priors can provide the extra input that the system needs to resolve tracking, leading to

the use of image-based loop-closure techniques even in laser-based tracking systems

(e.g. [Newman et al., 2006]).

Despite the variety of sensing modalities and their combinations used in SLAM

implementations appearing in the literature, for a number of years now there has been

a significant trend towards vision-based approaches. Of course the choice of sensors

is a question of the type of task at hand, however the need for generally applicable

solutions drives research towards widely compatible implementations. Cameras can

promise compactness, affordability and descriptiveness which jointly satisfy more re-

quirements than any other type of sensor. In fact, many stateof the art systems now use

cameras as their primary sensor. Perceiving the world through a camera lens can be

less accurate than laser range sensing, however the richness of information encoded in

visual data has been proved enough to recover reliable estimates of camera motion and

scene structure. On the other hand, the load of priors encrypted in an image imposes
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the challenge of efficient processing to achieve online performance.

2.2 State Of The Art Vision-Based SLAM

At this point in the history of SLAM one can say that implementations have reached

considerable maturity. However, the use of visual data as the primary source of infor-

mation in a SLAM system has not had the time yet to converge to generally efficient

and robust solutions, leaving much room for experimentation and improvement. The

wide compatibility of vision-based implementations has opened up new application

areas sparking growing research interest across the robotics and computer vision com-

munities. As mentioned earlier, the high bandwidth of information provided in visual

data requires careful manipulation therefore importing methodologies from computer

vision and photogrammetry has been essential for successful systems. This section

aims to give a brief review of modern, high-performance, vision-based systems cur-

rently considered as state of the art in this area. The skeleton of the discussion is

formed around the key components comprising such a system asdetailed in the previ-

ous section.

As a good example of a modern visual SLAM system, the work of Konolige

and Agrawal [2008] dubbed ‘FrameSLAM’ is used here as a basisfor describing the

wider literature. In FrameSLAM the authors perform visual SLAM using a stereo rig

mounted on a wheeled robot. Their results demonstrate impressive tracking perfor-

mance over long trajectories (∼10Km) under very challenging conditions like travers-

ing rough terrain in urban environments. The FrameSLAM system and the work of

Mei et al. [2009] which are discussed below, comprise the most powerful robot-based

SLAM systems using stereo vision at present.

2.2.1 Map Representation

Konolige and Agrawal [2008] form a ‘skeleton’ map representation which comprises

of a graph of nonlinear constraints between selected, captured framesinstead of the

individual 3D positions of world features (hence the name ofthe algorithm). They

essentially use a sparsified variant of the classic pose graph optimisation approach to

solving SLAM. A pose graph consists of nodes representing robot poses or frames in

this example, interconnected with edges describing a cost-function relationship which

is defined in terms of the desired node configuration. The optimisation process there-

fore involves computation of the nodes’ position such that the goal of this cost-function

is achieved; that is the maximum likelihood (ML) map.

In this map representation they only keep relative pose information between the

frames. Depending on the trajectory of the robot, they adaptthis representation ac-
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cordingly by explicitly selecting the frames to participate in the graph optimisation.

With this sparsification formulation, they enforce the use of constant amount of space

for a particular area so loopy browsing of the same area does not cause an inflated map.

However, as with every approximation the quality of performance depends heavily on

how close this sparsification is to the full problem.

2.2.2 Local Motion Estimation

Moving on rough terrain means that the feature tracks in images are highly jerky, as

is the case with any scenario of high camera dynamics. In order to be able to track

this motion, Konolige and Agrawal extract hundreds of features per pose so that there

are statistically enough inliers to be able to resolve consensus later. The local motion

estimation is acquired incrementally using the online visual odometry system for stereo

images as presented in [Konolige et al., 2007].

Visual Odometryis the term used to refer to the process of estimating the position

and orientation of a robot by analysing images taken from consecutive poses. This

either means constructing a pixelwise optical flow field or matching image projections

of features from one image to the next. Feature matching is a more popular approach

in the robotics community, while optical flow works have beenheavily explored in the

vision literature. However, the latter has also been applied in robotics. The seminal

work of Lucas and Kanade [1981] who assumed constant flow in local pixel neigh-

bourhoods, has been applied by Campbell et al. [2004] for visual odometry estimation

for robot exploration on different types of terrain. Notable is the work of Comport

et al. [2007] who use all grey-scale information available in a stereo-pair to achieve

very low drift in trajectory estimation over hundreds of meters. In the meantime, the

sparser nature of correspondence-based visual odometry has led to more successful

performance in terms of achieving a better balance between algorithmic accuracy and

efficiency, allowing real-time operation on general hardware platforms.

Scaramuzza and Siegwart [2008] describe a system which performs visual odom-

etry on images from an omni-directional camera mounted on top of a car. Their

real-time ego-motion estimation system uses a fusion of both optical flow and feature

matching approaches in an attempt to combine their strengths. The authors use SIFT

features [Lowe, 2004], well-known for their capacity in descriptivess and robustness,

to establish image correspondences. They then estimate thehomography from one im-

age to the next, imposing the assumption of planar motion of the camera. Examining

the column shift between two consecutive unwarped frames they seed the rotational

estimate between poses into the optimisation procedure forlocal motion estimation.

Konolige et al. [2007] use CenSurE (Centre Surround Extrema) features [Agrawal

et al., 2008] which tend to pick out regions of either dark pixels surrounded by lighter
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ones or vice versa. The information captured in the descriptor and the matching robust-

ness they exhibit seems comparable to that of SIFT, while thecomputation process ex-

ploits the cost-effective properties of integral images and Haar wavelets [Lienhart and

Maydt, 2002] which makes them a more attractive choice for use in real-time appli-

cations. In FrameSLAM, correspondences are obtained between the left and the right

stereo images at a certain pose which are then matched to features obtained in the left

image of the previous frame. A consensus estimate is formed using three-point pose

RANSAC [Fischler and Bolles, 1981]. Since the arrangement here consists of cali-

brated stereo cameras, three points are enough to pin down the relative poses between

frames [Hartley and Zisserman, 2004]. However, single camera implementations re-

quire a minimum of five points for visual odometry as implemented by Nistér et al.

[2004]. Acquiring different pose estimates, the RANSAC hypothesis generated get

scored based on the reprojection error of the rest of the features. Finally, a nonlinear

least squares optimisation is performed to polish the relative pose estimates. While

this procedure is used to resolve data association for localmotion estimation, it is also

applied to wide-baseline matching in FrameSLAM.

The recent work of Mei et al. [2009] tackles explicitly the problem of precise local

mapping for stereo using the relative graph representationof Sibley et al. [2009], which

together the two works form perhaps the most significant competitor of FrameSLAM.

Rectifying and normalising intensities of both images at a new frame, they then extract

SIFT descriptors centred on FAST corners [Rosten and Drummond, 2005] detected at

different pyramid levels. Aiming to avoid the common failure mode of large inter-

frame rotation they use the method of Mei et al. [2008] to estimate the 3D rotation

of ego-motion so that temporal correspondences can be easily identified. Projecting

fixed-size search windows for expected landmarks on both images they then establish

correspondences which are cleaned from outliers using RANSAC techniques.

2.2.3 Loop-Closures: Detection and Enforcement

In FrameSLAM, the method the authors use for place recognition is fairly simple and

relies on a good initial pose estimate; the search for a possible loop-closure is restricted

within the vicinity of the hypothesised pose. Over large loops this means that this

method becomes linear in the size of the area searched (as theskeleton grows linearly

with the area explored).

The literature has seen more sophisticated methods for loop-closure detection able

to exhibit robust and relatively fast performance even for the ‘kidnapped’ robot prob-

lem which is essentially the case of a complete loss of position/orientation estimate of

the robot with respect to its environment. Inspired by the bag of words approach in

Video Google [Sivic and Zisserman, 2003], Cummins and Newman [2007, 2008] and
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more recently Cummins and Newman [2009] presented an onlinerecognition detec-

tion over large data sets demonstrating impressively low false positive rates. Building

on conclusions from the earlier work of Newman et al. [2006] on appearance-based

detection of loop closures, rather than examining similarity of observations Cummins

and Newman assessed the probability that these come from thesame place. Overcom-

ing the need for offline training to obtain a visual words dictionary, Angeli et al. [2008]

proposed a method for online recovery of candidate place matches with an associated

probability of the occurrence of a loop-closure.

Upon detection of a loop closure in [Konolige and Agrawal, 2008], a nonlinear

optimisation takes place so that the two ends of the loop meet, propagating corrections

throughout the whole graph. The optimal solution is the graph which minimises the

reprojection error of the positions of landmarks in the images obtained at all different

poses. The nonlinear nature of constraints in the graph makes convergence less trivial

and more time consuming since the cost-function surface contains local troughs and

peaks. This graph optimisation is usually performed using standard techniques like the

Levenberg-Marquardt method or gradient descent and conjugate gradient.

Olson et al. [2006] also follow a pose graph representation and use stochastic gra-

dient descent to optimise this, aiming to find the equilibrium state iteratively such

that any antagonistic constraints are in balance. Their method solves the optimisation

problem incrementally, limiting the fluctuations of nodes via a learning rate which

gradually pushes the graph towards the optimal solution. The system of Konolige and

Agrawal [2008] also provides an incremental solution usingpreconditioned conjugate

gradient. In general, conjugate gradient methods are knownto perform better than

gradient descent alternatives, since they accumulate information on the optimisation

direction from one iteration to the next, facilitating faster convergence to the optimum.

While Konolige and Agrawal [2008] adopt a generally relative representation of

constraints between poses, the poses themselves and the cost function are defined with

respect to a single Euclidean frame. In general, representations defined in a single co-

ordinate frame can potentially suffer a great computational bottleneck particularly in

the case of large loop closures since during optimisation the entire loop has to be vis-

ited in order to correct global errors. Instead, Sibley et al. [2009] propose an adaptive,

fully relative representation which they argue is key for constant time bundle adjust-

ment. Their method not only solves for an optimal trajectoryestimate from a pose

graph but they attempt to solve the full SLAM problem taking account for the land-

marks structure in the optimisation. Expressing the whole graph in a relative manner

means that loop-closure can be enforced using a small, localsubset of the graph. Re-

sembling what they call a ‘continuous submapping’ approachthey perform a breadth-

first search from the last pose to nominate nodes to enter an ‘active region’ subject to
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adjustment later. Such nodes are selected according to a threshold on their reprojection

error. In theory, their method guarantees arbitrarily large graph optimisation in con-

stant time. In practice, they demonstrate achievement of a full maximum likelihood

solution using stereo-image data in constant time, for moremodest trajectory lengths

(around 1 km).

2.3 Monocular SLAM With An Unconstrained, Perspective

Camera

While an omni-directional camera or a stereo arrangement provides more information

than a single perspective camera, the low cost, compact and self-contained nature of

the latter makes it an appealing choice for a much wider rangeof applications. The

complete freedom that a monocular SLAM system allows is whatattracts both research

and industrial interest. Overcoming the need for precise calibration of a rig of cameras

and careful positioning of an omni-directional camera while allowing unconstrained

dynamics means that it is no longer necessary to have a robotic platform to support

any arrangement restrictions.

Assuming nothing but a freely moving camera in an unknown environment comes

with obvious advantages while introducing several hurdlesto overcome in a SLAM

system. This section intends to provide the reader with an insight into state of the art

monocular SLAM systems, tracing recent advances through time.

2.3.1 From SFM to SLAM

The estimation of camera motion from a set of images is a problem studied in depth

in the vision literature, well before the appearance of SLAM. Structure from Motion

(SFM) is a well-studied problem in the fields of photogrammetry and computer vision

aiming for fully automated 3D scene reconstruction from a small collection of images,

leading to the development of projective geometry and batchoptimisation techniques.

SLAM on the other hand, is a problem faced comparatively recently in the mobile

robotics community, essentially addressing the hard real-time mapping and navigation

problem. The main difference and the real challenge is that in SLAM we are inter-

ested in the ‘sequential’, interactive estimation of structure and motion as mentioned

in [Davison and Kita, 2000] rather than post-processing of the data gathered to come

to a globally consistent solution. Bridging the gap betweenthe two fields, monocu-

lar SLAM comes to bring SFM techniques to the same basis of applications allowing

similar, online performance.

According to Hartley and Zisserman [2004] who provide an excellent analysis

of SFM techniques, the reconstruction problem from an imagesequence is typically
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Figure 2.4: Structure from motion (SFM) is a problem studied in photogrammetry and
computer vision. Given a collection of unordered images of ascene, the goal is to re-
construct the 3D geometry of both the scene and the trajectory followed by the camera.
Standard procedure is to extract interest points from the input images, establish correspon-
dences and perform bundle adjustment optimisation to recover optimal shape and movement.

Images for this figure have been taken from Google Street View, Panoramio and Google 3D Warehouse

tackled in three stages: (a) establishment of feature correspondences throughout the

sequence, (b) computation of an initial reconstruction estimate and finally (c) bundle

adjustment using the result of (b) as a seed. In order to recover 3D scene structure from

2D geometry, researchers have made several simplifying assumptions constraining the

motion of the camera and the scene structure; a key assumption still made by modern

systems is that of scene rigidity.

In the seminal work of Tomasi and Kanade [1992] feature tracks are extracted and

batch processed in parallel. The reconstruction problem isformulated into a single

measurement matrix which is factorised using singular value decomposition separat-

ing the effects of the camera motion from the scene structure. This Tomasi-Kanade

factorisation is based on a framework only valid for orthographic projection cameras

and relies on the assumption that all features are visible inevery single frame through-

out the sequence. However restrictive, this approach has been the basis of many SFM

systems since. Overcoming partly the motion restrictions of orthographic projection

cameras, Poelman and Kanade [1993] extended this methodology to the paraperspec-

tive case which is a closer approximation to perspective cameras. Szeliski and Kang

[1993] generalised to simultaneous recovery of motion and shape from image sets

acquired using a perspective projection camera. Followinga nonlinear least squares

formulation inspired by the work on two-dimensional SFM of Taylor et al. [1991], they

recover 3D structure using Levenberg-Marquadt optimisation. The work of Fitzgibbon

and Zisserman [1998] is now considered a typical approach toSFM building local es-

timates from 2-view or 3-view geometry which are then used asa starting point in the

optimisation stage of bundle adjustment.

While most of the aforementioned systems require that the internal calibration

parameters of the camera are known, Faugeras [1992] pioneered auto-calibration tech-

niques using a SFM framework, recovering both external (e.g. position, rotation) and
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internal (e.g. focal length, principal point, skew) cameraparameters. However, deter-

mining the absolute scale of the scene or movement without additional external infor-

mation is impossible; unless there is an absolute distance measure input into the sys-

tem, only relative scale is recovered. Since then, researchers have tackled this problem

assuming partial knowledge about the calibration parameters. Pollefeys et al. [1998]

presented a self-calibration method applicable to cases with a variety of such assump-

tions, allowing flexibility and versatility in metric reconstruction scenarios. Azarbaye-

jani and Pentland [1995] were the first to use the Extended Kalman Filter to estimate

sequentially the focal length. Very recently, Civera et al.[2009a] presented a SLAM-

based approach for online auto-calibration using a Sum of Gaussians filter [Alspach

and Sorenson, 1972] to cover the multiple hypotheses arising due to the large nonlin-

earities in the optimisation of parameters.

The need for online solutions to the SFM problem has arisen since researchers

realised their use in robot navigation and the flexibility this provides in several appli-

cations like 3D modelling. As the robot is moving from one pose to the next it needs to

recover any scene or position estimates during this short period of time to feed back to

the controller (this could be the human administrator in thecase of guided navigation

or a module in the system itself, responsible for autonomousnavigation). In order to

allow constant-time updates of the robot and scene state after every frame irrespective

of the length of the trajectory traversed it has been realised that a constant-size state

representation is crucial, leading to the use of filtering techniques to represent the robot

state at every instant.

The early work of Harris [1992] used a separate Kalman Filterfor every landmark

obtained in the image sequence maintaining track of their 3Dpositions and associated

uncertainties in the estimates. Broida et al. [1990] used the Extended Kalman Filter

(EKF) to estimate the structure and motion of a rigid object which is a simple exten-

sion to Kalman Filtering providing the ability to cope with nonlinear state estimation,

as the latter linearises about the current mean and covariance. Broida et al. [1990]

used the EKF in an iterative way such that recursive estimation is performed on every

update to reach convergence. Avoiding the introduction of initialisation errors upon

the incorporation of new features in the system, Chiuso et al. [2002] used a separate

filter to initialise each feature which under successful tracking over some probationary

period gets fused into the main EKF. As this section will discuss later on, the EKF still

comprises a key ingredient of some modern SLAM approaches, used as a sequential

approximation to bundle adjustment to build a persistent, probabilistic representation

of the state parameters.

Besides applications in auto-calibration and robot navigation, SFM techniques

have expanded towards image mosaicing. The work of Szeliskiand Shum [1997]
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(a) View A (b) View B

Figure 2.5: A state of the art SFM system: PhotosynthTM [Microsoft c©, 2008]. Here are two
snapshots taken while browsing the constructed mosaic of Hagia Sophia in Istanbul, Turkey.
Aligned images are projected together with a point cloud to give the impression of the 3D
structure even for parts of the building that have not been captured from the current viewpoint.
The colour of the points is sampled from relevant views of theimage database.

is a representative example where full image panoramas are constructed by aligning

and stitching images together to form a large composite image, manually detecting

loop-closures. Capel and Zisserman [1998] have employed RANSAC to reject outlier

correspondences and achieved super-resolution mosaics following bundle adjustment

optimisation, while Brown and Lowe [2003] have used SIFT [Lowe, 2004] features

to tackle the problem of robust correspondences in the case of wide-baseline images.

The most recent work of Civera et al. [2009b] promises drift-free, real-time mosaic

building from a live camera.

Current state of the art SFM systems aim to generate a dense reconstruction of a

scene or an object approaching the problem from a variety of perspectives. Vogiatzis

et al. [2007] for example, tackle dense recovery of an object’s 3D geometry by la-

belling regions as “object” or “empty” followed by a graph-cuts optimisation. The

method of Habbecke and Kobbelt [2007] produces impressive 3D object models ap-

proximating the surfaces with sets of small discoidal tileswhich are independently

fitted and progressively expanded to imitate the true structure. In a far more costly set-

up, Pollefeys et al. [2008] achieve real-time 3D reconstruction of urban scenes, fus-

ing GPS measurements with inertial and visual sensing processed on advanced hard-

ware. Probably the most representative modern SFM system isthe publicly available

PhotosynthTM [Microsoft c©, 2008] software application. Based on the earlier published

work of Snavely et al. [2006] dubbed “Photo Tourism”, it allows users to upload im-

ages and generate their own “photo-synths”, forming point clouds from images rather

than dense models. Figure 2.5 shows snapshots from a ‘photosynth’ of Hagia Sophia

in Istanbul demonstrating the image mosaic corresponding to the current viewpoint.

The visible parts of the building which do not correspond to an image in the database
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taken from the particular viewpoint are projected as three-dimensional point clouds

replicating the structure of the walls.

While structure from motion and vision-based SLAM for mobile robots are gen-

erally two views of a similar problem, at this point in the history of both fields, works

have substantial overlap in terms of the goals they target and this is mostly evident in

monocular SLAM systems. Using the trivial and low cost setupof a single camera in

SLAM can bring the best of technologies from both fields together upon the achieve-

ment of persistent, reliable and dense maps as a frame of reference for localisation.

The rest of this section is dedicated to review the most advanced single camera SLAM

systems at present, using the work in Eade [2008] as a basis ofdiscussion.

2.3.2 State Of The Art in Monocular SLAM

Real-time solutions to SLAM using a single camera in the absence of any odometry

information have only recently appeared in the literature.Eliminating the need for

careful positioning, data fusion and the induced noise of these processes in a more

complex sensing arrangement, monocular systems can provide great flexibility which

is otherwise far more restricted. Their usability and scalability have been the driv-

ing force of research into this domain, leading to successful applications in wearable

computing [Davison et al., 2003; Castle et al., 2007], human-computer interfaces with

augmented reality for various applications like gaming [Klein and Murray, 2007] or

interactive model building [Bunnun and Mayol, 2008].

The most successful, high-performance implementations ofmonocular SLAM are

the three recent works of Eade [2008], Davison et al. [2007] and Klein and Murray

[2007]. This review provides a discussion of these systems breaking them down in

terms of their fundamental components as defined earlier in subsection 2.1.2. Since

the work of Eade [2008] embodies the complete set of these elements, it is hereby

used as a frame of reference and discussion.

State Representation and Maintenance

Davison [2003] was the first to present a real-time monocularsystem named

MonoSLAM, designed to track the position of an uncontrolled, hand-held camera cap-

turing frames at rates of 30Hz and processing pose and landmark estimates on a typical

laptop. A refined version of this system appears in Davison etal. [2007] which com-

prises the platform used to demonstrate the algorithms developed in this thesis. The

authors stack all camera parameters and landmark estimatesin a state vector main-

tained with an associated covariance, together comprisingthe probabilistic 3D map.

This EKF-based approach propagates updates on every frame and achieves successful

drift-free tracking for small, room-sized environments.
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The idea of a stochastic map dates back to the seminal work of Smith et al.

[1988b,a] where they proposed a probabilistic framework todescribe uncertainty in

geometric relationships and parametrisations. Representing these in a probability dis-

tribution with a state mean and covariance which can be builtincrementally led to

the conception of the stochastic map. Moutarlier and Chatila [1989] were the first to

implement the idea of a stochastic map, using the EKF for sequential maintenance of

their state consisting of the vehicle and landmark parameters obeying a motion model

and an observation model, respectively. The EKF, which has been the most popular

choice of SLAM systems to date, linearises these models representing all distributions

by Gaussians.

In an attempt to increase the number of landmarks maintainedin the map, Eade

and Drummond [2006b] employ a particle filtering approach toSLAM inspired by the

FastSLAM method of Montemerlo et al. [2003]. Representing the state estimate by a

particle cloud, each particle represents a camera pose and map hypothesis. Following

the application of a linear dynamic model with process noise, the camera pose distri-

bution is modified to predict the new pose at the beginning of each frame and yields a

Gaussian distribution for each particle. Incorporating landmark observations the pos-

terior distribution is computed and new sample poses are drawn. In essence, at the end

of every frame the distribution is represented by pose samples with associated indepen-

dent Gaussian feature estimates. Their method is able to exhibit successful real-time

operation tracking 20-30 landmarks per frame which is comparable MonoSLAM’s ca-

pability but as demonstrated in [Eade, 2008] with syntheticsequences, this method

is potentially capable of maintaining denser maps of the order of a thousand features

online.

It was soon realised that approximating the nonlinear nature of the estimation pro-

cess in SLAM by linear models can cause inconsistencies in both EKF [Bailey et al.,

2006a] and FastSLAM-based [Bailey et al., 2006b] approaches. On this ground and

driven by the strengths and weaknesses of the aforementioned works on monocular

SLAM, Eade and Drummond [2007] introduced a graph-based system dubbed Graph-

SLAM (not to be confused with the GraphSLAM method of Thrun and Montemerlo

[2006] mentioned in section 2.1) in which landmark estimates are ‘coalesced’ into

graph-nodes maintaining the transformation links betweenthese nodes as determined

by any shared entries. Figure 2.6 can provide a more intuitive understanding of the

different state representations used in current state of the art systems. Observations

obtained in a particular frame do not generate a full update for the whole graph, in-

stead only theactivenode is updated, selected so that the observation model is nearly

linear, thus boosting consistency in the map. This framework permits the absence of

a global coordinate frame which is crucial to the cheap, local update of the graph. In
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(a) Coalesced-observations graph
Image (a) is based on an illustration from [Eade and Drummond, 2007]

(b) Stochastic map (c) Map of keyframes
Both (b) and (c) are taken from Klein and Murray [2007] only enhanced and labelled for clarity.

Figure 2.6: The state representations in the three most successful monocular SLAM sys-
tems. The diagram in (a) depicts the graph-based state representation of Eade and Drummond
[2007] which groups observations into nodes, each having a local coordinate frame. In (b) is
a stochastic map as used in the full EKF maintained in the system of Davison et al. [2007]
summarising all information with respect to the last camerapose. Tracking the same scene
using the keyframe approach of Klein and Murray [2007] instead, the map obtained is depicted
in (c).

essence, with their representation the authors manage to avoid Davison’s large filter

which contains all the features and is destined to grow beyond online processing when

mapping larger environments.

While all the above works employ incremental mapping from a filtering perspec-

tive, Klein and Murray [2007] present a very powerful monocular system using a

keyframes approach in which the processes of tracking and mapping are run in separate

but parallel threads. Forgetting intermediate keyframes can have a negligible effect in

accuracy but a large impact on the computational efficiency.This is especially the case

when the camera is stationary where consecutive frames contain redundant informa-

tion but on the same basis, accuracy can be compromised at high accelerations. On the

other hand, a decisive point in making the keyframe methodology so powerful is that

it allows a lot more features in the system (associated locally to keyframes) provid-

ing evidence for potentially achieving better precision. In fact, this approach reveals
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some of the important pitfalls in filtering methods which naively choose to incorpo-

rate data from processing every single frame irrespective of the amount information

this is bound to provide; it would be much more intuitive and efficient to be able to

judge if a frame is worth the effort of processing or not. Klein and Murray [2007]

on the other hand do not take any particular care of which frames to drop or insert in

the state representation either. Using heuristics on tracking quality, temporal distance

between keyframes and metric distance with known keypointsthey manage the graph.

Although conditions indeed avoid insertion of identical keyframes when the camera

is at rest, they can easily permit the insertion of many similar keyframes (hence con-

taining a lot of redundancy) when the camera is moving slowly. However, running the

bundle adjustment on a background thread is the key to remaining within the real-time

bounds. While this representation is also bound to explode at some point restricting the

size of trackable scenes, it provides fast and accurate tracking for small desktop-like

environments.

Local SLAM

As a new image arrives at the camera, the filtering SLAM methods use a camera mo-

tion model to predict the motion undergone during the ‘blind’ interval therefore pro-

ducing probabilistic estimates of the new positions of known landmarks in the new

image. Davison [2003] exploits these predictions to narrowdown searches for fea-

tures in regions constrained by the 3σ uncertainty bounds as projected in image space.

This ‘active’, top-down Bayesian approach to feature matching still proves more ef-

ficient than exhaustive bottom-up search over the whole image and is therefore used

in many works since, including those of Eade and Drummond [2006b] and Eade and

Drummond [2007].

The quality of frame-to-frame feature matching determinesthe accuracy of a sys-

tem. Provided that the camera motion model produces concrete estimates closely re-

flecting reality, then the problem boils down to retrieving matches from the image

and resolving any ambiguity incurred. The latter is referred to as the problem of data

association between predictions and observations of landmarks. Both Eade and Drum-

mond [2007] and Davison et al. [2007] describe trackable salient image regions with

image patches saved at initial detection of landmarks. Whena feature measurement is

acquired, the state estimates are used to predict not only the expected position of the

patch, but also the appearance of the texture from the current viewpoint. In the latest

MonoSLAM system, the authors employ the work of Molton et al.[2004] to further es-

timate a surface normal of the patch at detection assuming locally planar surfaces. This

allows for full projective warping with perspective distortion and shearing to simulate

rotation-invariant patches which are searched for using normalised cross-correlation.
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It is important to note that the saved patch is never refined soas to avoid drift in the

appearance of a landmark.

Aiming for highly distinctive and reliable features, different detectors and descrip-

tors have been used in the context of matching. Point features are a popular choice in a

variety of implementations mainly due to their simplicity.Davison et al. [2007] use the

Shi-Tomasi criterion [Shi and Tomasi, 1994] while Eade and Drummond [2006b] and

Eade and Drummond [2007] use the FAST detector [Rosten and Drummond, 2005]

as a means of identifying well-textured regions in the image. Aiming to improve the

reliability of feature matching, Chekhlov et al. [2006] go for the more invariant SIFT

Lowe [2004] descriptor instead of using a template patch foreach feature. Essentially,

they compute a descriptor of each landmark for different scales upon detection, al-

lowing matching at different resolutions. Eade and Drummond [2008] use SIFT-like

descriptors with a sparser structure for speed, but they also use an optimised scale

space extrema detector so that each interest point has an image scale. During match-

ing, the image pyramid has to be computed so that a feature is matched at its closest

scale.

Point features, however simple and well-studied, induce some problems during

tracking. A monocular camera can only measure the bearing ofimage features. To

infer the 3D position of a corner point, the camera must observe it from different view-

points since this is the only way that depth can be estimated.As a result, distant fea-

tures which exhibit very small parallax in consecutive frames take longer to initialise

properly while their depth estimates are not well represented by the Gaussian distri-

butions in the EKF. Montiel et al. [2006] suggested a method of maintaining inverse-

depth estimates when initialising features which on the contrary are better modelled

by Gaussians. Most modern probabilistic systems now use this parametrisation as it is

widely accepted that it is enforcing consistency in map estimates.

Aiming to build maps with higher-level geometrical information, Eade and Drum-

mond [2006a] have proposed tracking edgelets, defined to be locally linear small por-

tions of a strong, one-dimensional intensity change (i.e. an edge) in the image. Relying

only on points is indeed problematic when it comes to motion blur as depending on

its severity the majority of the points, if not all, get wipedout as illustrated clearly in

Figure 2.7. On the contrary, as demonstrated by Klein and Murray [2008] any edgelets

parallel to the direction of blur remain intact, potentially providing all the information

necessary to keep the tracker going. Using points as well as edgelets is doubtlessly

enforcing robustness for rapid camera translations, but abrupt rotational motion is still

a challenge as almost everything distant from the centre of rotation can be wiped out.

While less descriptive than regions around points, edges have some more desirable

properties like robustness to lighting and viewpoint variance resulting to their appli-
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(a) Edgelets provide increased robustness against translational motion blur

(b) The camera view of the scene on the left and the constructed map on the right

Figure 2.7: Tracking edgelets as well as points provides some nice properties including
robustness to translational motion blur as demonstrated in(a) which is a snapshot from the
work of Klein and Murray [2008]. In (b) is an illustration from Eade and Drummond [2009]
(employing the machinery of Eade and Drummond [2006a]) of the additional geometrical in-
formation that edgelets can provide in the map where some of the true structure is clearly
visible in the 3D map.

cation in various SLAM implementations. The early work of Neira et al. [1997] for

example used vertical edges fused with odometry information to localise a mobile

robot while more recently Smith et al. [2006] demonstrated aline-based tracker built

on top of the system of Davison [2003] to achieve real-time tracking using either lines

alone or incorporating information from point features as well.

Irrespective of the type of features chosen to track, data association remains a

challenge. It is true that the more descriptive a feature is,the easier it becomes to dis-

cover which observation it corresponds to. However, missedmatches or false positives

are inevitable when dealing with real images. Both the worksof Eade and Drummond

[2006b] and Davison et al. [2007] did not explicitly addressthis problem, relying heav-

ily on the constrained active search region and the richnessof the template patches

to provide robust associations, naively accepting pairings of features with the high-

est scoring template match (satisfying a correlation threshold). Eade and Drummond

[2006b] however, employed Nearest Neighbour (NN) to establish correspondences of

edgelets followed by RANSAC [Fischler and Bolles, 1981] to reject outliers. Incorrect
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pairings of predictions and observations cause jitter, inconsistencies in the map and

subsequently tracking failure. While the simplicity of NN-based matching has been

appreciated in many early SLAM implementations [Leonard etal., 1992; Guivant and

Nebot, 2001] it was soon realised that correct data association with multiple hypoth-

esis handling is essential for robust algorithms. RANSAC isby far the most cited

technique for outlier rejection and variants like preemptive or adaptive RANSAC by

Nistér [2003] and Hartley and Zisserman [2004] respectively, have also been used in

an attempt to reduce the otherwise large number of hypotheses tested. The first fully

probabilistic method to discover matching consensus is theJoint Compatibility Branch

and Bound (JCBB) test proposed by Neira and Tardós [2001], currently considered

one of the most reliable choices for data association. Following a tree-search, it looks

for associations that maximise the probability of the hypothesised, jointly compatible

prediction error. Variants of this method have also been proposed like the randomised

JCBB [Paz et al., 2007b] to tackle the exploding computational complexity with bigger

data sets by cutting down on the number of tested hypotheses.

Deviating from traditional filtering approaches, Klein andMurray [2007] employ

different techniques for local SLAM estimates. Separatingtracking from mapping,

the authors essentially decouple the probabilistic estimates of mapping in tracking

and vice versa. As a result, tracking can no longer be guided in the sense used in the

aforementioned techniques but on the other hand, given thatthe map needs no longer to

get updated at the end of every frame, it allows more time for image processing during

local tracking. This method is therefore capable of tracking thousands of features per

frame providing visual odometry for local estimates. Sincefeatures are detected at

different scales, tracking is done in a two-stage coarse-to-fine manner: searching for

50 features at the highest pyramid levels over large search radii provides a refined pose

estimate, which is in turn used to reproject predictions forthe finer sets of features. No

data association issues are addressed explicitly, therefore performance relies heavily on

matching large numbers of features — while accepting that outliers are incorporated

into the map, this method confides in bundle adjustment to getrid of inconsistencies

and enforce robustness.

Building Large Maps Out Of Small Parts

TheO(n2) cost of maintaining the full EKF state relative to the state size as done in the

work of Davison et al. [2007] mandates the construction of sparse maps, limiting the

number of trackable features per frame so that online performance is sustained. While

it provides accurate results for room-sized environments,the constantly expanding

map in exploratory sequences is bound to degrade the real-time performance when run

over larger scenes. Moreover, as mentioned earlier, the consistency problems of a large



30 Related Work

(a) Traversing a long loop (b) Auto-scaling (c) Loop-closure is enforced

Figure 2.8: Large-scale mapping using local submaps. In (a) is the result of tracking a long
exploratory sequence using the method of Clemente et al. [2007] which is using the two-level
hierarchical submapping of Estrada et al. [2005] and the approach of Davison et al. [2007].
It is evident that local tracking drifts especially on the turns of the trajectory but following
auto-scaling (b) and loop-closure detection, the trajectory is optimised in (c).

EKF becomes more evident with increasing the filter size. Eade and Drummond [2007]

have explicitly confronted both of these issues by structuring the problem in a set of

smaller, more manageable groups of features each relating anearby node, which can be

viewed as decomposing a map into submaps. Not only does this method permit denser

local maps providing more consistent local estimates, but it also provides the ability of

covering much larger areas than classical full EKF approaches. The method of Klein

and Murray [2007], by construction exhibits some sparsification of the full SLAM

problem by splitting the map using keyframes rather than submaps. The effect however

is very similar, since as clearly depicted in Figure 2.2(c),a feature maintains only links

with the keyframes it has been seen from. A keyframe can be viewed as similar to a

node in Eade’s approach while the relative positions of keyframes is not represented

explicitly; the constellation is instead optimised at bundle adjustment considering the

landmarks shared between keyframes.

The benefits of breaking down a large map into smaller parts have been a subject

of significant interest over the last decade as SLAM methods started aiming for bigger

and better solutions. The work of Tardós et al. [2002] on SLAM using sonar data, the

Constrained Local Submap Filter of Williams et al. [2002] and the Divide and Conquer

approach of Paz et al. [2007a] are all examples of standard sparsification strategies of

the full map into statistically independent submaps each maintained by a small EKF

of bounded size. As in the work of Eade and Drummond [2007], the updates are kept

local providing constant update cost. However, while Eade’s representation maintains

relative transformations (edges) between submaps permitting real-time optimisation of

the whole (still relative) graph at the end of every time step, the rest of the methods

mentioned here register each new submap to the global map sequentially. In a slightly

different approach, Divide and Conquer SLAM follows a binary tree of submap join-

ings to provide better cost than the sequential case.
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Realising the power of relative representation of transformations between

submaps, both Bosse et al. [2004] based on the Atlas framework [Bosse et al., 2003]

and the Hierarchical SLAM of Estrada et al. [2005] attacked submapping in a two-

level hierarchical manner. While the lower level corresponds to statistically indepen-

dent submaps as described above, the topological configuration of these submaps is

maintained using a graph of nodes in the upper hierarchy level very much resembling

Eade’s representation of the environment. Their common difference however, is that

no constraints are imposed for the positions of landmarks shared among two or more

submaps, which on one hand maintains independence and efficiency but always at the

cost of mapping quality.

On a substantially different track, the Thin Junction Tree Filter of Paskin [2003]

and the Treemap approach of Frese [2006] provide complex butotherwise very ef-

ficient solutions to inference by representing the joint probability distribution of the

system via tree-like factorisations, which are essentially a different type of approx-

imation of the full SLAM graph. When a map element is observed, the tree-node

directly representing it gets updated issuing ‘messages’ to be passed to every other

node, following the branch paths along the tree, essentially propagating the update in

the map. While the distributions are represented with Gaussians the parametrisation

is done in the information form (maintaining the inverse covariance) which allows ex-

ploitation of the sparse representation of links between variables as exploited also in

Sparse Extended Information Filters [Thrun et al., 2002] toconstruct the tree struc-

tures. However, the information form imposes a major difficulty when it comes to

data association since most algorithms are based on the covariance form as maintained

in the EKF for example, rendering them inapplicable especially when this involves

large data sets where matrix inversion becomes a computation bottleneck. Eustice

et al. [2005b] has taken account for this issue to some extendinverting a subset of the

covariance approximating the actual covariance of the variables in question.

More recently, Pinies and Tardós [2008] proposed a powerful algorithm for build-

ing a large map out ofconditionally independent submaps of constant size. In

essence, their representation enforces better managementof shared information be-

tween submaps, allowing more effective propagation of updates and in linear time

with respect to the number of submaps. While linear time recovery of the global map

with respect to the number of submaps has been made possible in previous works,

the authors here achieve it surpassing any limiting constraints in the configuration of

the submaps (Paz et al. [2007a] for example restrict submapsin a tree arrangement).

However, in order to maintain the conditional independencebetween submaps at loop

closures, the features that have been recognised to belong to both the start and the end

submaps need to get copied into every intermediate submap which means extensive
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usage of storage in loopy sequences.

Loop-Closing, Relocalisation and Graph Optimisation

While Davison et al. [2007] address small-scale SLAM problems, closing a loop be-

comes increasingly difficult with growing uncertainty in the position of the camera.

This translates into large active search regions for features increasing the chance of

false positive matches, thus making the task of data association very challenging,

even for robust techniques like JCBB [Neira and Tardós, 2001]. In the application

of MonoSLAM in larger scale maps, this problem becomes ever more evident. An

example is the system of Clemente et al. [2007] which maps large loops adopting

the Hierarchical SLAM technique [Estrada et al., 2005], forsubmaps constructed in

a Davison-like approach. While the bounded size of submaps allows online building

of the map, loop-closures push performance past the real-time barrier. Moreover, the

EKF assumptions of Gaussian representation of uncertaintyin estimates break down

for big maps, rendering the filter predictions erroneous.

Eade and Drummond [2008] however, using their earlier Graph-SLAM system

[Eade and Drummond, 2007], explicitly tackle the problems of detection and enforce-

ment of loop-closures achieving real-time performance formaps of 1000 features on a

dual-core computer. A bag-of-words dictionary is trained online, clustering observed

features based on their appearance so that image descriptors can be generated based

on the occurrence of certain ‘visual words’. Every node in the graph maintains a list of

the observed words along with a count of their occurrence while that node has been ac-

tive. The words in the dictionary are subsequently informedwith a ranked list of most

representative nodes they occur in (based on the term-frequency-inverse-document-

frequency metric [Sivic and Zisserman, 2003] taking account of the uniqueness of

words in the database). The highest-ranking nodes matchingthe current view that

do not already share an edge with the active node, are considered as candidates for

loop-closing, matching them using Nearest Neighbour basedon the distance measure

proposed in [Lowe, 2004]. Following the visual appearance cues, the system then

seeks for a match in structure using MLESAC [Torr and Zisserman, 2000] which is a

variant of RANSAC, only scoring hypotheses based on their likelihood (representing

the error distribution as a mixture model) rather than the number of inliers.

Interestingly, Eade and Drummond [2008] address the problem of relocalisation

as a special case of the loop-closure problem. If tracking failure occurs, the SLAM

system does not need to restart; instead it creates a new graph component which is

subject to unification with the rest of the graph upon revisiting of previously mapped

regions. Recovery is therefore approached as the enforcement of a consistent fusion

of the active graph with the rest of the known map. After the establishment of a new
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edge connecting the two ends of the loop, global optimisation takes place as in the

end of every normal frame to enforce any new constraints optimising the graph using

preconditioned gradient descent for speedy convergence.

Klein and Murray [2007] do not really address loop-closure.While this is implic-

itly enforced for very local loops by projecting expected locations of known features

in the current frame, for longer, exploratory sequences these are not handled meaning

that their system can therefore suffer from drift. However,they address the relocali-

sation problem allowing recovery once the camera gets lost,adopting the method of

Williams et al. [2007]. The latter work is based on Davison’ssystem, incorporating

JCBB on top of active search for robust outlier rejection. The tracking-failure flag is

raised once no match is found within the predicted search regions of features, while

relocalisation is tackled by searching the entire image forcorrespondences with known

features, using the randomised-lists classifier of Lepetitand Fua [2006]. The key in-

sight is the treatment of online feature recognition as a classification problem where

classes are trained on trees of randomly generated tests of pixel intensity comparisons.

As a result, at runtime, a feature can be dropped down these classification trees to pro-

vide probabilistic estimates of class memberships, with each class corresponding to a

different known feature. Upon the establishment of correspondences with known parts

of the map, RANSAC [Fischler and Bolles, 1981] is applied to recover the position of

the camera using the three-point-pose algorithm so that tracking resumes.

Klein and Murray [2007] perform local bundle adjustment regularly optimising

the pose of the most recent keyframe with its closest neighbours (5 keyframes in total)

using all the measurements ever made for the landmarks seen from these viewpoints.

Global bundle adjustment to refine the poses of all keyframespresent in the map is

also run in the background, but only whenever the size of it permits reasonable speed

performance. As an example, the authors mention that maps containing more than 150

keyframes would require ‘tens of seconds’. In order to mitigate the complexity cost of

using all available measurements in bundle adjustment, Holmes et al. [2009] combine

the benefits of the relative graph representation of Sibley et al. [2009] and the parallel

tracking and mapping approach of Klein and Murray [2007] while subsampling the

data input into the optimisation stage. Their method is demonstrated to permit contant

time exploration and maintain conservative estimates of the map.

While the relocalisation method of Williams et al. [2007] indeed provides robust

results, its processing and storage cost scale badly with increasing number of features.

Allowing relocalisation for map-sizes of 1500 features Klein and Murray [2008] in-

stead use a very simple relocalisation method. Importing most of the machinery used in

their earlier system [Klein and Murray, 2007], they save a zero-mean, heavily blurred

version of the sub-sampled image obtained at every keyframe. When tracking is lost,
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every new frame is compared against every such keyframe ‘descriptor’, choosing the

one with minimal difference to estimate a camera rotation byminimisation of their

sum-of-squared differences after alignment.

2.4 Ongoing Challenges and Progress in this Thesis

The recent growth of monocular SLAM algorithms has deservedly established its place

in the list of hot research topics at present. The engagementof smart and theoretically

solid techniques has brought implementations a long way, however much remains still

to be done for successful operation outside the benign conditions of a lab environment.

The performance of most modern existing systems as reviewedabove, is indeed limited

to fairly small-range, careful camera manoeuvers. Dense mapping on one hand offers

local accuracy while it proves a bottleneck when it comes to mapping slightly larger

areas. In a nutshell, the focus of future monocular SLAM algorithms needs to be on:

• fast camera motion

• very large scales

• rich maps towards online 3D scene reconstruction

• real robustness in unstructured environments and dynamic conditions, and

• low computation to permit embedded applications

The underlying challenge inherent in these points is to handle larger amounts of

data in a more effective way. The key is inagile manipulation of informationto exploit

the value of the extra knowledge while avoiding the drawbacks of the computational

burden that this is accompanied with. Sustaining truly fastmotion in dynamic condi-

tions, mandates robust matching for different levels of input priors. Large-scale and

dense mapping translates into efficient data maintenance and robust outlier rejection

to close larger loops. Effective approximations to the fullproblem can provide the so-

lution to lower computational complexity while maintaining quality of performance.

Attacking these currently open questions successfully will bring monocular systems a

step closer to truly general algorithms for arbitrary environments.

2.4.1 Efficient and Robust Matching

How do observations relate to known parts of the map?

The biggest difficulty in tracking is the data association problem of correctly

identifying known 3D features in the image projection of thescene from the current

viewpoint. It is important that the descriptors of landmark-features are resilient

to lighting and viewpoint changes, they are fast to compute and distinctive with
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(a) Frame 10 (b) Frame 474

Figure 2.9: Accumulated uncertainty after traversing a loop with MonoSLAM. The projected
uncertainty of features in image space as ellipses demonstrates how uncertain older features
become at the loop closure frame (b). Even looking for them within their active search regions,
the matcher is likely to fire at erroneous positions as evident after a search forF0 in (b) (matches
are shown in green). Similar results for the rest of the loop-closing features makes the problem
of data association even harder as more outliers lie in the data set.

respect to the surroundings. Tracking in a general environment however, provides no

guarantees that these conditions are met; on the contrary, it is certain that the feature

matcher will fire at erroneous positions in the image while other features will not be

recognised at all. As a result was the emergence of outlier rejection techniques and

their application in SLAM systems like JCBB [Neira and Tard´os, 2001], RANSAC

[Fischler and Bolles, 1981] and variants.

Resolving correspondences of visual data (as opposed to range measurements for

example) is on one hand easier due to the extra descriptiveness of appearance infor-

mation, but on the other hand it becomes tricky to handle the inevitable variance in

the quality of the input data. It was soon realised that not all features are equally reli-

able in matching, assessing them in terms of their relative uniqueness and repeatability

of recognition. Newman et al. [2006] propose discarding information coming from

repeatable appearance, while the more advanced bag-of-words approach [Sivic and

Zisserman, 2003; Cummins and Newman, 2007] is becoming increasingly popular in

detecting loop-closures.

In fact, loop-closure detection, relocalisation and frame-to-frame matching are sib-

ling problems all aiming to solve the puzzle of data association. Their only difference

is the strength of input prior information. While from one frame to the next the motion

of the camera can be predicted with some accuracy (dependingon the frame rate and

camera dynamics), when the robot is at the end of a long loop, the uncertainty in the

camera position is much bigger. This is clearly illustratedin Figure 2.9. Even further,

when the camera is lost, by definition the pose uncertainty can be arbitrarily large (de-

pending on the time elapsed since tracking failed). The goalalways being to relate
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current observations to known parts of the map, the feature matcher can be employed

to establishing correspondences are reject outliers.

While RANSAC is the dominant approach to matching, it is far from a gold stan-

dard method. The method itself is indeed very simple to implement but due to the

fact that it relies on arbitrary thresholds and most importantly randomness, it is prone

to extensive testing of erroneous hypotheses using up precious processing time and

increasing the likelihood of a spurious result. More recentvariants mentioned ear-

lier have explicitly tackled this problem but they still rely on heuristics and random

numbers.

The increasing popularity of JCBB proves there is room for improvement in robust

matching in the presence of priors, but its exponential degradation in performance in

the presence of many outliers is limiting its use to highly uncertain scenarios. In the

Active Matching algorithm discussed later as a contribution in this thesis, individual

feature characteristics can be taken into account togetherwith the degree of correlation

between features to guide the course of matching towards a probabilistically backed-

up result. As opposed to traditional approaches of getting correspondences first and

resolving them later, the methodology follows a top-down approach to search for can-

didates resulting in fewer image processing operations andless contamination of data.

2.4.2 Scaling and Map Management

When is it worth splitting a map into two submaps?

As the need for bigger and denser maps is increasing, so is theneed for effi-

cient data manipulation. Earlier, this chapter discussed how researchers have realised

this need leading to the emergence of sparsification techniques. Tree approximations,

frames, nodes, keyframes or submaps have been vital in sustaining online SLAM

performance for large-scale mapping irrespective of the sensing modalities used.

By bounding accumulated uncertainty, number of landmarks or distance since last

partition, systems have managed real-time performance at the expense of accuracy

of approximation. However, there has been little theoretical investigation of efficient

map management in terms of the quality of sparsifications performed, limiting the

applicability of existing techniques to more challenging scenarios.

Taking the popular choice of representing the state with a stochastic map as an

example, splitting this map into two submaps means cutting the correlation links be-

tween features lying in separate submaps. In the most commoncase of preserving full

EKF filters for each submap, this successfully bounds theO(n2) maintenance cost for

small numbers ofn while updates across the whole map become linear to the number

of submaps. While besides the computational benefit, existing works report improve-
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ments in accuracy in terms of limiting the linearisation errors inflicted in the case of

keeping a long EKF. However, no particular care is taken about whereto place submap

partitions.

The stochastic map by definition models explicitly the relationships between dif-

ferent parts of the state as correlations. A very useful property of these correlations is

that measuring one part of the state tells a lot about the others as the updates can be

propagated through the correlation links between the variables — and indeed this is

one of the key ideas used in the Active Matching algorithm. Itis the strength of the

correlation links that we cut during an approximation that determines the quality pre-

served in the map. Moreover, the infinite range of a camera makes correlation structure

in a visual-SLAM map more tricky since distant features in the scene can appear very

close together in image space strengthening their correlation. Quantifying the level

of correlation shared between different landmarks in termsof Information Theoretic

measures, Chapter 6 demonstrates that covisibility is not the only factor that provides

strong correlations as previously believed, but coherencyof motion is even more im-

portant. Understanding the tracker’s impression of the scene, we present a simple

and fully automatic method for partitioning general visualmaps which optimises the

quality of sparsification.
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3
A Top-Down, Filtering Approach

to Monocular SLAM

While the literature has seen a plethora of approaches to SLAM using expensive and

highly accurate range sensors, a trend towards the cheaper option of cameras has re-

cently become established. Allowing greater freedom and versatility, are single, hand-

held camera implementations relaxing problem specific constraints. On the other hand,

assuming nothing but a freely moving camera in an unknown environment imposes

several additional obstacles to the estimation process. Despite the inherent difficulty

and challenges faced in monocular SLAM, recent implementations have shown that

map and trajectory estimation is possible within small-range environments, as dis-

cussed in the previous chapter. This chapter is dedicated tofamiliarise the reader with

the key concepts and notation used in sequential, Bayesian monocular SLAM through

a description of the MonoSLAM system proposed by Davison [2003] and later refined

in [Davison et al., 2007]. This system comprises the platform used throughout the rest

of this thesis to demonstrate the methodologies and algorithms developed.

The online recovery of the 3D trajectory of the camera in MonoSLAM is achieved

by incrementally building a map of natural landmarks (features) on the fly, as detected

39
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Figure 3.1:Tracking the camera movement relative to the observed landmarks. On the left is
the current camera view and on the right is a representation of the perceived map of the scene.
The natural landmarks selected for tracking (the image patches on the left image) correspond
to ellipsoids on the right image, the shape of which encodes the nature of uncertainty in the
position of the relevant feature.

and tracked throughout the movement of the camera. The map constructed is then used

to guide the search for features in subsequent frames. Usingan Extended Kalman Filter

(EKF), the system produces estimates of the joint distribution over the 3D location of

the camera and the set of known features. On the arrival of a new image, a probabilis-

tic motion model is applied to the accurate posterior estimate of the previous frame,

adding uncertainty to the estimated new camera position. Instandard configuration the

system then makes independent probabilistic predictions of the image location of each

of the features of interest, and each feature is independently searched for within the

ellipse defined by a three standard deviation gate. Constantly measuring and refining

the constructed map of the surroundings, MonoSLAM achievesreal-time tracking of

the path followed by the camera. Following, is a more detailed description of the key

components in the top-down filtering approach of MonoSLAM.

3.1 Representation of the World

Based on the probabilistic framework introduced by Smith etal. [1988b], the belief

about the state of the world at any time instant can approximated with a single, mul-

tivariate Gaussian distribution. Therefore, the probability density describing the state

vectorx is defined as below, in terms of its estimated meanx̂ and covariance matrixP:

p(x) = (2π)−
d
2 |P|−

1
2 exp{−

1
2
(x− x̂)⊤P−1(x− x̂)} . (3.1)

Here,d denotes the dimension ofx̂ andP is a square(d×d) matrix, partitioned as

follows:
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x̂ =













x̂c

ŷ1

ŷ2
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, P =













Pxx Pxy1 Pxy2 . . .

Py1x Py1y1 Py1y2 . . .

Py2x Py2y1 Py2y2 . . .
...
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...













. (3.2)

The state vectorx stacks the camera statexc and the 3D positionyi of each featurei

in the map. The uncertainty in the individual entries statedin the mean vector together

with their relationships are described in the covariance matrix. More specifically, the

blocks along the diagonal express the uncertainty in each estimate of the mean vector

while the off-diagonal blocks encode the correlation between these estimates. Essen-

tially, x̂ andP comprise a snapshot of the current state estimates of the camera and the

features in the map. Figure 3.1 is an example of the 3D map constructed after a few

frames of tracking using MonoSLAM.

In order to describe the camera state vectorxc we need to define a fixed ‘world’

coordinate frame and a camera coordinate frame (defined withrespect to the current

position and orientation of the camera) denoted by superscripts ‘w’ and ‘c’, respec-

tively. Hence, adopting the notation of Davison et al. [2007], xc comprises of the

following set of parameters: the 3D position of the camerarw, the quaternionqwc

describing the rotation transformation between the two coordinate frames, the linear

velocity of the cameravw and its angular velocityωc. In total, xc is composed by 13

parameters and explicitly is expressed as:

xc =













rw

qwc

vw

ωc













. (3.3)

A feature state vectoryi is generally comprised by a three-element vector describ-

ing the 3D coordinates of the feature with respect to the world coordinate frame (w).

However, when a feature is first initialised in a monocular system, its depth estimate is

infinitely uncertain and is only bound to become more preciseif viewed from different

camera poses. Demonstrating that uncertainties of such extend are not well-modelled

by a standard Gaussian distribution, Montiel et al. [2006] proposed a reparametrisation

of the representation of a feature state vector in terms of its inverse depth. Illustrating

low linearisation errors at low parallax, this modificationhas been shown to model the

estimation uncertainty at feature initialisation much more accurately by a Gaussian.

Hence, this parametrisation has been adopted in MonoSLAM, encoding newly ini-

tialised features by a six-dimensional vectoryi comprising the camera position from

which the feature was first observed (rw using the above notation), the azimuthφi
w
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and elevationθi
w angles defining the direction of the ray of observation, and finally

the point’s inverse depth 1/di along this ray:

yi =













rw

φi
w

θi
w

1/di













. (3.4)

Upon observation of this feature from a sufficiently wide baseline, the uncertainty in

its depth estimate reduces enough to allow conversion into a‘fully-initialised’ point

representation, requiring solely the 3D coordinates of that feature.

3.2 Motion and Probabilistic Prediction

In probabilistic form, SLAM requires computation of the posterior given all state es-

timates and observations up to the current frame (if odometry was available, all the

control inputs would be included here also). However, this can be formed in a recur-

sive estimation of posterior of the new state parametersx(k) at time instantk given the

last estimated statex(k−1) and the observationsz∗(k)T made since then:

p(x(k)|x(k−1),z∗(k)T ) ∼ N

(

x̂(k|k), P(k|k)
)

, (3.5)

whereN denotes a Normal distribution characterised by its first twomoments. How-
ever, before processing the input image to make observations from the new camera

pose, the system makes a series of predictions based on past experience and implicit

assumptions to enforce consistency and efficiency of processing:

1. Camera state: the system makes a guess of the motion undergone by the camera

during the ‘blind’ interval between the last estimated poseand the new one.

2. Candidate measurements: based on the predicted new viewpoint, any known

map-features that should be visible/measurable are identified.

3. Search regions: for every feature selected for measurement in the new frame, a

corresponding likelihood region in the image is estimated so that the search for

each feature is localised.

Below, we elaborate on the way these predictions are made anddiscuss their im-

portance in the performance of the system.

3.2.1 Camera State

As the camera captures frames processing them sequentially, unless there is some mo-

tion model to describe how the camera moves in between frames, there is no way to
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Figure 3.2:MonoSLAM uses a smooth camera motion model of constant angular and lin-
ear velocity, to imply that on average, we expect undetermined accelerations to occur with a
Gaussian profile.

predict the new pose of the camera before analysing the inputimage. In contrast to

robot-based implementations, monocular SLAM has no accessto odometry informa-

tion (a term used to describe the series of commands to control the motion of a robot

platform). The movement of a hand-waved camera in fact, is particularly difficult to

model as it does not allow for precise assumptions to be made about the dynamics of

the camera or the intentions of the carrier. Acknowledging this issue, MonoSLAM

uses aconstant velocity motion model. This model essentially asserts that between one

frame and the next, the camera is expected to experience linear and angular changes

in velocity which are unknown in detail but can be characterised probabilistically by

a zero-mean Gaussian distribution. The variance of the Gaussian distribution used

depends on both the level of dynamic motion expected of the camera and the inter-

frame time interval. Large frame-to-frame motion uncertainty occurs when vigorous,

jerky movements are expected for when the frame-rate is low.Smooth motions or high

frame-rates allow more precise motion predictions and withlower uncertainty.

The motion model can be described in terms of a probability distribution on state

transitions:

p(x(k|k−1)) = p(x(k)|x(k−1)) ∼ N

(

x̂(k|k−1), P(k|k−1)
)

. (3.6)

Denoting the motion modelf we can predict the new camera statex(k|k−1)
c in terms of

the camera parameters from the last known statex(k−1). Therefore, if the uncertainty

introduced through this process is denoted byQ (process noise), the predicted state

x(k|k−1) after the motion of the camera (EKF prediction step) is described by:

x̂(k|k−1) =













f(x̂(k−1)
c )

ŷ(k−1)
1

ŷ(k−1)
2

...













, (3.7)
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and dropping the superscript inx̂(k−1)
c for clarity,

P
(k|k−1) =















∂ f
∂xc

P
(k−1)
xx

∂ f
∂xc

⊤
+Q

∂ f
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P
(k−1)
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∂ f
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P
(k−1)
xy2 . . .

P
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∂ f
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⊤
P

(k−1)
y1y1 P
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⊤
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(k−1)
y2y1 P

(k−1)
y2y2 . . .
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. (3.8)

3.2.2 Candidate Measurements and Search-Regions of Selected Mea-
surements

When a new image arrives, we can project the current probability distribution over state

parameters into measurement space topredict the image locations of all the features

candidate for measurement. Defining stacked vectorzT =
(

z1 z2 . . .
)⊤

contain-

ing all predicted feature measurements and stacked likelihood functionp(zT |x), the

density:

p(zT) =

∫

p(zT |x)p(x)dx , (3.9)

is a probabilistic prediction not just of the most likely image position of each feature,

but a joint distribution over the expected locations of all of them. This joint distri-

bution, if formulated correctly, takes full account of bothindividual feature motion

assumptions and global inter-feature constraints.

Given the prediction of the new camera viewpoint at the new pose following the

application of the motion model, we can predict which of the known landmarks, if

any, should be visible using the measurement modelh (also referred to as ‘observation

model’). If xm denotes the stack of state parameters in measurement space (i.e. the

camera state and the vectorzT ), then the application of this model gives the probability

of distribution ofxm given the predicted new pose:

p(xm|x(k|k−1)) ∼ N (x̂m, Pm) . (3.10)

The measurement model acts on the predicted statex(k|k−1) at the new frame to

produce expectations on the individual feature measurements z(k|k−1)
i comprising the

vectorz(k|k−1)
T . Here, a measurement for a feature yields its 2D image coordinates. As

a result, the state parameters in image space can be described via:

x̂m =













x̂(k|k−1)
c

ẑ(k|k−1)
1

ẑ(k|k−1)
2

...













=













x̂(k|k−1)
c

h1(x̂(k|k−1))

h2(x̂(k|k−1))
...













, (3.11)



3.2 Motion and Probabilistic Prediction 45

and dropping the superscripts inx̂(k|k−1) andP(k|k−1) for clarity,

Pm =















P
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xx P
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, (3.12)

whereRi denotes the measurement noise in each prediction. The lower-right portion of

Pm encoding the covariance values of the elementsz(k|k−1)
T , is known as theinnovation

covariance matrixS in Kalman filter tracking. Generally, during the process of track-

ing, the matrixS becomes dense as is the matrixP progressively building correlations

between different parts of the map. Practically, high correlation between two feature

position estimates means that while we are uncertain about their absolute locations,

their relative locations may be known with high accuracy. These correlations are of

great importance to a convergent solution in SLAM and as stated by Durrant-Whyte

and Bailey [2006]: the more these correlations grow, the better the solution. In fact,

the analysis performed in this thesis to enforce robustnessand efficiency of algorithms

aims to exploit these correlation links as much as possible.

Predicting the locations of map features in the new image, the system can decide

whether a feature lies in the predicted field of view and therefore enlist it as a measure-

ment candidate. Given individualp(zi) parts of this prediction, the image search for

each feature can sensibly be limited to high-probability regions (what we callactive

search), which will practically often be small in situations such as tracking. Therefore,

in MonoSLAM we can avoid costly exhaustive search of each predicted-to-be-visible

feature in the whole image by restricting search to ‘gated’ elliptical regions around

the predicted feature locations, of size determined by the innovation covarianceSi and

a chosen number of standard deviations. Innovation is defined to be the discrepancy

between the predicted and the observed feature locations. Hence, the innovation co-

variance is the expected deviation from this prediction. Expanding the sub-matrix on

the diagonal ofPm corresponding to featurei, its innovation covariance is defined by:

Sii =
∂hi

∂ x̂c
Pxx

∂hi

∂ x̂c

⊤

+
∂hi

∂ x̂c
Pxyi

∂hi

∂ ŷi

⊤

+
∂hi

∂ ŷi
Pyix

∂hi

∂ x̂c

⊤

+
∂hi

∂ ŷi
Pyiyi

∂hi

∂ ŷi

⊤

+Ri (3.13)

Uncertainty in the probabilistic prediction of feature image locations in MonoSLAM

is dominated by the first term in the above expression which takes account for the un-

certainty in camera pose introduced by the frame-to-frame motion model. Therefore,

the size of these ellipses reflects the variance of the Gaussian distribution used for the

motion model.
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3.3 Active Feature Measurement and Map Update

MonoSLAM allows ‘active’ feature measurements in the sensethat search for a feature

can be confined within the bounds of the innovation covariance as defined in equation

3.13, rather than across the whole image which can be very time consuming. Perform-

ing exhaustive template match search within the three standard deviation gated ellipse

for each feature, the top-scoring template match is taken ascorrect if its normalised

sum-of-squared-difference score passes a threshold. The position of the match is fur-

ther refined to subpixel accuracy by fitting a paraboloid in the local neighbourhood

of the match and estimating its peak. Generally, subpixel refinement is considered to

result to smoother estimated trajectories.

At low levels of motion model uncertainty, mismatches via this method are rela-

tively rare, but in advanced applications of the algorithm or when the motion modelling

is poor [Chli and Davison, 2008a; Clemente et al., 2007; Williams et al., 2007] it has

been observed that compatibility tests find a significant number of matching errors and

greatly improves performance. Chapter 5 addresses this issue explicitly and offers a

way to handle multiple occurring matches per feature.

The saved patch of each feature to be measured is warped to produce a template of

its expected appearance from the new camera position. The system maintains a record

for both the successful and attempted measurements of each landmark. If a feature

fails to match in a certain number of successive frames, it isclassified as an unreliable

landmark for tracking and thus gets automatically deleted from the map.

The vector of measurementsz∗(k)T obtainedfrom feature matching in the new frame

is then fed back into the system to update the map (EKF update step). An estimate of

the posterior distribution overx(k) can then be acquired as stated in equation 3.5. The

mean and covariance of this estimate can be obtain as follows:

x̂(k|k) = x̂(k|k−1) +K(z∗(k)T − ẑ(k|k−1)
T ) (3.14)

P
(k|k) = P

(k|k−1) −KSK
⊤ , (3.15)

where the Kalman gainK is defined to asK = P(k|k−1) ∂h
∂ x̂(k|k−1)

⊤
S−1. From this point

onward, the superscripts referring to the different time-stamps (i.e.k, k−1, etc.) are

omitted for the sake of clarity and hereafter, the notation ‘z’ will generally refer to

predictedmeasurements while the asterisk inz∗ will denoteobtainedmeasurements.

3.4 System Initialisation and Map Maintenance

Since tracking with a single camera makes the task of estimating the depth of features

harder and there is no way we can estimate the absolute scale of the scene, the system
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can be initialised with a set of features with known relativepositions to overcome that.

This is not a necessary condition though since scale can be considered as a completely

unknown degree of freedom without affecting performance, and it has been shown

that reparametrisation of point features in terms of inverse depth as described earlier,

allows efficient initialisation of the system.

At any given frame where the number of ‘trackable’ features drops below the de-

sired threshold, the system looks to initialise new, distinctive visual landmarks by look-

ing into randomly selected image regions where other features are not already present.

In MonoSLAM we rely on the Shi and Tomasi criterion [Shi and Tomasi, 1994] to ex-

tract the visually salient regions in the form of 2D patches which are saved at the time

the feature is initialised. The system however, is not specifically tied to this feature

selector so any other feature detector/descriptor can alsobe used.

The maintenance of the SLAM map using the EKF requires quadratic compu-

tational complexity in the total number of features in the map. Hence, the key to

achieving real-time performance lies in the assumptions made on the information re-

trieved during motion. Maintaining a sparse map of high-quality features, modelling

the camera motion and actively searching for features guided by uncertainty, are the

main techniques used to optimise the use of processing resources. However, if there

is the need for a more detailed map or the environment mapped is large, the real-time

performance of MonoSLAM is compromised since the time to update the filter begins

to grow rapidly with the number of features. Also, as mentioned in section 3.3, during

frame-to-frame matching the association of the observations with the map features is

crucial for the accuracy and consistency of the tracker since once accepted they cannot

be undone. In a nutshell, real-time performance of a visual SLAM system able cope

with general camera motion and large map sizes is still a challenge. The rest of this

thesis tackles this issue by consulting Information Theoretic principles introduced in

the following chapter, to carefully guide the allocation ofresources and make the least

wasteful approximations to the complete problem.
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4
Information Theory and

Probabilistic Predictions

Our perception of the uncertain state of an event has the potential to advance upon

the acquisition of additional relevant knowledge. In orderto translate raw input data

into useful cues however, we employ probabilistic reasoning essentially redistributing

perceptual uncertainty based on the new evidence. On the whole, while an extra piece

of information can prove of great importance in resolving uncertainty, this can only be

accomplished at the expense of processing resources. When bounds are imposed on

the resources available, as is the case in real-time applications, then achieving a com-

promise evolves into a real challenge: staying within the limited time budget of online

performance requires balancing the potential gains and costs involved in processing

incoming data.

In sequential tracking, any information extracted from thecurrent scene in con-

junction with any models available describing the processes involved, can serve as

prior knowledge for the next frame. The use of such priors is of great benefit to SLAM

as they tell us where to look for cues in the image, alleviating the burden of frame-to-

frame processing. Surely though, the amount of informationavailable in an incoming

49
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image can be enormous. Thus, extracting and processing all of it can be an extensive

and costly process which brings us to the conclusion that some selection is necessary.

But on what grounds should we base our decisions on what isworthyof our time and

effort from what isdispensable? Also, are we really making the most of the prior

knowledge we choose to carry forward in the end?

This chapter looks deep into the value of the probabilistic predictions we can make

in visual SLAM and ways we can use these efficiently at run-time. As will become

evident in this and subsequent chapters, investing in ‘smart’ manipulation of the infor-

mation available not only can help boost the computational efficiency and consistency

of algorithms, but more importantly it provides a comprehensive insight into the task

at hand. Here, we discuss the concepts and measures forming the Information Theo-

retic basis used throughout the rest of this thesis to guide efficient image processing

and map-management in SLAM.

4.1 Principles of Information Theory

Information Theory is generally considered to have been founded by Claude Shannon

in 1948. Initially aiming at tackling the engineering problem of reliable data trans-

mission over a noisy channel, it has since been established as a means ofquantifying

information content. This section devotes some time to notation and descriptionof the

quantities of information later used to analyse the expected ‘value’ of features in the

SLAM map and their relations.

4.1.1 Entropy

Using the notation introduced by Mackay [2003], a discrete variablex can take values

in the setAX = {a1,a2, . . . ,an} with associated probabilitiesPX = {p1, p2, . . . , pn} such

that pi = p(x = ai). Therefore, the ensembleX describing the triplet{x,AX,PX} has

information entropyH(X) defined as:

H(X) = E

[

log
1

p(x)

]

= ∑
x∈AX

p(x) log
1

p(x)
. (4.1)

In words, this describes the expected information content of a possible outcome on the

value ofx given the set of different possibilities ‘x= ai ’ and their associated probabili-

ties of occurrence. More intuitively, the entropy of a variable represents the uncertainty

in its current state, often referred to as theexpected surpriseof the distribution. Think-

ing in terms of simple examples, there is less surprise expected when tossing a fair

coin (where both heads and tails are equally likely) than when rolling a die (there are

six equally likely outcomes). There is more uncertainty (and thus entropy) involved in
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predicting the outcome of the die than that of the coin.

Taking this rationale a step further, the entropy of a particular variable reaches

its maximum value in the most unpredictable (hence uncertain) case: when all the

events in the event space are equiprobable. Hence, in the case of variablex above

this happens when each possible outcomeai has a probabilityp(x = ai) = 1/n of

occurrence, resulting to the entropy ofH(X) = logn.

The choice of the base of the logarithm determines the unit ofmeasurement of

entropy. In this thesis, we use the binary logarithmic scale(with ‘log’ used as short for

‘log2’) measuring entropy and information in absolute numbers ofbits.

4.1.2 Joint Entropy

Introducing another discrete variabley taking values in the finite setBY with associated

probabilitiesPY, we can deduce useful measures like the joint entropy of bothx and

y. This is defined as the entropy of the probability distribution of the pairings(x,y),

expressed as:

H(X,Y) = ∑
x∈AX ,y∈BY

p(x,y) log
1

p(x,y)
. (4.2)

In the special case thatx and y are independent i.e.p(x,y) = p(x)p(y) then it can

easily be shown that their joint entropy is equivalent to thesum of their individual

marginal entropiesH(X,Y) = H(X)+ H(Y). If however the outcome ofx is in some

way affected by the outcome ofy and vice versa, their joint entropy is also affected

depending on the amount and the nature of their correlation (positive or negative).

4.1.3 Conditional Entropy

In the case that two variables are indeed correlated, then learning the exact value of

one can affect the uncertainty (or the entropy) of the other.For example, ify is found

to be equal tobk (such thatbk ∈ BY), the entropy of the conditional distribution ofx

for this value ofy then becomes:

H(X|y = bk) = ∑
x∈AX

p(x|y = bk) log
1

p(x|y = bk)
. (4.3)

More generally, ify is to become known then we can predict the conditional entropy

of the distribution ofX givenY averaging over all possible outcomes ofy:

H(X|Y) = ∑
y∈BY

p(y)

[

∑
x∈AX

p(x|y) log
1

p(x|y)

]

(4.4)

= ∑
x∈AX ,y∈BY

p(x,y) log
1

p(x|y)
. (4.5)
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Observing Equations 4.1, 4.2 and 4.5 one can point out that

H(X|Y) = H(X,Y)−H(Y) (4.6)

which indeed captures the true meaning of conditional entropy: it reflects the uncer-

tainty expected to remain in the outcome of one variable, upon a supposed observation

of the other.

4.1.4 Mutual Information

Entropy, which encodes the uncertainty in the state of a variable and Mutual Informa-

tion, which expresses the amount of informationsharedbetween two variables, are the

two key measures in Shannon Information Theory. Thinking ofthe common informa-

tion between variablesx andy in terms of the reduction in uncertainty we expect in

the distribution of one upon a supposed observation of the other, below we derive the

expression from first principles:

I(X;Y) = E

[

log
p(x|y)
p(x)

]

(4.7)

= H(X)−H(X|Y) (4.8)

= ∑
x

p(x) log
1

p(x)
−∑

xy
p(x,y) log

1
p(x|y)

= ∑
xy

p(x,y) log
p(x|y)
p(x)

= ∑
xy

p(x,y) log
p(x,y)

p(x)p(y)
(4.9)

This measure which is termed as the Mutual Information between X andY, is sym-

metric soI(X;Y) = I(Y;X) holds. In the special case where the two variables are in-

dependent, then intuitively they share no information at all, which is confirmed when

expandingp(x,y) resulting to the cancellation of the numerator and denominator in-

side the logarithm of equation 4.9. If we now substituting Equation 4.6 into 4.8 we

get,

I(X;Y) = H(X)+H(Y)−H(X,Y) (4.10)

which can be visualised in Figure 4.1 together with all implicit relationships between

the rest of the measures introduced in this section.

4.1.5 Continuous Variables

On attempting to extend these quantities for continuously distributed variables, one

has to be cautious of preserving consistency. Standard procedure involves splitting



4.1 Principles of Information Theory 53

Figure 4.1:The relationship between marginal, joint and conditional entropies with mutual
information.

This figure is based on an illustration from Mackay [2003]

the now continuous range ofX into discrete interval bins each∆x wide, such that the

probability ofx falling within a particular bin is equal top(x)∆x. Therefore entropy is

described as:

H(X) = ∑
x

p(x)∆x log
1

p(x)∆x
.

Taking now the limit of∆x→ 0 it is evident that on every halving of∆x the entropy

content increases by 1 bit, rendering the expression ill-behaved as indicated by Mackay

[2003]. It is permissible however to take this limit for bothcontinuous ranges ofX and

Y on the analogous expression for mutual information. Therefore following from the

expression for discrete variables in Equation 4.9, the mutual information of the two

continuous variables is derived by:

I(X;Y) = lim
∆x,∆y→0

[

∑
xy

p(x,y)∆x∆y log
p(x,y)∆x∆y

p(x)p(y)∆x∆y

]

(4.11)

=

∫

x,y
p(x,y) log

p(x,y)
p(x)p(y)

dxdy (4.12)

=

∫

x,y
p(x,y) log

p(x|y)
p(x)

dxdy. (4.13)

4.1.6 Mutual Information in a Multivariate Gaussian

Given the brief introduction into the most important Shannon information measures,

we now look at the special case of multivariate Gaussians since the goal is to use Infor-

mation Theory in the context of SLAM. Considering a single, multi-variate Gaussian

probability density describing the state vectorx by a mean vector̂x and a covariance

matrix P, we consider the mutual information shared between disjoint subsets of vari-

ables included in the state vector. Denoting the two subset-vectors bya and b of

lengthsNa andNb respectively, then we consider the partition ofx̂ andP as follows:

x̂ =





â

b̂



 ; P =





Paa Pab

Pba Pbb



 . (4.14)
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Considering the effect that a supposed observation of vector b will have on the state

of partitiona, Davison [2005] has shown that the mutual information shared between

two such partitions ofx can be expressed as

I(a;b) = E

[

log
p(a|b)

p(a)

]

(4.15)

=
1
2

log
|Paa|

|Paa−PabP
−1
bb Pba|

. (4.16)

Essentially, equation 4.16 suggests that the information content shared betweena and

b can be evaluated considering the reduction in the uncertainty of a incurred by the

observation ofb. While this expression seems very intuitive in terms of dividing the

magnitude in the variance ofa before and after measuringb, computing the actual

value can be very expensive. Consider for example evaluating the shared information

content between different parts of a 1000-long vector; handling matrix inversions and

multiplications in the denominator are bound to take up vastamounts of processing

time, consequently rendering such computations impossible for real-time processing.

However, viewing this expression from a slightly differentangle, Chli and Davison

[2008a] considered the entropy in vectorx as the joint entropy of the(a,b) pair. This

minor change in perspective proved key to reaching a much more cost-effective repre-

sentation of the mutual information ofa andb, as derived below. Starting from first

principles and applying Bayes’ rule in Equation 4.7:

I(a;b) = E

[

log
p(a|b)

p(a)

]

= E

[

log
p(a,b)

p(a)p(b)

]

. (4.17)

However the joint probability density ofp(a,b) is by definition, equal top(x). More-

over, if N refers to the length ofx, the probability distributionp(x) can be expanded

as

p(x) = (2π)−
N
2 |P|−

1
2 e−

1
2(x−x̂)⊤P−1(x−x̂) . (4.18)

A similar expression is applicable for the PDF of each partition, adapting the symbols

accordingly. Therefore, expanding out these PDFs in Equation 4.17:

I(a;b) = E

[

log
p(x)

p(a)p(b)

]

(4.19)

= E

[

log
|P|−

1
2 e−

1
2(x−x̂)⊤P−1(x−x̂)

|Paa|
− 1

2 e−
1
2(a−â)⊤Paa

−1(a−â) |Pbb|
− 1

2 e−
1
2(b−b̂)⊤Pbb

−1(b−b̂)

]

=
1
2

log
|Paa||Pbb|

|P|
−

1
2ln2

E
[

(x− x̂)⊤P−1(x− x̂)
]

+
1

2ln2

(

E
[

(a− â)⊤Paa
−1(a− â)

]

+E
[

(b− b̂)⊤Pbb
−1(b− b̂)

])

(4.20)
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Using arguments of Cover and Thomas [2006]:

E
[

(a− â)⊤Paa
−1(a− â)

]

= E
[

(a− â)(a− â)⊤ ·Paa
−1
]

(4.21)

=
(

E
[

aa⊤
]

− ââ⊤
)

·Paa
−1 (4.22)

= Paa ·Paa
−1 = Na . (4.23)

Therefore, applying this result into Equation 4.20 and using N = Na +Nb:

I(a;b) =
1
2

log
|Paa||Pbb|

|P|
+

1
2ln2

(−N+Na+Nb) (4.24)

=
1
2

log
|Paa||Pbb|

|P|
. (4.25)

Consequently, this last expression is a much more efficient evaluation to perform than

that of Equation 4.16. In fact, this formulation is fundamental to making our Active

Matching algorithm (discussed in Chapter 5) perform in real-time, since the compu-

tation of the shared information content between two partitions of the state vector is

performed many times throughout the processing of a single frame.

4.2 Information Theory in Probabilistic Robotics

The notion of information has long been used in SLAM and probabilistic robotics,

albeit in a quite different sense than discussed in this thesis. For the sake of complete-

ness, before introducing the contributions of this work, below we summarise the most

important uses of information in the field.

4.2.1 Active Control for Exploration

Mutual information has primarily been used in the sense of actively controlling the

behaviour of the robot or camera during exploration. Such examples are the works of

Bryson and Sukkarieh [2005] and Vidal-Calleja et al. [2006]who evaluate the infor-

mation gain for all possible actions (e.g. turn left, keep onstraight) essentially guiding

the robot movements to maximise the quality of estimates. Depending on the question

posed, mutual information can be formulated accordingly toachieve the objective:

whether this is active localisation of the robot with respect to a known map, or the con-

verse problem of optimising mapping for a known trajectory,or even a combination of

both localisation and mapping as is the case in SLAM, the key for efficient exploration

is in the evaluation of input information.

However, while all these methods study the enhancement of the navigation strategy

assuming the ability to control the motion of the robot, thisthesis looks at the more
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fundamental problem of making the most of the data that is already available during

general tracking.Activebehaviour in this work can only refer to dynamic decisions

that we are able to make only within the context of manipulating the input material at

every frame – these decisions cannot have an effect on the trajectory followed or the

camera viewpoint as this is left entirely up to the intentions of the carrier of the camera

(human or robot). Dealing with a less constrained problem, the questions tackled here

lead to a methodology applicable on a wider range of problems.

4.2.2 Information Filters

A special family of filters called ‘information filters’ appear in the literature to char-

acterise probability distributions. Like the Kalman filterand the Extended Kalman

filter, an information filter represents the belief about thestate of a variable by a Gaus-

sian. However, rather than parametrising a multivariate normal distributionN (x̂,P)

by its mean and covariance matrix, it is instead parametrised byN −1(η ,Λ) whereη is

called the ‘information vector’ andΛ is the ‘information matrix’ such thatη = P−1x̂,

and Λ = P−1. Consequently,Λ is also referred to as the inverse covariance matrix.

Transforming the standard expression describing the PDF ofvectorx by its mean and

covariance, one can easily confirm that the dual expression in the information form

corresponds to:

p(x) = const. e(−
1
2x⊤Λx+x⊤η) , (4.26)

where ‘const.’ here is a constant. This formulation, while having very similar prop-

erties to the Kalman-based representations, it has the advantage that conditioning on

a subset of variables is a very cheap operation meaning that integration of new input

data into the state can be fast. However, marginalising out asubset of variables re-

quires matrix inversion to resolve estimates back into a probability distribution which

is much more expensive. On the other hand, marginalisation corresponds to a straight-

forward deletion of entries (corresponding to the variables undergoing marginalisation)

in the equivalent covariance form. In essence, as Eustice etal. [2005a] has shown very

clearly, the conditioning and marginalisation processes in the two representations are

inversely analogous and so are their costs.

Several successful applications of the information filtersexist in the literature.

Multi-sensor systems like the work of Manyika [1993] and more recently Eustice et al.

[2006] benefit from the fast information fusion implied in this formulation, while in-

terestingly other works reviewed in detail by Thrun et al. [2005] aim at exploiting the

sparse structure of the inverse covariance matrix and the fact that information filters

can be thought of as graphs, otherwise referred to as Gaussian Markov random fields.

Indeed, any two conditionally independent variables (or ‘d-separated’ in graph theo-

retic terminology) while having a non-zero cross-covariance entry, their corresponding
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inverse-covariance entry is zero. Thinking in terms of the Shannon measures defined

earlier, these two variables do share a non-zero mutual information – it only becomes

zero when the variables are entirely independent. Following the intuition of this exam-

ple, it is evident that the entries of the information matrixΛ are subtly different from

Shannon’s mutual information. In fact, the term ‘information matrix’ comes from a

different measure of information, namely the Fisher information as pointed out by

Mutambara [1998]. In the case of multivariate distributions, this corresponds to the

matrixJ(θ) defined for distributions parametrised by vectorθ . Following the notation

of Cover and Thomas [2006], given the density functionf (x;θ) relating vectorx with

the parameters vectorθ , the elements of matrix the Fisher Information matrixJ are

defined as follows:

Ji j (θ) =

∫

f (x;θ)
∂

∂θi
ln f (x;θ)

∂
∂θ j

ln f (x;θ)dx . (4.27)

Expressing this in terms of the likelihood of measurements with respect to the state

vector we aim to estimate in SLAM, it has been shown thatJ becomes equivalent

to the inverse covariance matrixΛ (assuming Gaussian noise and minimum mean-

squared-error predictions). While this information matrix exhibits attractive properties

like sparseness, the true meaning of individual entries is not at all obvious. This thesis

studies Shannon-based information measures and their application to different parts of

the processes involved in SLAM with the aim to provide a more comprehensive insight

into the relationship of the quantities discussed.

4.3 Information Value of a SLAM Measurement

Probabilistic filtering for SLAM involves maintaining a state representation of the map

and the camera parameters, which are constantly refined based on the measurements

made in the course of tracking. Using probabilistic inference we are able to both

make predictions regarding the new state since the last estimated pose but also update

the state parameters following a collection of observations made on a subset of these

parameters. In this thesis we use the term ‘observation’ or ‘measurement’ to refer to

the process of acquiring matches of feature-patches predicted to be visible in the given

image.

As explained in Chapter 3, in a visual SLAM system like MonoSLAM the system

bases any state updates upon the successful or failed matches of the features it has

attempted to measure. Since this is the only observable partof the state vector (the

new camera position or viewpoint can only be inferred from the observations), these

measurements are vital to successful tracking. However, ashinted earlier not all mea-

surements can be equally informative when inferring the state of the non-observable
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parts of the state. The amount of information each measurement can provide though

depends on a variety of factors like the uncertainty in either the position of the fea-

ture prior to measurement or the camera state, but more importantly the correlation

between the two. Acknowledging this fact, one can make predictions about the value

of a measurement prior to making it effectively guiding the consumption of processing

resources towards more promising actions.

Selective processing is key to online processing since handling the incoming bulk

of information at frame-rate becomes a challenge. Aiming toachieve a balance be-

tween the knowledge gained and the time spent on processing,here we investigate the

information value of possible feature measurements in a SLAM map. While work has

previously been done in cutting down unnecessary processing upon the reception of a

new image (e.g. active feature search during frame-to-frame matching), the cues that

are available in probabilistic filtering and have usually been overlooked are the cor-

relations of predicted, candidate feature measurements. These correlations are often

very strong, since all predictions about feature locationsdepend on common parts of

the scene state. In a nutshell, the presence of strong correlation between two candidate

measurements means that measuring one feature tells us a lotabout where to look for

the other. However, the level of correlation of either features with each other or with

the camera state can vary substantially, confirming that notall image cues are equally

valuable in resolving the current uncertain state.

The value of a measurement primarily depends on the reference question we aim

to answer (e.g. ‘where is the camera?’ vs. ‘where is featuref ?’) but also a long

list of influential factors including the the type of environment where tracking takes

place, the camera dynamics or the density of features being tracked. Each and every

factor has a substantial effect on the estimation process and therefore on the worth of

each measurement, however it is practically impossible to examine them individually

at runtime. This is where Information Theory can be employedto provide dynamic

measures of how valuable a feature measurement really is, exploiting the power of the

fully probabilistic framework maintained in filtering.

This section studies the application of mutual informationin the context of SLAM

providing an understanding of the relationships between features and the inherent re-

dundancy in the map. Previously, Manyika [1993] has suggested an information-based

framework in robot localisation and mapping and more recently Davison [2005] sug-

gested the application of Information Theory principles inSLAM techniques to guide

efficient image processing. Following this direction, herewe explore further the in-

sights provided by mutual information which leads to effective and efficient algorithms

for guided processing of incoming data discussed in subsequent chapters. Since the

work of Davison [2005] has been the main inspiration for the contributions of this the-
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sis, below we begin with a brief discussion of the ideas and conclusions drawn there

before presenting our investigation on mutual information.

4.3.1 Feature MI in Measurement Space

Upon the reception of a new frame during sequential SLAM, thesystem makes a se-

ries of predictions including the new camera pose and therefore the subset of known

features predicted to be visible from the new viewpoint. These features consequently

comprise the set of candidate measurements. Such candidatemeasurements vary in

two significant ways: the amount of information which they are expected to offer, and

the amount of image processing likely to be required to extract a match; both of these

quantities can be computed directly from the current searchprior. There are ad-hoc

ways to score the value of a measurement such as search ellipse size, used for simple

active search for instance in Davison and Murray [1998]. However, Davison [2005],

building on early work by others such as Manyika [1993], explained clearly that the

Mutual Information (MI) between a candidate and the scene state is the essential prob-

abilistic measure of measurement value.

Following the notation introduced in Chapter 3 and the expression for the MI of

continuously distributed variables in Equation 4.13, below we evaluate the MI of the

camera statexc and a candidate predicted measurementzi as:

I(xc;zi) = E

[

log
p(xc|zi)

p(xc)

]

(4.28)

=
∫

xc,zi

p(xc,zi) log
p(xc|zi)

p(xc)
dxcdzi . (4.29)

ThereforeI(xc;zi) describes the number ofbits of information we expect to learn

about the uncertain vectorxc by determining the exact value ofzi . Using this measure

to evaluate the MI scores of each candidate predicted measurementzi , we can fairly

compare them to determine which one has most utility in reducing uncertainty in the

statexc, even if the features themselves have different types (e.g.point feature vs.

edge feature). Furthermore, aiming to quantify the effort incurred in a supposed mea-

surement of a given candidate Davison [2005] proposed the ‘information efficiency’

score obtained by dividing the MI value of a candidate by a measure of the associated

measurement cost, essentially describing the number of bits to be gained per unit of

computation.

Mutual Information vs. Information Efficiency

Suppose that a rectangular rigid object is free to move in the2D space as shown in

Figure 4.2 and the aim is to estimate its position and orientation given that a set of
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(a) Start (b) Measure feature 9

(c) Measure feature 8 (d) Measure feature 0

Figure 4.2: Pinning down the object by selecting measurements according to the Mutual
Information they are predicted to provide to the state of theobject. Three standard devia-
tion uncertainty bounds are shown before and after measurement in blue and red respectively.
Alongside the integer label of each measurement candidate is its MI with the object state.

This figure is based on an illustration from Davison [2005]

candidate feature measurements is available to us. These features have a predicted

location and an associated uncertainty each and they all lieon the object implying that

their position estimates are tightly correlated. The features with the biggest uncertainty

are predicted to provide the most information to the state ofthe object as illustrated in

Figure 4.2(a). Measuring the feature with the highest MI value with the object state

first, has indeed a big impact on the object state which is reflected in the dramatically

reduced uncertainty regions of the rest of the candidates inFigure 4.2(b). Proceeding

with measuring the candidate with the biggest predicted MI with the object state at

each step, it is evident that the object is soon localised with sufficient accuracy (this is

assumed to be when further candidate measurements are predicted to provide less than

1 bit of information).

Of all the possible sequences of measurement, the one used inFigure 4.2 is the

optimal one with respect to localising the object in the fewest measurements possible.

However, each search for a feature match requires a number ofimage processing oper-

ations proportional to the 3σ uncertainty region of that feature depicted with ellipses

in both figures 4.2 and 4.3. Indeed a feature measurement involves exhaustive search

for a match across all possible locations within that region. As a result, when inter-

ested in the speed of processing as well as accuracy of the result one has to take into

account that when choosing to measure the candidate with thebiggest uncertainty first
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(a) Start (b) Measure feature 7

(c) Measure feature 6 (d) Measure feature 2 (e) Measure feature 8

Figure 4.3: Selecting measurements by information efficiency value. Here, aside from the
label of each feature and its MI with the object state, we alsodisplay the area of its correspond-
ing search ellipse in pixels and the relevant information efficiency score (in bits per pixel).

This figure is based on an illustration from Davison [2005]

it will inevitably yield a large number of image processing operations. In an attempt to

optimise then with respect to both accuracy and speed, Davison [2005] proposed an al-

ternative scheme of ordering measurements which takes bothmutual information and

computational cost into account making decisions based on theinformation efficiency

ratio of each feature:

Information Efficiency =
MI with the object state
Area of search region

(4.30)

Figure 4.3 presents the matching steps involved for the samepositioning scenario,

but making decisions on a highest-information-efficiency-first basis. In this case, one

additional measurement is necessary achieve the desired level of accuracy but it is

evident that the overall area searched is reduced (and therefore the computational cost).

In Chapter 5 where we discuss our Active Matching algorithm,we make use of these

findings extending the methodology to cope with the hurdles imposed when dealing

with real images as opposed to simulation scenarios.

Feature’s MI with All Other Features

While Davison [2005] has proposed using the measure of the MIa candidate measure-

ment has with the object state, evaluating this in practice while tracking real scenes

with SLAM has not proved very stable: the most recently initialised features have a
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(a) Camera view (b) 3D map view

Figure 4.4: Comparing MI scores of each candidate with the rest (features’ MI) and the MI
of each candidate with the camera state (state MI). Figure (a) illustrates both MI measures in
bits, where for each feature we display its label along with its features’ MI score on the left
and its state MI score on the right, as computed based on filterdata for this frame. (b) is a
visualisation of the global 3D uncertainty in each feature.Typically, newly initialised features
have large depth uncertainty and inherit most of the camera’s uncertainty boosting their state
MI scores likeF15 here (note that in this example feature labels are chosen to reflect the
order of initialisation). However,F15 being the ‘youngest’ feature in the system has not built
strong correlations with the rest of the features achievingthe smallest features’ MI. Features’
MI scores exhibit more stable behaviour since they only takelocal frame data into account.
F8 being a moderately old feature with a good position estimate, has the highest features’ MI
score promising large uncertainty reductions in the rest ofthe visible features which is more
desirable for frame-to-frame matching.

large uncertainty in their depth estimate and also inherit the increasing uncertainty in

the camera pose, which immediately makes their MI values rise substantially with re-

spect to older features visible in the frame as demonstratedin the example of Figure

4.4. As a result, these features lie at the top of the MI-scores list influencing the order

of measurement until they get initialised properly. Moreover, when the global uncer-

tainty in the map is large after continued exploration, ‘younger’ features again promise

larger reductions in state uncertainty while this is not necessarily desirable when the

objective is frame-to-frame matching. On the other hand, transforming all calculations

into measurement space (i.e. image space) and computing theMI scores of features

with respect to the rest of the candidates for measurement not only can we capture the

true worth of a measurement action in local matching but alsothe MI values obtained

exhibit more constant behaviour due to the very fact that relative data is taken into

account (as opposed to the global camera location as before).

This measure has the very satisfying property that active search for features can

proceed purely in measurement space while it is also appealing in problems where

it is not desirable to make manipulations of the full state distribution during active

search, such as SLAM or SFM applications where the state vector is potentially very



4.3 Information Value of a SLAM Measurement 63

(a) 14 candidate measurements

Select a candidate, measure it and update the search-state

(b) F4 is measured (c) F7 is measured

Figure 4.5: The information value of a feature with respect to all the candidates for mea-
surement is the total reduction expected in uncertainty. This is an example illustrating the MI
scores of candidates with respect to the rest of the featuresin the scene, as computed using
Equation 4.31 and displayed in absolute number of bits. Before the matching begins in (a) ev-
ery feature has some uncertainty in its position. Measuringone of the candidates and updating
using the EKF update rules, at the bottom row of images is a superposition of the outcomes
depending on the choice made: measuring a feature with low information value as in (b) or
a feature with high MI as in (c). The effect of each of these measurements is evident in the
relative reduction in the ellipse-areas and is also reflected in the updated MI value of each fea-
ture. In essence, the resulting overall uncertainty in the unmeasured features is reduced much
more when measuringF7 predicted to provide 4.7 bits than measuringF4 with predicted MI
of 1.9 bits.
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large. Following our derivation in Equation 4.25 of the MI between two partitions of

a means vector, we consider the MI of a predicted measurementzi with respect to the

rest of the feature-candidateszT 6=i:

I(zi ;zT 6=i) =
1
2

log
|Sii ||ST 6=i T 6=i |

|S|
, (4.31)

where the vector of predicted measurementszT and the innovation covariance matrix

S are partitioned as follows:

zT =













zi

zT 6=i













, S =













Sii Si T 6=i

ST 6=i i ST 6=i T 6=i













. (4.32)

This expression is used in Chapter 5 to suggest the order in which to carry out

measurements for efficient and robust frame-to-frame feature searching and matching.

Figure 4.5 illustrates through a real tracking example the application the features’ MI

scores and the effect different measurements have to the uncertainty left in matching

that frame. Projecting the 3σ uncertainty regions of visible features feature in image

space as computed fromS Figures 4.5(b) and (c) superimpose the individual uncer-

tainty reductions of unmeasured features when measuring a candidate with a low and

a high features’ MI score respectively.

4.3.2 Pairwise MIs Between Features

Aiming at isolating the effect that a candidate measurementhas on individual features,

here we also introduce the notion of pairwise MI as the mutualinformation between

two different features in the SLAM map, in measurement space. Namely, the MI

shared between candidateszi andzk is:

I(zi ;zk) = E

[

log
p(zi |zk)

p(zi)

]

(4.33)

=

∫

zi ,zk

p(zi ,zk) log
p(zi |zk)

p(zi)
dzidzk (4.34)

=
1
2

log
|Sii ||Skk|

|Si,k|
, (4.35)

whereSi,k is the joint innovation covariance of both candidates. The mutual informa-

tion between predicted measurements of features captures their common information

content, therefore providing an absolute, normalised measure of their correlation.
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The MI Matrix

We can now define the Mutual Information matrix as below, so that every off-diagonal

entry is calculated based on sub-blocks ofS and represents the expected information

gain of a candidate measurement given the exact state of another. If N is the total

number of candidates then:

I(zT) =













∗ I(z1;z2) . . . I(z1;zN)

I(z2;z1) ∗ . . . I(z2;zN)
...

...
...

...

I(zN;z1) I(zN;z2) . . . ∗













. (4.36)

This matrix is symmetric and the elements on the diagonal arenot defined here and

therefore filled with∗’s (while mutual information of a variable with itself can be

shown to be equal to the entropy of that variable [Cover and Thomas, 2006], it is a

meaningless entity in this study of relationships between variables). The matrix has

a value for every pair of features predicted to be observed oneach frame and we can

use it to analyse feature correlations on a frame by frame basis. While two features

that have never been predicted to be observed together will have an MI value of zero,

any features being covisible throughout a substantial number of framesand moving

consistently will share strong mutual information links. On the other hand, if two

features despite being co-observed, have significant depthdifference in the scene they

are bound to share a weaker MI link since this translates intoparallax difference in

image space meaning that they won’t really move consistently from the viewpoint of

the camera. In Figure 4.6(a) is a visual projection of how theMI matrix looks in a

real tracking example frame. This MI matrix forms the basis for all of the analysis we

conduct in Chapter 6 to discover the map structure in the context of SLAM and use it

to suggest meaningful approximations for large-scale mapping.

Both measures of MI introduced in this section prove useful in different problems

as will become apparent in the chapters to follow due to the fact that they provide the

answer to different, equally important questions: features’ MI gives a measure of the

joint expected reduction in uncertainty upon a measurement over the rest of the visible

features in the scene, while pairwise MI describes the information content shared be-

tween individual combinations of visual features. The two measures are indeed related

since they describe information based on the same probabilistic data, however their re-

lationship is not straightforward. One might naively say that the features’ MI score is

equivalent to the sum of pairwise MIs it shares with the rest of the features. However,

this does not hold since thetypeof information shared between features is crucial in

the relationship of the two measures: while a candidate measurementA is predicted to

provide somen bits of pairwise MI to either ofB andC, part of the information that this
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(a) Pairwise MIs (b) Features’ MIs

Figure 4.6: Comparison of pairwise vs. features’ MI. While features’ MIs in (b) provide a
measure of the MI a candidate measurement is predicted to provide to the rest of the features
in the scene, pairwise MIs in (a) reflect the individual information gain in each feature with
respect to the candidate in question. In (a) is a visual projection of the MI matrix for this frame
highlighting the MI links spanning out ofF11 (MI values are shown in absolute number of
bits). Depending on the strength of correlation between twofeatures, their pairwise MI reflects
how much information they share in common. For example, measuringF11 is only predicted to
provide 1.3 bits to F1 but 1.4 bitsmore to its strongly correlated neighbourF5. To contrast the
two different MI scores introduced here, (b) shows the MI score of each feature with respect
to all other unmeasured features for the same frame. In this example, it is evident that while
the scores in (b) do not vary much, the pairwise MIs in (a) capture more subtle differences
between combinations of features. Both measures however, prove useful in different problems
as discussed in subsequent chapters.

measurement will pass on toB is the same as the information it will pass on toC as the

uncertainty ofB andC will be reduced along the same direction and magnitude as the

uncertainty ofA. The amount of information overlap passed on from a measurement

to the rest of the features is of course a function of the feature correlations and initial

uncertainties. The subsequent chapters discuss how these MI measures can be applied

in SLAM to guide efficient processing while enforcing consistency of the algorithms

involved.



5
Active Matching

In the feature matching tasks which form an integral part of visual tracking or SLAM,

there are invariably priors available on the absolute and/or relative image locations of

features of interest. Usually, these priors are used post-hoc in the process of resolving

feature matches and obtaining final scene estimates, via ‘first get candidate matches,

then resolve’ consensus algorithms such as RANSAC or JCBB. In this chapter we

show that the dramatically different approach of using priors dynamically to guide a

feature by feature matching search can achieve global matching with far fewer image

processing operations and lower overall computational cost. Essentially, we put image

processinginto the loopof the search for global consensus. In particular, our approach

is able to cope with significant image ambiguity thanks to a dynamic mixture of Gaus-

sians treatment. In our fully Bayesian algorithm denoted Active Matching, the choice

of the most efficient search action at each step is guided intuitively and rigorously by

expected Shannon information gain as discussed in Chapter 4. We demonstrate the

algorithm in feature matching as part of the sequential MonoSLAM system for 3D

camera tracking with a range of settings, and give a detailedanalysis of performance

which leads to performance-enhancing approximations to the full algorithm.

67
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Figure 5.1: Bottom-up matching: get candidate matches, then resolve. The first cue for
matching is similar appearance of features. The occurrenceof mismatches in inevitable for
matching in a real scene, as demonstrated in this example. This problem of data association
is tackled by searching for consensus. RANSAC is an example of a standard method which
resolves mismatches by choosing a random set of correspondences, hypothesising a solution
and checking the number of matches in agreement with the proposed model.

5.1 Introduction

It is well known that the key to obtaining correct feature associations in potentially am-

biguous matching (data association) tasks using computer vision or other sensors is to

search for a set of correspondences which are inconsensus: they are all consistent with

a believable global hypothesis. The usual approach taken tosearch for matching con-

sensus is as follows: first candidate matches are generated,for instance by detecting

all of a certain type of salient features in a pair of images and pairing up features which

have similar appearance descriptors. Then, incorrect ‘outlier’ matches are pruned by

proposing and testing hypotheses of global parameters which describe the world state

of interest — the 3D position of an object or the camera itself, for instance. The ran-

dom sampling and voting algorithm RANSAC proposed by Fischler and Bolles [1981]

has been widely used to achieve this in geometrical vision problems.

Outliers are match candidates which lie outside of bounds determined by global

consensus constraints. The idea that inevitable outlier matches must be ‘rejected’ from

a large number of candidates achieved by some blanket initial image processing is

deeply entrenched in computer vision and robotics.

The approach of ourActive Matchingparadigm is very different — to cut outliers

out at source wherever possible by searching only the parts of the image where true

positive matches are most probable. Both individual feature motion assumptions (such

as that the image displacement of a feature between consecutive video frames will

be bounded)and global consensus constraints can be expressed as priors on the true

absolute and relative locations of features within a rigorous Bayesian framework.

In Active Matching, instead of searching for all features and then resolving, fea-

ture searches occur one by one within tightly targeted regions. The results of each

search affect the regions within which it is likely that eachof the other features will
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(a) Interpretation tree (b) Image space

Figure 5.2: JCBB [Neira and Tardós, 2001] applied to visual tracking. This is a probabilistic
algorithm for resolving global consistency between candidate matches. An interpretation tree
and branch and bound search are used to evaluate the joint probability of proposed matches
given a probabilistic prior on their joint location. The matches need to be obtained before
resolving consensus, hence this is still a bottom-up method. Here is an example where the tree
in (a) is used to pair each observationz∗i with a known feature such that the all such pairings
are jointly compatible. The match found forF8 gets rejected (considered as spurious) since
the implied prediction error does not comply with the rest ofthe pairings (note: the blue blobs
denote the predicted locations of features before measurement).

lie. This is thanks to the same inter-feature correlations of which standard consensus

algorithms take advantage — but our algorithm’s dynamic updating of these regions

within the matching search itself means that low probability parts of the image are

never examined at all. The result is that the number of image processing operations

required to achieve global matching is reduced by a large factor.

Based in the information theoretic framework analysed in Chapter 4, we demon-

strate the ability of information theory to intelligently guide the step by step search

process and answer the question “where to look next?”. The expected information

content of each candidate measurement is computed and compared, and can also be

traded off against the expected computational cost of the image processing required.

The absolute bit units of information scores mean that heterogeneous feature types can

be rigorously and intuitively combined within the same matching process. Information

theory can also indicate when matching should be terminatedat a point of diminishing

returns.

While matching is often formulated as a search for correspondence between one

image and another (for example in the literature on 3D multi-view constraints with

concepts such as the multi-view tensors), stronger constraints are available when we

consider matching an image to astate— an estimate of world properties perhaps ac-

cumulated over many images. Uncertainty in a state is represented with a probability

distribution. Matching constraints are obtained by projecting the uncertain world state

into a new image, the general result being a joint prior probability distribution over the
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image locations of features. These uncertain featurepredictionswill often be highly

correlated. When probabilistic priors are available, the random sampling and preset

thresholds of RANSAC are unsatisfying. In more recent variants of the algorithm it

has been realised that an unnecessarily large number of association hypotheses gets

tested, therefore speedups have been proposed either by a two-step randomised selec-

tion of hypotheses as done in [Chum and Matas, 2008] or takingsome motion priors

into account proposed by Tordoff and Murray [2005]. However, the true value of the

probabilistic priors available has not yet fully been appreciated and exploited in these

methods which rely heavily on randomness and arbitrary thresholds. This has been

improved by probabilistic methods such as the Joint Compatibility Branch and Bound

(JCBB) algorithm proposed by Neira and Tardós [2001] whichmatches features via

a deterministic interpretation tree [Grimson, 1990] and has been applied to geometric

image matching in [Clemente et al., 2007]. JCBB which is demonstrated with an ex-

ample in Figure 5.2, takes account of a joint Gaussian prior on feature positions and

calculates the joint probability that any particular hypothesised set of correspondences

is correct.

Our algorithm aims to perform at least as well as JCBB in determining global

consensus while searching much smaller regions of an image.It goes much further

than previously published ‘guided matching’ algorithms such as the Guided-MLESAC

of Tordoff and Murray [2005] in guiding not just a search for consensus but the image

processing to determine candidate matches themselves.

Davison [2005] presented a theoretical analysis of information gain in sequential

image search. However, this work had the serious limitationof representing the cur-

rent estimate of the state of the search at all times with a single multi-variate Gaussian

distribution. This meant that while theoretically and intuitively satisfying active search

procedures were demonstrated in simulated problems, the technique was not applica-

ble to real image search because of the lack of ability to dealwith discrete multiple

hypotheses which arise due to matching ambiguity — only simulation results were

given. Here we use a dynamic mixture of Gaussians (MoG) representation which

grows as necessary to represent the discrete multiple hypotheses arising during active

search. We show that this representation can now be applied to achieve highly efficient

image search in real, ambiguous tracking problems.

This chapter presents in full detail the Active Matching algorithm which was first

introduced in [Chli and Davison, 2008a,b] and analysed further in terms of perfor-

mance in [Chli and Davison, 2009b]. We start with an in-depthexplanation of the

motivation for the mixture representation via a histogram-based analysis of the under-

lying probability distributions. Applying an InformationTheoretic methodology on

the probabilistic estimates maintained throughout matching, we demonstrate the in-
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fluence on the decisions the matcher makes and we detail the way that the mixture is

maintained depending on the outcome of each individual feature-search. Lastly, we

discuss the results of a comprehensive set of experiments pushing the capabilities of

the algorithm to the limits, with the aim of assessing its strengths and weaknesses.

Our study on the evolution of the informational value of measurements throughout

the matching process indicates the route towards effectiveapproximations which can

further increase the efficiency of Active Matching.

5.2 Active Search and Beyond

In our general matching formulation, we consider making image measurements of an

object or scene of which the current state of knowledge is modelled by a probability

distribution over a finite vector of parametersx. These parameters may represent the

position of a moving object or camera as is the case in MonoSLAM for instance. The

probability distributionp(x) which describes our uncertain knowledge of the param-

eters at the moment an image arrives will be determined by general prior knowledge

and what has happened previously to the system. For instance, in the common case of

sequential tracking of motion through an image sequence,p(x) at each time step will

be the result of projecting the distribution determined at the previous frame forward

through a motion model.

In an image, we are able to observefeatures: measurable projections of the state.

A measurement of featurei yields the vector of parametersz∗i . In MonoSLAM for

example,z∗i holds the 2D image coordinates of a keypoint of known appearance, the

position of an edge or a higher-dimensional parameterisation of a more complex image

entity. In each case, a likelihood functionp(zi |x) models the measurement process,

yielding the predicted parameterszi .

Projecting the current probability distribution over state parametersx into feature

space, we can predict the image locations of all the featureswhich are predicted to

be visible from the current viewpoint, as explained in Section 3.2.2. Our goal is to

use the joint distribution over all such measurement candidates p(zT), to guide in-

telligent active search and matching. The first possibilityone might consider is to

marginalise elementsp(zi) to give individual predictions of the image location of each

feature under consideration, thus allowing active search for features within their cor-

responding high-probability regions. This procedure is relatively common in visual

tracking, where strong motion models mean that these searchregions are often small

and efficiently searched. Several Kalman Filter-based trackers such as MonoSLAM

implement the same scheme by using gates at a certain number of standard deviations

to restrict the search. In the Condensation algorithm of Isard and Blake [1996] feature
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searches take place in fixed-size windows around predetermined measurement sites

centred at a projection into measurement space of each of theparticles representing

the state probability distribution.

The fact that has usually been neglected in feature search, however, is that the

predictions of the values of different measurementszi are very often correlated since

they all depend on common parts of the scene statex. As discussed in Chapter 4,

these correlations are the key to efficient coupled active search, we thus exploit them

in Active Matching to guide a step by step approach to search rather than blanket

examination of all feature regions.

5.2.1 Single Gaussian Model

To attack the coupled search problem, Davison [2005] made the simplifying assump-

tion that the PDFs describing the knowledge of the camera state xc and the features’

image coordinateszT can be approximated always by single multi-variate Gaussian

distributions, as defined by measurement state vectorxm and associated covariance

matrix Pm in Equations 3.11 and 3.12 respectively. Using this single Gaussian for-

mulation and as explained in detail in Section 4.3.1, Davison showed via simulations

how Information Theory can guide active search reducing thesearch-space by pinning

down an object given some candidate measurements with associated uncertainty.

The simulation examples presented in [Davison, 2005] (alsoshown in Figures 4.2

and 4.3) are based on the assumption that the matching is perfect: every search for a

candidate yields a single match occurring at thetrue feature position. This is a very op-

timistic assumption to make when dealing with real images where ambiguity and more

generally, perceptual aliasing is inevitable. Davison’s technique is therefore inapplica-

ble outside the benign conditions of a simulation environment. However, we believe

that Information Theory is the key to maintaining the optimal balance between pro-

cessing costs and information gains, therefore this work has been very much inspired

by Davison’s approach.

5.2.2 Full Histograms and Multiple Hypotheses

The weakness of the single Gaussian approach to matching is that, as ever, a Gaus-

sian is uni-modal and can only represent a PDF with one peak. In real image search

problems, no match (also referred to here as a failed match) can be fully trusted: true

matches are sometimes missed (false negatives), and clutter similar in appearance to

the feature of interest can lead to false positives.

To investigate the theoretical performance of active search in such ambiguous

cases, a simulation of 1D Bayesian active search for a singlefeature has been de-

veloped which uses a simple but exhaustive histogram representation of probability.
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Test the central pixel of the array for a match:

(a) Successful match at central pixel (b) No match at central pixel

The histogram distribution at later stages:

(c) 18 positions measured (d) All positions measured

Figure 5.3: Pixel-by-pixel search using a histogram representation. Suppose that a feature is
predicted to lie within an 1D array of pixels and that a full, normalised histogram represents
the probability distribution that this feature truly lies at each such image location. The distribu-
tion is refined sequentially starting off with a Gaussian prior and updated accordingly as each
pixel location is tested for a template match. Figures (a) and (b) show the outcome of either a
successful or failed match at the pixel in the centre of the prior which is checked first: a success
causes a spike in the distribution while a failure results toa trough. In (c), measurements at a
number of central sites have led to an intermediate distribution, and (d) shows the final poste-
rior distribution in a situation where all positions have been checked to reveal two significant
candidate locations for the true feature.
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As demonstrated with an example in Figure 5.3, the goal is to locate a feature in a one-

dimensional search region by making pixel-by-pixel attempts at template matching.

Each pixel is represented by a discrete histogram bin storing the current probability

that the true feature is in that location. The true feature must lie in exactly one true

position, so at all times the discrete histogram is normalised to total probability one.

At the start of search, we initialise a Gaussian prior acrossthe region.

Active search proceeds by a selecting pixel locationi as a candidate, measuring

it and updating the whole histogram via Bayes rule accordingly. The update uses the

following likelihood expression:

P(Mi|Bk) = CFP +CTPe−
1
2

(i−k)2

σ2 . (5.1)

HenceP(Fi|Bk) = 1−P(Mi|Bk) holds, for the probabilities of making a template match

Mi or a failed matchFi at positioni given Bk, that the feature is truly at positionk.

HereCFP is a constant representing the per-pixel false-positive probability of finding

a template match to clutter, andCTP is a constant proportional to the true-positive

probability of matching to the feature in its true position.This likelihood function says

that if the feature is atk then there is a raised, Gaussian-profile probability of making

a match at nearby locations, the parameterσ specifying the standard deviation of the

feature’s ‘measurement uncertainty’ (here set to 1 pixel).

The final distribution after all positions have been measured in Figure 5.3(d) is

the motivation for the mixture of Gaussians formulation used in the rest of the paper.

The single Gaussian method of Section 5.2.1 cannot represent the clear multiple hy-

potheses present here. This histogram representation really gets to the truth of active

search, but is impractical in reality because of the computational cost of maintaining

a histogram — rising exponentially with the number of dimensions of the total mea-

surement vector. Practical real-time searches happen not by one-by-one pixel checks

followed by probabilistic updates, but by examining a wholeregion at once and ob-

taining zero, one or more candidate matches. Figure 5.3(d) suggests that a mixture of

Gaussians represents the posterior in this case well.

5.3 Active Matching Algorithm

Ideally, any features selected for measurement would be absolutely unique and always

recognisable, meaning that they produce a match only when present and at the true

feature location. Since this is not the case in real image search problems, we can

never fully trust the matching outcome of a feature search. Modelling the probabilistic

‘search state’ as a mixture of Gaussians, we wish to retain the feature-by-feature qual-

ity of active search. Our new MoG representation allows dynamic, online updating of
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the multi-peaked PDF over feature locations which represents the multiple hypotheses

arising as features are matched ambiguously.

Our Active Matching algorithm searches for global correspondence in a series of

steps which gradually refine the probabilistic search stateinitially set as the prior on

feature positions. Each step consists of a search for a template match to one feature

within a certain bounded image region, followed by an updateof the search state which

depends on the search outcome. After many well-chosen steps, the search state col-

lapses to a highly peaked posterior estimate of image feature locations — and matching

is finished. Figure 5.4 illustrates the a step-by-step example of Active Matching (AM),

operating on a typical MonoSLAM frame where some ambiguity is encountered but

consensus is successfully resolved following a series of selective measurements.

5.3.1 Search State Mixture of Gaussians Model

A single multi-variate Gaussian probability distributionover the vectorxm which

stacks the object state and candidate measurements, is parameterised by a ‘mean vec-

tor’ x̂m and its full covariance matrixPm. We use the shorthandG(x̂m,Pm) to represent

the explicit normalised PDF:

p(xm) = G(x̂m,Pm) (5.2)

=
1

√

(2π)D|Pm|
exp{−

1
2
(xm− x̂m)⊤P−1

m (xm− x̂m)} , (5.3)

whereD denotes the cardinality of vectorxm. However, during Active Matching

we represent the PDF over the estimates inxm with a multi-variate MoG distribution

formed by the sum ofK individual Gaussians each with weightλi :

p(xm) =
K

∑
i=1

p(xmi ) =
K

∑
i=1

λiGi , (5.4)

where we have now used the further notational shorthandGi = G(x̂mi ,Pmi ). Each

Gaussian distribution must have the same dimensionality and the weightsλi must nor-

malise to add up to 1 for this to be a valid PDF.

The current MoG search state forms the prior of the next step of Active Matching.

This prior together with the likelihood and posterior distributions as shown in sym-

bolic 1D form in Figure 5.5, are explained in the following sections. However, before

looking into the details of the theoretical background, below we give an overview of

the algorithm describing the processes involved from a high-level perspective.
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(a) Beginning: Measure F9 (b) Measure F5 in G2

(c) Initial Gaussian pruned (d) Ambiguity is resolved

(e) End of the matching process (f) Search area & matches encountered

Figure 5.4: Resolving ambiguity using AM. Based on the input prior describing the joint
probability distribution over the features’ locations, the MI values are computed for each ellipse
to describe the information each measurement is expected toprovide to the rest of the features.
As F9 achieves the highest MI score per pixel to search, it gets measured yielding two matches
as shown in (a). Propagating this outcome,G1 andG2 are spawned in (b) and MI values are
recomputed. The match found forF5 in G2 boosts the newly spawnedG3, weakeningG0

andG2 enough to get pruned off the mixture in (c). The match forF10 comes to resolve the
ambiguity in (d) withG4 having dramatically reduced width with respect to the initial prior
G0. Measuring the rest of the features in the same sequential manner, AM concludes in (e).
Figure (f) superimposes of the elliptical areas searched toachieve data association with AM
and traditional matching techniques. In this example, AM searches 7× less image area than
standard ‘get matches first, resolve later’ approaches likeJCBB and RANSAC.
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5.3.2 The Algorithm

The Active Matching process is initialised with a joint Gaussian prior over the features’

locations in measurement space (e.g. prediction after application of a motion model).

Hence, at start-up the mixture consists of this single, multivariate Gaussian. Every

measurement candidate is evaluated based on the Mutual Information(MI) it is pre-

dicted to provide to the rest of the candidates. The candidate {Feature, Gaussian} pair

to achieve the highest MI-efficiency score is chosen for measurement. Essentially, a

{Feature, Gaussian} pair corresponds to an ellipse in image space, as shown in Figure

5.5. Section 5.4 is dedicated to explain how measurement selection is performed.

For every template match yielding from the search of the selected measurement

pair, a new Gaussian is spawned with mean and covariance conditioned on the hypoth-

esis of that match being a true positive — this will be more peaked than its parent.

In both cases of either a successful or null template search,the weights of the existing

Gaussians are redistributed to reflect the current MoG search state. The full description

of the update step after a measurement is detailed in the restof this section.

Finally, very weak Gaussians (with weight< 0.001) are pruned from the mixture

after each search step. This avoids the otherwise rapid growth in the number of Gaus-

sians such that in practical cases, fewer than 10 Gaussians are ‘live’ at any point, and

most of the time much fewer than this. This pruning is the better, fully probabilistic

equivalent in the dynamic MoG scheme of lopping off branchesin an explicit interpre-

tation tree search such as JCBB [Neira and Tardós, 2001].

Below, are the pseudo-code descriptions of the Active Matching algorithm and

the mixture-updating procedure. While some of the notationis explained later in the

section, these are really aimed at providing the reader witha general understanding of

the processes involved.

ACTIVEMATCHING(G0)

1 Mixture = [[1,G0]] // Each entry in the Mixture is a [weight, Gaussian] tuple

2 {Fc,Gc} = get max mi efficiency candidate(Mixture)

3 while (pair not yet measured({Fc, Gc}))

4 Matches = measure({Fc, Gc})

5 UPDATEM IXTURE(Mixture, c, Matches)

6 pruneinsignificantgaussians(Mixture)

7 {Fc,Gc} = get max mi efficiency candidate(Mixture)

8 end while

9 Gbest = find most probablegaussian(Mixture)

10 return G best
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UPDATEM IXTURE(Mixture, i, Matches)

Propagate the result of a measurement of a featureF in Gi , following the update rule of Equa-

tion 5.10

1 for k = 1 : K // loop through all Gaussians

2 [λk,Gk] = Mixture[k]

3 if k = i then // this is the measured Gaussian

4 for m= 1 : M // for every match, spawn a new Gaussian

5 Gm = spawngaussianand fuse match(Gk, Matches[m])

6 λm = λk×µmatch×prior(Matches[m], Gk)

7 Mixture = [Mixture, [λm,Gm]]

end for

8 λk = λk×µin × (1−prior sum(Matches,Gk))

else

// Probability ofGk for the measured feature, summed over the region covered byGi :

9 prob=prior sum underGi (Gk)

10 sum=prior sum(Matches,Gk)

11 λk = λk× [µmatch×sum+µin × (prob− sum)+ µout× (1−prob)]

end if

12 Mixture[k] = [λk,Gk] // reset entry to the updated state and weight ofGk

13 end for

14 normaliseweights(Mixture)

15 return

Note: prior(Matches[m], Gk) returns the prior probability of matchm being a true match, in

Gk (highest value at the centre of this Gaussian). Similarly,prior sum(Matches,Gk) returns

the sum of all such prior probabilities for all elements ofMatches.

5.3.3 Likelihood Function

One step of Active Matching takes place by searching the region defined by the high-

probability 3σ extent of one of the Gaussians in the measurement space of these-

lected feature. Suppose thatZ∗ = (z∗1 . . . z∗m . . . z∗M)⊤ is the outcome of this search

for matches, meaning that template matching has been successful atM different pixel

locations, but failed everywhere else in the region. The likelihood distribution of this

result with respect to the current statex is defined as:

p(Z∗|x) = µinTin + µoutTout+
M

∑
m=1

µmatchH(z∗m) , (5.5)
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Figure 5.5: Updating the Mixture of Gaussians. In this example, the search in regionG2

yields a match. Given this result, the likelihood function is formed as in Equation 5.5 and when
multiplied with the prior mixture, leads to the estimated posterior MoG. The latter consists of
a scaled version of the old mixture and a newG3 to represent the hypothesis that the match is
a true positive. The updated distribution of weights depends on the statistical properties of the
feature matched, the position of the match and the amount of overlap of the searched region
with respect to each Gaussian. The closer the position of thematch to the centre of the searched
G2, the strongest the weight of the spawnedG3. ‘Third-party’ Gaussians likeG1, get scaled
according the total belief they had that the match would lie in the searched region in the first
place; if the overlap betweenG1 andG2 is small and the match occurs away from the centre
of G1 then this Gaussian will become really weak in the posterior mixture.

whereµin,µout andµmatchare constants (defined later in Equations 5.6-5.8) capturing

the matching characteristics of each feature. In essence, the likelihood function is

modelled as a mixture of:

• M hypothesesH(z∗m), each to account for one candidatez∗m ∈ Z∗ being the true

match (considering all others as false positives) — these hypotheses are Gaus-

sians having very small width, corresponding to the measurement uncertaintyRi

as shown in the example of Figure 5.5, and

• two constant terms:Tin accounts for the hypothesis that the true match lies

in the searched region but has not been recognised, whileTout supports the

possibility of the true feature actually lyingout of the region searched. In fact,

these are both top-hat functions aimed at enforcing accountfor the spurious false

positives in the measurement process:Tin andTout have a value of one inside

and outside of the searched Gaussian respectively and zero elsewhere, since the

probability of a null search depends on whether the feature is really within the

search region or not.
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Theµ-terms in the likelihood function expression (Equation 5.5)are introduced so

that the individual feature characteristics are considered during the estimation process.

Surely, thedistinctivenessand themeasurabilityof features varies depending on a wide

variety of factors (e.g. the type of feature detector/descriptor, the repetitive structure

in the scene, the lighting conditions). A match coming from asearch for a unique

feature should be trusted more than a match yielding from a search for a very common

one. Conversely, a failed match for a feature that has been identifiable most of the

times comprises stronger evidence than a failed search for afeature that has not been

detected consistently throughout the sequence. Therefore, assessing the true-positive

Ptp, false-positivePfp, true-negativePtn and false-negativePfn probabilities of different

features via ‘statistical training’ during tracking, the Active Matching methodology

can inherently take them into account to enforce the robustness of the outcome based

on the reliability of features.

Going back to the formation of the likelihood function upon the measurement of a

{Feature, Gaussian} pair, if N is the total number of pixels searched for this measure-

ment, then theµ-terms of expression 5.5 can be computed as follows:

µin = PM
fp PfnPN−(M+1)

tn (5.6)

µout = PM
fp PN−M

tn (5.7)

µmatch = PtpPM−1
fp PN−M

tn . (5.8)

Given that there can only be one true match in the searched region, here the idea is to

take account of all different possibilities:

• the true match fact liesin the searched region but does not correspond to any of

the M matches, soµin is the probability of obtainingM false positives, a false

negative andN− (M +1) true negatives.

• the true match liesout of the searched region, soµout is the probability ofM

false positives andN−M true negatives, and finally,

• one of the obtained matches is actually the true feature, soµmatch is the prob-

ability of a true positive occurring along withM−1 false positives andN−M

true negatives.

5.3.4 Posterior: Updating After a Measurement

The standard application of Bayes’ Rule to obtain the posterior distribution forx given

the new measurement, is:

p(x|Z∗) =
p(Z∗|x)p(x)

p(Z∗)
. (5.9)
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Substituting the mixture models from Equations 5.4 and 5.5,we get the posterior esti-

mate:

p(x|Z∗) =

(

µinTin + µoutTout+
M

∑
m=1

µmatchH(z∗m)

)(

K

∑
i=1

λiGi

)

p(Z∗)
. (5.10)

The denominatorp(Z∗) is a constant determined by normalising all new weightsλi

to add up to one. Figure 5.5 illustrates the formation of a posterior when the search

outcome consists of a singe match (M = 1). This posterior will then become the prior

for the next Active Matching step.

In the top line of Equation 5.10, the product of the two mixture sums will lead

to K scaled versions of all the original Gaussians andMK terms which are the prod-

ucts of Gaussians with hypotheses, in essence yieldingMK new Gaussians. However,

we make the approximation that onlyM of theseMK product terms are significant:

those involving the prior Gaussian currently being measured. We assume that since

the other Gaussians in the prior distribution are either widely separated or have very

different weights, the resulting products will be negligible. Therefore there are only

M new terms added to the mixture which are generally highly-weighted, spiked Gaus-

sians corresponding to matches found in the searched region. These are considered to

be ‘children’ of the searched parent Gaussian. An important point to note, is that if

multiple matches in a search region lead to several new childGaussians being added,

one corresponding to a match close to the centre of the searchregion will correctly

have a higher weight than others, having been formed by the product of a prior and a

measurement Gaussian with nearby means.

All other existing Gaussians get updated posterior weightsby multiplication with

the constant terms. Note that the information of making a null search where no tem-

plate match is found, is fully accounted for in our framework— in this case we will

haveM = 0 and no new Gaussians will be generated, but the weight of thesearched

Gaussian will diminish.

Pruning Weak Gaussians From the Mixture

The nature of the MoG update implies that every time a match isencountered, a new

Gaussian is spawned to represent the scenario that it is a true match, while the searched

Gaussian is maintained to account for the case that the matchis false — most probably

assigned to a much lower weight. As a consequence, by the end of the matching pro-

cess, the mixture is populated by as many matches as encountered plus the initial one.

The vast majority of these Gaussians however, are usually ruled insignificant, quickly

after they get spawned since they pass on most of their weightto their descendant,
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newer Gaussians as demonstrated in the example of Figure 5.6.

This means that in essence, we carry an unnecessarily large mixture throughout

the matching process, constantly updating them and evaluating the potential effect of

measuring them for each feature (explained in detail in the following section), but

without them having any impact on the decisions made throughout matching or the

achieved accuracy. Thus, by pruning hypotheses whose weight falls below a certain

threshold, the algorithm becomes a lot faster at no expense.Indeed, cutting off a

Gaussian means that we can never go back to correct the matching scenario down that

particular route, so it is vital not to cull a potentially true hypothesis — this accentuates

the importance of a realistic weighting scheme within the mixture.

5.4 Measurement Selection

We assume that the input prior at the start of the search process is well-represented

by a single Gaussian and thereforeλ1 = 1. As active search progresses and there is

a need to propagate multiple hypotheses, this and subsequent Gaussians will divide

as necessary, so that at a general instant there will beK Gaussians with normalised

weights.

5.4.1 Search Candidates

At each step of the MoG Active Matching process, we use the mixture to predict

the expected outcome of individual feature measurements, and thus decide on which

action to take. In this sense our algorithm has been dubbedactivematching suggesting

a fully dynamic and automatic performance. At every instant, there areKF possible

actions, whereF is the number of measurable features. We rule out any{Feature,

Gaussian} combinations where we have already made a search. Also ruledout are

‘child’ Gaussians for a certain feature which lie completely within an already searched

ellipse. Looking at Table 5.1 for example, if we have measured root GaussianG1 at

feature 1, leading to the spawn ofG2 which after searching for feature 3 generatesG3,

then the candidates marked with ‘∗’ would be ruled out from the selection:

F1 F2 F3 F1 F2 F3 F1 F2 F3

G1 ∗ ⇒ G1 ∗ G1 ∗
G2 ∗ ∗ ⇒ G2 ∗ ∗

G3 ∗ ∗

Table 5.1:Excluding measurement-pairs lying completely within searched Gaussians from
the candidates selection
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(a) Step 0: Beginning of search (b) Step 1: Measuring F12 yields 2 matches

(c) Distribution of weights in the MoG per matching step

Figure 5.6: The evolution of Gaussians and the distribution of their weights per search-step in
a matching example. At the beginning of search in (a) there isonly one GaussianG0 present,
which is the input joint distribution over the locations of the features. The search forF12 in
G0 yields two matches, hence in (b) two new Gaussians are spawned (G1 andG2) each to
represent that one of the matches is true. The distribution of weights in the mixture at every
matching step, is shown in (c). The search in a Gaussian (denoted with pink blobs) at every
step has two possible effects on the mixture: (i) one or more Gaussians get spawned depend-
ing on the number of matches found (e.g. search inG0 spawnsG1 andG2) and weights get
redistributed, or (ii) only the weights of the existing Gaussians are affected following an unsuc-
cessful measurement attempt (e.g. at step 5 whereF7 fails to match inG5). It is evident from
this histogram that by the end of matching, the MoG gets cluttered with many, insignificantly
weighted hypotheses which take up precious processing timewithout having any effect in the
matching process.
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(a) Common feature patch (b) Distinctive feature patch

Figure 5.7:Analysing feature false-positive rates within MonoSLAM, which detects features
using the criterion proposed by Shi and Tomasi [1994]. The feature-patch queried in (a) de-
scribes a common structure in this scene with around 20 matches occurring per image, whereas
the feature-patch in (b) is much more distinctive. In both examples, the brightness of the boxes
indicates the strength of similarity. It is preferred to rely on distinctive features to resolve
matching consensus for the obvious reason that the measurement result of such patches can be
trusted more than others capturing more repeated scene structure. Therefore, if both features
queried in (a) and (b) are candidates for measurement in a given frame, choosing to measure
the feature of (b) first boosts the chances of the spawned Gaussian being a good start towards
successful data association. The ability of Active Matching to incorporate statistical models for
feature characteristics (rate of false positives, true positives, etc.) can potentially drive robust
matching in highly challenging scenarios.

All of the remaining candidates are evaluated in terms of theMutual Informa-

tion they are predicted to provide to the estimates of the rest of the candidates in the

mixture. The selection of which feature to measure next is based on the Information

Efficiency scores defined as the Mutual Information value divided by the are of the

region to be searched. The latter metric has been proposed by[Davison, 2005] and has

been discussed in more detail in Chapter 4.

As demonstrated in Figure 5.7, some features can be matched more reliably than

others. Our algorithm should automatically be able to benefit from the same proper-

ties, and probabilistically favour measurement of statistically trusted candidates with

their ability to reduce ambiguity in hypotheses. We have implemented a straightfor-

ward feature statistics capability within MonoSLAM to sequentially record the average

number of locations in an image similar to each of the mapped features, counting suc-

cessful and failed match attempts in the feature’s true location. This is used to assess

false positive and false negative rates for each feature within the current type of scene

(e.g. office, garden). The results shown in this chapter aim to demonstrate the effect of

efficient and robust matching without prior knowledge of theenvironment that SLAM

is performed, so the false-positive and false-negative rates which have been used are

uniform for every feature considered.
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It is worth noting that in all the experiments presented, thestrength of the mea-

surement noise (Ri) is assumed to be constant across all features. While indeedany

features with strong texture are likely to be matched with greater subpixel precision,

this approximation is not expected to affect significantly the the final outcome or the

order of measurement. Alternatively, one could determine an appropriate value for

eachRi using the learned feature statistics. If however multi-scale features are used,

then greater care should be taken in evaluatingRi to incorporate knowledge about the

scale that each feature has been detected asRi should no longer be assumed to be con-

stant. In general, when using a realistic value forRi in the measurement model then

Active Matching is expected to provide an accurate matchingoutcome.

5.4.2 Mutual Information for a Mixture of Gaussians Distrib ution

In order to assess the amount of information that each candidate{Feature, Gaussian}

measurement pair can provide, we predict the post-search mixture of Gaussians de-

pending on the possible outcome of the measurement:

1. A null search, where no template match is found above a threshold. The effect

is only to change the weights of the current Gaussians in the mixture intoλ ′
i .

2. A template match, causing a new Gaussian to be spawned with reduced width

as well as re-distributing the weights of the all Gaussians of the new mixture to

λ ′′
i .

In a well-justified assumption of ‘weakly-interacting Gaussians’ which are either

well-separated or have dramatically different weights, weseparate the information

impact of each candidate measurement into two components: (a) Idiscretecaptures

the effect of the redistribution of weights depending on thesearch outcome and (b)

Icontinuousgives a measure of the reduction in the uncertainty in the system on a

match-search. Due to the intuitive, absolute nature of mutual information, these terms

are additive:

I = Idiscrete+ Icontinuous (5.11)

One of either of these terms will dominate at different stages of the matching process,

depending on whether the key uncertainty is due to discrete ambiguity or continuous

accuracy. It is highly appealing that this behaviour arisesautomatically thanks to the

MI formulation.

Mutual Information: Discrete Component

Following the introduction to the notion of Mutual Information in Chapter 4, we con-

sider the effect of a candidate measurement purely in terms of the change in the weights
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of the Gaussians in the mixture. Restating Equation 4.8 withthe relevant symbols, the

mutual information that a candidate (predicted) measurement z j is predicted to provide

is:

I(z j ;zT) = H(zT)−H(zT |z j). (5.12)

Given that the search outcome can have two possible states (null or match-search),

then:

Idiscrete= H(zT) − P(z j = null) ×H(zT |z j = null) (5.13)

− P(z j = match)×H(zT |z j = match) , (5.14)

where

H(zT) =
K

∑
i=1

λi log2
1
λi

(5.15)

H(zT |z j = null) =
K

∑
i=1

λ ′
i log2

1
λ ′

i
(5.16)

H(zT |z j = match) =
K+1

∑
i=1

λ ′′
i log2

1
λ ′′

i
. (5.17)

While the weights of Gaussians currently in the mixture are denoted byλi , the

notationλ ′
i and λ ′′

i stands for the predicted weights after a failed and a successful

search, respectively. These predicted weights are calculated using the mixture-update

Equation 5.10 with the only difference that the likelihood of a successful search is

summed over all positions in the search-region that can possibly yield a match.

Mutual Information: Continuous Component

In Section 4.3 we have discussed the Mutual Information (MI)between one candidate

and the rest visible in the scene as the essential probabilistic measure of measurement

value. Following the single Gaussian formulation, we derived an efficient expression

for the mutual information in bits between any two partitions of the state vector in

Equation 4.25. Hence, the continuous component of the mutual information of a par-

ticular candidate pair{z j , Gi}, is calculated using Equation 4.31:

Icontinuous= λ ′′
m I(z j ;zT) =

1
2

λ ′′
m log

|S j j ||ST 6= j T 6= j |

|S|
, (5.18)

whereλ ′′
m denotes the predicted weight of the Gaussian to be spawned from the suc-

cessful measurement of this candidate. Also, the entries ofS and its sub-blocks in the

above expression, correspond to the current innovation covariance matrix ofGi . This



5.5 Results 87

captures the information gain associated with the shrinkage of the measured Gaussian

thanks to the positive match: if the new Gaussian has half thedeterminant of the old

one, that is one bit of information gain. This was the only MI term considered by

Davison [2005] but is now scaled and combined with the discrete component arising

due to the expected change in theλi distribution.

Generally, an important aspect of the algorithm that is worth emphasising, is its

fully dynamic nature allowing a general, adaptive behaviour. This is to be accounted

to the fully probabilistic maintenance of the mixture, but also the way these predictions

are made on the shape of the mixture to guide decisions for measurement. Defying the

need for arbitrary scaling of weights, we combine the discrete and continuous terms

of Mutual Information to take account of the expected variations in the distribution

relying on the probabilistic predictions and Information Theoretic principles to drive

the matcher towards efficient and robust performance.

5.5 Results

We present results on the application of the algorithm to feature matching for several

different situations within the MonoSLAM system of Davisonet al. [2007] for real-

time probabilistic structure and motion estimation, as discussed in Chapter 3. After

discussing initial results in this section, we give a detailed analysis of how performance

varies with different factors in Section 5.6.

In most cases where MonoSLAM has been applied (for example intracking the

motion of a hand-held camera in an indoor scene for use in augmented reality), the

angular term is dominant in the motion uncertainty’s effecton image search-regions,

since clearly, it is much easier to induce fast feature motion through rotation than

translation. Note that this fact has been harnessed directly in recent state of the art

visual SLAM results like in the PTAM system of Klein and Murray [2008], where

an explicit multi-stage tracking pipeline first performs simple but effective camera

rotation estimation before tracking features to estimate pose. We would hope that

Active Matching would be able to exhibit similar behaviour automatically.

5.5.1 Algorithm Characterisation

Our Active Matching algorithm simply takes as input from MonoSLAM the predicted

stacked measurement vectorzT and innovation covariance matrixS for each image

and returns a list of globally matched feature locations which are then digested by

MonoSLAM’s filter.



88 Active Matching

(a) Fast motion at 15Hz (b) Slow motion at 15Hz

Figure 5.8: Active matching (AM) dramatically reduces image processing operations and
mismatch encounters while still achieving global matchingconsensus. Here is a superposition
of the individual gating ellipses searched in order to generate candidates for outlier rejection
by JCBB (large, green ellipses) and the yellow ellipses searched for our Active Matching [Chli
and Davison, 2008a] method. In these frames, joint compatibility needed to search 8.4× more
image area than active matching in (a) and 4.8× in (b). Moreover, the ‘intelligent’ guidance of
where to search in AM, pays off in terms of the matches encountered (yellow blobs) avoiding
introducing unnecessary confusion in the system with the extra matches (green blobs) encoun-
tered in JCBB. Note that while typically AM needs to search atmost one ‘large’ ellipse as
shown in (a), in the case of a failed match-search like that ofF9 in (b) there is no evidence
to reduce the rest of the search-regions further, resultingto template matching across another
large ellipse forF5. This demonstrates the adaptability of the methodology to different match-
ing conditions, permitting the revisit of hypotheses upon lack of evidence.

5.5.2 Initial Sequence Results

Two different hand-held camera motions were used to captureimage sequences at

30Hz: one with a standard level of dynamics slightly faster than in the results of Davi-

son et al. [2007], and one with much faster, jerky motion. MonoSLAM’s motion

model parameters were tuned such that prediction search regions were wide enough

that features did not ‘jump out’ at any point — necessitatinga large process noise

covariance and very large search regions for the fast sequence. Two more sequences

were generated by subsampling each of the 30Hzsequences by a factor of two. These

four sequences were all processed for 11 features per frame using Active Matching.

As a means of comparison, the same sequences have also been processed with the

combination of full ellipse-searches of standard MonoSLAMand the JCBB method of

Neira and Tardós [2001] to prune outliers. In terms of accuracy, Active Matching was

found to determine the same set of feature associations as JCBB on all frames of the

sequences studied. This observation confirms that the Gaussians spawned throughout

the process of matching in each frame, were placed around the‘correct’ matches, and

also that the weight-scaling of the different hypotheses has been consistent with real-

ity; if a Gaussian had got a low weight without enough evidence of it being an unlikely
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One tracking step Matching only
No. pixels searched

[relative ratio]
Max no. live
Gaussians

Fast Sequence at30Hz (752 frames)
JCBB 56.8ms 51.2ms 40341

[8.01:1]
-

AM 21.6ms 16.1ms 5039 7
Fast Sequence at15Hz (376 frames)

JCBB 102.6ms 97.1ms 78675
[8.27:1]

-
AM 38.1ms 30.4ms 9508 10

Slow Sequence at30Hz (592 frames)
JCBB 34.9ms 28.7ms 21517

[6.89:1]
-

AM 19.5ms 16.1ms 3124 5
Slow Sequence at15Hz (296 frames)

JCBB 59.4ms 52.4ms 40548
[7.78:1]

-
AM 22.0ms 15.6ms 5212 6

Table 5.2:Statistical results of matching 11 features per frame with AM and JCBB. While
both methods achieve successful resolution of consensus for all four sequences, Active Match-
ing achieves fewer pixels(minimum of∼ 7× less) searched leading to lower matching timings
and lower overall tracking timings. The ‘Fast Sequence at 15Hz’ is evidently the most chal-
lenging one, requiring a maximum of 10 Gaussians to represent the search-state at a particular
instant.

scenario, then it could be mistakenly pruned off the mixture, resulting in missing some

of the correct matches in the final, accepted result. This, highlights the importance of

our fully probabilistic weighting scheme but also the guidance of matching using the

mutual information cues to measure the most reliable and informative features first —

it would not be a sensible strategy to search for a very commonfeature (with a high

false-positive rate) when there are more distinctive features present, or implode the

weight of the searched hypothesis after a null-search of a hardly recognisable feature

(low true-positive rate).

The key difference of the two algorithms was in the computational requirements

as shown in Table 5.2. The main result here is the ability of Active Matching to cope

efficiently with global consensus matching at real-time speeds (looking at the ‘One

tracking step’ total processing time column in the table) even for the very jerky camera

motion which is beyond the real-time capability of the standard ‘search all ellipses and

resolve with JCBB’ approach whose processing times exceed real-time constraints.

This computational gain is due to the large reductions in theaverage number of tem-

plate matching operations per frame carried out during feature search, as highlighted

in the ‘No. pixels searched’ column — Global consensus matching has been achieved

by analysing around one eighth of the image locations neededby standard techniques.

(JCBB itself, given match candidates, runs typically in 1msper frame.)

Testing fewer pixels for a template match, has the immediateeffect of fewer

matches being encountered. Guiding the matcher to ‘look’ atcarefully selected (re-

duced) regions, we avoid introducing additional confusionto the system by extra false-

positives improving the odds of converging to the true association scenario. A compar-



90 Active Matching

ison against RANSAC should have similar or worse than with JCBB, since the matcher

would probably search into larger, fixed-sized windows to achieve a globally consis-

tent outcome. The dramatic reduction in the area searched together with the matches

encountered by the two techniques are overlaid on frames from two of the sequences

in Figure 5.8.

In all the experiments presented in this work, we have used the Shi-Tomasi cri-

terion [Shi and Tomasi, 1994] to extract the features tracked. However, our Active

Matching algorithm is not specifically tied to any particular feature detector/descriptor.

While SIFT [Lowe, 2004] or SURF [Bay et al., 2008] features would be particularly

useful for matching due to their highly descriptive and distinctive nature (especially

in the presence of only weak priors) the cost associated withtheir extraction renders

them unsuitable for frame-rate matching (depending on the number of features tracked

per frame). However, Active Matching could potentially allow standard use of sophis-

ticated descriptors in tracking, since they need only be applied locally in small search-

regions. Despite the somewhat lower quality alternatives like Shi-Tomasi, FAST [Ros-

ten and Drummond, 2005, 2006] features or the randomised ferns classifier [Lepetit

and Fua, 2006] as used by Williams et al. [2007], could be usedequally effectively

in matching — allowing denser frame-to-frame correspondence scenarios studied in

Chapter 7.

5.5.3 Computational Complexity

We have seen that active matching will always reduce the number of image process-

ing operations required when compared to blanket matching schemes, but it requires

extra computation in calculatingwhere to searchat each step of the matching process.

The sequence results indicate that these extra computations are more than cancelled

out by the gain in image processing speed, but it is appropriate to analyse of their

computational complexity.

Each step of the algorithm first requires MI efficiency scoresto be generated and

compared for up to theKF measurable combinations of features with current live

Gaussians (note thatK is the total number of Gaussians live at any instant during

matching, whileF denotes the corresponding total number of measurable features).

Each such combination is evaluated for the MI it is predictedto provide, requiring

computation of orderO(K) for the discrete component andO(F3) for the continuous

component using the expression of Equation 5.18 (the determinants can be computed

by LU decomposition or similar). The constants of proportionality are small here

and these evaluations are cheap for low numbers of feature candidates. However, this

complexity becomes the weakness of the algorithm with regard to high numbers of

features, as addressed in the following section. The numberof steps required to achieve



5.6 Detailed Performance Analysis 91

(a) Matching at 7.5Hz (b) Matching at 30Hz

Figure 5.9: Typical images from the detailed performance analysis test-bed. Both (a) and (b)
illustrate the search-regions for matching with AM and JCBBwhen tracking at 7.5Hzand 30Hz
respectively. At low frame rates the search-regions are large to allow for bigger prediction
error, resulting to more matching ambiguity. In both cases,AM shrinks the searched area with
respect to the initial prior that methods like JCBB need to search, however this reduction is
less evident at higher frame rates.

global matching of all features will be around̄KF, whereK̄ is the average number of

live Gaussians after pruning.

5.6 Detailed Performance Analysis

In order to assess the performance of Active Matching in detail, we have generated a set

of experimental sequences by taking a high frame-rate imagesequence (with resolution

of 512× 384) and down-sampling temporally to generate reduced versions. Varying

both the frame-rate and the number of features being trackedper frame, we generate

a matrix of experiments to form a test-bed of the performanceof Active Matching.

Typical images are shown in Figure 5.9.

5.6.1 Performance with Varying Frame-Rate and Number of Features

In this analysis of the computational performance of ActiveMatching, we consider the

average time consumed per frame in terms of the main stages ofthe algorithm. Namely,

within each matching step it is necessary to (i)evaluate the mutual information that

each candidate measurement is predicted to provide followed by (ii) measurementof

the selected candidate (by correlation) and finally (iii) the update of the mixture of

Gaussians according to the measurement result.

For the sake of comparison with the ‘get candidates first, resolve later’ methods,

we monitor the computational time needed to perform JCBB. Again, the timings are

considered in terms of the time consumed to perform the two main steps of the method,



92 Active Matching

N
o 

P
IX

E
LS

NUMBER OF FEATURES

 

 

10 20 30 40 50
0.0 E+00

0.5 E+05

1.0 E+05

1.5 E+05

2.0 E+05

2.5 E+05

3.0 E+05

3.5 E+05

4.0 E+05
AM
JCBB

N
o 

M
IS

M
A

T
C

H
E

S

NUMBER OF FEATURES

 

 

10 20 30 40 50
0

10

20

30

40

50

60
AM
JCBB

(a) Pixels searched per frame (b) Mismatches encountered per frame

Figure 5.10: Statistics gathered while tracking at 3.75Hz using Active Matching (AM) and
Joint Compatibility Branch and Bound (JCBB). Carefully selecting where to look for matches
pays off for Active Matching which needs to search dramatically fewer pixels per frame than
JCBB as demonstrated in (a). Also, constantly refining the search region for each feature
avoids encountering unnecessary false positives, which isthe case with Joint Compatibility as
shown in (b).

namely to (i)get the candidate matchesfor each feature (by correlation) and (ii)

resolvetheir consensus.

Fixed Frame-Rate; Varying Number of Features

Increasing the number of features tracked per frame means that the matcher is equipped

with more evidence to aid the resolution of ambiguities, andin general it has been

shown that tracking many features is key in obtaining more precision in pose estima-

tion [Klein and Murray, 2008] and therefore is clearly desirable. On the other hand,

more time needs to be consumed to process the extra information available. In order to

study how much more time is needed we recorded timings while varying the number

of features matched per frame when tracking a particular sequence. Time breakdowns

for both Active Matching and Joint Compatibility are shown in Figure 5.11.

Our results show that Active Matching scales badly with increasing number of

features and the step dominating the time consumed is the mutual information calcu-

lation of the candidate measurements in order to select which one to measure next.

This is explained by the fact that every new feature added in the system introduces

a new candidate measurement foreachGaussian present in the mixture. Therefore,

Active Matching has more candidates to choose from, especially in a highly ambigu-

ous scene where there are many Gaussians present (i.e. in thelow frame-rate case in

Figure 5.11(a)). Evaluating the MI of each candidate involves a prediction of how the

MoG will evolve in both cases of a successful and a failed measurement of the cur-

rent candidate. The estimation of the continuous MI part in particular, translates into
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Figure 5.11:Computational time breakdown for AM and JCBB while varying the number of
features matched in the 3.75Hz (top row) and at 30Hz (bottom row) sequences. Active Match-
ing scales badly with increasing number of features mainly due to the constantly expanding
cost of the evaluation of mutual information of all the measurement candidates. Joint compati-
bility on the other hand maintains better performance when more candidate measurements are
available but its performance is also far from real-time dueto the increasing number of pixels
needed to test for a template match.

the potentially costly handling of big innovation covariance matrices — which expand

linearly in dimension with the number of features.

Joint Compatibility performs better with increasing number of features, but is still

far from real-time performance. Measuring more features translates into more im-

age regions we need to search for template matches but also potentially more false-

positives — hence the constantly increasing time needed to perform correlation and

resolve consensus. In Active Matching on the other hand, since we are very selective

in the areas we look for matches, both the number of mismatches encountered and the

number of pixels searched remain very low even for large numbers of features matched

as demonstrated in Figure 5.10.
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(a) Pixels searched (b) Mismatches encountered (c) No. Live Gaussians

Figure 5.12: Tracking 20 features per frame. Decreasing the frame rate more pixels need
to be tested for a match as shown in (a). This also means that more ambiguity is present
during matching as more mismatches are likely to occur as demonstrated in (b). When tracking
highly ambiguous sequences, more matching scenarios ariseper frame, hence the mixture of
Gaussians needs to be populated with more members as confirmed in (c), in order to accurately
reflect the search-state at every instant.

Coping with Ambiguity: Varying Frame-Rate; Fixed Number of Features

As the frame rate decreases and the search-regions of features cover bigger image area

it becomes more likely to encounter more mismatches per feature, therefore compli-

cating the process of discovering consensus in the prediction error. This is evident in

Figure 5.12 where again, the number of pixels searched is dramatically reduced us-

ing Active Matching and as a result so is the number of mismatches encountered. As

matching becomes more ambiguous with decreasing frame rate, we need more Gaus-

sians in the mixture to accurately represent the different hypotheses arising, hence

the negative slope in the maximum and average number of live Gaussians in Figure

5.12(c).

Tracking a scene with a low frame-rate camera is the real challenge for data as-

sociation algorithms since the amount of time elapsing between consecutive frames

is increasing, introducing larger uncertainty into the system. The uncertainty in the

camera position translates into inflated search regions foreach feature in the image

plane.

5.6.2 Evolution of Mutual Information

Mutual information is what guides our matcher to select potentially more informa-

tive measurements, avoiding areas of high ambiguity. Sincethe process of evaluating

the discrete and continuous parts for every candidate has been proven to be the main

computational bottleneck of our algorithm, here we study the evolution of the mutual

information throughout the matching steps of each frame to uncover the true value it

has at different stages during matching.

As demonstrated in Figure 5.14 at the beginning of matching there is no ambiguity
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Figure 5.13: Timings breakdown for variable frame rate matching of a constant number of
features using Active Matching and JCBB (tracking 20 features per frame in the top row and
40 in the bottom row). For around 20 features per frame, Active Matching is entirely within
real-time limits for all frame-rates whereas JCBB’s performance degrades at low frame-rates
since more time is needed to find the correlation matches. When tracking 40 features per frame
though, the costly evaluation of MIs pushes the time performance of Active Matching lower.

in the mixture since we start off with one Gaussian with high uncertainty (which is

directly related to the frame-rate of tracking). This is represented by the dominant MI-

continuous presence during the initial steps of matching, since this part of MI takes

account of the desire to improve the accuracy of the most probable Gaussian. As

we obtain matches for more features, the MI-continuous decreases dramatically and

if any of the matches encountered is inconsistent with existing Gaussians, new ones

are spawned to accurately reflect the ambiguous search-state. In such cases, the MI-

discrete part comes in and sometimes takes over until both resolution of ambiguity and

high accuracy are achieved.

The more features we match, the more information we expect togain, always at

the expense of computational time. So is it really worth the effort measuring one more

feature? How much more information lies in this candidate measurement? A good
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(a) MI components at 3.75Hz (b) MI components at 30Hz

Figure 5.14: Evolution of the continuous and discrete components of MI for different frame
rates, throughout the matching steps followed during AM in an average frame. In both (a) and
(b) the two MI parts are shown stacked on top of each other to demonstrate the contribution
that each has to the total MI in the mixture at any given step. The Continuous-MI is the
dominant factor during the initial steps of matching, especially when tracking at 3.75Hz in (a)
where there is more uncertainty present. As features get localised one-by-one, the uncertainty
in the MoG decreases, but as soon as we start encountering inconsistent measurements, more
Gaussians are spawned resulting to an increase in the Discrete-MI part which aims at resolving
ambiguity. In both (a) and (b), the total MI tails off smoothly (notice the difference in scale) as
the matcher encounters more measurements.

Figure 5.15: Matching many features is informative. But how much more information is a
new measurement expected to give? This figure shows that the more the features we match
per frame, the more information we expect to get during the initial steps of matching. After
matching has progressed for a number of steps though, the MI present in the mixture does not
decrease significantly.
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answer to this question depends on a plethora of factors; feature characteristics, camera

dynamics, speed of processor, etc. The evolution of the total mutual information in the

mixture can be a representative measure of the value that an extra measurement can

have in the current search-state. Figure 5.15 demonstratesthat although initially there

is higher mutual information to be gained for a bigger numbers of features, as we

proceed with matching features one-by-one the total-MI decays exponentially. During

the initial steps of the process, the evaluation of predicted MIs is key to the algorithm

since most of the uncertainty and ambiguity in the scene get resolved. Measuring an

extra feature after a certain stage though does not reduce the uncertainty of the current

search state very much more. Thus, predicting which featurewill provide the most

information to measure next does not have any significant effect on the subsequent

result of the algorithm.

These observations and conclusions are exploited in Chapter 7 to refine our Ac-

tive Matching method so that it can dynamically adapt its performance according to

the number of features and ambiguity in tracking, achievingimproved computational

performance.

5.7 Conclusions

This chapter has demonstrated how Active Matching, using a mixture of Gaussians

formulation, allows global consensus feature matching to proceed in a fully sequential,

Bayesian framework. Information theory plays a key role in guiding highly efficient

image search and we can achieve large factors in the reduction of image processing

operations.

While our initial instinct was that the algorithm would be most powerful in match-

ing problems with strong priors such as high frame-rate tracking due to the advantage

it can take of good predictions, our experiments with lower frame-rates indicate its

potential also in other problems such as recognition. The priors on absolute feature

locations will be weak but priors on relative locations may still be strong.

In an attempt to unveil the bottlenecks of the algorithm in comparison to standard

‘get candidates first, resolve later’ approaches like JCBB,we discussed an evaluation

of the performance of Active Matching via extensive testingfor variable number of

features tracked per frame and different frame-rates. Briefly, our results indicate that

the full Active Matching algorithm, despite maintaining real-time performance for dif-

ferent frame-rates and relatively low numbers of features per frame (around 20), scales

badly when this number increases mainly due to the manipulation of large matrices

during the calculation of mutual information.

Following a detailed discussion of the value of mutual information in the course of
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the algorithm, we observed that carefully selecting which feature to measure at each

step (guided by mutual information) plays a key role during the initial steps of match-

ing where most of the uncertainty and ambiguity in the systems gets resolved. Based

on this extensive analysis on the performance of Active Matching and the conclusions

drawn, Chapter 7 explores new avenues towards a more scalable matching algorithm

able to track even more features, faster.

From a more general point of view, we believe that mutual information has yet a lot

to provide in high frame-rate tracking — the motion priors are indeed stronger then but

the limited processing time available makes the task of resource allocation in matching

even more challenging. Our long-term aim is to develop fullyscalable algorithms via

the active matching approach which will be able to perform the best matching job

possible given a certain computational budget. For instance, state of the art optical

flow algorithms [Zach et al., 2007] are now able to produce real-time matching for

every pixel in an image when running on the latest GPU hardware. A hierarchical

active approach may permit such dense matching performanceto be approached with

much reduced computational requirements.



6
Inferring the Hierarchical

Structure of Visual Maps

In SLAM, it is well known that probabilistic filtering approaches which aim to esti-

mate the robot and map state sequentially suffer from poor computational scaling to

large map sizes. Various authors have demonstrated that this problem can be mitigated

by approximations which treat estimates of features in different parts of a map as con-

ditionally independent, allowing them to be processed separately. When it comes to

the choice of how to divide a large map into such ‘submaps’, straightforward heuristics

may be sufficient in maps built using sensors such as laser range-finders with limited

range, where a regular grid of submap boundaries performs well. With visual sensing,

however, the ideal division of submaps is less clear, since acamera has potentially un-

limited range and will often observe spatially distant parts of a scene simultaneously.

This chapter presents an efficient and generic method for automatically determin-

ing a suitable submap division for SLAM maps as proposed in [Chli and Davison,

2009a], and demonstrates the application of this partitioning criterion to visual maps

built with a single agile camera. The mutual information between predicted measure-

ments of features is used as an absolute measure of correlation, and highly correlated

99
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features get clustered into groups. Via tree factorisation, we are able to determine not

just a single level division into submaps but a powerful, fully hierarchical correlation

and clustering structure. The analysis and experiments discussed reveal particularly

interesting structure in visual maps and give pointers to more efficient approximate

visual SLAM algorithms.

6.1 Introduction

As a moving camera (or multi-camera rig) explores its environment, each measurement

of the image location of a repeatably observable scene feature provides a probabilis-

tic constraint on its location relative to the camera. It is well understood that many

such measurements captured over a long image sequence, in combination with the as-

sumption that most elements of the scene are static, suffice to permit stable estimates

of the camera’s 3D trajectory as well as a 3D map of the locations of the observed

features. The most accurate solution to this estimation problem will be obtained by a

batch optimisation approach which seeks the estimates which are most globally con-

sistent with the measurements. This methodology is known asbundle adjustment in

the photogrammetry and computer vision communities, as discussed in Chapter 2, and

has been generalised by SLAM researchers in graph optimisation frameworks which

are able to incorporate all types of sensory input [Thrun et al., 2005; Dellaert, 2005].

6.1.1 Sparsification for Real-Time Visual Mapping

The natural emphasis in robot vision has been on visual localisation and mapping

methods which are able to run not as off-line optimisation but as sequential procedures

potentially implementable in real-time on modest computing hardware. Real-time op-

eration inevitably requires some form of approximation or sparsification of full global

optimisation, since it soon becomes infeasible to repeatedly find a globally optimal

solution based on the ever-growing volume of data acquired from a live camera. More-

over, the increasing demand for denser maps and extended coverage over larger areas,

drives research towards more agile manipulation of big dataloads since the complexity

of maintaining full probabilistic maps threatens real-time performance.

Real-time methods for camera motion estimation like the works of Mouragnon

et al. [2006] and Nistér et al. [2004], can be classed as visual odometry, choosing

to ‘forget’ information from past measurements beyond a sliding time window. In

essence, the focus there is on local motion estimation rather than the maintenance of

a complete probabilistic map of all visited scenes. The result is indeed highly accu-

rate local motion estimates due to the ability to cope with a large number of feature

measurements per frame, but on the other hand, such methods suffer from drift over
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Figure 6.1: Sparsifications of the complete graph for large-scale SLAM.The most accurate
solution to SLAM is global off-line optimisation (bundle adjustment), but real-time systems
need sparsifying approximations to cope with the expandingmap. Solutions include splitting
the map into local submaps to process separately like in [Estrada et al., 2005; Bosse et al.,
2003] or discovering approximate global tree-like structure (e.g [Frese et al., 2005; Paskin,
2003]). These methods work well when they capture the most important correlation structure
– but the question of identifying suitable sparsifications in visual maps remains.

extended sequences. This problem has recently been successfully mitigated by the use

of ‘keyframes’: a subset of representative images and camera poses selected from the

continuous stream and subject to global optimisation with the rest of the trajectory

related to these. Both the PTAM monocular system of Klein andMurray [2007] and

the FrameSLAM stereo system of Konolige and Agrawal [2008] have demonstrated

impressive performance.

Alternative real-time methods for visual mapping based on sequential probabilistic

filtering (e.g. [Davison, 2003; Eade and Drummond, 2006b]) aim to ‘summarise’ the

information gained from past images with a probabilistic state. This uncertain estimate

of the camera and map state can be combined with the information from each new im-

age in a weighted average of fixed complexity at each time-step. It turns out however,

that the accurate probabilistic representation of uncertainty which is required here is

computationally expensive in a way which scales poorly withthe number of mapped

features. For this reason methods such as in [Davison, 2003]only map features rela-

tively sparsely. The most successful solution to this problem has been, as in real-time

SLAM research using other sensors (e.g. [Bosse et al., 2003;Bosse and Roberts, 2007;

Chong and Kleeman, 1999; Kaess et al., 2008; Tardós et al., 2002]), to split a large

map into several conditionally independent visual submapswhich can be processed

separately (e.g. [Clemente et al., 2007; Eade and Drummond,2007; Piniés, 2009]).

Perhaps the most successful approach has been the sophisticated real-time monocular

SLAM system of Eade and Drummond [2007, 2008] which connectssubmaps (here

called ‘nodes’) with a higher level graph structure estimating their relative locations.

Their method has been discussed extensively in Chapter 2.

So keyframes or submaps are sparsifying approximations which permit real-time

implementation of globally consistent mapping. But in the case of either keyframes or
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(a) Close-up (b) Moving back (c) Tracking across the cafeteria

(d) Close and far features visible at the same time

Figure 6.2:Visual tracking in a cafeteria, studying the regions of camera motion within which
features are observable. The features on a table can aid tracking within a small distance from it
as in (a). Moving back a little in (b), some more features comeinto the field of view permitting
camera motion estimation over a bigger area. In the same way,the camera can track its path
along the cafeteria in (c) using the features observable from each pose. This might seem a
straight-forward sub-mapping scenario, but what happens when there is also a window as in
(d)? The camera’s infinite range makes features in both the foreground and the far background
visible at the same time, which makes an ideal submap division less clear.

submaps, there remains the question of how to choose their locations and scope.

6.1.2 The Special Character of Visual Maps

A little consideration makes it clear that visual sensing isnot in general conducive to

a straightforward division of a scene into block-like submaps for the purposes of effi-

cient map processing, as has proven successful with other sensors. Laser range-finders

and sonar sensors have strictly limited ranges of measurement, and setting submap

sizes which relate closely to this is a sensible strategy — features located farther apart

than this range will not be simultaneously observed. There are other potential heuristic

strategies for the choice of submap boundaries: an upper bound on the number of fea-

tures, or bounded uncertainty (or deviation from linearityas in [Eade and Drummond,

2007]) within a submap. In keyframe approaches, all of the scene elements visible

from a particular camera pose are implicitly grouped together for the purposes of esti-

mation, independent of their distance from the camera. Thiscan cope with a range of

depths, but is still a somewhat arbitrary grouping.

Consider for instance the example of a large, cluttered room(perhaps a cafeteria),

browsed and mapped by a mobile camera carried by a robot or person as in Figure 6.2.

The camera will view parts of the room from different distances to obtain different
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levels of detail: a table may be framed from close-up, or the camera may move even

closer to inspect particular objects. The periphery of these views though may simul-

taneously be filled with distant walls or even the outside scene beyond the windows.

Different features in a scene tend to have more strongly correlated estimates in a map

when they are regularly co-observable by the moving sensor,but this is not always the

case if they give different information about camera location. Similarly, features in

almost the same scene location but measured from different camera positions may be

uncorrelated.

6.1.3 Determining Hierarchical Map Structure

The simple tracking scenario of Figure 6.2, demonstrates the need for a general and

dynamic criterion to place submap divisions when dealing with visual maps. Basing

decisions solely on the co-observability of features is clearly insufficient, while more

ad hoc thresholds limit the applicability of algorithms andmost often lack the insight

of a theoretical investigation. Here, we explore the benefits of the application of Infor-

mation Theory in this context, to drive map partitioning.

Our investigation leads to the emergence of a straightforward and absolute measure

for the level of correlation between features in a mapping scenario based on the mutual

information of predicted measurements. We show that this automatic inference of

structure can easily go beyond a single level of submaps to deduce a full hierarchy

of correlation relations via a tree decomposition. In fact,many of the most exciting

recent approximate but super-efficient SLAM algorithms [Frese, 2006; Paskin, 2003;

Paz et al., 2007a] are tree-like in nature, showing the powerthis gives.

The tree structure encodes a hierarchy of correlation levels between features which

permits their grouping into sets with a user or application-settable coarseness or fine-

ness, from one extreme where all features are considered as independent and unrelated

to the other where they will all be grouped together. In between, features will be

accumulated into clusters which gradually join into a single whole.

It is important to understand that the hierarchical structure which this method dis-

covers is that of theprobabilistic map, not a fundamental property of the scene itself.

The structure depends on the motion of the camera, priors which we have about how

the camera moves, and its imaging properties such as resolution and field of view. In a

map built using an omnidirectional camera, for instance, wemight expect simultane-

ously observable features on opposite sides of a robot to be regularly highly correlated

in measurements and that they would be clustered together, while in a map built using

a camera with a narrow field of view they would be distant in thetree. We consider

that this dependence on the specifics of the camera and motionis a strength of the

approach, not a weakness.



104 Inferring the Hierarchical Structure of Visual Maps

6.2 Feature Correlations in Mutual Information Space

In order to achieve high quality approximations, we must think in terms of preserving

the most important correlation structure of the SLAM map. Using the Information

Theoretic framework discussed in Chapter 4, here we translate correlations between

individual image feature measurements into the mutual information (MI) space. MI

can be understood as an absolute, normalised measure of degree of correlation and

more precisely, the pairwise MI as defined in Section 4.3.2 describes the amount of

common uncertainty (entropy) shared between two candidatemeasurements.

Following the notation for probabilistic SLAM filtering of image sequences intro-

duced in Chapter 3, we consider making image measurements ofa scene of which the

current state of knowledge is modelled by a probability distribution over a finite vector

x stacking camera and map parameters. When a new image arrives, we can project the

current probability distribution over the state parameters x into measurement space to

predict the candidate feature measurements from the new viewpoint.This joint proba-

bility distribution p(zT) describes the entries of stacked vectorzT =
(

z1 z2 . . .
)⊤

containing all predicted candidate feature measurements via a mean vector̂zT contain-

ing their predicted image positions and the innovation covariance matrixS encoding

the variance in these predictions.

Equipped with this set of predictions we can assess the strength of correlation

between individual candidates — essentially asking ‘how much on average, does mea-

suring one feature tells us about the others?’. In Chapter 5 we have seen how this

joint prediction can be used for probabilistic data association (matching), in either

batch [Neira and Tardós, 2001] or sequential [Chli and Davison, 2008a] forms. How-

ever, here we are interested in thepairwiserelationships between the candidate feature

measurements (rather than the relationship of one feature and the set of the rest of the

visible features in the frame) with the aim of understandingthe structureof correla-

tions and therefore the scene.

In order to convert the correlations between candidate measurementszi and zk

encoded inS into the pairwise MI space, we use the expression derived in Equation

4.35 and restated below:

I(zi ;zk) =
1
2

log
|Sii ||Skk|

|Si,k|
. (6.1)

Evaluating this quantity for every pair of candidate measurements, we can build

the MI matrix as described in Section 4.3.2. If the pairwise MI I(zi ;zk) is large, a

measurement forzi is expected to tell us a lot about the predicted location ofzk (and

vice versa) suggesting the presence of a strong correlationlink between them. On

the other hand, if the two features have never been predictedto co-occur then their

common information content in measurement space will be zero. Generally, when two
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Figure 6.3: The projection of the MI matrix during real single-camera-tracking in a cafete-
ria. Depending on the covisibility and the coherence of motion throughout the sequence, some
features build stronger correlations than others, as evident in the projected MI links (quantities
shown in bits). For example, a potential measurement of feature A is predicted to give 1.9
bits of information to its neighbour B, whereas C is expectedto gain only 0.6 bits from this
measurement. Indeed, due to the fact that both A and B lie in the far background, they have
been moving consistently throughout the sequence buildinga strong correlation bond. How-
ever, while C has also been visible in all frames, its correlation with A has weakened through
time since it lies closer to the camera and moves incoherently with A.

features have been regularly covisible throughout a substantial number of frames in the

tracked video sequence they are usually strongly correlated. However, this stops being

true when the two features do not movecoherently: each individual measurement then

gives different information about the camera motion, hencetheir correlation link grad-

ually weakens despite being co-observed. This fact confirmsthat the elements of the

MI matrix encode the scene structure as perceived by the camera throughout its path

— hence all processing to reveal the scene structure can be based on the manipulation

of this matrix. Figure 6.3 demonstrates the visual projection of the MI matrix built

using real data captured while tracking the camera motion ina cafeteria.

6.2.1 State Space vs. Measurement Space

All our Information Theoretic analysis of the value of elements in the SLAM map

is performed in the measurement space (i.e. image space). While this is an obvious

choice when applied to feature matching where all actions are taken in measurement

space, the most natural choice when dealing with the actual map and its structure

would be to perform calculations in state space. However, our experimentation with

state space data has revealed drawbacks in this approach affecting the quality of perfor-

mance. In fact, the problem relies in taking into account theglobal uncertainty in the

map estimates. As the camera keeps exploring new areas, thisuncertainty in constantly
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Snapshot at Frame 60:

(a) Map-view (b) State-space (c) Measurement-space

Snapshot at Frame 250:

(d) Map-view (e) State-space (f) Measurement-space

Figure 6.4: Comparison of pairwise MIs in state and measurement spaces.The top row
images are snapshots taken at Frame 60 while the bottom row corresponds to Frame 250.
The map-view in (a) and (d) are shown to scale in an attempt to demonstrate the growth in
uncertainty of the camera throughout the intermediate frames (the camera here follows an
exploratory trajectory). The rest of the figures illustratethe projections of the pairwise MI
links as calculated in either state-space or measurement-space. It is important to note that
while the thickness of lines corresponds to the strength of links, the MI scores computed in
state-space are two orders of magnitude larger than in measurement-space. So for the sake of
clarity, (b) and (e) share the same thickness scale but this is different from the scale shared by
(c) and (f). While the link structure in (b) is fairly homogeneous, in (c) we observe a more
interesting distribution of MI strength. As the uncertainty in the camera pose grows as shown
in (d), the state-space estimates of feature locations in (e) are heavily affected, resulting to great
variations in link strengths due to discrepancy in global position estimates of feature locations.
In measurement space however, therelativestructure remains much more stable throughout the
sequence while illustrating some detail of feature correlations still. Since we are interested in
the relative uncertainties in the estimates of feature locations in order to understand the scene
structure, we conduct all our Information Theoretic analysis of maps in measurement space.
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growing with newly initialised features inheriting most ofit. Moreover, the inevitable

depth uncertainty of features in the map influences heavily the structure of the corre-

lations and subsequently the pairwise MI links (computed based on state-space data).

As a result, while the structure of the MI graph of pairwise MIlinks in measurement

space exhibits relative stability throughout the camera trajectory, the corresponding

link structure based on state-space data is far more irregular — the strength of links

is progressively enforced as more uncertainty accumulatesinto the global feature esti-

mates, and there is also a large variance of correlation strength in these links resulting

from the partially initialised features (i.e. those with large depth uncertainty).

Figure 6.4 depicts a comparison of the MI graph as obtained using both state-

space and measurement-space estimates, for two different frames of an exploratory

sequence. As the camera moves away from its initial position, its state estimate pro-

gressively becomes more uncertain and so is the probabilistic map, having a big impact

on the state-space computations. Here, we are interested inthe relative uncertainties

and correlations of features with the aim of maintaining a stable ‘representation’ of

the scene structure, in order to understand it. Therefore, we conduct our Information

Theoretic investigation in the measurement space, which usually has the additionally

property of manipulating smaller matrices than in state-space.

6.2.2 From a Single Frame to a Sequence

Our analysis on inferring the scene structure begins by investigating the distribution of

correlations between features in a single frame. However, since the goal is to expand

our understanding to the whole map, we can easily extend our methodology to cover

all the data gathered in the system throughout the sequence of frames used to build this

map. Keeping a running average of the MI links between features in the map, we can

accumulate information on features that were co-observed at any instant. It is worth

noting that at any frame we only need to calculate the MI matrix of the measurable

features in that frame, therefore the cost is tractable, since all data needed is evaluated

in image space.

Depending on the nature of the scene and the camera motion, the structure of this

full MI matrix (containing average MI links between all featuresin the map) will be

different — for example, in the case of a purely exploratory sequence this matrix will

be sparse since features viewed from spatially distant poses will never be co-observed.

On the contrary, when the camera browses a small scene in a loopy manner, we expect

denser configuration of MI links as most features will be co-observed. Following this

formulation, we can then inspect the MI matrix built over thewhole map to automati-

cally discover areas of high mutual information density.
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(a) Complete MI graph (b) Chow-Liu tree approximation

Figure 6.5: The approximation of a joint PDFp(z1,z2, . . . ,z6) by second-order and marginal
distributions yields a tree. Here, (a) shows the complete MIgraph where thicker links repre-
sent higher mutual information between the nodes they connect, and (b) is the optimal such
approximation maximising the total information preservedin the tree as suggested by Chow
and Liu [1968].

6.3 Tree Factorisation

With the goal of unveiling the hierarchy of correlations encoded in the MI graph, one

can consider different graph structures that can potentially provide a ‘meaningful’ in-

sight into the structure of the complete graph. The tree being the simplest such struc-

ture, here we consider how we can decompose the MI matrix via atree factorisation.

A probabilistic estimate of the values of a set of variables{z1,z2, . . . ,zN} given

background informationI is most generally specified by a joint density function over

all of those variables:

p(z1,z2, . . . ,zN) = f (z1,z2, . . . ,zN) . (6.2)

One possible approximation to a general joint probability density is the factorised form

below:

p(z1,z2, . . . ,zN) = p(zN)
N−1

∏
i=1

p(zi |zi+1 . . .zN) (6.3)

≈ p(zN)
N−1

∏
i=1

p(zi |zi+1) . (6.4)

Figure 6.5 shows that this approximation can be interpretedas a tree-shaped model

of probabilistic links between variables (each link representing a conditional density

function over just the two connected variables). Out of all possible such tree approxi-

mations, Chow and Liu [1968] showed that the one closest to the full, joint probability

density can be found by considering the Mutual Information between pairs of vari-

ables in this distribution: the optimal approximation of the complete distribution via a
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first-order dependency tree corresponds to the maximum spanning tree1 in the Mutual

Information space. The application of this conclusion in our scene structure analysis

is straightforward, as we already have the MI graph of links between the features in

the SLAM map. The optimal tree approximation in the MI space,will be subsequently

referred to as the ‘Chow-Liu tree’.

6.4 Inferring Hierarchical Structure from the Tree

Have deduced an undirected tree structure linking the features, there remains the ques-

tion of how to use this to infer hierarchical clusters. One option would be to somehow

choose a root feature and then ‘hang’ the tree from this. By choosing a number of lev-

els down from this root we could fix where to lop off branches, all nodes further down

each branch forming a cluster. Alternatively, we could use athreshold on the MI scores

on branches of the tree, cutting all those weaker than a certain value to divide the tree

into clusters. In experimentation, while this approach hassome nice properties it tends

to leave many features alone in clusters of one. We have also considered expanding

this idea to progressively identify cliques of features while lowering the threshold of

MI link strength. However, despite the theoretical justification, in practice features

most often team up to a single cluster before constructing the first clique resulting to a

single cluster.

Instead, here we propose a simple bottom-up procedure wherefeatures are pro-

gressively grouped in a manner similar to Chow and Liu’s original algorithm to build

the spanning tree. The goal being to identify image regions of high mutual information

density, we consider an example whereN features have been tracked in a sequence of

frames and start joining features together. Figure 6.6 shows a real, simplified example

of the step-by-step building process of this tree.

We start off with every predicted-to-be-visible feature lying in a separate cluster

(or submap), as if these features were completely uncorrelated. All off-diagonal entries

in the MI matrix would then be zero and therefore at this stagewe haveN different

clusters. Jumping a level up the hierarchy, the aim is to linkeach tree to the tree with

which it is sharing the strongest tie so that no cycles are introduced. Therefore, we

progress by examining all MI links spanning out of each cluster, and fuse the strongest

such link (avoiding loops) and the node it is connected to into the cluster in question.

Identifying the new clusters forming from joining featurestogether in the previous

step, we define a new level in the hierarchy containing all nodes and links participating

into clusters. Proceeding in the same manner, we reach the top level of this hierarchy

where all features are connected into a single cluster. Interestingly, all links ‘activated’

1The acyclic path connecting all nodes in a weighted graph which yields the maximal sum of weights.
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(a) Level 0: Each feature in a different cluster (b) Level 0: Grow clusters

(c) Level 1: New clusters created (d) Level 1: Grow clusters

(e) Level 2: Features joint in a single cluster, Chow-Liu tree is created

Figure 6.6: Discovering regions of high MI density by progressively building the Chow-Liu
tree in a real scene. Having computed the links of the complete MI graph, initially each feature
is set to a different cluster as in (a). (Note: different clusters are denoted by different colours
and on the left of each row is a diagrammatic representation of the features’ memberships into
clusters). In (b) each cluster attempts to join with the restfollowing the strongest, outgoing MI
link. This growing process results in the ‘activation’ of a subset of the links of the MI-graph
which is then used to define new clusters for the new hierarchylevel as in (c). Since the features
have not yet joined into a single map, another growing process takes place in (d) which leads
to the completion of the Chow-Liu tree joining all features to a single map, signifying the end
of the procedure.
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throughout this process and present in this final cluster correspond to the links forming

the Chow Liu Tree. Moreover, the clusters in intermediate hierarchy levels correspond

to smaller parts of the Chow Liu Tree, where the density of MI strength is high.

DISCOVERCLUSTERS

1 Hierarchy levelh = 0: each feature in different cluster

2 while (number of clusters> 1)

3 GROW each cluster following the strongest, outgoing MI link

4 DEFINE new level:h = h+1 corresponding to new clusters

5 end while

Following the analysis to infer the scene structure in a single frame, we can ex-

pand this idea to a sequence of frames, keeping a running average of all MI links, as

described in Section 6.2.2. We can then build the Chow Liu tree over the whole map

to automatically discover areas of high mutual informationdensity in a hierarchical

manner.

6.5 Results

We demonstrate this algorithm on several different visual maps generated from a hand-

held camera using a standard configuration of MonoSLAM [Davison, 2003; Davison

et al., 2007]. MonoSLAM uses the Extended Kalman Filter (EKF) to incrementally

construct a probabilistic map of visual point features represented by a single joint

Gaussian distribution as described in Chapter 3. At each newframe a subset of fea-

tures is selected for measurement based on whether they are predicted to lie within the

camera’s field of view and whether the camera is predicted to be within a set of bounds

for each feature on motion (inducing scale changes and warping) where correlation

matching is expected to be possible. The innovation covariance matrixS is calculated

at every frame of during tracking with MonoSLAM as part of theactive feature match-

ing (data association) process so there is little additional computational cost incurred

by our tree construction algorithm.

The following is an analysis of several single frames and extended sequences at

30Hz which draws attention to the behaviour of the algorithmto infer submap divi-

sions. While maintaining a full EKF map in MonoSLAM, we applyour Information

Theoretic framework on a variety of tracking scenarios to demonstrate the generality

of the approach in providing an insight to the current map structure. Finally, we com-

pare the quality of submap partitions suggested via our Chow-Liu submapping to the

Naive approach through a quantitative analysis.
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(a) Planar scene (b) Scene with different depths

Figure 6.7: Clustering features based on data obtained from a single frame. (a) is a typical
frame of the Keble College Sequence, tracking features on the wall. Since this is a planar
scene, the distribution of the mutual information between features, and therefore the clustering
result, is mostly according to image proximity. On the otherhand in (b) is a scene with more
interesting structure hence the clusters are also based on the depth of features.

6.5.1 Single Frame Analysis

As a proof of the concept of the work in this chapter, we performed the simplest appli-

cation of our tree-based clustering; a Chow-Liu tree is built using data from a single

frame only.

Once the correlations between features have been settled and the map has con-

verged, then so have the mutual information links between them. Therefore, by build-

ing the Chow-Liu tree we can infer clusters that are conceptually consistent. Figure

6.7 demonstrates the application of our methodology to group of features based on the

distribution of the pairwise MI links: while correlation structure is dominated by the

features’ proximity in image space in the case of a planar scene, the MI links capture

some more interesting scene structure in the presence of significant difference in fea-

tures’ depth positions resulting to that distinction of background/foreground clusters.

However, the main interest here is to infer meaningful and consistent submaps

through time, where features are constantly added, deletedand updated in the map.

Hence in the following, we conduct an analysis on sequences of frames.

6.5.2 Sequence Analysis

Sideways Exploration

Here we analyse a segment of the image sequence of Clemente etal. [2007] taken by

a hand-held camera moving sideways around a large college quadrangle, moving at a

steady walking speed while observing a wall at approximately constant depth. We call

the sequence exploratory because the camera moves progressively and does not return

to previously visited positions in the segment (we do not consider large loop closure
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Figure 6.8: Discovering the map structure
of the sideways exploratory Keble College se-
quence (left). This hierarchy tree is build after
tracking for 2500 frames. At the root of the hi-
erarchy tree (top image) all features lie in a sin-
gle map. Moving deeper in the hierarchy each
map progressively splits into several submaps.
Here, the roughly uniform distribution of fea-
tures across the image and the constant speed
of the camera cause a uniform distribution of
MI links between features. Hence the forma-
tion of regular-sized submaps, as expected.

Figure 6.9: Submapping in a corridor se-
quence tracked with a forward-looking cam-
era (above). Here are two intermediate levels
of the hierarchy tree where features are visible
on both sides of the camera’s trajectory, so left
and right hand side features are grouped into
the same submap. The submaps formed here
have overlaps due to the covisibility of features
belonging to different submaps during track-
ing, in contrast to the Keble sequence clusters
illustrated in Figure 6.8 where submapping is
straightforward.
Note that the feature uncertainties are not displayed here for the sake of clarity.
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(a) Corridor Clusters in frame 184 (b) Corridor Clusters separate in frame 208

Figure 6.10:Typical clusters in the corridor sequence (note: in both (a)and (b) the left image
corresponds to the camera view and on the right is the 3D perception of the map). In this type
of sequence, the features on the walls closer to the camera move quickly in the image (and past
the camera) being observed from a wide baseline, hence at a given frame their depth estimates
are much more accurate than the ones further away. Here, the MI links of the features visible
in (a) hold them together into a single cluster (bright green). As the camera moves closer to the
end of the corridor, the depth estimates of the furthest features are gradually refined, causing
the break of this cluster into two separate ones in (b) — this is the point of ‘realisation’ that the
visible features no longer move coherently.

here). This sequence is of interest because its simple nature makes the ‘ideal’ map

structure a clear case of approximately regular metric division, as implemented explic-

itly in [Clemente et al., 2007] by bounding the number of features in each submap at a

fixed value.

Figure 6.8 shows the grouping of features at all levels of theChow-Liu tree forma-

tion; each feature belongs to a different submap at the leaves of the hierarchical tree,

and then they gradually team-up to form a single map. Due to the roughly constant

speed of the camera and the regular presence of features on the observed wall, the dis-

tribution of mutual information links is uniform and therefore the clusters forming in

the intermediate levels of the hierarchy are fairly similarin size. This result agrees our

initial expectation, demonstrating the intuitive soundness of this approach.

Forward Exploration

The next example is an exploratory sequence from a forward-moving hand-held cam-

era. The additional interest here is in the presence of features close to the centre of

expansion in the middle of the image which are very distant and therefore remain vis-

ible for long periods of time while the majority of features towards the edges of the

image quickly pass out of the field of view. This means that at agiven frame, the depth

estimates of the features on the walls closer to the camera are more accurate (as they

have been moving more quickly in the image) in comparison to the ones further away

— these in turn do become more certain when the camera moves closer. Now, since the

cluster memberships are purely a function of the correlations between features, unless

these correlations have converged the submaps will keep changing meaning.

Figure 6.10 shows an example where distant features near thecentre of the image
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(a) Hierarchy Level 3 of 4

(b) Hierarchy Level 2 of 4

Figure 6.11: Discovering the scene structure of a loopy-browsing sequence in a cafeteria
with a window. (Note: left is camera view, right is the 3D map as perceived by MonoSLAM at
the particular instant). Despite the apparent proximity inimage space of all the visible features
in (a), their incoherent motion throughout the sequence dueto the difference in parallax has
weakened some MI-links, leading to a clear distinction between background and foreground
features. In fact, it is evident in (a) that image proximity is overpowered here by consistency of
motion. In (b) we see the same frame of this sequence, but we project the clusters from a level
deeper in the hierarchy tree. Here, more cluster ‘granularity’ is observable, indicating regions
of even higher MI density. Note here that features out of the window are also visible below the
level of the table.
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appear moving consistently in image space from the camera pose in (a), and therefore

they belong to the same cluster. As the camera moves closer, the extra information has

refined the position and uncertainties of these features. Asa result, some pairwise

correlations have changed causing a broken link right in themiddle of the cluster

separating the features on the left and right walls. Clearlyat this point, the MI-links

reflect the fact that the two clusters no longer move coherently and hence they get

clustered separately. Figure 6.9 is a full 3D-map view of allthe features tracked along

the corridor and the clusters formed. The difference with the map formed in the section

above is that features appear on both sides of the trajectoryhere as the camera is

facing forward, and also there is overlap between clusters in state space due to their

covisibility in image space. In this scenario the ideal submapping solution is less clear

and the MI cues are truly helpful to uncover the scene structure.

Loopy Browsing of a Scene with Various Depths

Going back to the tricky cafeteria scenario used to explain our method in the beginning

of this chapter, here is an example of our clustering method applied on a real cafeteria

sequence, which is indeed a scene with a substantial disparity in depth. Figure 6.11

shows a typical frame of this sequence where both close-by and distant features are co-

visible from the same camera pose. Despite these two types offeatures being covisible

and appearing close in image space from a single view, throughout the sequence their

difference in depth causes them to move incoherently (in image space). Hence the

correlation between the two groups is gradually weakened over time due to their dif-

ference in parallax and therefore they get clustered in separate background/foreground

submaps, as a human would very easily perceive. We consider that this example high-

lights the true power of our method, since it demonstrates how the Chow-Liu tree of

the MI graph captures consistently the scene structure taking account of a plethora of

interfering factors (i.e. camera movement, feature depth,image proximity, etc) at the

same time.

Figure 6.12 demonstrates the clusters discovered in two adjacent hierarchy levels

which interestingly, seem to agree with the semantic meaning of the features they

contain. As a future avenue of investigation, we would like to employ our submap

inference method described in this chapter, learn some labels for different parts of the

SLAM map.

6.5.3 Quantitative Analysis

As a means of demonstrating the effect of selecting the cluster partitions carefully, we

compare the results of Naive decisions to split the map with our Chow-Liu tree based

inference method. The comparison is conducted for different levels of the clustering
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Camera view Map view

Figure 6.12: Giving a semantic meaning to submaps. Here are two hierarchylevels of
clusters discovered while tracking the cafeteria scene. Onthe top row, the structure of clusters
seems to agree with the semantic meaning of the type of features they contain, as suggested in
the manually added labels. On the bottom row, we can see how some of these clusters joined
together to form bigger sets which again can be labelled as shown. In the future, we would
like to use the map-partitioning approach we propose here tolearn a semantic meaning of
clusters fusing appearance information in this process. Note that in the camera view we only
project links shared between the features displayed, though more links have been active for the
discovery if these clusters.

hierarchy when tracking for 1000 frames in each of the sequences discussed in Sec-

tion 6.5.2. At the end of each sequence, we record the effect of partitioning the map

into an equal number of submaps using both clustering schemes. Note that here we

use ‘Naive’ clustering to refer to the method of splitting the map into regular-sized

clusters of features, following the order that they were initialised into the system. The

result obtained following either approaches, comprises ofclusters within which all MI

links between member features are preserved. Any links between features of different

clusters are ‘cut’ except from the strongest one, in order topreserve some relationship

between clusters.

In essence, each scheme provides an approximation of the complete, joint distri-

bution of the pairwise MI links. As a means of comparing the correlation structure
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Figure 6.13: Comparing the quality of our clustering method with Naive submapping. On
the left is the camera view with the features tracked in this frame (colour depicts cluster mem-
bership) and on the right are the matrices of pairwise mutualinformation links between all
features in the map built so far. Brighter pixels denote stronger mutual information links in
measurement space. The true matrix of all such links is displayed in the blue box as the ‘Full
MI’. The other two matrices display approximations to the Full MI according to the submap-
ping scheme used. It is evident that our clustering method preserves far more structure in the
distribution of MI links rather than the Naive approach due to the careful selection of the clus-
ter partition. Here, splitting the map in two clusters with the Naive approach we capture 55%
of all the links of the Full MI whereas using our Chow-Liu treebased method we capture 81%.

preserved after the application of the two clustering schemes, we superimpose the ra-

tio of the total pairwise MI preserved over the total pairwise MI present before the

approximation, by summing the MI links maintained in each case. Table 6.1 shows

these ratios as percentages at each level of the hierarchy built using our clustering

approach.

For all three sequences, the highest hierarchy level corresponds to all the features

lying in a single map preserving all pairwise MI links, resulting to no approximation

at all. In the lowest level of the hierarchy each feature comprises a different cluster.

However, since we are preserving the strongest MI links between any two clusters, the

result is the same, preserving again all of the pairwise MI links present in the initial MI

graph. The results for the intermediate levels in the hierarchy however demonstrate the

ability of the Chow-Liu based clustering scheme to capture most of the MI structure

and, as a consequence, most of the correlation structure present in the full distribution.

In all cases of different sequences, the quality of the approximation obtained using

the Naive scheme is inferior achieving lower percentages ofcaptured MI. The biggest

difference between the two schemes is recorded when splitting in two the map built

for the scene with various depths: when submapping with the Naive approach the

preserved MI links sum up to 51% of the total MI present in the initial MI graph,

whereas our approach preserves 85% of the initial distribution. Figure 6.13 shows an
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(a) Sideways exploration (b) Forward exploration

Figure 6.14:The distribution of pairwise MI links before and after sparsification using either
Naive or our Chow-Liu tree based clustering methods. In the sideways exploration sequence
the camera is constantly visiting new areas resulting to block-like correlation of features within
the Full MI matrix as shown in (a). As expected, the Naive approximation to the true distribu-
tion captures most of the map structure, however it does provide similar quality of results in the
forward exploration example in (b). There, the features initialised early in the sequence remain
visible for a long time, progressively building correlations with features seen later on. Evi-
dently, our Chow-Liu based submapping approach captures much more correlation structure
than the Naive case.

example frame of the sequence along with a visual representation of the matrix of MI

links before and after each approximation. The mostly exploratory nature of the other

two sequences results in a sparser distribution of links in the map as demonstrated in

Figure 6.14 therefore the losses recorded for both approximation schemes are smaller

in comparison to the ‘scene with various depths’ sequence. Still, even in the case

of the sideways exploration where our Chow Liu based approach results into regular-

sized clusters resembling the Naive scheme, the careful consideration of where to place

the submap partitions results to a better quality approximation as demonstrated in the

results of Table 6.1

6.6 Conclusion

The need for the capability of large-scale mapping and denser map representations in

modern system pushes algorithms towards more efficient manipulation of large data

sets. Motivated by the demand for sparsifying approximations of the SLAM map by

current state-of-the-art systems, this chapter analysed the correlations of features in a

monocular visual map with the aim of arriving to effective approximations. Apply-
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Pairwise MI captured in Approximation
Hierarchy Level No. Submaps Naive Chow-Liu-based

Scene with various depths
4 of 4 1 100 % 100 %
3 of 4 2 50.78 % 84.50 %
2 of 4 7 21.43 % 35.67 %
1 of 4 38 100 % 100 %

Sideways exploration
4 of 4 1 100 % 100 %
3 of 4 4 74.70 % 93.83 %
2 of 4 10 51.67 % 75.38 %
1 of 4 60 100 % 100 %

Forward exploration
4 of 4 1 100 % 100 %
3 of 4 3 74.51 % 85.47 %
2 of 4 18 33 % 43.70 %
1 of 4 111 100 % 100 %

Table 6.1: Quantitative comparison of Naive and Chow-Lie based clustering. Results here
are quoted as percentages of the total pairwise MI preservedwith respect to the initial complete
graph of pairwise MI links. The Naive scheme partitions the map into regular sized clusters,
where the number of these clusters is chosen to be equal to thenumber of clusters identified
by the Chow-Liu based approach. At the top hierarchy level, all features lie within a single
map, preserving 100% of the pairwise MI links. Since we preserve the strongest link between
clusters to approximate their relationship, in the bottom level of the hierarchy where each
feature lies in a separate cluster, all links are preserved using this scheme, resulting to the
full 100% percentage of total MI captured. The results in theintermediate hierarchical levels,
demonstrate the power of our Chow-Liu based scheme to capture most of the MI structure in
the approximation.

ing our Information Theoretic framework we studied the structure of pairwise feature

relationships in the Mutual Information space and our analysis has revealed that the

strength of ‘bonds’ between features is not only a function of co-observability, but

also coherency of motion within the image space. Via a straightforward calculation of

the Mutual Information of feature measurements followed bytemporal averaging and

tree construction we can achieved a computationally efficient way of automatically

extracting the full, hierarchical correlation structure of a visual map as it is built.

Our experiments show that the resulting hierarchical structure displays charac-

teristics which agree with the expected behaviour in ‘obvious’ cases such as simple

exploration where regular division is appropriate, but also captures much more subtle

effects in scenes and camera motions with large ranges of depth or level of detail. Fu-

ture work involves developing a filter based on this submapping approach for efficient

SLAM. Another intriguing prospect is to fuse appearance information along with ge-

ometry to refine the definition of submaps as a means of perhapsunderstanding the

semantic nature of each submap.
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Scalable Feature Matching

Following the maturity of basic real-time monocular SLAM algorithms there is now

a rising trend towards more accurate performance. This growing need for bigger and

better solutions is fuelled by the increasing hardware capabilities of modern systems

which provide the extra computational power much needed when handling tens and

hundreds of features per frame. Brute-force matching algorithms like RANSAC con-

stitute the dominant, if not imperative choice at present due to their inherent ability

to efficiently manage large data sets in straightforward scenarios. Aiming to bring se-

quential probabilistic solutions to the same basis of applications, this chapter discusses

ways of speeding-up the fully Bayesian framework of Active Matching leading to fast

algorithms able to deliver real-time, multi-hypothesis dense matching.

In Chapter 5, we have seen that Active Matching clearly reduces the image pro-

cessing through guided search, but at the cost of a large overhead in updating the prob-

ability distributions determining “where to look next”. Here, we present two variations

(‘FAM’ and ‘CLAM’) which aim to keep the sequential probabilistic search of Active

Matching but approximate the inference process to attack computational cost. While

the FAM approach has been proposed in [Chli and Davison, 2009b], it is the first time

the CLAM methodology is presented, which brings together the ideas evolved in this

121
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thesis to achieve matching of a hundred features in 125msper frame. To our knowl-

edge is the best that a fully probabilistic method has ever achieved and we hope that

this method will scale much further still.

7.1 Introduction

Tracking several features from one frame to the next means that more evidence is avail-

able to check matching consensus hypotheses upon, and therefore outlier rejection can

potentially be more robust. Moreover, the availability of more candidate measure-

ments means there can be greater reductions in uncertainty,overall leading to greater

accuracy of estimates. Indeed, as illustrated in Figure 7.1tracking a few extra features

in a SLAM setup, the estimated camera trajectory becomes significantly smoother

implying that consecutive pose estimates become more compatible with each other.

However, as pointed out earlier in this thesis, every extra bit of incoming informa-

tion comes at the cost of processing time. As a result, the vast majority of modern

monocular SLAM systems [Davison et al., 2007; Eade and Drummond, 2006b, 2007]

are limited to matching a couple of tens of features per frame, restricting their overall

performance in accuracy.

The stand-out exception exception is the work of Klein and Murray [2007]. Their

approach to tracking and mapping allows searching for far more features per frame

than all other similar works (also, these are run in separate, parallel threads leaving

more computational time for individual processes). Their coarse-to-fine two-stage

tracking consists of a search for a set of map features (around 50) on a low resolu-

tion image to compute the new camera pose and then reproject up to a thousand other

patches on finer scales to complete matching. While RANSAC [Fischler and Bolles,

1981] is employed during the initialisation of the system, during tracking they do not

use any clever data association technique which means that inevitably, outliers are

bound to be used into the map. The robustness of this method relies on bundle adjust-

ment to recover consistent pose estimates however, as the authors admit, this approach

makes their system prone to repeated structure.

The rising programmability of the graphics processing unit(GPU) often available

in modern machines is bound to change the landscape of tracking capabilities. No-

table is the work of Sinha et al. [2007] who implemented a GPU-based KLT tracker

[Lucas and Kanade, 1981; Tomasi and Kanade, 1991] recordingspeed-ups of a factor

of 20 allowing real-time tracking of a thousand features. However, GPUs are mostly

unavailable on embedded devices yet, limiting the applicability of GPU-based imple-

mentations. Therefore, the general research interest is still focused on cost-effective

CPU-programmable algorithms for more modest computation times, with the prospect
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(a) Matching 20 features per frame

(b) Matching 40 features per frame

Figure 7.1: Trajectory smoothness as affected by the number of tracked features per frame.
In this example a hand-held camera is tracked while moving along a corridor using 20 features
per frame in (a) and 40 in (b). As implied in this superposition of estimated trajectories, more
feature measurements provide stronger evidence about the way the camera moves from one
position to the next enforcing the robustness of outlier rejection. As a result, consecutive pose
estimates are more consistent with each other leading to a smoother trajectory. It is important
to note that the rate with which the trajectory becomes smoother is not linear with respect to the
number of features; matching 60 features for example would have a much smaller difference
with the trajectory in (b).

of faster performance once GPU platforms become widely established.

Dense image matching and consensus resolution using RANSAC[Fischler and

Bolles, 1981] is by far the dominant approach at present, having received more than

3000 citations. This popularity is to be accredited to the simplicity of the algorithm and

its low requirement for processing resources. With the ability to adjust the maximum

number of iterations of the algorithm, the time to completion can be adapted accord-

ingly to achieve a solution within prespecified limits, though the matching outcome

might not be the optimal one. However, it was soon realised that the combinatorial ex-

plosion of possible inlier choices to draw an initial hypothesis from (subject to voting

later) is very wasteful, so recent variants have been proposed to cut down the number

of tested hypotheses [Nistér, 2003; Chum and Matas, 2008].

Attempts to fuse some probabilistic predictions in the loopfor more informed
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decisions throughout matching have led to the branching of another set of semi-

probabilistic variants like KALMANSAC [Vedaldi et al., 2005] and guided-MLESAC

[Tordoff and Murray, 2005]. Most recently, Civera et al. [2009c] proposed a 1-point

RANSAC method which looks for agreement with matches constrained within the

predictions’ initial innovation regions only shifted towards their EKF-updated means,

achieving online matching of around a hundred features at 1 frame per second. Inspired

by the exploitation of the EKF correlations in Active Matching [Chli and Davison,

2008a] they constrain the possible locations of feature matches based on the hypoth-

esis generated from the 1-point selection, though to cut down costs they ignore the

reduction in the innovation regions of features upon an EKF-update.

Fully probabilistic algorithms, despite eliminating the need to adjust problem-

specific thresholds (e.g. number of iterations to perform),are yet to prove their ability

to handle hundreds of matches in real-time. Their main hold-back is the cost involved

in processing all the available priors (correlations and uncertainty) and input infor-

mation (matches). RANSAC and variants on the other hand resort to the statistical

fairness of randomness to select which hypotheses to test and accept. As a result, these

methods gain ground on speed of processing while sacrificingvalued cues essential to

discover consensus robustly in the presence of a large proportion of outliers.

Each supported by a solid probabilistic framework, Joint Compatibility Branch and

Bound (JCBB) [Neira and Tardós, 2001] and Active Matching are bound to make more

knowledgeable choices during the resolution of consensus.Chapter 5 has illustrated

how both methods successfully reject outliers in the presence of different levels of

ambiguity and input priors. Our analysis in Section 5.6 however has revealed that Ac-

tive Matching scales poorly with the number of features. Suffering similar difficulties

(though at smaller scales as suggested in Section 5.6) JCBB,is bound to become “com-

putationally intractable when the number of matches grows near a hundred”, quoting

Civera et al. [2009c].

More generally, the main distinction between conventionalmatching techniques

and Active Matching is this trade off between spending time to ‘think’ of the bestway

to exploit the available information versus brute-force exhaustive search for matches

first and resolution of consensus later (JCBB included). As demonstrated in the analy-

sis of Section 5.6, carefully selecting where to concentrate processing resources leads

to less contaminated data boosting the odds of accepting thecorrect matching scenario,

albeit with the risk of exceeding the real-time limit. The bottleneck in JCBB on the

other hand is the growth of the interpretation tree which makes the task of searching

for consensus more time consuming. The objective of this chapter is to achieve a better

balance between thinking and acting in an attempt to improvethe processing speed of

Active Matching making it more adaptable to larger data sets, achieving better perfor-
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mance than any other fully probabilistic matching technique.

Looking at ways of approximating the full solution of ActiveMatching, Section

7.2 details an initial attempt leading to the emergence of Fast Active Matching (FAM)

as proposed in [Chli and Davison, 2009b]. At every matching step, FAM makes a

random preselection of measurement candidates to enter theevaluation of mutual-

informations (MIs) stage. Then, following the standard Active Matching procedure

of measuring the candidate with the highest MI-efficiency and updating the mixture

of Gaussians (MoG), all features are matched until a jointlycompatible scenario is

achieved. Aiming for a fully probabilistic method, section7.3 describes how the joint

probability distribution of features can be approximated by the Chow-Liu tree in a

similar manner as introduced in Chapter 6, to achieve scalable performance with our

newly-proposed Chow-Liu Active Matching (CLAM) algorithm. Updates are propa-

gated via messages passed across this tree using the principles of Belief Propagation

described in Section 7.4 leading to dramatically reduced prediction and update timings

for the shape of the mixture in every matching step. Finally,experiments and results

are presented in Section 7.5 for our CLAM algorithm, leadingto the conclusions in

Section 7.7.

7.2 Fast Active Matching

Chapter 5 discussed the methodology of Active Matching (AM)for establishing pair-

ings between predictions and sensor observations using a mixture of Gaussians to rep-

resent the search state at each instant throughout matching. The fully probabilistic

maintenance of this mixture permits the use of Information Theoretic measures to

guide the decisions of either continuing to explore a promising hypothesis or moving

on to check an alternative. Predicting the shape of the mixture after a potential mea-

surement makes AM very selective in the areas it looks for matches and this really pays

off in terms of the number of mismatches encountered, aidingthe robust resolution of

ambiguity. The quality of the accepted scenario in JCBB likein AM, is bound to be the

most compatible one irrespective of the proportion of outliers present as long as these

outliers do not jointly ‘agree’ in consensus which is highlyunlikely. RANSAC-like

techniques on the other hand are more prone to data contamination especially when a

limit is imposed on the number of iterations where convergence to the optimal solution

can be interrupted.

The process of estimating the MI value ofeverypotential measurement in AM is

the main bottleneck of the algorithm driving performance out of the bounds of the

real-time requirements when it comes to matching more than around 20 features per

frame. Aiming to tackle this drawback, here we present a variant of the algorithm, first



126 Scalable Feature Matching

introduced in Chli and Davison [2009b]. Following the detailed performance analysis

of full AM algorithm in Section 5.6, we have come to the conclusion that the first steps

of matching are indeed the most crucial in decreasing the variance and resolving the

ambiguity in the new frame. The suggestion is therefore to stop evaluating MIs once

the maximum such score in the mixture drops below a threshold(i.e. the choice of

which feature to measure, becomes unimportant past this point). As demonstrated in

Figure 5.15 where the total MI is shown to tail off relativelyearly during matching,

this approximation should have negligible effect on the course of the algorithm.

Although aborting the evaluation of MIs after a certain stage will have a big

impact on the computation time, if the goal is to track many features this might not

be enough. The biggest source of delays then comes from dealing with big matrices,

primarily during the evaluation of MIs (even after the first few steps) but also during

the update of the mixture alone. Therefore, to cut down the computational costs

further Fast Active Matching (FAM) works by pre-selecting acertain number of

candidates to evaluate their MIs rather than evaluating allof them. It is most likely

that we will no longer be able to discover thebestcandidate to measure next, but

provided that the pre-selected candidates are evenly spread across all Gaussians (one

can easily select a certain number of candidates from each Gaussian), the candidate

that gets selected for measurement should be a fairly good approximation to the

globally optimal choice. Within each Gaussian, the pre-selection is random.

FASTACTIVEMATCHING(G0)

1 Mixture = [[1,G0]] // each entry in the Mixture is a [weight, Gaussian] tuple

2 preselection = drawevenly spreadcandidates(Npreselection)

// ‘preselection’ consists of{Feature, Gaussian} tuples

3 [fc,Gc] = get max mi efficiency candidate(preselection)

4 while (pair not yet measured({Fc, Gc})

5 Matches = measure({Fc, Gc})

6 UPDATEM IXTURE(Mixture, c, Matches)

7 pruneinsignificantgaussians(Mixture)

8 if (MImax< MI threshold)

9 {Fc,Gc} = get max mi efficiency candidate(Mixture)

10 else

11 {Fc,Gc} = pick next unmeasuredcandidate(Mixture)

12 end if

13 end while

14 Gbest = find most probablegaussian(Mixture)

15 return G best
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Figure 7.2: Comparing Fast Active Matching (FAM) with JCBB. Correlation is usually a
dominant factor in both methods, but using FAM the number of pixels searched is reduced
significantly at low frame rates as demonstrated in (a), explaining the superior performance
of the algorithm. (b) shows the difference in mismatches encountered per feature matching
using either of the two methods. The larger proportion of outliers in JCBB is the main cause
of inflated timings to resolve consensus in JCBB. Despite randomising the selection of the
candidate to measure, these figures suggest that FAM still reduces search-regions enough to
encounter much fewer mismatches than JCBB.

At the stage where enough measurements have been made to decrease the total

MI in the mixture sufficiently, any further MI evaluation of candidates is terminated.

In the case that matching has reached this state with a Gaussian dominating in the

mixture (i.e. having high probability of being the true hypothesis) then this Gaussian

will have very low variance left (of the order of measurementuncertainty). The to-

tal MI value comprised by the sum of the discrete and continuous MI parts becomes

small when both addends are also small. More intuitively, the absence of compet-

ing hypotheses means there is no ambiguity in the result which translates into a low

discrete-MI value but also the fact that a sufficiently largesubset of features have been

measured enforcing the dominance of that Gaussian implies that the residual variance

in that hypothesis is is also low, hence a small continuous-MI value. In image space,

this means that the search regions for any yet unmeasured features in that Gaussian

will have very small ellipses so fusing the nearest neighbour matches with respect to

the predicted positions of these features, is guaranteed tocreate a compatible scenario.

This is also apparent when thinking in terms of the chi-squared compatibility test used

in JCBB: a match within the confidence limit imposed on the distance of the observa-

tion from the hypothesised feature position is compatible with the queried hypothesis.

Since this confidence limit describes a small ellipse (whosesize is defined by the con-

fidence level) centred on the hypothesised feature position, it can easily be visualised

that a nearest neighbour match within that circle is bound tobe consistent with the rest

of the pairings in this hypothesis.
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Figure 7.3: Comparison of time needed per frame on average to perform Fast Active Match-
ing and JCBB (note the difference in scale). (a) and (b) show the breakdown for FAM and
JCBB respectively when tracking at 30Hz; the time spent in evaluation of MIs here is signif-
icantly reduced maintaining almost constant overall time adapting to the number of features
whereas the resolution of consensus in JCBB deteriorates performance with increasing number
of features. In (c) and (d) are the timings for tracking 60 features at different frame rates where
it is evident that for lower frame rates, correlation is takes up the most significant part of the
computation.

Testing FAM on the same setup and the (512×384) image-sequences used in the

analysis of AM in Section 5.6, our aim is to perform a direct comparison with the orig-

inal AM, gradually increasing the number of tracked features for a constant frame rate

and vice versa. Figures 7.2 and 7.3 demonstrate how the proposed refinements can dra-

matically improve the computation time recorded for AM to the extend FAM achieving

faster operation than JCBB. All the results shown in this section have been taken by

pre-selecting 15 random candidates evenly spread across all Gaussians present in each

matching step. The evaluation of MIs aborts when the total-MI per feature drops below

0.5 bits. Moreover if there is a dominating Gaussian with more than 70% probabil-

ity of being correct we accept it as the true scenario, fusingthe nearest neighbour

matches to the remaining unmeasured features. Note that since we prune weak Gaus-
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sians throughout matching and renormalise the weights, a Gaussian with probability

70% by the end of the matching is actually a lot more certain.

Observing the histograms in Figure 7.3, it is evident that imposing a limit on the

number of candidates evaluated for their MIs before measurement is attempted bounds

the otherwise exploding time requirements of that step of the algorithm. The time

spent in correlating patches to discover matches allows theobserver to see how FAM

manages to bound the correlation time when the frame rate is kept lower than JCBB

for a constant number of features (note the difference in scale of Figures 7.2(c) and

(d)), by dramatically reducing the number of pixels searched. Joint Compatibility on

the other hand struggles to resolve the consensus of increasing numbers of features

due to the extra mismatches it needs to consider.

A point to note here is that despite using the same test-bed asin Section 5.6, there is

some difference in the timings recorded for JCBB. The reasonfor this is that the tracker

is selecting different features to track in each experimenthence there is a difference

in the level of ambiguity involved between two different runs using exactly the same

settings. However, the comparison of JCBB with AM in Chapter5 or with FAM here

is based on exactly the same input data per frame.

In the future, we can go a step even further and stop measuringfeatures when the

MI in the mixture becomes very low. This is expected make use of the fully adaptive

nature of AM and can prove particularly beneficial in high-frame rate tracking with a

lot of features. In such cases, the uncertainty in the camerapose can be very small

leaving little room for ambiguities during matching. Also,the expected improvement

in accuracy when incorporating new measurements can soon tail off therefore, aborting

matching at that stage translates into reducing redundancywith potentially big savings

in computation time.

7.3 Active Matching Using the Chow-Liu Tree

While FAM presented above proves much more cost efficient than the AM of Chapter

5, the introduction of randomness in the loop of search for consensus annihilates the

true, fully probabilistic power of the original method imposing the need of application-

specific thresholds. Indeed, bounding the number of candidates evaluated for their MI

achieves the reduction of the ‘thinking’ process as desired, though this happens at the

expense of accuracy: the order by which features are measured is especially important

during the first few steps of matching where the variance and ambiguity are expected to

reduce most. Due to the fact that once a Gaussian gets pruned from the mixture means

that this hypothesis can never be examined again, any such decisions made prematurely

or based on false evidence can be fatal. Of course measurement-candidates can be
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‘ranked’ according to their false-positive and true-positive rates when evaluating their

expected MI values (as explained in Section 5.4.2), but whenthe all the members in the

subset preselected for MI-evaluation are poor then even thebest candidate selected for

measurement is likely to produce a false result. In essence,this means that while the

semi-randomised preselection guarantees better timings it makes the algorithm more

prone to data contamination, like most non-probabilistic techniques. This realization,

led to the observation of the problem of speeding up matchingfrom a different, fully

probabilistic perspective.

Chapter 6 has introduced the notion of the Chow-Liu tree as the least lossy approx-

imation of a joint probability distribution by a singly-connected tree. Inspired by the

power of this tree to capture the most representative correlation structure in the scene,

here we propose using it to represent the distribution of expected feature locations in-

put in AM, leading to the emergence of our new Chow-Liu ActiveMatching (CLAM)

algorithm. Since all processing in a matching scenario hereis done based on the data

of a single frame, it is only necessary to build the Chow-Liu tree out of this frame’s

MI graph. While in Chapter 6 the aim was to expose persistent relationships between

features obtained across the sequence and therefore the MI-graph of the whole map

was used, here we are only interested in the ‘local’ relationships of the visible features

which will help us discover matching consensus. This immediately means that the

time needed to build the Chow-Liu tree is now bounded by the number of features we

are aiming to match per frame rather than the cardinality of the whole map. Moreover,

using a tree in the context of AM has many attractive properties analysed in the next

section allowing efficient processing while maintaining high levels of accuracy.

7.4 Belief Propagation

The intermediate steps in AM involve propagating matching associations (during both

evaluation of MIs and update of the mixture) for each featureto the rest of the graph to

either obtain an updated or a predicted mixture by fusing an association in the exam-

ined hypothesis. In Chapter 5, all such updates reducing thevariance of the examined

Gaussian were made following the EKF-update rules which involve the use of the in-

novation covariance matrix since the joint probability distribution of feature positions

was a fully-connected, complete graph. Here however, the tree is a much simpler

graph-structure allowing updates of order O(n) in the number of features in the worst

case as the analysis in this section suggests.

Belief propagation (BP) is a method for efficient and exact inference in a tree

structure with a tractable computational cost first proposed by Pearl [1988]. Given

observations for a subset of the graph, the algorithm computes marginals for all other
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(a) (b) (c)

Figure 7.4: Examples of graphical structures used as a reference for discussing the flow of
information in the BP methodology. An observation for nodeA in (a) can only yield an update
to nodeE following the pathA-B-C-E. This is done by sequentially forming the conditional
distributionsP(B|A), P(C|A) so thatP(E|A) can be calculated as outlined in Equation 7.2. The
tree in (c) is an approximation to the fully-connected graphin (b).

variables by recursively propagating local messages alongthe edges of the tree. Ap-

pendix A gives a brief outline of the more general sum-product algorithm using parts

of the derivation of Bishop [2006] in an attempt to give a deeper understanding of how

this methodology works.

7.4.1 CLAM: Estimating Posteriors Upon a Successful Measurement

The key idea behind the BP methodology is the exhaustive exploitation of the tree

structure and the properties of d-separation: there is onlyone path between any two

nodes of the tree, hence an update-message originating froman observed nodeA is

bound to update the probability distributions of any intermediate nodes in the way

until it reaches its final destination, nodeE for the tree example of Figure 7.4(a). The

conditional distribution ofP(E|A) can only be computed ifP(C|A) is available which

in turn is a function ofP(B|A):

P(E|A) = P(E|C)×P(C|A) (7.1)

= P(E|C)× [P(C|B)×P(B|A)] (7.2)

Following the BP methodology, this computation can be interpreted in terms of

messages: nodeA passes its observed value toB, which sends off theP(B|A) message

towardsC (andD if the aim is to discover all conditionals), which in turn cannow

computeP(C|A) to propagate toE.

Considering now the nodes of this tree as features we aim to match with CLAM,

we can say that every nodeJ describes the Gaussian probability distribution of the

position of that feature in the image in terms of a meanj and an associated innovation

covariance matrixSJJ. Relying on the Chow-Liu tree to pick out the edges of the MI-

graph that approximate it best, a link between nodesJ andK is described by a cross-
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covariance blockSJK and its transposeSKJ referring to the relationships ofP(J|K) and

P(K|J), respectively. At the beginning of matching, these parameters are set to the

respective values input into the feature matcher. Strictlyspeaking, when approximat-

ing the complete, joint distribution of features with a treethe uncertainty encoded in

eachSJJ increases to reflect the effect of the approximation, but here we can directly

read out these values from the innovation covariance matrixsince the confidence of

the tracker (providing these values) is not affected by thisapproximation.

Using this notation we will evaluate each of the probabilities involved in Equation

7.2 for the special case where all distributions are Gaussians (as used in AM) to derive

the expressions for the BP-messages passed along the branches of our Chow-Liu tree

upon a successful measurement. However, we first analyse thebasic rules of condi-

tioning in multivariate Gaussian distributions to derive expressions for posteriors in

tree-structured distributions, from first principles.

Mathematical Derivation of Conditionals in Gaussian Tree Structures

Let us consider the simple graph of Figure 7.4(b). The joint distribution ofP(A,B,C)

can be expressed as

P(A,B,C) = P(A)×P(B|A)×P(C|A,B) . (7.3)

Since we are interested in Gaussian distributions of variables, let this distribution

be described by a mean vectorx̂ stacking all vectorŝa, b̂, andĉ, and a corresponding

covariance matrixS. Explicitly,

p(x) =
1

√

(2π)3n |S|
e−

1
2(x−x̂)⊤S−1(x−x̂) , (7.4)

where 3n is the dimension ofx, n being the dimension of each ofâ, b̂, andĉ. If

variableB is now observed with a valueb, we can obtain expressions for the pos-

terior mean and covariance ofP(A,C|B) by considering the quotient of distributions

P(A,B,C) overP(B) and rearranging in the form of Equation 7.4. The covariance of

this conditional can be described using Schur’s complementwhich briefly is the result

of applying Gaussian elimination to the rows and columns corresponding toB.

Schur’s complement

Let T be partitioned asT =





P Q

R U



. Given that matricesT andP are square

and nonsingular, then the Schur complement ofP in T is (U −RP−1Q).
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Denoting the parameters of the conditional distribution onB with the subscript ‘|B’ we

reorder and partitionSso that matrixP of the inset above corresponds to the innova-

tion covariance ofB, SBB. Applying Schur’s complement we arrive at the posterior

innovation covariance of the distribution (conditioned onthe observed value ofB):





SAA|B SAC|B

SCA|B SCC|B



 =





SAA SAC

SCA SCC



−





SAB

SCB



S−1
BB

(

SBA SBC

)

=





SAA−SABS−1
BBSBA SAC−SABS−1

BBSBC

SCA−SCBS−1
BBSBA SCC−SCBS−1

BBSBC



 . (7.5)

The expressions along the diagonal demonstrate how the individual variances of nodes

A andC get reduced by the measurement ofB, whereas the off-diagonal blocks show

that the correlation-link between nodesA andC also gets affected by this measurement.

The means vector can also be shown to obey:





â|B

ĉ|B



=





â

ĉ



+





SAB

SCB



S−1
BB(b− b̂) =





â+SABS−1
BB(b− b̂)

ĉ+SCBS−1
BB(b− b̂)



 . (7.6)

These are the standard update equations used to evaluate theparameters of posteriors

in Gaussian joint probability distributions. If however wenow consider approximating

the fully connected distribution of Figure 7.4(b) with the tree of Figure 7.4(c), eval-

uating the terms in these expressions is no longer obvious. Cutting the link between

nodesA andC means that we no longer have explicit values for the cross-correlation

termsSAC andSCA. The variables are still however correlated and in fact d-separated

by B: any information originating from nodeA has to pass throughB to reachC and

vice versa. Once howeverB gets measured, then nodesA andC become completely in-

dependent and uncorrelated. Therefore the off-diagonal blocks in equation 7.5 should

be equal to zero to enforce this independence:

SAC|B = 0⇒ SAC−SABS−1
BBSBC = 0⇒ SAC = SABS−1

BBSBC . (7.7)

Similarly, we can find an expression forSCA or any other cross-correlation block in

longer tree paths in terms of known matrix blocks, using the same principles. At-

tempting to give an intuitive understanding of the expression in equation 7.7 above,

we can see how the information leaving nodeA has to pass through the linkAB (using

the termSAB) and be converted to the frame of reference ofB (simulating the effect of

this information onB’s variance withS−1
BB) so that it can be passed on toC (via SBC).

Supposing now that we have further obtained a measurement for nodeA, then applying
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Schur’s complement again the updated variance ofC will be:

SCC|A,B = SCC|B−SCA|BS−1
AA|BSAC|B . (7.8)

This confirms that if the initial joint distribution is represented by the tree of Figure

7.4(c) then the measurement ofA has no further impact onC (given thatB had al-

ready been measured) sinceSAC|B = SCA|B = 0. Therefore, cutting the direct linkAC is

equivalent to settingSCC|A,B ≈ SCC|B, which reveals the effect of a tree approximation

of a fully-connected graph: the reduction in variance upon ameasurement in the tree

approximated structure is bound to be less than or equal to the reduction in the true,

fully-connected distribution.

Evaluation of Messages Passed In Gaussian Tree Structures

Having obtained expressions for the parameters of conditional distributions we now go

back to our initial example of Figure 7.4(a), aiming to evaluate the messages passed

along the links of that tree upon a successful measurement ofa node within the context

of CLAM. Supposing that an image-search for featureA has yielded the matcha, the

new distribution conditioned on this measurement will havethe position ofA assigned

to this match with its innovation covariance set to measurement noise. From then on,

the parameters of any neighbours ofA can be directly updated using update rules of

equations 7.5 and 7.6. Since hereB is the only neighbour ofA:

b̂|A = b̂+SBAS−1
AA(a− â) (7.9)

SBB|A = SBB−SBAS−1
AASAB . (7.10)

Given that nodeB is now updated it can disseminate information regarding themea-

surement ofA to all of its neighbours (excludingA). Considering nodeC and using the

equation 7.7 to expressSAC andSCA,

ĉ|A = ĉ+SCBS−1
BB

(

SBAS−1
AA(a− â)

)

(7.11)

SCC|A = SCC−SCBS−1
BB

(

SBAS−1
AASAB

)

S−1
BBSBC . (7.12)

Comparing the updated parameters ofC (in Equations 7.11, 7.12) with the updated

parameters ofB (in Equations 7.9, 7.10), it is evident that the influence on both the

mean and variance ofC is a function of the influence the measurement had onB,

indicating the recursion which is to become more evident as we evaluate expressions

for variables deeper in the tree. In a similar manner, the updated parameters of nodeD

are:
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d̂|A = d̂+SDBS−1
BB

(

SBAS−1
AA(a− â)

)

(7.13)

SDD|A = SDD −SDBS−1
BB

(

SBAS−1
AASAB

)

S−1
BBSBD . (7.14)

Lastly, the updated nodeC can now issue a message to updateE. Using the update

rules of equation 7.5 and the rationale used to derive equation 7.7:

SEE|A = SEE−SEAS−1
AASAE (7.15)

= SEE−
(

SECS−1
CCSCA

)

S−1
AA

(

SACS−1
CCSCE

)

(7.16)

= SEE−
(

SECS−1
CC

(

SCBS−1
BBSBA

))

S−1
AA

((

SABS−1
BBSBC

)

S−1
CCSCE

)

. (7.17)

In a similar manner, it can be shown that:

ê|A = ê+SECS−1
CC

(

SCBS−1
BB

(

SBAS−1
AA(a− â)

))

. (7.18)

Based on this brief derivation of the expressions used to update the nodes of the tree

in Figure 7.4(a) upon an observation of a node, we can now arrive at more general BP

rules for updating and message-passing in trees.

BP Messages and Update Rules in Gaussian Tree Structures

Given an observation of some nodeF, nodeK lying on the same tree gets updated upon

the receipt of mean and covariance messages (mmsgJ→K andSmsgJ→K respectively)

from its direct neighbour, nodeJ by:

k̂ |F = k̂ + ∆k̂ , where ∆k̂ = SKJmmsgJ→K (7.19)

SKK|F = SKK −∆SKK , where ∆SKK = SKJSmsgJ→KSJK . (7.20)

Once updated, nodeK can issue similar messages as below for all its other neighbours

M such thatM 6= J:

mmsgK→M = S−1
KK∆k̂ (7.21)

SmsgK→M = S−1
KK∆SKKS−1

KK . (7.22)

Starting off with∆â= a− â and∆SAA = SAA and passing messages formed as in Equa-

tions 7.21 and 7.22 along the links of the tree of Figure 7.4(a), we can derive the same

expressions for conditional distributions of all nodes as above in a recursive manner.

If only one node is ever observed in the tree, then the update rules of Equations

7.19, 7.20 and the messages in 7.21, 7.22 are enough to get expressions for the con-
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ditioned marginals of the variables in the tree. If however another variable is further

observed then our expressions will no longer be valid because we have not taken into

account the updated values of the conditioned cross-covariance terms (corresponding

to the correlation-links between variables) which are indeed affected upon a measure-

ment as suggested in our mathematical derivation in Equation 7.5. Since in our match-

ing paradigm we are obtaining observations for features sequentially, we also need to

carry link messages (as well as the mean and covariance messages) to update these

cross-covariance terms. Using the same notation and rationale as before, when nodeK

receives BP messages fromJ and gets updated, then their linkJK is also updated by:

SKJ|F = SKJ LmsgJ→K (7.23)

SJK|F = LmsgJ→K
⊤SJK . (7.24)

Then, along with outgoing messages for the mean and variance, nodeK also issues

link messages for its neighboursM:

LmsgK→L = I −S−1
KK∆SKK , (7.25)

whereI in the above expression refers to the identity matrix.

Given that these updates can be done recursively, we no longer need to carry

around the big innovation covariance matrix in every new hypothesis formed to repre-

sent the search state of the matching procedure (as was necessary in AM). Therefore,

every Gaussian in CLAM now consists of a linked-list of the means and innovation

covariance sub-blocks representing the marginal distribution of each predicted feature

position, along with the off-diagonal sub-blocks of the covariance matrix correspond-

ing to the links preserved in the tree structure.

Once the measurement of a feature (node) yields a set of matches, the new Gaus-

sians spawned from it (each to represent the hypotheses one of these matches is the

true feature) will inherit a copy of the linked-list of the Gaussian just measured, only

isolating the measured feature so that any links connected to it will be cut (since there

can be no more information passed though them once the feature is observed). This

means that over the course of matching, the initial tree spanning all features present

in the frame is progressively thinned depending on the matching results of features.

Hence in the worst case, an update upon a measurement is of order O(n) in the number

of nodes.

7.4.2 CLAM: Computing MIs

Following the derivation of the update rules and message passing in CLAM, here we

derive expressions for efficiently computing the Mutual Information that each mea-
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surement is expected to provide. Once again, the d-separation properties of the tree

allow for short-cuts in this otherwise explosive computation. Considering again the

tree example of Figure 7.4(a) we aim to find expressions for the MI that a node is pre-

dicted to give aiming to gain a general understanding to the flow of information in the

tree so that we can expand this to a more general tree structure.

Using the basic rules of Mutual Information introduced in Chapter 4, let us con-

sider the information value of a supposed measurement of node A:

I(B,C,D,E;A) = H(B,C,D,E)−H(B,C,D,E|A)

=

∫

A,...,E
P(A,B,C,D,E) log2

P(B,C,D,E|A)

P(B,C,D,E)
d(A, . . . ,E) . (7.26)

The division inside the logarithm can be simplified using thefactorised expression for

probability distribution of the tree:

P(A,B,C,D,E) = P(A)×P(B|A)×P(C|B)×P(D|B)×P(E|C) . (7.27)

Therefore, using Bayes’ rule and equation 7.27,

P(B,C,D,E|A)

P(B,C,D,E)
=

P(A,B,C,D,E)

P(A)P(B,C,D,E)

=
P(A)P(B|A)P(C|B)P(D|B)P(E|C)

P(A)P(B)P(C|B)P(D|B)P(E|C)

=
P(B|A)

P(B)
. (7.28)

Hence, substituting now Equation 7.28 into 7.26:

I(B,C,D,E;A) =
∫

A,...,E
P(A,B,C,D,E) log2

P(B|A)

P(B)
d(A, . . . ,E)

=
∫

A,B
P(A,B) log2

P(B|A)

P(B)
d(A,B) ≡ I(B;A) . (7.29)

In words, the MI that nodeA is predicted to provide to the rest of the tree is equivalent

to the MI it is expected to provide to nodeB alone. Considering instead a possible

measurement of nodeB,

I(A,C,D,E;B) = H(A,C,D,E)−H(A,C,D,E|B)

=

∫

A,...,E
P(A,B,C,D,E) log2

P(A,C,D,E|B)

P(A,C,D,E)
d(A, . . . ,E) . (7.30)

The division inside the logarithm can again be simplified using a different factorisation
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(a) Initial state (b) A is observed (c) B is observed

(d) C is observed (e) D is observed (f) E is observed

Figure 7.5:Visualising the entropies of variables in the tree of Figure7.4(a) and their pairwise
relationships. Supposing each variable has an entropy proportional to the area of the rectangle
used to represent it, then the total entropy of the distribution P(A,B,C,D,E) is equivalent to
the area enclosed in the outer, bold border of (a). Figures (b) - (f) depict the effect that each
possible measurement has on the marginal and conditional entropies of the distribution.

for the tree distribution:

P(A,C,D,E|B)

P(A,C,D,E)
=

P(A,B,C,D,E)

P(B)P(A,C,D,E)

=
P(B)P(A|B)P(C|B)P(D|B)P(E|C)

P(B)
∫

BP(B)P(A|B)P(C|B)P(D|B)P(E|C)dB

=
P(A,C,D|B)

P(A,C,D)
. (7.31)

Substituting now back in equation 7.30:

I(A,C,D,E;B) =

∫

A,...,E
P(A,B,C,D,E) log2

P(A,C,D|B)

P(A,C,D)
d(A, . . . ,E)

=

∫

A,B,C,D
P(A,B,C,D) log2

P(A,C,D|B)

P(A,C,D)
d(A,B,C,D)

≡ I(A,C,D;B) . (7.32)

Equation 7.32 states that the MI that nodeB is predicted to give to the rest of the

tree is equivalent to the MI it is predicted to give to its neighbours alone, analogously

to the conclusion for the MI of nodeA. Deriving expressions for every other node

in a similar manner and also considering the case of more complex tree structures, it

can be shown that this observation is indeed general: the information gain that a node

is predicted to give to the rest of the variables in a tree is equivalent to the MI it is

expected to give to its immediate neighbours alone. Considering the way updates are

propagated across the tree upon the observation of one of thenodes, one can under-
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stand that a measurement for a particular nodeK will cause progressive, breadth-first

updates, first updating its immediate neighbours, followedby updates of their neigh-

bours and so on. Therefore, any information flowing from thisnodeK reaching an

indirectly linked nodeF in the tree is bound to be less than or equal to the information

passed on toK’s immediate neighbour.

In an attempt to give a deeper understanding of information flow in a tree, Fig-

ure 7.5 depicts a visualisation of the information shared between the variables of the

tree of Figure 7.4(a). All relationships between variablescan be derived in the same

way as above, though we chose to illustrate them visually to give a better intuition.

On the assumption that a measurement of a given node causes zero or positive reduc-

tion to the variances of the rest of the variables, we can safely represent marginal and

conditional entropy in terms of area [Mackay, 2003]. Without loss of generality, the

entropy of each variable in this tree is depicted by the area enclosed in the correspond-

ing rectangle in Figure 7.5(a). There is of course overlap between these rectangles

representing the shared information content between nodes. The arrangement of these

overlaps however is very significant because it is chosen to reflect the effect of each

measurement to the rest of the distribution. Given that the area enclosed inside the

outline of this composition of rectangles (shown with a bolder line), corresponds to

the total entropy of the distribution, we now consider a supposed observation of each

of the variables and discuss their effect on every other conditional distribution:

• A is observed: the posterior entropies conditioned on the observation ofA can

be visualised as cuttingA’s marginal entropy out of the composition as shown

in (b). As expected, all other marginal and conditional entropies are reduced

following this measurement, including the total entropy inthe tree.

• B is observed:the updated distribution conditioned on this observation as shown

in Figure 7.5(c) reflects the properties of d-separation breaking the tree in two

so that nodeA becomes completely disjoint from the set{C,D,E} sinceB was

the pathway ofA to propagate any information to the rest of the tree and vice

versa.

• C is observed:this is a similar case as above, onlyE is now the node completely

separated out from the rest of the variables as suggested in 7.5(d).

• D is observed: nodeD being a leaf in the tree, it did not d-separate any sets

of variables in the first place so the remaining variables canstill share infor-

mation between them as suggested in Figure 7.5(e). Considering the posterior

tree structure, a measurement for nodeD therefore makes redundant only links

coming out of it, and finally:
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• E is observed:again, a measurement of this leaf node preserves some correla-

tion between the rest of the variables as shown in 7.5(f), though their correlation

is reduced depending on how correlated they were with nodeE in the first place.

The key result of this analysis is that:

The MI gain that a node is predicted to provide to the rest of the distribution upon successful

measurement isequivalent to the MI it is predicted to give to its neighbours alone.

This follows from the fact that the information content thatthis node has in com-

mon with the rest of the variables is exactly equal to the information it shares with

its immediate neighbours. As a result, the evaluation of MIsin CLAM becomes triv-

ial: the costly manipulation of the full covariance matrix (as was necessary in AM)

gets replaced by a few fast message-passing operations within the sub-tree spanning

the candidate node and its immediate neighbours only. Moreover, the tree represen-

tation allows for further short-cuts in evaluating the nodes’ MIs: due to the fact that

upon successful measurements some links become redundant and the tree breaks into

smaller sub-trees, not only update operations are then confined within the sub-tree a

measurement is made, but also the MI values of any features not been updated within

a particular matching step can be carried forward to the nextone since they will still

be valid.

7.5 Experimental Results

In order to demonstrate the power of this fully probabilistic adaptation of Ac-

tive Matching this section discusses assessment experiments performed using the

MonoSLAM system. The quality of matching is tightly coupledwith the quality of

features selected for tracking used as discussed earlier inthis thesis which in turn de-

pends on the feature detector and descriptor used. In order to remain consistent with

the rest of the results presented in this thesis, here we use Shi-Tomasi features [Shi and

Tomasi, 1994] saving the 11×11 patch surrounding the detected peak as their descrip-

tor. However, in order to achieve both high numbers of Shi-Tomasi peaks in the image

while also achieving patches of acceptable quality to track, we have increased the res-

olution of images used to 1024×768. This indeed makes searching for matches more

costly since more pixels (4× more) correspond to the same uncertainty region for each

feature, meaning that more normalised cross-correlation operations have to be per-

formed in order to discover matches. However, in case a different detector-descriptor

combination can provide high numbers of features in a lower resolution image, then

all the timings presented in this section (for all the superimposed matching algorithms)

will be reduced by a significant amount, improving the overall speed of performance.
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7.5.1 CLAM: A Step-By-Step Example

Our CLAM algorithm, which is mainly based on the AM algorithmof Chapter 5,

follows the same principles but as described in detail previously in this chapter, the

difference is the approximation of the joint distribution of visible features with the

Chow-Liu tree factorisation as introduced in Chapter 6. This tree factorisation allows

speed-ups in the time needed for both updating the tree and evaluating the MI that each

feature is predicted to give.

Figure 7.6 illustrates a step-by-step example of the way Chow-Liu Active Match-

ing works within a given frame. The tracker provides the matcher with the means

vector and the dense innovation covariance matrix describing the joint distribution of

the features predicted to be visible in the new image. Computing all the pairwise MI

links between features based on the innovation covariance entries, we can form the

complete MI graph which is then sparsified so that the links forming the Chow-Liu

tree can be identified. Figure 7.6(a) shows this tree in a typical matching example

while tracking in an office scene. As discussed in Chapter 6, the Chow-Liu tree has

the power of capturing the most representative correlationstructure in the scene, pre-

serving links between strongly correlated features. As evident in the example of Figure

7.6(a), features that have been tracked consistently and moved coherently throughout

the sequence share strong correlations hence they lie closeto each other in the tree

space (e.g. the features on the checker-board), whereas less correlated features lie

more ‘steps’ away in the tree (e.g. features on the left part of the image with features

on the right).

According to the correlation structure preserved in the Chow-Liu tree and the pre-

dicted MIs of each of feature, the hub-like feature in the middle of the image is esti-

mated to provide the biggest MI gain per pixel searched. Propagating the successful

measurement result of this feature along the branches of thetree causes reductions

in uncertainty of different magnitude to all other featuresin the image: the features

directly connected to it become more certain than the rest due to the fact that by con-

struction of the tree, these features share stronger correlations with the one measured.

As illustrated in Figure 7.6(b), conditioning the distribution on the measurement

result of (a) not only has an effect on the variance of each feature but also the tree

structure itself: since measuring the feature has pinned down its exact position to the

obtained match, then all information that could be passed though this node has already

been disseminated to its neighbours upon the update of the distribution, so these links

have now become redundant. Cutting these links as shown in 7.6(b) the problem of

matching is now essentially partitioned in sub-trees corresponding to different parts of

the image, which are highly intercorrelated. Yet another successful measurement in

(b) causes further disappearance of links in (c) and a variance reduction only for the
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(a) Initial state: the Chow-Liu tree (b) Propagating the 1st measurement

(c) Failed search for a match (d) Measure a hub-like feature

(e) Updated state (f) Superposition of searched areas

Figure 7.6: Matching using CLAM within a frame while tracking an office scene. In (a)
is the initial state of matching, illustrating the varianceof each of the 97 features and their
joint distribution as the Chow-Liu tree. The arrow points atthe feature predicted to provide
the most MI per pixel searched. Propagating the successful measurement of (a) in (b) cuts any
links directly connected to it and reduces the variance of all other features. The successful
measurement in (b) yields updates in (c) for that subtree only. In (c) however, the selected
feature yields no match preserving the same search state andtree structure. The match in (d)
causes new divisions into subtrees in (e), partitioning theproblem of matching further. Finally
(f) demonstrates that CLAM searched almost 5 times fewer pixels than JCBB in this frame.



7.5 Experimental Results 143

features that were part of the subtree where the measured feature was lying. In (c)

however, the feature searched for did not yield a successfulmatch which causes nei-

ther reduction in uncertainty nor changes in the tree structure. As detailed in Chapter

5, a failed match has an effect only on the distribution of weights in the mixture. The

matching scenario of Figure 7.6, however, has been chosen tobe straightforward for

the sake of clarity: since matches occur mostly right at the predicted locations of fea-

tures, each new Gaussian spawned upon a successful match inherits most of its parent’s

weight. As a result, the parent (measured) Gaussian gets pruned out of the mixture (this

is true for the search state of all images displayed, howevermore Gaussians have been

live during the course of matching in this frame). In effect,the mixture of Gaussians

in (c) contains a single live Gaussian hence a failed match has no effect on the search

state (aside from removing this ellipse from the candidatesfor measurement).

Figure 7.6(d) shows how the successful measurement of another hub-like feature

yields great uncertainty reduction and breaks the problem of matching down even more

in (e). Finally, Figure (f) illustrates a superposition of areas searched for until all

features have been matched using CLAM as opposed to conventional ‘get matches

first, resolve later’ techniques like JCBB. More specifically, in this example CLAM

searched almost 5 times fewer pixels than JCBB. A minor comment is that some fea-

tures have not returned any successful matches, so any of these features sharing a link

in the initial Chow-Liu tree, they continue to share it untilthe end of matching.

7.5.2 Sequence Results

Testing the capabilities of the CLAM algorithm, we generated a test-bed of sequences

to span different frame rates by progressively subsamplingan office sequence captured

at 30Hz. Since the resolution of all captured and generated sequences is 1024×768

not only more pixels have to be searched per feature as mentioned before but also more

mismatches are likely to occur rendering these sequences significantly hard to track.

A point to note for the figures presented in this section is that the comparisons made

between the different matching techniques used are based onruns using the exact same

tracking settings, however the choices made in each run for which features to track can

differ though this should have a negligible effect on the recorded results.

Area Searched for Matches

Tracking at low frame rates, the ‘blind’ interval in betweenframes becomes larger

allowing for more unpredictable behaviour hence there is more uncertainty in the es-

timated position of the camera and each feature measured. Asa result, the search

region for each feature increases with decreasing frame rate as suggested in Figure

7.7. Chapter 5 discussed how AM outperforms JCBB when tracking at lower frame
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(a) Searched area per feature (b) Isolating AM-based methods

Figure 7.7: Comparison of the number of pixels searched per feature whentracking the
office sequence. In (a) is a comparison to scale of the numbersof pixels searched when using
either the original AM, CLAM or JCBB. It is evident that both AM-based methods search
significantly fewer pixels so for the sake of clarity (b) illustrates the same data only for these
two methods. As expected, as CLAM is an approximation of AM itexhibits less reduction in
search-areas however, the difference becomes less obviousin higher frame rates. In essence,
the variance reduction to scale as shown in (a) suggests thatapproximating the joint distribution
of features with the Chow-Liu tree indeed captures the most significant correlation structure.

rates since it achieves large reductions in search regions avoiding further confusion

of the matcher with unnecessary mismatches. Here, Figure 7.7(a) demonstrates that

despite CLAM being an approximation of AM it still reduces the searched areas sig-

nificantly with respect to the initial search regions (necessary to search when matching

with any conventional matching method like RANSAC).

During the derivation of the BP messages passed along the Chow-Liu tree branches

in section 7.4.1, it became apparent that approximating thejoint distribution of features

with a tree will lead to less reduction in variance upon a successful measurement.

Figure 7.7(b) demonstrates exactly this statement, also suggesting that the difference

in variance reduction becomes less apparent with increasing frame rate. This is due

to the fact that as we are moving towards higher frame rates, the uncertainty ellipse

of each feature becomes smaller (bound to reach measurementerror at minimum) as

the predictions become more and more accurate, therefore there is not much room for

further reduction then. However, when observing this variance reduction to scale (i.e.

with respect to the initial search regions as shown in Figure7.7(a)) it is evident that

using CLAM search regions are still reduced dramatically which in a way demonstrates

the good quality of the approximation: the Chow-Liu tree, despite an approximation

preserves the most dominant correlation structure (if thiswas not the case, then search

regions wouldn’t reduce as much).
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(a) CLAM timings (b) FAM timings

Figure 7.8: Breakdown of computation time for CLAM and FAM when trackingthe office
sequence. Both figures (a) and (b) here are shown on the same scale for the sake of comparison.
Observing (a) it is evident that CLAM maintains a better balance between the main stages of
the algorithm as opposed to the original AM where evaluatingMIs the dominant and limiting
factor of the algorithm. While FAM seems to perform marginally better than CLAM, the
robustness and accuracy that CLAM provides makes it a betteroption.

Time Requirements

As interpreted before, Figure 7.8 illustrates the breakdown of computation time con-

sumed within each step of the matching procedure on average,per frame. Observing

the histogram bars in 7.8(a) it is evident that the use of the tree to evaluate MIs and up-

date the mixture in CLAM achieves the maintenance of a betterbalance of resources

between the different parts of the algorithm. As the number of features tracked in-

creases, the time consumed by each procedure also increasesthough it a dramatically

better rate than the original AM algorithm. Still this rate is a little worse than linear,

however we can match 100 features per frame in less than 125msper frame. While

Civera et al. [2009c] do not mention explicitly the time needed for matching alone,

however they record tracking timings of 1 frame per second for the same number of

features and much lower resolution of images (320× 240) which in principle makes

the task of identifying matches a lot faster.

Figure 7.8(b) superimposes the timings of Fast Active Matching for increasing

numbers of features per frame for the same office sequence. While correlation is a

more costly process in FAM, overall the timings recorded aremarginally better than

those of CLAM. However, as discussed later on FAM proves to besignificantly less

robust and accurate than CLAM which in the end makes CLAM a much more attractive

approach to fast matching.

As a means of comparison between all the different methods discussed in this

chapter, Table 7.1 below illustrates the breakdown of the time consumed per frame
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METHOD CORRELATION
RESOLVE CONSENSUS

TOTAL
Evaluate MIs Update MoG CL-tree

JCBB 136.2ms 23786.6ms 23.9s
AM 19.7ms 22531.1ms 2653.4ms - 25.2s
FAM 83.1ms 2.5ms 15.6ms - 101.2ms

CLAM 22.2ms 45.9ms 49.5ms 4.4ms 122.0ms

Table 7.1:Time needed by each method to complete matching of 100 features in a typical
frame of the office sequence. Note the difference in units of these figures.

when tracking a typical frame of the office sequence with 100 features (notice the

difference in the measurement units in some cases).

Albeit achieving the lowest correlation time due to its ability to reduce search re-

gions most, the original AM algorithm takes a ridiculously long time to discover the

matching consensus for 100 features and the main factor is the evaluation of MIs,

taking almost 23s per frame. While it is the guiding force in AM, the evaluationof

MIs comprises a huge bottleneck which we specifically tackled with FAM. Indeed,

randomising the choice of candidates to evaluate, reduces the timing of this step dras-

tically in FAM while it loses from the reduction in the searchregions leading to longer

correlation time. The fully probabilistic approximation of CLAM on the other hand se-

lects more carefully which relationships between featuresto preserve, achieving lower

correlation timings though taking a little longer to complete. Joint Compatibility, as

expected, has the longest correlation time but its main bottleneck is the resolution of

consensus rendering it well out of real-time bounds, while in some frames it requires

significantly longer time than recorded here (the timings here are shown on a basis of

a small portion of the sequence in an attempt to give a generalunderstanding of how

the processing times compare).

Comparing Trajectories

While outstanding time performance is a very significant asset that a matching algo-

rithm has to have, accuracy is equally important. So the question is what can each

algorithm achieve within the time it takes to complete? Here, in an attempt to assess

the quality of the matching outcome of each technique, we superimpose the estimated

trajectories when tracking both the captured office sequence and a more challenging

sequence of an outdoor walkway for different numbers of features.

Since ground truth is not available, here we critique the quality of matching with

respect to the trajectory estimated while tracking using our original AM algorithm. We

assume that this method will provide the most consistent estimates given the current

tracking settings and available information. This assumption is made on the grounds

that despite taking a long time to complete, AM’s fully probabilistic way of discovering
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consensus makes it resilient to significant presence of outliers and moreover, it uses all

available prior information.

Figure 7.9 superimposes the estimated trajectories obtained when tracking the cap-

tured office sequence with different settings. Tracking using 100 features per frame we

expect to get the best of every matching technique due to the presence of significant

amounts of data upon which a hypothesised matching scenariocan be checked. In-

deed looking at Figures (c) and (d) for CLAM and FAM respectively, we can see that

the trajectories obtained are generally very similar to those obtained using AM in (a).

However, looking more closely at (d) we can see that the most recent camera pose es-

timates do not seem very consistent leading to a jerky end which contrasts the smooth-

ness throughout the trajectories of AM and CLAM in (a) and (c)respectively. This

suggests that FAM fuses some outliers in the system estimatewhich at this time in the

sequence are generated by mismatched features lying eitheron the carpet or outside

the window where patch-correlation is likely to fail or produce multiple matches. As

a result, despite achieving the fastest performance, FAM proves less robust to outliers

than CLAM.

Looking at Figure 7.9(b) which illustrates the trajectory obtained while tracking

40 features per frame using CLAM, it seems that despite the relatively low number

of features, CLAM still performs very well. Despite the factthat it is indeed an ap-

proximation of AM, these figures suggest that this is an approximation worth making

since the quality of tracking is not put at risk while the timeperformance improves

drastically.

Pushing the algorithm to the limits, we tested the quality oftracking on the outdoor

walkway sequence. This is a particularly challenging sequence to track since lower-

ing the Shi-Tomasi thresholds to allow for tracking a hundred features leads to many

Shi-Tomasi peaks occurring on edge-like patches, since edges are a very dominant

structure in the obtained images. Edge features are a major source of outliers when

matching using normalised cross correlation since they canvery easily slide along

the edge producing multiple similar matches, making robustresolution of consensus a

very hard task even to the human eye. In fact, FAM really failsto track this sequence

as illustrated in Figure 7.10 where the estimated trajectory does not resemble at all the

roughly straight path of the hand-held camera.

Due to the fact that the quality of Shi-Tomasi features detected in this sequence

is very limited, tracking is generally not advised using this choice of feature detector

and descriptor. For this reason and due to the fact that FAM fails to produce consis-

tent estimates, the statistical results presented in this Section so far, have solely been

based on the test-bed generated for the office sequence. However, our objective here

is to demonstrate the quality of approximation of CLAM, therefore in Figure 7.11 we
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(a)AM tracking 100
features per frame:
used as the model tra-
jectory for this se-
quence.

(b) CLAM track-
ing 40 features per
frame: even with
much lower number
of features, the algo-
rithm achieves con-
sistent estimates re-
sulting to a trajectory
very similar to (a).

(c) CLAM tracking
100 features per
frame: despite an
approximation of
AM, the obtained
trajectory is almost
the same as in (a).

(d) FAM tracking
100 features per
frame: trajectory be-
comes jerky towards
the end which is a
sign of some mis-
matches incorporated
in the system.

Figure 7.9: Comparison of trajectories using different matching techniques to track the
office sequence. Images on the left correspond to the camera view and images on the
right display the camera trajectory with the accumulated uncertainty in the camera position.

Note: absolute scale is not estimated here, so differences in the scale of trajectories are a matter of display.
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Figure 7.10: Tracking the outdoor walkway sequence using FAM with 100 features per
frame. The multiple edge-like features selected for tracking produce a high number of outliers
which FAM is not able to cope with as demonstrated in the estimated trajectory which deviates
significantly from the actual straight path followed by the hand-held camera.

compare the quality of trajectories obtained using AM and CLAM while tracking the

outdoor walkway sequence.

Figure 7.11(a) which illustrates the trajectory obtained when matching 40 features

per frame using AM, suggests that the bad quality of featureshas affected the quality

of tracking leading to a slight curve in the estimated camerapath. It is important to

note here that in order to isolate the effect of the approximation of AM with CLAM,

the capability of both algorithms to handle features with variable false-positive and

true-positive rates has been switched off, essentially assuming that all features share

the same matching characteristics. Looking at Figure 7.11(b) which depicts the tra-

jectory obtained for matching 40 features with CLAM, it is evident that the estimates

that the tracker has made are very similar to the case of matching using AM with the

same number of features as shown in (a): despite the high datacontamination, the ap-

proximation in CLAM maintains the same quality of tracking as AM at a much lower

computational budget.

When raising the number of tracked features per frame to a hundred however, the

quality of tracking is improved achieving straight trajectories for both AM and CLAM

as illustrated in Figures (c) and (d). Despite the significant presence of outliers, both

methods manage to recover what seems to be a very close representation of the true

camera trajectory, due to the presence of extra data to checkmatching hypotheses

upon.
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(a) AM tracking 40
features per frame:
the estimated trajec-
tory has a slight curve
due to mismatched
features.

(b) CLAM tracking
40 features per
frame: a similarly
shaped trajectory for
the approximated
feature distribution.

(c) AM tracking 100
features per frame:
denser matching al-
lows better rejection
of outliers, achieving
a straight trajectory.

(d) CLAM tracking
100 features per
frame: approximat-
ing the distribution
still achieves a
straight trajectory.

Figure 7.11: Comparison of trajectories obtained for the walkway sequence taken
with a hand-held camera. This is a particularly challengingsequence at high reso-
lution since many features snap on to edges which are a major source of outliers.

Note that all features have been assumed to share the same matching characteristics.
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(a) AM

(b) CLAM (c) FAM

Figure 7.12: The matches obtained with each of the AM-based methods when given query-
patches covering 3% of the area enclosed in the original template patches (i.e. using 4× 4
pixels2 patches). In this frame, AM’s matches deviate by 0.8 pixels from the reference matches
(shown in yellow crosses) on average while CLAM’s matches exhibit an error of 0.9 pixels and
FAM’s matches a corresponding error of 1.3 pixels.

7.6 Quantitative Results

Following the qualitative analysis above, this section presents a quantitative compari-

son of AM, FAM and CLAM against the output of an independent reference matcher

which employs sophisticated state-of-the art techniques to achieve very high accuracy

performance albeit at high computational cost. Running within a keyframe optimi-

sation framework which follows very much the design of PTAM [Klein and Murray,

2007], the reference matcher works by performing dense optical flow as proposed by

Pock et al. [2008] between the current and the last frame to compute an initial guess for

the camera pose. This pose is then used to guide matching by projecting the bundle-

adjusted 3D feature positions in image space and updating their predicted appearance

by warping the feature patches accordingly. The matches accepted in this scheme

(referred to as ‘reference matches’ hereafter) correspondto the patches scoring the

highest response within a small fixed-size window centred ateach projected feature

location.

In order to assess the performance of our AM-based algorithms against the refer-

ence matcher we construct the innovation covariance matrixS on every frame as this

is not explicitly maintained in keyframe optimisation tracking frameworks. This com-

putation turns out to be straightforward in this particularsetup as at every instant the
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Figure 7.13: Assessing the performance of our AM-based algorithms with respect to a
high-quality reference matcher. This figure illustrates the average distance of the obtained
matches from the reference matches for variable-sized input templates (note that the templates
are square patches). AM achieves the lowest match error confirming the power of the algorithm
to robustly reject outliers. CLAM’s performance is closer to AM than FAM which indicates
that CLAM is a more accurate approximation to AM.

pose of the previous frame has already been optimised with respect to the 3D map.

Hence only the relative uncertainty between the previous and the current frameP(rel)
xc

will have an effect on the feature predictions; this uncertainty is essentially equal to the

process noise (Q) of the camera motion model. Hence, using the notation introduced

in Chapter 3 we can evaluate:

S=
∂h(y1:n)

∂xc
P

(rel)
xc

∂h(y1:n)

∂xc

⊤

+R , (7.33)

whereh denotes the measurement model of all map featuresyi . Note that the resulting

S is dense even though the inter-feature covariances come solely from motion uncer-

tainty.

The keyframe-based tracker (which incorporates the reference matcher) is run once

on a 400-frame sequence to gather all the data necessary for the quantitative analysis:

on every frame, we store the 24× 24 patches of the features expected to be visible

along with their predicted image locations and associated innovation covariance matrix

S. Following the completion of feature matching, we also store the reference matches

encountered on every frame.

During testing, each AM-based algorithm is evaluated on thesame video sequence

and on every frame it is fed with the data corresponding to thefeatures for which

a reference match exists. Before processing a new frame, we record the distance of

the matches discovered with respect to the positions of the reference matches. This

score is then averaged over the whole sequence of frames to give the‘match error’ for

each of AM, FAM and CLAM. In an attempt to assess the relative behaviour of these

algorithms with increasing ambiguity, we also run tests where the input feature-patches
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correspond only to a sub-region of the original templates (cropping off equal blocks

of pixels from each side of the original 24× 24 template patch). Patches at smaller

sizes are less individually distinctive and as a result, consensus matching becomes

increasingly important then, imposing a greater challengein outlier rejection.

Figure 7.12 illustrates the matches obtained using all three methods for the case

of matching 4×4 patches using each of the AM-based algorithms on a typical frame,

whereas Figure 7.13 summarises the results over all test-runs. As expected, the dis-

tance of the matches obtained with respect to the reference matches, AM seems to be

the most accurate of the three methods achieving the lowest match error in all cases.

CLAM follows very closely the performance of AM whereas FAM exhibits larger de-

viations and bigger match errors confirming that CLAM is a better approximation to

AM than FAM.

7.7 Conclusions

Imagine that a tracking system had all the time in the world toperform matching, what

would be the best method of discovering matching consensus upon the reception of a

new image?

One could argue that the answer is to attempt matching of every single pixel of the

previous image with the new one employing all available priors together with proba-

bilistic inference, resembling the philosophy behind optical flow techniques. However,

due to the very high costs involved, real-time solutions aimto approximate this pro-

cedure. The key then is in the balance between the quality that one is prepared to

sacrifice and the time consumed to completion. While super-dense matching is yet

far from real-time (Zach et al. [2007] record around 30fps for 256×256 images on a

GPU implementation, however this would be many times sloweron CPU), RANSAC-

based techniques are dominating the landscape of modestly dense matching algorithms

at present. Their reliance on statistical fairness howeveris both the reason for their

speedy performance but also the source of tracking failure in challenging scenarios.

Approaching the problem of matching from a fully probabilistic perspective, more in-

formed choices can be made on the course of matching based on the prior information

available. This can lead to more robust solutions, suffering however from poor scaling

with expanding data sets. The purpose of this chapter has been to tackle this problem in

an attempt to bring probabilistic techniques a step closer to dense real-time matching.

Using the fully probabilistic framework of Active Matchingas a basis, the first

attempt has been to attack the most time consuming part of thealgorithm: substituting

part of the processing of available priors with randomness,decisions within matching

have been made less informed which in a way is similar to the RANSAC philoso-
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phy. This semi-randomised Fast Active Matching algorithm indeed proved much more

cost effective than Active Matching but our experiments later demonstrated how this

randomness can significantly affect the quality of tracking.

Taking a different route to approximating the procedure of Active Matching, this

chapter discussed how the notion of the Chow-Liu tree can be used to sparsify the

joint distribution of predicted features while preservingthe most important correlation

structure, leading to the emergence of the Chow-Liu Active Matching (CLAM) algo-

rithm. Exploiting the benefits of the tree structure, CLAM isshown to accomplish

both high tracking quality and competitive timings.

While CLAM is indeed a breakthrough in fully probabilistic dense matching, there

remains yet a lot to be done to reach the optimal, online densematching solution.

Following the same path of probabilistic inference and Information Theory, in the

future we aim to look deeper into quality approximations of the full solution to the

problem of pixel-by-pixel matching using more general inference techniques.



8
Conclusion

8.1 Summary of Contributions

This thesis has explored the application of an Information Theoretic framework to

guiding efficient and robust estimation within the context of SLAM. Driven by the

demand for agile manipulation of data in current state of theart systems, this research

has employed Information Theory to direct decision-makingtowards more effective

approximations to the full SLAM problem. The analysis of theinherent relationships

between the members of a SLAM map from an Information Theoretic perspective

provides a transparent understanding of the scene structure which in turn is key to the

development of powerful algorithms.

8.1.1 Active Matching

Addressing one of the major sources of errors during tracking, we have presented

a novel Bayesian algorithm for step-by-step active search and data association in im-

ages. Our Active Matching methodology gets to the heart of the importance of priors in

maintaining consistency, engaging them in an Information Theoretic manner to guide

search for matching consensus. Essentially, the algorithmharnesses the fact that corre-
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lations between different candidate feature measurementsencode the expected impact

of each measurement in achieving a globally consistent outcome. A dynamic mixture

of Gaussians represents the uncertain search-state of matching at each instant and is

maintained in a fully probabilistic manner to account for the multiple hypotheses nat-

urally arising in real images. Information Theory then usedto combine the influence

of a candidate measurement on both the convergence to a single hypothesis and the

achievement of high precision within that hypothesis. Uponcompletion, the algorithm

gives a list of matching scenarios surviving the consistency check, along with their

estimated probabilities of reflecting the true solution.

Our experimental analysis has demonstrated the robustnessof Active Matching to

variable camera dynamics, and different levels of input priors and ambiguity. The se-

quential evaluation of ‘where to look next’ not only reducesdramatically the number

of pixels searched for matches, but most importantly enforces resilience to repetitive

structure; the matcher is guided towards more promising areas resulting to the en-

counter of fewer false positives than traditional matchingtechniques. With the aim of

revealing the strengths and weaknesses of the algorithm we also presented an exten-

sive performance analysis varying both the frame rate and the number of features being

tracked. While across the span of the scenarios tested the accuracy of the algorithm has

not been compromised, the computational scaling to increasing numbers of features,

comprises a significant limitation to the applicability of this methodology. However,

studying the evolution of the Mutual Information of candidate measurements through-

out matching has opened up the route to explore more scalablematching algorithms.

8.1.2 Map Management for Large Data Sets

In the context of effective manipulation of data for increased versatility of solutions, we

have proposed an automatic and efficient methodology to infer the hierarchical struc-

ture of visual maps. Following the need for bigger and densermaps, researchers have

long been using map-sparsification techniques to approximate the otherwise fully-

connected graph of feature relations, aiming for reduced management costs. However,

while submapping criteria have most often been based on a variety of implementation-

specific thresholds, we have demonstrated how our Information Theoretic framework

can be employed to dynamically guide quality partitioning of maps. We have illus-

trated the application of our method on the particularly complex case of visual maps,

where the infinite range of the camera makes the ‘ideal’ submap divisions less clear.

Translating the probabilistic priors available in sequential tracking into Mutual

Information, we have showed how we can quantify the information content shared

between individual entries in a general SLAM map, as perceived through a camera

lens. Studying the correlation-links into the Informationspace, we illustrated how
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we can progressively identify regions of high Mutual Information density, suggesting

strong correlation structure. Our experiments have demonstrated how this fairly simple

analysis can provide meaningful clusters of features (e.g.separating foreground from

background) for different types of scene and camera motions. This comprehensive

insight into the hierarchy of relationships inherent in visual SLAM maps we believe

has great potential in enhancing the quality of performancein modern systems.

8.1.3 Scalable Feature Matching

Following the understanding gained by the detailed performance analysis of Active

Matching and the study of approximations of the map structure, we have presented a

new, fully probabilistic feature-matching algorithm ableto achieve online matching in

dense tracking scenarios. While fast data association for alarge number of features

has previously been made possible with random-sampling techniques, our Chow-Liu

Active Matching (CLAM) algorithm aims to bring the robustness promised by fully

probabilistic approaches to the applications. By making decisions solely based on

concrete probabilistic estimates and Information Theoretic measures, CLAM defies

the need for implementation-specific thresholds and the reliance on randomness.

CLAM essentially comprises an approximation to the problemaddressed in Active

Matching, only approximated enough to permit online performance while preserving

the precision of the outcome at the same time. Approaching the prior probability dis-

tribution of visible features from an Information Theoretic perspective, we have shown

how this can be approximated with a tree in Mutual Information space. Belief Propa-

gation is employed to propagate predicted or observed matches across the branches of

this tree. As a result, exploiting the computational shortcuts and complexity benefits

of this tree structure, we have demonstrated how the robustness of Active Matching

can be achieved in a much more efficient way.

8.2 Future directions

The extensive Information Theoretic analysis of the relationships between SLAM es-

timates discussed within the body of this thesis leads to a broad understanding of the

problem we are trying to solve. The generality of this investigation suggests that it can

be applied to the wide variety of SLAM estimation implementations currently in the

literature, providing an insight into the effectiveness ofthe approximations performed.

With the ultimate goal of high performance and generally applicable algorithms, this

work has been a small contribution along a longer chain of research towards practical

and theoretically justified methods.

We believe that Information Theory still has many answers tooffer on the primary
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trade-off of ‘quality versus cost’ challenging today’s systems. Is it worth matching

every single pixel in the image? Will a keyframes-approach prove more beneficial

than traditional filtering given this tracking scenario? Following the general accep-

tance of probabilistic techniques in manipulating real-world data, Information Theory

can provide the complementary framework to guide dynamic decision-making. Either

offline or at runtime, these decisions can provide the key to the goal performance of

our algorithms.

Getting to the heart of the estimation problem in SLAM, our general aim is to gain

deep understanding of the complexity involved and the processing resources available.

With the target of fully adaptable algorithms, below we givea more specific description

of future research directions following from the conclusions drawn in this thesis.

8.2.1 Understanding the Graphical Representations of the World

Filtering approaches have brought implementations a long way providing good es-

timates for small-scale environments while requiring sparsifying approximations for

larger amounts of data. Keyframes solutions on the other hand have been more suc-

cessful in dense maps. Moreover, the recent trend towards relative representations

and bundle adjustment methods on selected sets of nodes seemto suggest improved

overall timings. It would be interesting to investigate thestrengths and weaknesses of

each representation with the dual aim of identifying the best option given a particular

tracking scenario, and also revealing avenues for improvement.

8.2.2 Quality and Speed in Frame to Frame Processing

Our investigation of feature matching has revealed the power of ‘thinking’ how to pro-

cess the input data to achieve robustness and efficiency in local motion estimation.

However, we have seen that the overhead involved in this assessment can take a signif-

icant part of the available processing time. Moreover, while Information Theory has

indicated successful approximations towards scalable feature matching, we would like

to investigate further simplifications of the frame-estimation process with the goal of

really dense matching. A more practical analysis of the computational costs involved

within every individual assessment and estimation processcan provide a measure of

the effort implied by the employment of a particular approach. We believe that through

this investigation estimation algorithms can potentiallyhave the ability to dynamically

assess the stability and effectiveness of the approximations suggested and adapt the

computation process accordingly.
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Appendix

A.1 The Sum-Product Algorithm

Following the notation of Bishop [2006] we consider the joint probability distribution

x. Computing the marginal of a particular variablex involves a summation of the joint

distribution over all variables exceptx:

p(x) = ∑
x/ x

p(x) . (A.1)

The distributionp(x) can be expressed as a product of ‘local’ functions describing the

relationships (factors) of member-variables or ‘nodes’ when considering the diagram-

matic representation of the distribution. This is known as the bipartitefactor graphin

the literature of graphical models. In turn,p(x) can be expressed in terms of groups of

factorsFs(x,Xs) such that each group contains the factors relating the set ofnodesXs

in the subgraph neighbouring nodex as illustrated in Figure A.1(a). Hence, ifne(x) is

the set of factor nodes neighbouring withx we can write:

p(x) = ∏
s∈ne(x)

Fs(x,Xs) . (A.2)
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(a) Evaluating p(x) (b) Evaluating µ fs→x(x)

Figure A.1: The nested nature of messages passed in the sum-product algorithm. (a) is a
visualisation of the factorisation of the marginalp(x) in terms of factor messagesµ fs→x(x)
as defined in Equation A.3. Each factor message coming from a subgraph neighbouring with
nodex is evaluated in a recursive manner as suggested in (b) where aclose-up of one such
subgraph is depicted. Any factorfs can only propagate a message tox once it has collected all
other node messagesµxm→ fs(xm) as defined in equation A.7.

Substituting Equation A.2 into A.1 and interchanging the product and sum operators,

the marginal ofx can be re-written as:

p(x) = ∏
s∈ne(x)

[

∑
Xs

Fs(x,Xs)

]

= ∏
s∈ne(x)

µ fs→x(x) , (A.3)

where eachµ fs→x(x) stands for the message passed from factor nodefs to nodex

defined to be:

µ fs→x(x) = ∑
Xs

Fs(x,Xs) . (A.4)

Now in order to see how these messages get evaluated we have tolook ‘deeper’ into

each subgraph as depicted in Figure A.1(b). EachFs being a group of factors, itself

can be factorised in terms offs and sub-groups of factorsGm(xm,Xsm). In order to

motivate recursion, eachxm (which by definition is a member ofXs) is chosen so that

it is an immediate neighbour offs. Therefore,

Fs(x,Xs) = fs(x,x1, . . . ,xM) ∏
m∈ne( fs)/ x

Gm(xm,Xsm) , (A.5)

whereXsm comprises the set of nodes inXs relating with the rest of the graph through

xm. Having definedFs we can now evaluate the factor messageµ fs→x(x). Given that
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Xs = {x1, . . . ,xM ,Xs1, . . . ,XsM}, we expand the summation in A.4 and substitute forFs:

µ fs→x(x) = ∑
x1

. . .∑
xM

∑
Xs1

. . . ∑
XsM

fs(x,x1, . . . ,xM) ∏
m∈ne( fs)/ x

Gm(xm,Xsm)

= ∑
x1

. . .∑
xM

fs(x,x1, . . . ,xM) ∏
m∈ne( fs)/ x

[

∑
Xsm

Gm(xm,Xsm)

]

= ∑
x1

. . .∑
xM

fs(x,x1, . . . ,xM) ∏
m∈ne( fs)/ x

µxm→ fs(xm) , (A.6)

whereµxm→ fs(xm) is the message issued from nodexm to factor fs, defined to be equal

to:

µxm→ fs(xm) = ∑
Xsm

Gm(xm,Xsm) . (A.7)

Equation A.6 demonstrates the recursive nature of the evaluation of messages passed

along the branches of the tree. A factor nodefs wishing to issue a message for nodex

collects the node-messages coming from all other neighbour-nodesxm each evaluated

recursively and in the same manner based on the subgraph theyd-separate from the rest

of the graph. Messages are initially issued from the leaves of the graph and are then

progressively propagated to the root of the tree (here nodex), essentially marginalising

variables one-by-one so that by the time the root has received messages from all its

variables, the summation of Equation A.1 will have been achieved.

Given now that a set of nodes is observed and the goal is to compute the new

marginal distribution of every other node in the tree, we canarbitrarily designate a

root-node and propagate messages from the leaves to the rootand back, so that ev-

ery node will have efficiently received updates from all its neighbours. In the special

case where only one node is observed, this process can becomeeven more efficient by

issuing outward messages directly from that node towards all its neighbours until up-

dates reach the ends of the tree. This is immediately applicable to our Active Matching

paradigm where only one feature is matched at every matchingstep. Note that although

discrete probability distributions have been assumed in this derivation, the methodol-

ogy is general and can easily be adapted to continuously-distributed variables, by es-

sentially replacing the summation operators by integration. As a side note, while the

sum-product algorithm provides exact inference in tree structures, researchers have

been using it also for graphs containing cycles (loops) leading to the emergence of

Loopy Belief Propagation (LBP). However, since here we aim to use the Chow-Liu

tree, LBP is out of the scope of this chapter.
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