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Abstract

The level of complexity of maps created by monocular SLAM is on

the rise. Increases in computational power have taken us from sparse

feature maps to fully dense 3D reconstructions. Still, none of these are

making full use of the wealth of information available from a live, monoc-

ular video feed. Aside from geometry there are the effects of lighting,

reflection and shadow which are often ignored but give us vital clues into

the types of surfaces being observed.

We take some steps to extend the maps generated by monocular

SLAM by considering real-time acquisition of surface reflectance and

lighting information. In robotics, such information could be used to

help determine materials, aiding object detection and semantic under-

standing, thus enabling better interaction with the environment. In aug-

mented reality lighting and reflectance information is essential to make

virtual objects blend seamlessly into the real world.

In this thesis we will demonstrate real-time capture of planar surface

light-fields, a convenient representation to infer lighting and reflectance

information. On a tangent we then investigate how sculptors manipulate

geometry to alter the effects of illumination and reflectance, changing our

perception and enhancing details; a technique required to bring a piece of

work to life when sculpting in a medium of constant albedo. We attempt

to apply some of these sculptors techniques in a mesh editing tool we call

sculptural stylisation. Finally, we investigate methods for recovering the

geometry of surfaces from a monocular camera in an attempt to extend

our work on planar surface light-fields to work in 3D: we present various

ways to generate depth-maps from a monocular video stream and detail

a system to fuse them together into a consistent 3D model.
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1

Introduction

Poor scene perception is one of the biggest factors limiting the way computers

can interact with the world around us. For years computers have had the

ability to see the world, following the invention of the digital imaging sensor,

but the ability to interpret the raw pixel signals into a meaningful and rich

understanding of the environment around them is an ongoing challenge.

As a human looking at a scene we unconsciously understand the geometry

of the world, we can interpret lighting, shadow and reflectance, we recognise

objects and materials, and we know how to interact with what we see. The goal

of this thesis is to take some steps to help improve the ability of a computer to

perceive these same properties. Our human perception can be divided into two

classes: raw observations and semantic understanding. The raw observations

are purely physical, such as the interaction of light with surfaces and the geom-

etry of the world. Our semantic understanding is higher level and allows us to

identify objects and materials. We take the stance that a more thorough inter-

pretation of raw observations, such as scene geometry, lighting and reflectance,

can aid semantic understanding further down the line. Indeed, there is current

research using full 3D models to aid in object detection and recognition [132]

instead of the more traditional computer vision problem of recognition from

single images. Therefore, the goal of this thesis is to improve the ability of a

computer to capture and interpret these raw observations.

One of the classic problems of scene perception is Simultaneous Localisa-

tion And Mapping (SLAM). For a camera to know where it is in the world

it needs a map for reference, but to build the map of the world the camera

needs to know its position. One problem cannot be solved without the other so

they must be estimated simultaneously. Visual SLAM started off using sparse

image features with early work of Davison et al . [31, 32]. Feature-based SLAM

represents the world as a sparse set of points in 3D space. It is very hard
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(a) Sparse SLAM from PTAM [68] (b) Dense SLAM from Chapter 6

Figure 1.1: The reconstructed map of a guitar from a sparse SLAM system

(left) is unrecognisable. The dense SLAM system (right) provides a much richer

and meaningful representation of the world.

to recover any meaningful information about surfaces and geometry from this

limited representation. Now, following increases in computational power, we

have dense SLAM systems (such as [87, 88]) which make use of every pixel of

the image. The maps created by such systems are much much richer than the

feature-based maps (Fig. 1.1). From this representation we can easily recog-

nise shapes and objects and it’s not hard to see how a computer could use

this information to start interacting with the world. In this thesis we attempt

to further enhance these dense maps by capturing information about lighting

and reflection of surfaces within the scene, leading to a truly rich and vivid

knowledge of the surroundings.

Extending dense SLAM to capture lighting and reflectance can also help

overcome some of the weaknesses of existing SLAM systems. Currently, al-

most all SLAM systems make the assumption that the world is Lambertian,

that is, surface points have the same colour/intensity when viewed from any

angle. They can often cope with some deviation from this assumption but

too much can lead to tracking failures or inconsistencies in the map. Dense

tracking methods are especially susceptible to this since they work on image

intensities directly, feature-based methods are often more stable because the

descriptors are designed to cope with illumination changes.. The recent work

of Alismail et al . [3] makes a step towards robustifying dense RGB-D SLAM

to intensity changes by using bit-planes. However, the algorithm underneath

is still operating on a Lambertian assumption, we can only go so far with this

12



approach. By combining a full illumination model into the tracking and map-

ping pipeline it could be possible to not just become robust to non-Lambertian

effects but actually gain from them. The tracking could become more accurate

and the mapping will become richer. Most existing methods texture the map

with some kind of average colour over all the view directions from which it has

seen. By estimating illumination it could be possible to recover the true albedo

and reflectance properties. This representation does not change with varying

illumination so could lead to a SLAM system which can recognise a scene under

any lighting conditions.

Bespoke hardware solutions already exist to help overcome some of the

challenges of scene perception. Laser scanners provide very high quality 3D

information but their size and cost make them prohibitive in many situations.

The Microsoft Kinect sensor developed by Primesense provided a lower cost

entry into 3D sensing. The accuracy was not comparable to laser scanners

but the cost was low and the availability was widespread. The sensor works

on a structured light technology which operates by triangulating an infra-red

dot pattern emitted by a projector. Unfortunately the sensor fails when other

sources of IR, such as sunlight, enter the scene. On the extreme high-end are

the light stages at UC Berkeley and University of California 1. These consist of

an array of lights and cameras arranged in a sphere. By placing an object in the

centre of the sphere the setup allows rapid image capture from multiple view-

points and from multiple illumination configurations. This highly specialised

system can capture incredibly accurate reflectance information about a surface.

The stages have been used extensively in film to capture actor’s faces enabling

realistic virtual renderings in any scene under any illumination. If we truly

want the highest quality reflectance information about a surface then a system

such as this is surely the way to go. However, it is clearly not suitable for gen-

eral unconstrained environments. Our focus is on a system which requires no

modifications to the environment and so is purely passive. We focus on what

can be achieved with a moving monocular camera, a low-cost sensor which is

so widespread an estimated 2 billion people worldwide have access to one2.

The problem of estimating lighting and reflection from images, also known

as inverse rendering, is highly ill-conditioned, especially when the number of

1http://gl.ict.usc.edu/LightStages/
2In 2016 there are an estimated 2.08 billion smartphone users worldwide. Source: http:

//www.statista.com/statistics/330695
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input images is small. Therefore, many works make assumptions and simplifica-

tions to make the problem tractable. Hara et al . [55] use just a single image as

input and make the simplifying assumption of a single point light source. They

jointly estimate the light source position and the diffuse and specular reflection

components of the surface. Our approach is to stay away from methods which

make such simplifying assumptions about the environment. We hope to de-

velop a system which will work in general, unconstrained environmental so any

assumption about the type or number of light sources is out of the question.

By using a whole sequence of images from a live video stream we massively

increase the volume of data making the problem more tractable so we don’t

need to make as many assumptions. Closer to our approach is the work of

Nishino et al . [91]. They relax the point light source assumption and consider

an illumination hemisphere. They are able to recover reflectance from a sparse

set of images for objects with known geometry, obtained using a laser scanner,

and use the information for novel view synthesis. While they use just 8 images

in a offline optimisation we hope to develop a system which runs online and

makes full use of all the data from a live video stream.

1.1 Applications

Augmented reality and robotic perception are two rapidly expanding fields with

a heavy dependency on real-time computer vision. One important property

they both share is that they need to have a high-quality model of the envi-

ronment and they need it immediately. For augmented reality this is essential

to ensure that virtual objects can be rendered consistently within a real scene,

requiring geometry information for collision detection and illumination data for

a realistic appearance utilising lighting, reflectance and shadows. For robotics

this is needed so that a robot can interact with the environment, be it just

for navigation and obstacle avoidance or more complex manipulations. These

applications help drive the real-time approach of this thesis, and we hope the

work can enhance these two overlapping, exciting areas of research.

Augmented reality generally consists of rendering a virtual or synthetic

object into a real-world scene. The scene is therefore viewed through a special

viewport, be it a smartphone screen, computer screen or a head mounted display

and images need to be rendered in real-time. For a virtual object to seamlessly

integrate with the rest of the scene the effects of the world illumination need
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to be apparent on the object and the influence of the object on the scene,

such as shadows, need to be accounted for. There have been various approches

to capturing the illumination of the scene. The simplest involves placing a

mirrored ball, known as a light-probe, into the scene; the reflections in the

ball allow the camera to observe a hemisphere of illumination directions which

can be used for object relighting. Some works make assumptions about the

type of illumination; for example, Madsen and Lal [80] recover illumination

for outdoor scenes in daylight from a single stereo depth image. They do this

by assuming that all lighting comes from just the sky and the sun and that

they are able to recover the direction vector to the sun. If the scene is of a

smaller scale it could even be possible to directly view and reconstruct the light

sources. This is the approach of Meilland et al . [82] in their High Dynamic

Range (HDR) SLAM system. By using RGB-D SLAM they are able to create

a 3D reconstruction of the environment combined with HDR texture obtained

by fusing Low Dynamic Range (LDR) images captured at varying exposures.

The 3D, HDR model can then be used to create virtual light-probes which can

be used for object relighting and shadow generation. In this thesis we hope to

infer lighting information without directly viewing the light-sources and to do

this without using a depth sensor.

Most previous works in AR don’t consider complex lighting effects of the

surface on which the virtual object is placed. They will often apply shadows

base on recovered illumination but there is no knowledge of the surfaces re-

flectance properties. We make a first step towards recovering the surface prop-

erties and show that we can use this to make a more realistic AR on specular

surfaces by considering the effects of specular occlusion and reflections.

In the field of robotic perception it is still a challenge to interact with pre-

viously unseen environments. This hindrance is why most modern robotic sys-

tems operate in highly constrained environments or require significant human

assistance. As well as the obvious knowledge of the scenes geometry required for

physical interaction, there are more subtle, semantic cues which a robot needs

to safely operate in other environments. Just observing the raw geometry of an

object does not give the robot sufficient information to proceed. For example,

a cup of liquid needs to be handled in a different way to a cylindrical block of

wood, yet their geometries are very similar. There is a huge amount of research

going on in the area of object detection and recognition; some of these work

purely from RGB images [34, 69] and some are starting to make use of depth
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as well [70]. However, object recognition can only help if the object is in the

robots past knowledge. Additionally, extreme lighting effects can have a nega-

tive effect on recognition rate. One solution is to detect materials – if an object

is not recognised but we can determine what it is made of then a robot can still

make useful decisions about how to proceed. Material detection could be done

using CNNs trained on labelled images, such as [8], or we can take a more data

driven approach. If we have been able to capture information about lighting

and reflectance of a surface then that information can be used to help determine

materials. As a simple example, surface reflectance information could enable

us to distinguish between a shiny, wood-effect plastic surface and a real wooden

surface where a purely image based approach may fail. Additionally, we will

see in this thesis that certain surfaces exhibit high-frequency geometric details

which only become visible when specular reflections are observed. Knowledge

of the lighting and reflectance information from various viewpoints could be

vital to detect such materials.

Another application of this work is the scanning of objects/scenes for anal-

ysis, digital archiving or printing/replication. Many museums are starting to

create digital archives of their collections, such as Smithsonian X 3D3 and those

involved in the Google Art Project4. By doing this, fragile artefacts which may

have a limited lifespan can live on forever in digital form. Additionally, pieces

of special interest can easily be shared amongst interested researchers as well

as digital models being made available online for the general public. The scan-

ning problem could be solved using specialised equipment, such as a system

similar to the light stage mentioned earlier. However, there are still a number

of situations where this is not an option and a monocular based system has its

advantages. Cost is a large factor, being able to this with just a cheap monoc-

ular camera makes such a system much more accessible. Size is another; it is

sometimes the case that scanning of objects is done at the site of archaeological

digs so the equipment must be easy to transport and use in the field. We also

believe that any scanning system is best off with real-time or online feedback

and the ability to append a scan with more data so any gaps can be filled. This

is one of the powerful features of real-time monocular SLAM – the incremental

nature of the system is ideally suited to revisiting areas to increase the detail

in the map. Whichever method is used to acquire the scans it is clear that the

best representation for analysis and archiving should contain as much informa-

3http://3d.si.edu/
4https://www.google.com/culturalinstitute/
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tion about the objects surface properties as possible. From a single image or a

3D scan with a single view-independent texture it is difficult to understand the

materials and how they react with the illumination around them. By including

the lighting and reflectance in the 3D model it could be possible for an observer

to see how a piece looks under different lighting conditions and make a much

more thorough, in-depth analysis of the piece without seeing it in person.

1.2 Enabling Technologies

The recent growth of general purpose compute power on commodity GPUs has

really boosted the field of real-time computer vision. Combined with convenient

GPU programming languages, such as CUDA and OpenCL, they really have

made the work in this thesis, and much of the work this thesis builds upon,

possible. GPU’s are incredibly efficient at processing data in parallel and many

image processing algorithms transfer to a GPU very easily.

Incredibly powerful and power hungry desktop GPUs (which are now reach-

ing theoretical performance figures of 5,000,000,000,000+ FLoating-point Op-

erations Per Second (FLOPS) on a single GPU5) are also complemented by

increasingly more powerful and power efficient mobile GPUs. With the ubiq-

uity of the modern smartphone a huge number of people have in their pocket a

high-quality camera with processing power capable of running advanced com-

puter vision algorithms. While this has enabled many technologies to run on

current mobile hardware, the view of this thesis is that by doing research into

algorithms which run in real-time on current desktop hardware it is expected

that in the near future the compute power of mobile devices will also be suffi-

cient.

1.3 Thesis structure

Following this introduction this thesis starts with a technical introduction to

define some of the common tools and equations used throughout the rest of the

thesis.

5NVIDIA GeForce GTX TITAN Black has 5120 GFLOPS of single-precision compute.

Source: www.wikipedia.org
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Our first step towards extending dense reconstruction to include lighting

and reflectance information is outlined in Chapter 3. We introduce a novel

approach to real-time acquisition of planar surface light-fields. Although we

make use of a feature-based camera tracker, by assuming the observed surface

is planar we are able easily convert this to a dense representation. During an

initial capture stage we observe the surface from multiple viewpoints and record

the observed irradiance of the surface from each direction. From the captured

information we are able to infer lighting and reflectance information and we

demonstrate how this can be used to generate shadows and specular occlusion

for more realistic augmented reality on specular surfaces. We extend the work

by using the captured data to recover high-frequency normal variations on the

surface, further increasing the fidelity of the model.

Continuing the theme of lighting, shadow and reflectance we take a look at

how these properties are manipulated by humans in classical sculpture. When

sculpting in a medium of constant albedo our entire perception of the object

is based on the lighting, shadow and reflectance information. In Chapter 4

we take a look at how sculptors manipulate geometry to enhance or mellow

some of these effects in their work. We spoke to professional sculptors about

techniques they use when creating human busts and interpret these to form

a mathematical model and apply these enhancements to scanned busts. The

term sculptural stylization is introduced to help define these types of modifica-

tions. The outcome often includes increasing angles between regions to increase

curvature and, hence, increase the chances of catching a specularity, as well as

protruding or recessing areas to create more shadow.

The next logical step in the story is to expand the surface light-field cap-

ture work of Chapter 3 to work with general 3D surfaces. The first hurdle to

overcome was acquiring the 3D geometry from a moving monocular camera in

real-time. In Chapter 6 we describe a system to perform such a task based

on fusing depth-maps together incrementally using a surfel-based representa-

tion. We demonstrate how to track the camera via direct image alignment

to the model and show how to make this robust to irradiance changes due

to change of viewpoint. Prior to this in Chapter 5 we take a look at various

methods to generate the required depth-maps. We first look at some existing

approaches and then focus heavily on a state-of-the-art stereo system, Patch-

Match Stereo [12]. While the system was originally presented as an offline

method we do an in-depth performance analysis and demonstrate how it can
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be modified and accelerated to work in a real-time system.

Finally, in Chapter 7 we conclude the thesis and discuss directions for

future work extending what has been presented.

1.4 Publications

The work in this thesis resulted in the following publications:

• J. Jachnik, R. A. Newcombe, and A. J. Davison. Real-Time Surface

Light-field Capture for Augmentation of Planar Specular Surfaces. In

Proceedings of the International Symposium on Mixed and Augmented

Reality (ISMAR), 2012

• J. Jachnik, D. B. Goldman, L. Luo, and A. J. Davison. Interactive 3D

Face Stylization Using Sculptural Abstraction. arXiv preprint

arXiv:1502.01954 [cs.GR], 2015
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2

Technical Introduction

In this section we will introduce notation and definitions which are used exten-

sively throughout this thesis.

2.1 Notation

Bold notation (e.g. a,b) will be used to represent vectors. A hat on top of a

vector means that it has unit length (‖n̂‖ = 1). êx, êy, êz are unit vectors in

the x, y and z directions respectively. Together they form an orthonormal basis

of R3. Matrices will use the following formatting: A, R, M. The elements of a

vector or matrix will use zero-based numbering:

v =

v0

v1

v2

 , M =

m00 m01 m02

m10 m11 m12

m20 m21 m22

 . (2.1)

2.2 Camera Projection

Throughout this thesis there will be continuous references to camera projection

and camera transformations. This section is a brief overview of the notation

and terminology used.

2.2.1 Homogeneous Coordinates

Very often it will be useful to take a vector x ∈ RN and add a “1” to the end

of it to make a vector in RN+1. We call this homogeneous coordinates and it is

useful when working with projections and rigid transformations. We will use
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Figure 2.1: A pinhole camera. Light rays travel in straight lines through

an infinitesimally small hole (aperture). The result is an upside down view

projected onto the image plane.

the dot notation to represent such a transformation:

ẋ =

[
x

1

]
(2.2)

2.2.2 Camera Projection

In this thesis we will make use of the pinhole/perspective camera model. In

a true pinhole camera (Fig. 2.1), the focal length is adjusted by varying the

distance between the aperture and the image plane. In a conventional camera

there is also a lens (or multiple lenses) which has an effect on the focal length.

In order to accurately model the image formation we use four parameters to

represent the projection of a pin-hole camera: two to represent the focal length

in the horizontal (fx) and vertical (fy) directions and two to represent to po-

sition of the center of projection (u0, v0). These are combined into the camera

intrinsic matrix K:

K =

fx 0 u0

0 fy v0

0 0 1

 . (2.3)

In general, fx and fy will be roughly equal and the centre of projection will be

roughly in the centre of the image. The focal length is related to field-of-view

of the camera. A smaller focal length has a wider field-of-view.

Given a 3D point x in the camera frame of reference then the projection
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of that point into image coordinates u = (u, v)T is given by:

u = π (Kx) , (2.4)

where

π(x) =
1

x2

[
x0

x1

]
. (2.5)

The projection function π(·) is not injective (one-to-one) so it is not invertible.

However, we can determine the direction of a ray from the camera using the

inverse projection and if given the depth-map D(u) of a pixel we can find the

3D point uniquely:

x = D(u)K−1u̇. (2.6)

This type of inverse projection will be used extensively in later sections.

2.2.3 Lens Distortion

Real-life cameras with lenses never quite live up to the perfect pin-hole camera

model. The way in which the lenses bend the light causes distortions which

must be included in our model. The most common and most significant type

is radial distortion which is especially prevalent with wide-angle lenses (small

focal length).

We use the term radial because the distortion acts in the radial direction

from a given centre of distortion in the image (which we usually assume to be

the centre of projection, u0). Let us note that any pixel u in an image can

be written in terms of its direction from the camera center scaled by its radius

from the centre:

u =
u− u0

|u− u0|
|u− u0|+ u0 (2.7)

=
u− u0

|u− u0|
r(u) + u0. (2.8)

Now, radial distortion is modelled by a non-linear function R : R+ → R+ acting

on the radius:

ud =
uu − u0

|uu − u0|
R
(
r(uu)

)
+ u0, (2.9)

where uu is the coordinate in the undistorted image and ud is the corresponding

coordinate in the distorted image. Equation 2.9 is easily inverted:

uu =
ud − u0

|ud − u0|
R−1

(
r(ud)

)
+ u0, (2.10)
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which can be useful to create distorted images from undistorted input. For ex-

ample, in augmented and mixed reality the virtual objects need to be distorted

to match the real world view.

There are two common models we make use of for the radial distortion

function:

ATAN Camera model This one parameter model gets its name from the

arctangent function used to represent the distortion equation. It was introduced

by Devernay and Faugeras [36] to model wide-angle and fisheye lenses. It

benefits from having an analytical inverse:

R(r) =
1

ω
tan−1

(
2r tan

ω

2

)
, (2.11)

R−1(r) =
tan(rω)

2 tan ω
2

. (2.12)

Polynomial model This uses a polynomial to approximate the inverse dis-

tortion function.

R−1(r) = r
(
1 + k1r

2 + k2r
4 + ...+ knr

2n
)
. (2.13)

When n = 1 the distortion function R(r) can be found by analytically solving

a cubic equation. For n ≥ 2 the inverse of the polynomial cannot be found

analytically so an iterative method must be used.

Instead of using the full non-linear model of perspective projection with

lens distortion in all of our computations we choose to remove the distortion

from the input images as a pre-processing step. Now we only have to deal with

the relatively simple perspective projection functions which simplifies much of

the computation and speeds up our algorithms.

Regardless of the distortion function, fast computation of the undistorted

image is best done using a lookup table. We create lookup table L such that

the undistorted image Iu can be computed from the distorted image Id using

the mapping:

Iu(u) = Id
(
L(u)

)
. (2.14)

Since L(u) does not lie at an integer pixel position we use bilinear interpolation

to evaluate Id
(
L(u)

)
. The lookup table can be precomputed and then undis-
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Figure 2.2: Left: An image of a square grid captured with a wide angle

lens showing significant radial distortion. Right: The same image after radial

distortion has been successfully removed using the ATAN model.

tortion can be computed very efficiently on the GPU. The undistorted image

can now be treated as a traditional pin-hole camera image.

2.3 Transformations

2.3.1 Rigid Transformations

Rigid transformations are called as such because they keep space rigid. I.e.

there is no scaling or warping of the space. Rigid transformations are most

often used to describe the position and motion of objects in space we will often

use them to describe the pose of a camera.

There are two components to build a rigid transformation in 3-dimensional

space (R3): translation (3 degrees of freedom) and rotation (3 degrees of free-

dom). When dealing the the pose of a camera, it is defined by its position and

orientation relative to some other coordinate frame. We use a right-handed

coordinate system where, in image space, x goes from left to right, y goes from

top to bottom and z points forwards from the camera.

A 3-dimensional rotation can be represented as a matrix from the Special

Orthogonal group SO(3) = {R ∈ GL(3)|RTR = RRT = I, detR = 1}. In text, this

is the group of 3× 3 invertible matrices such that the inverse of a matrix is its

transpose and its determinant is equal to 1. A matrix R ∈ SO(3) rotates all
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points v ∈ R3 about the origin (0, 0, 0)T by the action of matrix multiplication:

Rv.

It is often useful to calculate the rotation matrix from one direction vector

to another. The rotation matrix from vector v̂0 to vector v̂1 (both unit vectors)

is given by:

Rv̂0→v̂1 =
[
v̂1 n̂ n̂× v̂1

] [
v̂0 n̂ n̂× v̂0

]T
,where n̂ =

v̂0 × v̂1

‖v̂0 × v̂1‖
. (2.15)

Note that this formula is only valid if ‖v̂0× v̂1‖ 6= 0. This matrix could also be

derived from the Rodrigues’ formula which computes the rotation matrix from

the rotation axis n̂ and rotation angle θ = cos−1(v̂0 · v̂1):

R = cos θI + sin θ[n̂]× + (1− cos θ)n̂⊗ n̂, (2.16)

where

[n̂]× =

 0 −nz ny

nz 0 −nx
−ny nx 0

 , n̂⊗ n̂ =

 n2
x nxny nxnz

nxny n2
y nynz

nxnz nynz n2
z

 . (2.17)

A 3-dimensional translation (position) is simply a vector t ∈ R3 and trans-

forms points v ∈ R3 by addition: v + t.

A 3-dimensional rigid transformation is an element of the Special Euclidean

group SE(3) = SO(3) nR3, where n represents a semi-direct product [60]. An

element T of SE(3) consists of a rotation R ∈ SO(3) and a translation t ∈ R3.

The easiest way to represent and use these is the 4 × 4 homogeneous matrix

representation:

T =

[
R t

0 1

]
, (2.18)

although, for a more compact notation we will often write Eq. 2.18 as

T = [ R | t ] . (2.19)

Composition of two transformations is done by matrix multiplication:

TaTb =

[
Ra ta

0 1

][
Rb tb

0 1

]
=

[
RaRb Ratb + ta

0 1

]
. (2.20)
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The inverse of a 3D rigid transformation can be derived using the multiplication

rules above and setting the right-hand side to the identity matrix:

T−1 =

[
R t

0 1

]−1

=

[
RT −RT t

0 1

]
. (2.21)

To transform a 3D point x we use the homogeneous representation and then it

is simply matrix-vector multiplication:

Tẋ =

[
R t

0 1

][
x

1

]
=

[
Rx + t

1

]
. (2.22)

Alternatively, we may drop the “dot” notation a simply write Tx = Rx + t.

In many cases there will be more than one transformation to keep track

of and each of them transforms between two specific coordinate frames. To

make it easier to keep track we will use superscripts to denote in which space

a point/vector lies and between which spaces a transformation operates. For

example, let xw be a point in the world frame of reference and let Tcw be the

transformation from world coordinates to camera coordinates. Now, the point

xc in the camera frame of reference is given by ẋc = Tcwẋw (note the use of

homogeneous coordinates). If we are given a direction vector vw (e.g. a normal

vector) then we just need to apply a rotation to change coordinate frames:

vc = Rcwvw.

Note To represent the pose of a camera we will use Twc (rather than Tcw).

This is convenient because in the camera frame of reference the center of the

camera lies at the origin 0 = (0, 0, 0)T and, hence, in world coordinates the

camera origin lies at Twc0 = twc.

2.3.2 Affine transformations

Affine transformations allow a much broader range of transformations than

SE(3) such as scaling, reflections and shearing. Using the homogeneous repre-

sentation, as used in Eq. 2.18, a general affine transformation can be represented

by a linear transformation A and a translation b:[
A b

0 1

]
. (2.23)
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The difference from a rigid transformation is that A can be any 3 × 3 real-

valued matrix. Therefore, the space of affine transformations includes all rigid

transformations. An affine transformation is invertible if and only if the matrix

A is invertible, that is A ∈ GL(3). The set of invertible affine transformations

forms the semi-direct product Lie group GL(3) nR3.

2.3.3 Lie Algebras and Lie Group Generators

In some cases we may wish to compute derivatives with respect to a trans-

formation (e.g. a rotation matrix). Given, that a rotation matrix has only 3

degrees of freedom, it is not obvious how to do this. We make use of the Lie

algebra and exponential map as a way of parametrizing a rotation with only 3

variables and computing derivatives with respect to these variables.

First recall that the exponential function of a matrix is written as:

exp(X) =
∞∑
k=0

Xk

k!
. (2.24)

By using the exponential map it is possible to show that for any anti-symmetric

matrix M (MT + M=0) then exp(M) ∈ SO(3). An anti-symmetric matrix M has

only 3 degrees of freedom and can be written as:

M =

 0 m2 −m1

−m2 0 m0

m1 −m0 0

 . (2.25)

We denote the space of anti-symmetric matrices as so(3) and it is known as

the Lie algebra of SO(3). Equation 2.25 reveals a natural representation of an

element of so(3) as a vector m = (m0,m1,m2) ∈ R3. We introduce the wide

hat operator to go from the vector representation to the matrix representation

in Eq. 2.25: m̂ = M. Note that this vector representation also allows us to

interpret matrix multiplication as a vector cross product: Mv = m× v.

Now, given a rotation matrix R = exp(M) we can attempt to compute

derivatives. When working with scalars we are familiar with the derivative of

the exponential function:

d

dx
exp(f(x)) = exp(f(x))f ′(x), (2.26)
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which makes use of the chain rule and the fact that x and f ′(x) commute.

Matrices don’t always commute so we can’t use the same equation. To overcome

this, we can look at the derivative when R = exp(M) is close to the identity

matrix, that is, M is close to the zero matrix. In this case we can just look at

the first few terms of the Taylor expansion of exp(M):

R = I + M +
M2

2
+ ... (2.27)

We can compute the derivative of the first-order approximation to be:

d

dx
R(x) ≈ dM

dx
. (2.28)

Now, suppose M = m̂ and x = mi, computing the derivatives we end up with

the generators of the Lie group SO(3):0 0 0

0 0 1

0 −1 0

 ,
0 0 −1

0 0 0

1 0 0

 ,
 0 1 0

−1 0 0

0 0 0

 (2.29)

The generators form a basis for the Lie algebra so(3). In theory, any basis could

be used as generators. This particular basis arises from the vector representa-

tion we introduced in Eq. 2.25.

The same ideas can be applied to the Lie group SE(3) and its corresponding

Lie algebra se(3). The generators of SE(3) are listed in Appendix B.

We will see in later sections that this first-order approximation of the

derivative is useful to do optimisation with Lie groups. For a more in-depth

derivation and explanation of Lie groups, Lie algebras and the exponential map

see [67].

2.4 Multi-view Geometry

Stereo vision relies on the fact that given multiple views of an object it is

possible to find correspondences between views and use this to infer geome-

try. In this section we will give an overview of the geometry involved and the

transformations needed.
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2.4.1 Transforming between two cameras

To transform a pixel in one camera to a pixel in another camera we must use a

combination of projection, inverse projection and rigid transformations. Let ul

be a pixel in the live camera with depth D(ul). This pixel can be un-projected

using Eq. 2.6 to obtain a vertex in the frame of reference of the live camera.

We can then transform this vertex into the frame of reference of the reference

camera and find the corresponding pixel ur in this image using Eq. 2.4. The

full transformation can be written as follows:

u̇r = π
(
KTrlD(ul)K−1u̇l

)
(2.30a)

= π
(
KRrlD(ul)K−1u̇l + Ktrl

)
(2.30b)

= π

(
KRrlK−1u̇l +

1

D(ul)
Ktrl
)
, (2.30c)

where Trl is the rigid transformation between the coordinate frames of each

image. Equation 2.30c arises due to the fact that the π operator is invariant

to scaling: π(αx) = π(x), ∀α 6= 0. As discussed in Section 2.4.2 it is more

convenient to use inverse depth when doing stereo and this form of the warp can

be more computationally efficient by removing the need to constantly convert

between inverse depth and depth.

2.4.2 Inverse Depth

If we vary D(ul) in Eq. 2.30 for a fixed ul we see that ur moves along a straight

line in the reference image. This line is known as the epipolar line. When

performing stereo matching we would like to sample depth values Di(ul) so

that the corresponding points uir are evenly sampled along the epipolar line.

An even sampling in Di(ur) does not correspond to an even sampling along the

epipolar line. Instead, we use inverse depth, which does.

The fact that inverse depth is directly related to the pixel distance along

the epipolar line is also convenient as a way to measure the accuracy at which

the depth can be resolved, as formalized in Section 2.4.3.
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2.4.3 (Inverse) Depth Uncertainty

When generating depth-maps from stereo vision it is useful to have an idea

of the uncertainty of that estimate. For example, we will use it for fusing

multiple depth maps in Chapter 6. In this section we will actually describe the

uncertainty in inverse depth and then show how to convert this to uncertainty

in depth.

Our model of inverse depth uncertainty is based on the derivations by Engel

et al . [41]. They describe three terms which contribute to the uncertainty.

The geometric disparity error is derived from possible errors in camera

calibration and pose estimation.

σ2
g ∝

1

ĝ · l̂
, (2.31)

where ĝ is the normalized image gradient and l̂ is the normalized epipolar line

direction. Intuitively this shows that if the camera motion is perpendicular to

the image gradient then the uncertainty is high.

The photometric disparity error is based on possible noise in the intensity

values of an image.

σ2
p ∝

1

g · l̂
, (2.32)

where g is the non-normalized image gradient. I.e. the denominator is the image

gradient along the epipolar line. We see that in order to have a low uncertainty

there must be significant gradient along the epipolar line.

The final uncertainty term is dependent on the conversion from pixels to

inverse depth. We approximate the inverse depth to be proportional to the

disparity. We introduce the ratio α which is the length of the inverse depth

range divided by the length of the corresponding epipolar line. If the epipolar

line is longer, there will be more resolution over which to recover an accurate

inverse depth and, hence, the uncertainty goes down.

The three uncertainty terms are combined in [41] as follows:

σ2 = α2
(
σ2
g + σ2

p

)
. (2.33)

When using multiple images in the stereo data-term we will combine them
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with an inverse sum:
1

σ2
=
∑
i

1

σ2
i

, (2.34)

where each individual σ2
i is given be Eq. 2.33. Using this approach is equivalent

to combining several measurements at the same inverse depth within a Kalman

filter style update.

For speed and ease of implementation we compute all quantities in the

reference image. The image gradient is independent of the other frames but

there will be a different epipolar line direction and length for each frame used

in the data-term.

Depth Uncertainty Let I represent inverse depth. Given the current inverse

depth estimate Ī and uncertainty σ2 we can write that I = Ī + η where η is a

normally distributed random variable with mean 0 and variance σ2. We then

write the depth, D, in these terms:

D =
1

Ī + η
(2.35a)

=
1

Ī

1

1 + η
Ī

(2.35b)

=
1

Ī

(
1− η

Ī
+O

(
η2

Ī2

))
(2.35c)

≈ D̄ − D̄2η. (2.35d)

Hence, using standard properties of the variance, we can say that D is dis-

tributed with mean D̄ = Ī−1 and variance σ2D̄4.

2.4.4 Normals from depth-map

We often need to compute normals from a depth-map. To do this, we first

create the vertex map v(u) using Eq. 2.6. Then, the normal at pixel u is given

by:

n̂(u) =
dx × dy
|dx × dy|

, (2.36)

where

dx = v(u+ 1, v)− v(u− 1, v), (2.37a)

dy = v(u, v + 1)− v(u, v − 1). (2.37b)
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2.5 Image Denoising

Here we give a brief introduction to variational image denoising methods. These

algorithms are used in this thesis to denoise depth-maps.

2.5.1 ROF Denoising

Total Variation (TV) image denoising using the methods outlined in [52, 100] is

becoming a commonly used tool in real-time computer vision due to its highly

parallel and efficient GPU implementation. Total Variation refers to the L1

norm on the gradient in the energy (Eq. 2.38). This norm is preferable to an

L2 norm because it disfavours noise and has no bias against discontinuities [100],

better modelling real images. Rudin, Osher and Fatemi (ROF) [109] define an

image denoising formulation using TV which can be represented as minimizing

the following energy:

EROF = ||∇u||1 +
λ

2
||u− g||22 =

∑
x

|∇u(x)|+ λ

2

(
u(x)− g(x)

)2
. (2.38)

We wish to find the image u(x) which minimizes this energy given a noisy image

g(x). The first term in the energy is the regularisation term, this is to generate

a smooth, noise-free image. The second term is the data term, this makes sure

the generated image is close to the original, noisy image. The parameter λ

determines the ratio of the data to the regularisation. A smaller λ means the

image will be smoothed more, a larger λ means that the image will fit the data

better - and hence show more of the original noise. The result is an image

denoising framework which preserves edges, due to the L1 norm (Fig. 2.3).

ROF proposed the following gradient descent method for minimizing the

energy given above:

un+1 = un − dt
[
−∇ ·

(
∇u
|∇u|

)
+ λ(u− g)

]
, (2.39)

with a given step size dt (on which there is an upper bound to ensure con-

vergence). However, the equations become degenerate as |∇u(x)| → 0. To

overcome this problem we formulate the dual problem [100]. To do this we

re-write the Total Variation term, |∇u|, using the Legendre-Fenchel transform,

as detailed in [52]:

|∇u| = max
(
〈∇u, p〉, for |p| ≤ 1

)
. (2.40)
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Figure 2.3: An image (left) had Gaussian noise added to it (middle). We

then use the ROF denoising model using a primal-dual approach to remove the

noise (right).

This transforms the energy minimisation problem:

min
u

∑
x

|∇u(x)|+ λ

2

(
u(x)− g(x)

)2
(2.41)

into a saddle point problem:

min
u

max
p

∑
x

〈
∇u(x), p(x)

〉
− δ|p|≤1 +

λ

2

(
u(x)− g(x)

)2
, (2.42)

where the indicator function δ|p|≤1 is defined as follows:

δ|p|≤1 =

0, |p| ≤ 1,

∞, otherwise.
(2.43)

To solve this saddle point problem we alternate between iterations of gra-

dient ascent to maximise in p and gradient descent to minimise in u:

pn+1 − pn

σ
=
∂EROF
∂p

= ∇un, such that |p| ≤ 1, (2.44a)

un − un+1

τ
=
∂EROF
∂u

= − div pn+1 − λg, (2.44b)

which results in the following iterative update scheme:

pn+1 =
pn + σ∇un

max(1, |pn + σ∇un|)
, (2.45a)

un+1 =
un + τ div pn+1 + τλ(un+1 − g)

1 + τλ
, (2.45b)
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Figure 2.4: Gaussian noise is added to a depth-map with variance as defined

in Section 2.4.3 (left). We use variational denoising parametrised in depth

(middle) and inverse depth (right). Note that the inverse depth parametrisation

has a more even effect over the range of depths. The top row represents inverse

depth, the bottom row represents the normals computed from the depth-map.

where the normalisation term in Eq. 2.45a is so that p remains within the

bounds of the unit ball |p| ≤ 1.

Figure 2.4 shows the effect of ROF regularisation applied to a depth map,

as it will be used in this thesis. We formulate the problem in both depth and

inverse-depth to demonstrate that the ROF model fits the data better when

the noise is well modelled by a Gaussian distribution (as it is for inverse-depth

in the figure).

2.5.2 General Form

The standard image denoising problem consists of finding the denoised image

u∗ from a noisy input image g. It can be formulated as en energy minimisation

problem:

u∗ = arg min
u

∑
x∈Ω

R
(
∇u(x)

)
+ λD

(
u(x)− g(x)

)
, (2.46)

where R is a regularization term to ensure smoothness in the result, D is the

data term to ensure the solution still represents the original noisy input and λ is

a parameter used to adjust the trade-off between smoothness and data fidelity.
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R(x) R∗(y)

L2
1
2
|x|2 1

2
|y|2

L1 |x| δ|y|≤1

Huber |x|α
α
2
|y|2 + δ|y|≤1

Table 2.1: Some functions and their conjugates. See Appendix C for the

definition of the Huber norm and a derivation of its conjugate.

There are several common choices for both of these functions, some exam-

ples of which can be seen in Table 2.1. For example, in the ROF method we

use an L2 norm on the data term and L1 regularisation. We may decide to use

a more robust norm, such as L1, on the data term if we know that there are

outliers in the data, as is often the case with stereo generated depth-maps. An

L1 data term has the interesting property of being able to remove structures of

a certain scale, specified by λ, independent of contrast. We refer you to [100]

for a more in-depth analysis of the impact of this term.

The general approach to solving is the same as with the ROF model. We

convert the minimisation problem into a saddle point problem by re-writing

R(x) in terms of its conjugate function:

R(x) = max
y∈Y
〈x, y〉 − R∗(y) (2.47)

where the Legendre-Fenchel transform is used to compute the conjugate func-

tion:

R∗(y) = max
x∈X
〈x, y〉 − R(x) (2.48)

Some examples can be seen in Table 2.1 with derivations of these and others in

[52]. The final saddle point problem becomes:

min
u

max
p

∑
x∈Ω

〈∇u(x), p(x)〉 − R∗
(
p(x)

)
+ λD

(
u(x)− g(x)

)
, (2.49)

which is solved via gradient ascent/descent as demonstrated in the previous

section.

Chambolle and Pock [17] formalize and prove the convergence of this class

of algorithms and provide values for the step sizes to give optimal convergence

speed.
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2.5.3 A Useful Tip

We use finite differences to compute the gradient and divergence operators and

one may naively decide to use forward differences, say, for both. This does

not work. There is a fixed relationship between the gradient and divergence

operator defined by the following equation:

〈∇u, p〉 = 〈u,− div p〉, (2.50)

and this relation must be obeyed. Therefore by specifying that we use backward

difference for the gradient, say, then the finite difference divergence operator is

defined by the above equation.

We will demonstrate this for the 1-dimensional case. The easiest way is

see this is to use the matrix notation for the finite difference operator. We

stack all pixels into a single vector u so that the gradient operator is a matrix

multiplication:

∇u = Du (2.51)

=


0 0 0 0

−1 1 0 0

0 −1 1 0

0 0 −1 1

u. (2.52)

Then, using Eq. 2.50, we can write:

〈∇u,p〉 = 〈Du,p〉 (2.53)

= 〈u, DTp〉 (2.54)

= −〈u, divp〉, (2.55)

and, hence, the finite difference operator for div can be represented by the

matrix −DT . If you work it through it turns out that the divergence must be

a forward difference. In the case of a two-dimensional image the divergence is
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given by:

(divp)i,j =


p0

1,j if i = 0

p0
i+1,j − p0

i,j if 0 < i < N − 1

−p0
N−1,j if i = N − 1

+


p1
i,1 if j = 0

p1
i,j+1 − p1

i,j if 0 < j < M − 1

−p1
i,M−1 if j = M − 1

(2.56)

2.6 Light-fields

A light-field (also know as a ‘Lumigraph’ [48]) is a 4-dimensional function repre-

senting the intensity of light travelling along all rays in free-space. It is derived

from the 5-dimensional plenoptic function. The plenoptic function of Adelson

and Bergen [1] represents the intensity of light travelling in every direction (2-

dimensions) at every point in space (3-dimensions). The light-field comes about

with the assumption that the intensity of light does not change when travelling

along a ray through free-space, hence the plenoptic function is reduced by one

dimension. The light-field contains all the information needed to render a scene

from any position and any orientation within the free-space constraints.

Note In these definitions we are assuming that the scene is static. For dy-

namic scenes we must add an extra dimension to the definition of the plenoptic

function and light-field to represent time.

2.6.1 Light-field Representations

While the 5D plenoptic function has an obvious representation on S2 × R3

(a unit sphere at every point in space), the removal of one dimension is not

obvious. This leads to various different representations of the light-field.

Two-plane representation Fig. 2.5a. By specifying a coordinate on each

of two parallel planes, a line joining the point on one plane to the point on

the other now has a position and direction. This representation is most com-
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(a) Two-plane (b) Surface

Figure 2.5: Two common light-field representations. The two-plane repre-

sentation is the common output from light-field cameras and does not need any

knowledge of the scene’s geometry. The surface representation is useful when

estimating surface properties such as reflection and illumination.

mon, possibly due to the close relationship to the geometry of light-field cam-

eras (Section 2.6.2). This format can also be considered as a set of traditional

camera images with the camera centres positioned on the vertices of a 2D grid;

one plane represents the camera centres, the other represents the image plane.

This is the format used by the Stanford Light Field Archive [118] and is also

known as the ‘light slab’ representation [74].

Surface light-fields Fig. 2.5b. Only when the geometry of a surface is known

can we use this representation. This is a useful representation because it rep-

resents the irradiance emanating from the actual surface and, hence, is useful

in determining lighting and reflectance information. A discrete set of points is

evenly sampled from the surface (2D) and a sphere (or hemisphere aligned with

the surface normal) is used at each point to represent the ray direction. Wood

et al . [131] refer to these spheres as lumispheres (luminance + sphere) and this

is the terminology used in this thesis.

Unstructured A set of images from traditional cameras along with the cam-

era poses also forms an unstructured light-field representation. Davis et al . [30]

used this representation to interactively capture and render light-fields with a

handheld camera.
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Figure 2.6: The Lytro light-field camera (left, source: www .lytro .com ) and

the Raytrix C42 light-field camera (right, source: www .raytrix .de ).

2.6.2 Light-field Cameras

A traditional pin-hole camera can be thought of as sampling the light-field at

a single point in space and each pixel corresponds to a different ray direction.

A light-field camera tends to capture the light passing through many points

in space and in multiple directions. On the simplest level this can be just an

array of traditional cameras, such as the Stanford light-field array [118]. Single

sensor light-field cameras [79, 103] (see Fig. 2.6) consist of a microlens array

between the main lens and the sensor of a traditional camera [89], as seen in

Fig. 2.7. This can be thought of as an array of tiny cameras observing the

virtual image of the scene created by the main lens. One of the drawbacks

of light-field cameras is a much lower spatial resolution because of sampling a

4-dimensional function on a 2-dimensional image sensor. However, there are

some advantages such as refocusing after capture, depth estimation, and the

ability to synthesize images from varying viewpoints. The interactive gallery

on the Lytro website [79] is the best place to see examples of these effects.

2.6.3 Hemisphere Discretization

In this thesis we will make use of the surface light-field representation. To do so,

we need a way of sampling the space evenly. This involves discretising over all

4 dimensions of the light-field; the two dimensions representing position on the

surface and another two dimensions to represent the viewing direction. We will

make use of planar surface light-fields, in which case, evenly sampling points

from the surface is trivial; we just create a uniform grid over the plane. For
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Figure 2.7: A light-field camera differs from a traditional camera by the ad-

dition of a micro-lens array between the main lens and the sensor.

non-planar surfaces the easiest discretisation method is to perform isotropic

remeshing using a method such as [123]. This creates a regular mesh with

roughly equal sized equilateral triangles. We then use the resulting vertices as

the sample points.

Sampling from the space of viewing directions on the lumisphere is not as

easy. To represent the radiance function I(ω) on the lumisphere, we discretize

the surface of a hemisphere and store a value for each discrete point. The

samples on the hemisphere need to be as evenly spaced as possible to efficiently

represent the distribution of outgoing light.

Many efficient methods have been explored to distribute points evenly on a

sphere. For example, Poisson disc sampling [15, 26] can be adapted to work on

a sphere and generate very evenly sampled points6. However, random sampling

(Fig. 2.8d) is not well suited to interpolation between points, something desired

in a surface light-field lumisphere structure.

Using polar coordinates (θ, φ) and sampling uniformly in each indepen-

dently leads to a sampling bias towards the poles of the sphere/hemisphere

(Fig. 2.8a). Wood et al . [131] use a sampling strategy based on subdividing

an octahedron and projecting onto the sphere. We propose a novel discretiza-

tion based on [131] but allowing a much finer trade-off between resolution and

memory requirement; the surface light-field is a four-dimensional structure and

6Some excellent examples of random sampling on a sphere:

https://www.jasondavies.com/maps/random-points/
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(a) × bad (b) X good (c) X good (d) × bad

Figure 2.8: Comparison of hemisphere discretization techniques. (a) repre-

sents a uniform sampling in θ and φ; the points are clearly not evenly dis-

tributed. (b) is the method we use, the sampling is uniform. (c) is the distribu-

tion obtained by projecting the hemisphere to the plane and sampling on a 2D

grid. (d) is a random sampling from a uniform distribution for θ and φ.

to store this at an adequate resolution puts tight bounds on memory usage.

We will define our discretization method on the unit hemisphere. However,

it easily generalizes to the unit sphere via symmetry. Let θ be the polar angle

and φ be the azimuth angle. We define a single integer parameter n which

defines a number of discrete values {θ0, ..., θn} evenly distributed in the range

[0, π
2
]. This gives us a set of concentric circles on the surface of the hemisphere.

Next, level set θi is evenly subdivided into 4i values for φ on the range [0, 2π].

Hence, the set of discrete points on the hemisphere can be summarized as

follows:

(θ, φ) ∈ Ln =
{(

iπ
2n
, 2jπ

i

) ∣∣∣ j = 0, ..., i− 1, i = 0, ..., n
}

(2.57a)

|Ln| = 2n(n+ 1) + 1, (2.57b)

with φ = 0 when i = 0. Figure 2.8b shows that the spread of the discrete points

is relatively even across the surface of the hemisphere. The subdivision exhibits

a triangular structure, as can be seen in Fig. 2.9b. To do interpolation between

points we find the corresponding triangle and use barycentric coordinates to

weight the values at the 3 vertices in the triangle, as described in Section 2.6.4.

Another possible way to discretize a hemisphere is to project that hemi-

sphere onto a plane and then discretize the plane using 2D grid (Fig. 2.8c). The

simplest way to project a point (θ, φ) to the plane is to directly map these to

2D polar coordinates with radius θ and angle φ. All points on the hemisphere

now map to a circle of radius π
2

which we then discretize on a uniform N ×N
grid. Bilinear interpolation can be used to lookup values at non-discrete loca-
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(a) (b)

Figure 2.9: Discretization of a hemisphere with n = 10. On the left is a 3D

view. Note that the points are evenly spread. On the right is the projection onto

the plane along with the triangulation used for interpolation.

tions. This discretization scheme is convenient because it allows us to represent

a lumisphere as a normal image, ignoring the points which lie outside of the

circle. We use this method in Section 3.13 for ease of implementation when

computing gradients on the lumisphere. This method does not transfer well to

the sphere due to the difficulties of projection of a sphere onto a plane while

preserving area.

2.6.4 Lumisphere Interpolation

As in many cases where a continuous space has been discretized, we may wish

to perform interpolation on the discrete data to get a value of the light-field at

an arbitrary location. To do this we use a natural triangulation of the space

(Fig. 2.9b) and use barycentric coordinates to set the interpolation weights.

This is the natural choice when we recall that each quadrant of the hemisphere

is mapped to a triangle. We have created the natural triangulation on the

triangle and mapped it to each quadrant of the hemisphere.

Barycentric coordinates are the most natural way to interpolate values

within a triangle and are defined as follows: Given a triangle with vertices

p0,p1,p2, then an point p inside the triangle can be represented as a unique

42



linear combination of the three vertices such that:

p = λ0p0 + λ1p1 + λ2p2, where λ0 + λ1 + λ2 = 1, λ0, λ1, λ2 ≥ 0 (2.58)

Note that if one of the barycentric coefficients is zero then p lies on an edge

and if two coefficients are zero then p lies on a corner.

To compute barycentric coordinates we substitute λ2 = 1 − λ0 − λ1 into

the barycentric equation to yield:

p = λ0p0 + λ1p1 + (1− λ0 − λ1)p2 (2.59)

Rearranging this we get:

p = λ0(p0 − p2) + λ1(p1 − p2) + p2 (2.60)

Since p ∈ R2 (or R3) this is a set of simultaneous equations which can be solved

to find λ0, λ1. We can then compute λ2 = 1 − λ0 − λ1. Note that in R3 there

are 3 equations for 2 unknowns, the equations will only be consistent if p lies

in the same plane as the triangle. We can then choose any 2 of the equations to

solve for λ0, λ1. Barycentric coordinates can also be used to determine whether

a point lies inside or outside of a triangle. If a point is inside a triangle then all

the constraints in Eq. 2.58 are satisfied. However, we can solve Eq. 2.60 for any

point in the same plane as the triangle. If the point lies outside of the triangle

then at least one of λ0, λ1, λ2 will be negative.

When sampling viewing directions, the 3D coordinate of a point lies on

the surface of the unit sphere, not on a planar surface described by the tri-

angulation. Hence, in our method, once the relevant triangle has been found

(addressed below) we project the point onto the containing plane to correctly

compute barycentric coordinates.

Given a random point (θ′, φ′) on a lumisphere it is not trivial how to

find the triangle in which it lies. We first find θ+ and θ− to be the closest

discrete values to the polar angle θ′. We can then easily find 4 bounding

vertices (θ+, φ++), (θ+, φ+−), (θ−, φ−+), (θ−, φ−−) which are at discrete values

of the the azimuth angle closest to φ′. These 4 points define 2 triangles using

the structure in Fig. 2.9b. We project the point onto both planes defined by the

triangles, compute 2 sets of barycentric coordinates and use these to determine

in which triangle the point actually lies.
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2.7 Photometric Calibration and HDR

When capturing an image with a digital camera we may assume that the value

of each pixel is a measure of the irradiance, that is, the light incident on the

camera sensor. It is then common to assume that the scene’s radiance (the

light emitted my the scene) is proportional to the irradiance measured. This

is how we can get estimates of the amount of light in a scene and determine

quantities like reflectivity and the environments illumination. However, the

image formation process can contain many non-linearities which means that

pixel values do not map to irradiance in a simple, direct way.

Debevec and Malik [33] show that radiance may map non-linearly to the

pixel values given by a camera. In order to get an estimate of the scenes ra-

diance, Debevec and Malik propose a method to find the Camera Response

Function (CRF), which is the characteristic function of a specific camera map-

ping pixel values to irradiance.

The method for finding the CRF is simple, and only needs to be done once

for a fixed set of camera settings. The camera position is fixed and images

are captured at multiple, known shutter speeds. Pixels are then selected which

cover the full dynamic and colour range of the images. The values of these

pixels, with their known shutter speeds, are combined into an optimisation

problem. Solving this yields the CRF, for which a lookup table can be built for

efficient conversion between pixels and irradiance.

Grossberg and Nayar[51] analyse the theoretical space of all camera re-

sponse functions. They have collected a database of CRF’s, the Database of

Response Functions (DoRF), for real world cameras. Then, by applying con-

straints of the theoretical space of CRF’s, developed an Emiprical Model of

Response (EMoR) and show that this fits well to the cameras in the database.

EMoR allows a CRF to be represented via a low parameter model; most curves

are well represented by a 3 parameter model.

A current drawback of these models is that all camera settings (aperture,

gain, white-balance, etc.) except shutter speed must remain constant for the

response function to hold true. If any of these settings were to be changed,

a new response function would need to be found. A more global, parametric

model which could account for changes in these other parameters would be of
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Figure 2.10: The response function the a consumer DLSR (left) tends to

be non-linear due to post-processing. The response function of image sensors

tends to be linear (until saturation) and this is seen in the response function of

a machine vision camera (right).

great help.

Interestingly, the response function of a typical camera sensor is almost

totally linear. However, most modern digital cameras deliberately apply a non-

linear mapping to the sensors output to get more aesthetically pleasing images.

The reason for this is that photographic film has a non-linear response func-

tion [33] and many of the modern digital cameras are trying to simulate this

response because it creates more pleasing images. Cameras built for machine

vision purposes tend to leave out this non-linear processing because it is un-

necessary and often unwanted. Therefore, their response function is almost

linear to match the sensor response. Figure 2.10 shows the response function

computed using the method of [33] for an Olympus E-520 (a consumer DSLR)

and a Point Grey Flea2 (a machine vision camera).

When the response function of a camera is known we can combine images of

the same scene at multiple exposures to create a High Dynamic Range (HDR)

image. In a traditional Low Dynamic Range (LDR) image there are often

under-exposed (black) or over-exposed (saturated) regions where there is a loss

of detail and there is not a one-to-one mapping between the pixel value and

irradiance. To recover the irradiance in such areas we need to change the

shutter speed of the camera. By capturing multiple images at varying shutter

speeds and converting each one to irradiance we can combine all the information

together to get a true estimate of the irradiance over a dynamic range much
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higher than a single image can capture.

2.8 Phong Illumination

The Phong illumination model (or Phong reflection model) was proposed by

Bui Tuong Phong in 1975 [96] and is widely used in computed graphics to this

day. It provides a local model of the illumination of a surface by considering

three different components: ambient, diffuse and specular. The ambient term

represents low level scattered light that is present in the entire scene. The

diffuse term is a major factor in matt surfaces. It’s intensity is dependent on

the angle between the surface normal and the direction to a light source. The

specular component is dependent on the viewpoint and is what gives surfaces

a glossy appearance.

Under Phong illumination, the intensity Ip of a surface point p is given by

the following equation:

Ip = kaia +
∑

m∈lights

kd

(
l̂m · n̂

)
im,d︸ ︷︷ ︸

view-independent

+ ks (r̂m · v̂)α im,s︸ ︷︷ ︸
view-dependent

, (2.61)

where,

• ka, kd, ks are the surface’s ambient, diffuse, and specular reflection con-

stants, respectively,

• α is the shininess constant for the surface, a large value is more shiny,

• ia is the ambient illumination,

• im,d, im,s are the intensitys of the diffuse and specular illumination from

light m, respectively,

• l̂m is the unit vector directed from the surface point p to light m,

• n̂ is the unit surface normal,

• v̂ is the unit vector directed from p to the viewpoint (camera),

• r̂m = 2
(̂
lm · n̂

)
n̂− l̂m.
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We will make use of this illumination model in later sections.

2.9 Dense Image Registration

The work in this section is based on the work of Lucas and Kanade [78]. We

give an overview of the general method of dense image registration here because

it is used a number of times in this thesis.

Suppose we have an image I ′ which was obtained by warping some image

I:

I ′(u) = I
(
w(u; p)

)
, (2.62)

where p are parameters of the warping function w. For example, the warp

could be due to camera rotation. In this case the parameters p define a rotation

matrix and the warp is given by:

w(u; p) = π
(
KR(p)K−1u̇

)
. (2.63)

In this section we will give an overview of how to recover the parameters

p of the warp function given the images I and I ′. We do this by minimizing a

cost function based on the error between pixels:

E(p) =
∑
u∈Ω

(
I ′(u)− I

(
w(u; p)

))2

(2.64a)

=
1

2
e(p)Te(p), (2.64b)

where we define the residual vector e(p) such that ei(u) = I ′(ui)− I(w(ui; p))

and ui is the i’th pixel.

To solve this type of equation we first approximate e(p) with a first order

Taylor series about p = 0:

ê(p) = e(0) +∇e(0)p. (2.65)

The new approximate energy becomes

Ê(p) =
1

2
ê(p)T ê(p). (2.66)
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We seek a minimum of this energy in the usual way be setting its derivative

equal to zero:

0 = ∇Ê(p) (2.67)

= ∇e(0)T ê(p) (2.68)

= ∇e(0)T [e(0) +∇e(0)p] (2.69)

= JT (e(0) + Jp) , (2.70)

where we have introduced the Jacobian matrix J = ∇e(0). We see that the

solution is obtained when Jp = −e(0). If p ∈ RN and there are M pixels in

an image then this is a system of M equations for N unknowns. In the camera

rotation example above N = 3 and M is on the order of tens of thousands of

pixels. Typically it is the case that M >> N . We therefore have a massively

overdetermined system which we solve in a least squares framework by using

the normal equations:

JTJp = −JTe(0), (2.71)

which is solved by inverting the matrix JTJ:

p = −
(
JTJ
)−1

Je(0). (2.72)

In practice we don’t need to compute the full Jacobian matrix J (which is a

huge M ×N matrix) and instead just compute JTJ ∈ RN×N and Je(0) ∈ RN .

Due to the first order approximation in Eq. 2.65 this approach will only be

valid for p ≈ 0. Therefore we redefine the warp function after each iteration so

that the parameters p just represent a small perturbation and our assumptions

always hold. For example, the rotation warp in Eq. 2.63 becomes

w(k)(u; p) = π
(
KR̂(k)R(p)K−1u̇

)
, (2.73)

where k is the iteration count. We then solve the normal equations using this

warp function to obtain p̂(k) and update the estimate of the rotation matrix:

R̂(k+1) = R̂(k)R(p̂(k)). (2.74)

Using this approach, we only ever solve for p ≈ 0 which is consistent with our

first order approximation in Eq. 2.65. Additionally, we only need to compute

derivatives of R(p) about p = 0, which are simply the generators of the Lie

group, as stated in Section 2.3.3.
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2.9.1 Weighting

In some cases we wish to apply weights to different pixels by considering the

following energy:

E(p) =
∑
u∈Ω

w(u)
(
I ′(u)− I

(
w(u; p)

))2

(2.75a)

=
1

2
e(p)TWe(p), (2.75b)

where W is a diagonal matrix, Wii = w(ui), and w(ui) ≥ 0,∀i. To solve this

system we just make a small modification to the normal equations:

JTWJp = −JTWe(0). (2.76)

2.9.2 M-Estimators

The quadratic term on the residuals in Eqs. 2.64 and 2.75 works extremely

well on clean data or when noise in the data causes the residuals to be well

approximated by a zero-mean Gaussian probability function. However, a small

number of extreme outliers can have a detrimental effect on the result. We can

make use of M-estimators to reduce the impact of such extreme outliers and

make the system more robust.

The M-estimator problem is formulated by replacing the sum of squares

energy with another function ρ:

E(p) =
∑
u∈Ω

ρ
(
eu(p)

)
, (2.77)

where ρ(x) is required to be symmetric, positive-definite and have a unique

minimum at zero. In the standard least squares setting ρ(x) = 1
2
x2.

Instead of minimising Eq. 2.77 directly, we transform it to an iteratively re-

weighted least squares problem. To do so we introduce the influence function,

ψ(x), and the weight function, w(x):

ψ(x) =
dρ(x)

dx
, w(x) =

ψ(x)

x
. (2.78)

It can be shown that the minimising Eq. 2.77 is equivalent to solving the fol-

lowing iteratively re-weighted least squares problem:

E(p) =
∑
u∈Ω

w
(
eu(p(k−1))

) (
eu(p(k))

)2
, (2.79)
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where the bracketed superscript denotes the iteration number. Weights are

computed from the result of the previous iteration and the system is solved as

in Section 2.9.1.

2.10 Meshes

A polygon mesh consists of vertices, edges, and faces. In this thesis we will

only consider triangular meshes (where each face is a triangle). A vertex is a

point p ∈ R3 and the geometry of the mesh is defined by the positions of its

vertices. The edges and faces define the connectivity of a mesh. An edge joins

two vertices and, for a triangle mesh, a face is formed from three vertices and

the three edges connecting those vertices.

The meshes we consider in this thesis will be manifold. The rigorous

mathematical definition of a manifold is complicated so we won’t include it

here. However, in the scope of triangular meshes we can interpret manifold

as meaning that each edge is incident to either one or two faces and the faces

surrounding each vertex form either a closed fan or open fan.

In general, a manifold triangle mesh is stored and represented as a list of

vertex positions and a list of triplets of indices which form faces. Each triplet

references the three vertices which form the corners of the face. Edges don’t

need to be stored because they are directly inferred from the edges of the faces.

In a manifold mesh all edges must be incident to at least one face, so all edges

are defined this way.

2.10.1 Mesh Laplacian

Given a mesh consisting of vertices {pi}n−1
i=0 , let j ∈ N(i) denote that vertex

pj is directly connected to pi by a single edge. N(i) is the neighbourhood of

vertex i. We define the mesh Laplacian as follows:

L(pi) =
1∑

j∈N(i) wij

∑
j∈N(i)

wij (pj − pi) . (2.80)
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We can also define the mesh Laplacian which acts on a function φ defined on

the mesh:

Lφ(pi) =
1∑

j∈N(i) wij

∑
j∈N(i)

wij
(
φ(pj)− φ(pi)

)
. (2.81)

There are various choices for the set of weights wij. The two most common

weighting schemes are uniform weights (wij = 1,∀i, j) and cotangent weights

(defined in Section 2.10.2). In Appendix D we show how this definition of

the mesh Laplacian relates to the common definition of the Laplacian as the

divergence of the gradient operator.

The mesh Laplacian is often used to smooth meshes and functions defined

on meshes. Smoothing is performed in an iterative fashion. To smooth the

vertices directly we use the following update scheme:

p
(k+1)
i = p

(k)
i + L(k)(p

(k)
i ), (2.82)

and the equivalent iterative update for functions on meshes is:

φ(k+1)(pi) = φ(k)(pi) + L
(k)
φ (pi). (2.83)

The mesh Laplacian can also be represented as a discrete linear operator

(i.e. a matrix). If we let P = (p0, ...,pn−1)T be the matrix containing all the

points pi then the Laplacian matrix L is defined such that:

L(pi) = [LP]i . (2.84)

Using Eq. 2.80 we see that

Lij =


wij∑
k wik

, i 6= j,

−1, i = j,
(2.85)

where we set wij = 0 if pi and pj are not connected by an edge.

2.10.2 Cotangent weights

Cotangent weights are defined on the internal edges of a triangular mesh. They

are often used instead of uniform weights when computing the mesh Laplacian

because the effects of smoothing is less dependent on the triangulation struc-

ture [35]. For example, consider the mesh in Fig. 2.11a. All vertices lie in the
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(a)

pi

pjαij

βij

(b)

Figure 2.11: (a) Using uniform weights for Laplacian smoothing causes the

vertices to move to a more regular triangular structure despite the fact the mesh

is already as smooth as it can be. (b) Cotangent weights are computed from the

angles of the two triangles sharing an interior edge of the mesh. When these

weights are used for smoothing the triangulation structure is unaffected.

plane so it is a smooth as it can be. However, when smoothing with uniform

weights the vertices are moved to make a more uniform triangulation struc-

ture. With cotangent weights the positions of the vertices stay fixed, a useful

property for meshes with irregular triangulation.

Given an internal edge from vertex pi to vertex pj, the cotangent weight

wij is given by:

wij =
1

2
(cotαij + cot βij) (2.86)

where αij and βij are the angles opposite the edge of the two triangles that

share the edge (these triangles always exist provided it is an internal edge), as

can be seen in Fig. 2.11b.

2.11 Datasets

In this section we will give a brief overview of some datasets we will use to

evaluate stereo and 3D reconstruction.
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Figure 2.12: Left: a view of the geometry from within Blender. Middle: A

sample render from the dataset. Right: A depth map from the dataset.

2.11.1 Basic Blender Sequence

This synthetic dataset was created in Blender7 and designed to have simple

geometry and be free of properties which cause problems for many stereo al-

gorithms. Therefore we do not include any view-dependent lighting effects and

make sure the surfaces have plenty of texture so that matching is not ambiguous

(see Fig. 2.12). The idea is that this will test the maximum achievable accuracy

of the stereo algorithm in absence of these complicated situations. It was also

important to include surfaces which were not fronto-parallel to the camera so

that we can test the accuracy of reconstructing slanted planes.

Each frame of the dataset consists of an RGB image in PNG format, 32-bit

floating-point depth in OpenEXR format and a text file containing the pose of

the camera, Twc. The focal length of the lens is 8mm with a sensor size of

6.16 × 4.62mm. We render at VGA resolution (640 × 480) leading to a focal

length of 831.169 pixels and the camera centre at (320, 240).

We render two trajectories from the dataset. The first is a straight tra-

jectory with constant velocity in the x-direction used to test the performance

of stereo algorithms at varying baselines. The second is a circular trajectory

which we use to evaluate the full reconstruction system. For example, we can

check that the solution converges over time by running it in a loop.

7https://www.blender.org/
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Figure 2.13: An example image from a POVRay generated sequence of views

over a desk.

2.11.2 POVRay Generated Desk Sequence

This dataset was realistic generated using the POV-Ray tool [93]. We use the

same 3D model as used in by Handa et al . in [53]. This high-quality rendering

pipeline provides non-Lambertian lighting effects, reflections and exhibits tex-

tureless regions which can cause further problems for passive vision systems.

An example image can be seen in Fig. 2.13.

The trajectory was obtained by logging the tracked camera poses from

PTAM [68] during hand-held camera motion over a desk.

We note that we must add at least small amount of image noise to the

raytraced output of POV-Ray; In texture-less regions there are subtle changes

of intensity of just a single quantisation step. The position of these steps form

a wave which moves within the texture-less region as the camera moves. Whilst

the human eye cannot notice the change, a stereo algorithm looking at pixel

intensity differences will notice the change and it can cause artefacts.
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3

Real-time Surface Light-field Capture

Figure 3.1: A virtual cube (left) is placed on a planar specular surface next to

a real cube (right). We use the captured surface light field to estimate illumina-

tion, compute shadows, and, most importantly, occlude the specularities visible

on the surface.

In this chapter we present a system for the real-time acquisition of surface

light-fields on planar surfaces. A calibrated camera is tracked relative to a

known planar surface, images are acquired from various viewpoints and stored

in a surface light-field data structure. We then go on to show how to use this

information for light position estimation, environment map estimation, bump-

map estimation and to create more realistic AR on specular surfaces.

Shiny/specular surfaces are quite common in indoor environments; for ex-

ample, books, tables, ceramic and plastic surfaces. Despite this, the realism of

current augmented reality systems on such surfaces is limited. Many systems

estimate the environment illumination, both with [92] and without [80, 82, 92]

light probes. The estimated lighting is used to correctly illuminate the object

as well as generate shadows for virtual objects on real surfaces. However, none
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seem to attempt to handle specular lighting effects.

Our initial work makes the assumption that the surface is planar. This

limitation is still useful in many AR situations (especially indoors) because an

uncluttered, planar surface is often favoured as a clean canvas on which to place

and interact with virtual objects. Many other works seek planar surfaces for

augmented reality applications, such as [18, 68, 92, 98].

A version of the work in this chapter was presented at and published in

proceedings of the International Symposium on Mixed and Augmented Reality

2012 [64].

3.1 Introduction

Augmented Reality (AR) will surely have the potential for world-changing im-

pact when the enabling technologies it relies on come fully together in low-cost,

mass-market mobile devices. The more that can be done from the sensors built

into these devices, and without the need for infrastructure, the more likely it

is that designers will be able to create wide-reaching and generally useful AR

applications. In reaction to this, there has been a strong move away from cus-

tom hardware in AR research, and interest has been particularly high in what

can be done for AR from the video stream from a single moving camera.

Some of the most important steps along this path were taken by work on

real-time SLAM using a single camera which was able to build self-consistent

maps of features incrementally and use these for long-term, drift-free camera

tracking. Davison et al .’s early MonoSLAM system [31] using sequential filter-

ing was improved upon by other work such as [37] and most significantly by

Klein and Murray’s PTAM [68] with a parallel tracking and map optimisation

approach which enabled greater tracking accuracy and dynamics of motion.

In the past few years another big advance has been produced by the com-

bination of modern optimisation algorithms and commodity parallel processing

resources in the form of GPUs to permit real-time dense reconstruction from a

single camera [86, 88, 121]. A dense surface model, generated live, allows AR

objects to dynamically interact with the real scene; be occluded by, bounce off

or even jump over real objects as shown in [86].
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We consider the wealth of information in a standard real-time video stream

from a moving camera which is currently still being ignored by most vision

algorithms. Specifically, there is the potential to aim towards modelling of the

reflectance properties of all scene surfaces and to map the full scene lighting

configuration without any of the infrastructure such as light-probes currently

needed for such estimation.

The full problem of estimating lighting and reflectance properties for gen-

eral scenes is surely a long-term one, with difficult joint estimation problems

coming into view once issues such as complicated curved geometry and object

inter-reflections and considered. In this section we therefore make simplifying

assumptions, but focus on an initial demonstration of real-time light-field cap-

ture, diffuse and specular lighting estimation and straightforward but highly

effective placement of augmentations on specular surfaces — all with a single

hand-held camera as the only data source. Specifically, we currently assume

a static, planar scene; and static illumination which is well approximated as

infinite relative to the camera motion.

3.2 Background

Much work on lighting and reflectance estimation has concentrated on single

images, such as [55]. Nishino et al . [91] estimated the lighting and reflectance

using a sparse set of images. At the other end of the scale [131] used a compar-

atively dense approach (several hundred images) to capture a view-dependent

model of an object, but required a special capture rig. This information was

then be used to estimate lighting and reflectance.

None of these approaches have taken advantage, as we do, of the huge

amount of information coming from a 30fps live video feed; and in fact the pro-

cessing and memory resources have only recently become widely available that

makes dealing with such a large quantity of data feasible. The huge advantage

of a real-time system is the feedback loop it gives to a user and we see in many

AR systems which use vision for other capabilities. If processing is done post

capture, we may find gaps where we decide that more data is needed, while a

real-time user can immediately react to fill in these areas as appropriate.

Coombe et al . [27] use online singular value decomposition to capture a
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compressed representation of a surface light-field via principal component anal-

ysis. Although their method is memory efficient, it is only an approximation

to the real light-field. Their system takes about 1 second to incorporate a new

image in to the approximation. While interactive, it is not at frame-rate (30fps)

and, hence, does not use every available piece of information.

The most closely related work to our own was by Davis et al . [30], who

captured light-fields in real-time with an unstructured representation and use

them for novel view rendering. Their system required only basic knowledge of

scene geometry and stored the light-field as a series of keyframes. Novel views

are then formed via interpolation of these keyframes. Although this unstruc-

tured representation has the advantage that it does not require an accurate

3D model, we believe that we can be more ambitious and that surface light-

fields can offer much more information about surface properties, which can be

used for BRDF estimation, material based segmentation and object detection.

We envision combining the real-time 3D reconstruction algorithms already in

existence [86, 87, 88] with real-time light-field capture.

Artificial reality relighting and shadows generally need light-probes or

omni-directional cameras to capture the illumination distribution, such as [92].

Some methods aim to work without probes, but these are generally for only

specialised cases. For example, Madsen and Lal [80] demonstrated probeless

illumination estimation for outdoor scenes by considering the only light sources

to be the sun and sky. Our work aims towards a real-time, probeless system

which will work in any environment.

3.3 Overview

At the core of our approach is the capture of the light-field emanating from the

surface of interest using a tracked single browsing camera. We use the surface

light-field representation as described in Section 2.6.1 to store the acquired

data. In this work we will concentrate only on planar surfaces (n̂ = (0, 0, 1)

for the whole surface). However, most of the concepts can be applied to a

general surface as long as a geometric model of the surface, with normals, is

known. This model could be captured with existing real-time methods using

depth cameras such as [65, 87], or using a monocular camera such as the method

discussed in Chapter 6.
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Recall that the surface light-field is represented as a 4D function L(x,ω).

In the planar case x = (x, y) is the 2D position of the texture element in a

simple Cartesian coordinate system, and ω is the viewing direction defined on

a hemisphere oriented with the surface normal, in this case, the z-axis. The

hemisphere is discretized using the method outlined in Section 2.6.3.

3.4 Camera tracking and initialization

We make use of the freely available “Parallel Tracking and Mapping” (PTAM)

program by Klein and Murray [68] to track the pose of the camera relative to

the plane. The initialisation stage of PTAM uses feature correspondences from

two frames to estimate the camera motion and 3D positions of the features

along with a dominant plane estimate using RANSAC. This plane estimate is

good enough for the small AR applications initially demonstrated in [68] but it

is not always accurate enough for our application. To improve on this estimate

we have a simple interface that allows the user to select a rectangular region of

interest and then perform RANSAC plane estimation/refinement on the feature

points within that region. This step does two things: improves the estimate

of the plane parameters by removing feature points which do not lie on the

plane, and provide a segmentation of the region of interest. Figure 3.2 shows a

screen-shot of this interface in practice. The user has clicked on the four corners

of the region of interest and only the relevant feature points belonging to the

plane are now visible and used to estimate the plane. We use a rectangular

region for ease of implementation but this is easily generalisable to arbitrary

shaped regions.

In practice we have found the feature-based tracking to be robust and ac-

curate enough for this application. We experienced that browsing the scene

before data capture can increase the tracking accuracy by allowing the bundle

adjustment to refine the keyframe poses. One limitation of the feature-based

tracker is that the surface must have sufficient texture to have enough features

to track from; this restricts the range of surfaces handled by the system. An-

other possibility for tracking the camera could be to use dense homography

based tracking, as outlined in [76]. By using an M-estimator it should be pos-

sible to avoid tracking errors caused by the view-dependent specular texture

(further discussed in Section 6.4). In the case of feature-based trackers, any

features associated with the motion of specularities tend to be unstable and are
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Figure 3.2: PTAM’s map of the world (left) and the plane initialisation in-

terface (right). The user has clicked on the four corners (blue crosses) of the

book to mark a rectangular region. A plane is then fitted to the feature points

(yellow dots) within the region and the world coordinate frame is aligned with

the plane and the rectangle’s axis.

naturally filtered out so they do not cause problems with the tracking.

Once the rectangular region has been specified we can build the light-

field data structure. The region is discretized on a regular grid of dimension

M × N and each discrete point has its own lumisphere. Each lumisphere will

use the hemisphere discretization introduced in Section 2.6.3, with resolution

L. Hence, using Eq. 2.57b we get that the total number of data points is

2MNL(L + 1) + MN (typical values are M,N,L = 256, 256, 60 which gives

7321 points per lumisphere and approximately 480 million points in total).

Each discrete point on a lumisphere holds a 4 byte value. The first 3 bytes

store the RGB values and the last byte is simply used as a binary value which

takes the value zero if that viewing direction is unseen. A future extension is

to increase the dynamic range of the light-field by using all 4 bytes to represent

colour.

3.5 Camera projection

The world coordinate frame is oriented so that the planar surface is the plane

z = 0 and the normal to the plane points in the positive z direction. The

x, y axis are aligned with the rectangular region of interest and centred in the

middle of this region. The camera tracking will tell us the camera pose Twc of
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the camera relative to this world coordinate frame. With this configuration it

is now simple to project a point x = (x, y, 0) on the plane into the camera using

Eq. 2.4.

In order to write data into the surface light-field we must also know the

viewing direction. This is simply the unit vector pointing from the point x

on the surface to the camera position twc. We then use inverse trigonometric

functions to compute the direction in polar coordinates for use in the light-field:

[
θ

φ

]
=

[
cos−1(dz)

tan−1
(
dy
dx

)] , where d =

dxdy
dz

 =
twc − x

|twc − x|
. (3.1)

In the special case of a Lambertian surface, or when we are only interested

in the view-independent component of the radiance, we can avoid storing the

entire light-field and just store a running average (e.g. mean or median) of the

irradiance measured for each surface point. In this way we get a simple version

of planar mosaicing (Fig. 3.3); multiple images are fused together to create a

larger view of the planar surface with any view-dependent properties averaged

out. Lovegrove [76] demonstrated a more advanced version of planar mosaicing

that also estimates the plane orientation online.

3.6 Data Capture

A calibrated camera with fixed exposure, shutter and gain browses a planar

scene capturing continuous video from multiple viewpoints. Given a new frame

we back-project a ray from each point on the plane into the camera image

(Fig. 3.4) and use bilinear interpolation to give a colour value. We use the pose

of the camera to calculate the viewing direction for each pixel and calculate

the 3 closest points on the lumisphere based on the triangulation in Fig. 2.9b.

We then update these 3 points using the barycentric weights (as used for inter-

polation) and whether the point has been seen before. If the point is unseen,

the point is updated with the observed value. If the point has previously been

seen and λ is its barycentric weight then the new value Inew is given by an

incremental weighted average of the old value Iold and the observed value Iobs:

Inew = λIobs + (1− λ)Iold. (3.2)
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Figure 3.3: Multiple images from a hand-held camera are stitched together to

create a planar mosaic. This approach can create mosaics of higher resolution

than that of an individual image. The surface is assumed to be planar so arte-

facts appear in regions not lying on the estimated plane (see the paper on the

left and right of the book).

PTAM features a way of estimating the reliability of the camera tracking. It

outputs three possible states: ‘BAD’, ‘DODGY’, or ‘GOOD’. We only input

data from a frame to the light-field if the tracking state is ‘GOOD’.

3.6.1 Feedback Mechanism

For specular surfaces we must use a high resolution lumisphere (at least 7000

discrete points) to give realistic results, since specularities are highly dependent

on viewing direction. With each new video frame only one viewing direction is

obtained per point on the surface, so it is unrealistic to expect to capture every

viewing direction for every pixel. To get some perspective, in the absolute best
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Figure 3.4: Every point on the planar surface is projected into the camera

image. Due to perspective projection, the viewing angle is different for every

point on the surface.

case scenario we would capture a new viewing direction for each point on the

surface in every frame. That means for a a lumisphere with 7321 data points

(a typical value) it would take just over 4 minutes to capture all the data.

However, the reality is very different. We don’t even get close to the best case

and the time and effort needed to capture the complete light-field would make

the system unusable.

Given that full capture of the light-field is not feasible we set a new goal

to capture every viewing direction from at least one point on the surface. We

will see later (Section 3.8) that this is enough information for a variety of

applications and we can use global surface and lighting properties to fill in the

gaps. Given a camera with a wide angle lens browsing close to the surface, a

single frame captures many viewing directions (Fig. 3.4). This means capturing

a view from each discrete direction is not time consuming. Our capture times

are typically less than 1 minute to obtain all the viewing directions needed

while only giving around 10% total coverage of the light-field.

Our system incorporates a visual feedback mechanism (see Fig. 3.5) to as-

sist in getting coverage over the full range of viewing directions. This consists

of a lumisphere which is coloured green when that particular viewing direction

has been seen somewhere on the surface. The live viewing directions are shaded

in red. This provides a feedback loop for the user to move the camera to pre-

viously unseen areas and is quite intuitive to use. The hemisphere is displayed

to the user via projection onto the unit circle in the plane:

(r, α) =
(

2θ
π
, φ
)
, (3.3)

63



Figure 3.5: Visual feedback mechanism for light-field capture guidance. Red

represents the current view, and green the coverage so far.

where (r, α) are 2D polar coordinates. This projection can also used be for

visualisation of the lumispheres, as in Fig. 3.8. Concentric circles are drawn to

represent 10 degree intervals of the inclination angle θ. The aim of the user

is to fill the biggest circle with green. This means that all viewing directions

with an inclination angle of less than 80 degrees have been seen. The last 10

degrees represents viewing directions at grazing angles to the surface. It is

hard to capture data at these angles because tracking starts to fail; but we

don’t consider this a major issue because in our applications the information at

these grazing angles is not needed. By using dense homography based tracking

(as mentioned in Section 3.4) we might be able to improve the tracking at these

grazing angles. The feature descriptors used in PTAM’s tracking don’t handle

massive changes of viewpoint well.

For the feedback mechanism to report that capture is complete it requires

a minimum of one observation from each viewing direction from any point on

the surface. In reality, the incoming data is so dense that there is many more

than one observation from each viewing direction.

3.6.2 Memory Usage

The surface light field is a four-dimensional structure and therefore consumes

a vast amount of memory. We typically use a 256 × 256 grid for the planar

surface. A high resolution light-field with 60 levels per lumisphere (7321 data

points per lumisphere, 480 million overall) takes up nearly 2GB of memory (4

Bytes per data point).

As mentioned in Section 3.6.1, it is generally not possible to observe viewing

directions less than 10 degrees from the horizontal. Therefore it makes sense

to ignore this region of the light-field to save memory. Because there are more

64



data points at grazing angles, the memory saving are quite substantial; for a

lumisphere with 60 levels (7321 points), if we remove all points less than 10

degrees from horizontal the structure remaining has the equivalent number of

points to a lumisphere with 45 levels (4141 points) which is a 43% reduction in

memory. In practice, we use the extra available space to increase the resolution

of the light-field.

Our current method simply allocates all the memory required. However,

the captured light-field is highly sparse (typically ∼ 10% fill) and would be

well suited to a sparse quad-tree structure (for example). This would allow

the memory usage to be compressed greatly. Current research hints towards

efficient, scalable k-tree data-structures on GPU’s with real-time update capa-

bilities [136, 137].

3.7 Reflection/Illumination Model

The objective of capturing a surface light-field is to recover the view-dependent

properties of the surface. When we look at standard models of illumination

and reflection we see that the observed intensity is the sum of view-dependent

terms and view-independent terms. For example, the Phong reflection model

(Section 2.8) assumes that the light leaving a surface is the sum of three addi-

tive terms: ambient lighting, diffuse lighting and specular reflection. The first

two are view-independent, only the specular reflection contribution is view-

dependent. In the rest of this section we will refer to the sum of all view-

independent terms as the diffuse term.

Having captured a whole lumisphere for a surface element, we are first

interested in extracting the diffuse part. If we take a closer look at Eq. 2.61 we

notice that the view-dependent specular part is a non-negative additive term.

We can also note that specular lighting effects are very sensitive to viewing

direction and the intensity drops off rapidly when deviating from the most

intense viewing direction. Therefore, given a large number of viewpoints (as

in a lumisphere) it is highly likely that one or more of those observations have

a zero or negligible specular term. Hence, due to the non-negativity, it makes

sense to take the minimum observed value to be the diffuse component, and

this approach is used by Nishino et al . [91]. However, using the minimum

value has its drawbacks: it is very susceptible to noise and outliers. Slight
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errors in camera calibration or pose estimation can lead to shrinking of brighter

regions as the minimum can take the value of neighbouring less bright regions.

Also, when a handheld camera is moved over a surface shadows are sometimes

created which can mean the minimum does not accurately represent the diffuse

term. Therefore, we make use of the median observed value, as used by Wood

et al . [131]. It is more expensive to compute than the minimum, but it gives

much more robustness.

Using the median essentially makes the assumption that less than 50%

of the observed samples have been from specular-dominant viewing directions.

This assumption appears to be valid in our experiments. During real-time light-

field capture, it is possible to update the median of each lumisphere iteratively.

To do this we store a histogram of the RGB values for each point on the surface

and update this with each new frame. We also keep track of how many samples

have contributed to the histogram. Given this information, calculating the

median is as simple as finding in which bin the middle value lies. Note that

we compute the histogram and median from the values stored in a lumisphere.

The alternative would be to add every observation (on every camera frame) to

the histogram. However, this would create a bias dependent on the trajectory

of the camera.

We can also use the lower quartile as a robust estimate for the minimum.

However, in practice we don’t notice much difference between using the median

or the lower quartile. A comparison is shown in Fig. 3.6.

In practice, we do not decompose the light-field into its diffuse and specular

parts on every frame as it is not necessary and requires more processing and

memory. However, we do store and update the minimum for each surface

element (very efficient and fast to calculate) as a guide to aid capture and then

compute the median once capture is complete.

The diffuse terms estimated for all surface elements can be combined into

a diffuse texture for the surface, as illustrated in Fig. 3.7. Since the specu-

lar radiance component is only visible from angles close to the direct mirror

reflection of a light source, the specular lumisphere (obtained by subtracting

the diffuse term from the original lumisphere) can be used for estimating the

position of light sources. We will discuss this further in Section 3.11.
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(a) Minimum (b) Lower quartile (c) Median (d) Upper quartile

Figure 3.6: Various measures exist to estimate the diffuse component of the

surfaces illumination. The minimum (a) yields the darkest result but light

coloured, thin structures (like the text) suffer from shrinking. The median (c) is

a more robust solution and the result is very similar to using the lower quartile

(b). (d) shows the upper quartile containing specular lighting effects.

3.8 Rendering

Given a full surface light-field we can construct an accurate view-dependent

rendering of the surface from any viewing direction. The process of rendering

the surface light-field can be posed as a simple ray-casting problem. For each

pixel u in the rendered image we find the intersection of the ray emitted from

that pixel with the plane; resulting in a point of intersection x∗ = (x∗, y∗, 0) on

the plane (assuming such an intersection exists). We then test if the intersection

point is in front of the camera and within the bounds of the region of interest.

If a pixel passes both of these tests then we calculate the viewing direction ω∗

using Eq. 3.1. In general, x∗ does not lie at the center of a surface element and

ω∗ is not one of the discrete sample points on the lumisphere. To render at

these non-discrete locations requires bilinear interpolation on the surface and

barycentric interpolation on the lumisphere as described in Section 2.6.4. In

practice, we generate a view-dependent texture for the entire region and then

render this texture on the plane. For each discrete point xi = (xi, yi, 0) in the

planar region the view-dependent texture can be computed as follows:

I(xi, yi) = Li (ω (xi, t
wc)) , (3.4)

where Li is the lumisphere at xi, ω (xi, t
wc) is the direction vector from the point

on the surface xi to the camera center twc, and we use barycentric interpolation
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Figure 3.7: Live camera view (left) and the specularity-free diffuse texture

(right) calculated from the medians of the lumispheres.

(Section 2.6.4) to compute Li(ω) at non-discrete values of ω.

One big issue, as mentioned earlier, is that the captured lumispheres are

very sparse. It is clear that gaps in the data cannot be filled in realistically

without some kind of strong prior or global model. We could use the assump-

tion that specularities are sparse so there is a high probability that an unseen

viewing direction will not contain a specularity and, hence, just render the dif-

fuse colour. Figure 3.9b shows the artefacts that appear when we try to do this.

These artefacts appear because while one surface element may not have data

for a particular viewing direction, its neighbour might. This creates large dis-

continuities in specular regions. From other viewing directions the specularities

may not be visible at all, due to no data at those points or their neighbours.

We tried two different ways to combat this problem: 1) Lower the resolu-

tion of the lumispheres and spend longer on the capture stage so that they are

no longer sparse; 2) Use a global model to fill in the gaps in the data (as hinted

at in Section 3.6.1). The first method is quite limited. Small changes in the

viewing direction of a specular surface can result in large changes to the ob-

servation. A lower resolution means that these small changes are not detected

and this results in spreading out of the specularities (Fig. 3.9a). Quantisation

effects are also evident when constructing the rendering from a low resolution.

Method two, however, gives good results (see Fig. 3.12). Our global model

assumes that the planar surface is of the same material and, although it may

have some varying diffuse texture, the specular component is the same across
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Figure 3.8: Left: the projection of a captured lumisphere onto the plane. Black

represents no data. The specular viewing directions can be easily seen. Right: a

3D rendered view of a small subset of lumispheres distributed over the surface.

Notice that the captured data is very sparse for each individual lumisphere.

the whole surface - a valid assumption for surfaces with a homogeneous specular

BRDF and subject to distant illumination. This means that we can combine

all of the sparse specular lumispheres into one complete global specular lumi-

sphere. Our visual feedback system ensures that this global lumisphere is filled.

Figure 3.10 shows that the global specular lumisphere does not change signif-

icantly with extra data captured on top of what the feedback system deemed

necessary. Clearly the feedback system works well.

In the Phong reflectance model (Eq. 2.61) the specular term for a light

source can be rewritten as:

ks(cosλ)αis, (3.5)

where λ is the angle between the direction of the reflected light and the view-

point. There are two parameters which are defined by surface properties: ks

and α. The exponent α is considered a property of the material [96] and so

can be assumed constant across surfaces of a single material. By assuming ks

is constant and that the direction of the reflected light is constant across the

surface, consistent with a planar surface under distant illumination, we see that

this whole term is now the same for every point on the surface. This helps to

motivate our assumption of globally constant specularities.

The weakest part of our assumption is that ks is constant across the sur-

face. We might expect, for example, that a blue part of the surface will reflect

more blue light than a red part of the surface. However, in practice, our as-
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(a) Low resolution n = 20 (b) High resolution n = 60

Figure 3.9: Real camera views (top) and renderings from the light-field (bot-

tom). The low resolution light-field tends to spread out specularities and has

visible quantisation effects. The high resolution light-field is sparse and so there

are gaps in the data where we can, at best, fill in with the diffuse colour.

sumption gives good results with no apparent skew of colours. There is the

further possibility that ks could be somehow related to the diffuse colour of the

surface, which we have already calculated. This is an area which requires fur-

ther research. The surfaces we consider are of the same material but the colour

may vary (e.g. the surface of a book). The distance to light sources is an order

of magnitude bigger than the size of the surface so the distant illumination

assumption is approximately true.

3.9 Implementation

Camera pose tracking by PTAM is run on the CPU. When a new frame is

grabbed, it is sent to PTAM to calculate a pose and then copied to the GPU
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(a) 6% Fill (b) 20% Fill (c) Difference

Figure 3.10: The first image (a) has 6% fill of the light-field, just enough

to cover all viewing directions as indicated by the feedback system. The second

image (b) is after further capture to bring it up to 20% fill. (c) is a difference

image. The most noticeable difference is that one of the lights is dimmer in

the 20% fill image. This is in fact due to the user occluding that light during

further capture. There are no major differences which shows that our feedback

mechanism works well to obtain just the required amount of information.

for all further processing. The light-field data structure is stored and updated

entirely on the GPU. The fact that the problem is highly parallel and the power

of GPU’s for parallel processing enables our capture and rendering systems to

run in real-time. Excluding PTAM, the system takes around 6-7ms per frame

to capture or render the light-field using an NVIDIA GeForce GTX580 GPU.

3.9.1 Pixel Values as Irradiance

In our experiments the camera used is a Point Grey Flea2. We have measured

it to have a camera response function which is highly linear until close to

saturation point. Therefore, by keeping the shutter time constant the direct

pixel values we use in the light-field are proportional to irradiance as long as

we choose our exposure settings to avoid saturated pixels during light-field

capture. If pixels become saturated then the values do not represent irradiance

and the decomposition into diffuse and specular terms becomes invalid. This

means that, currently, our capture stage is limited by the dynamic range of

the camera. A future extension is to increase the dynamic range of the light-

field data structure (as hinted at in Section 3.4) and use a dynamically changing

shutter speed to capture a wider dynamic range. Preliminary experiments show
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Image RMSE Intensity Max Grad. Diff. Saturation

(a) 0.0388 0.735 0.02%

(b) 0.1023 0.957 2.90%

(c) 0.0277 0.126 0.00%

Table 3.1: Quantitative evaluation of the difference between real camera views

and views rendered using the global specular lumisphere modelling using light-

field capture, for the five images (a)–(c) shown in Fig. 3.12. We show RMSE

image intensity difference, maximum gradient difference (|greal − gfake|), and

the percentage of saturated pixels in each real image. We observe that good

general agreement between real and rendered views is obtained but that, with the

current method, differences get larger in images with significant saturation. It

is also interesting to note that the gradient difference measure reveals something

extra, that we get better agreement for image (c) where the surface is smooth

and lacks the fine dappled texture of the book used in (a) and (b). Our method

currently assumes a perfectly planar surface.

that PTAM is still able to track robustly through rapid changes in exposure

provided that the images are renormalized to some fixed or slowly varying

exposure using the camera response function. An example of this can be seen

in Fig. 3.11.

3.10 Results

Figure 3.12 shows a comparison of real camera views with views rendered from

the captured light-field with the global model. Table 3.1 shows some quanti-

tative results obtained from these comparisons. We see that we have captured

the general size, colour (hue) and position of the major light sources. Due to

the averaging over the lumispheres, the fine texture of the surface (in a and

b) is not captured. The surface is not truly planar. This fine texture is only

visible at specularities so capturing this texture is difficult, and would require

high resolution per-surface-element normal estimation (bump-map capture) —

something we explore in Section 3.13.

The images show that the intensity of the specularities appear to be un-

derestimated. There are two things which could contribute to this. The first,
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(a) Shutter: 0.90ms. Median pixel value: [3, 2, 3] (b) Shutter: 1.3ms. Median pixel value: [4, 4, 4]

(c) Shutter: 2.0ms. Median pixel value: [6, 6, 7] (d) Shutter: 3.0ms. Median pixel value: [9, 9, 11]

(e) Shutter: 4.5ms. Median pixel value: [12, 12, 14] (f) Shutter: 6.7ms. Median pixel value: [18, 18, 21]

(g) Shutter: 10ms. Median pixel value: [27, 27, 31] (h) Shutter: 15ms. Median pixel value: [40, 41, 46]

(i) Shutter: 23ms. Median pixel value: [60, 62, 71] (j) Shutter: 33ms. Median pixel value: [90, 96, 111]

Figure 3.11: The shutter time of a handheld camera is varied on every frame

yielding images with massive changes in exposure (left). The images are renor-

malized to a fixed exposure (right) and PTAM is still able to track the camera

robustly. In image (a) a human cannot see any information in the image but

when renormalized there is actually plenty of detail for PTAM to track against.

The renormalized image has much more noise but still not enough to break

tracking. The median pixel value of the raw camera image is provided to give a

quantitative measure of exposure.
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(a) (b) (c)

Figure 3.12: Comparison of real camera views (top) and views rendered from

the light-field (2nd row) using the global specular lumisphere. The 3rd row

shows absolute difference images and the bottom row shows difference of gradient

images. The position and colour of the specularities is captured well but the

intensity is underestimated. The global model smooths the fine texture in (a)

and (b) but is not an issue in (c), clearly shown by the difference of gradients.

The surface in (a) and (b) has a dappled texture which is not correctly modelled

by the planar assumption.
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and most significant, is saturated pixels during capture. Table 3.1 shows what

percentage of pixels are saturated in the live image, as a guide. It is clear

that the largest errors are in image (b). In this case, not only is the specular

component not reproduced accurately but the diffuse component has a larger

error than the other examples. The saturation during capture has skewed the

decomposition into diffuse and specular components. To avoid these errors,

the exposure of the camera must be chosen carefully to avoid saturated pixels.

However, in some cases we are limited by the dynamic range of the camera but

this can easily be overcome.

The second factor possibly causing the intensity of specularities to be un-

derestimated is using the median to calculate the diffuse component. This will

tend to give a diffuse estimate slightly brighter than the real value, dampening

the effect of the specular component. While the minimum may give a more

realistic estimate of the diffuse component, it is not robust. Most noticeably,

when using the minimum, slight errors in camera pose cause visible shrinking

of the borders of bright surface regions.

3.11 Environment Map Approximation

We observed that the calculated global lumisphere can be used as an estimate

of the environment map and used to predict the positions of light sources. Fig-

ure 3.13 compares the global lumispheres we capture with our method with en-

vironment maps obtained using the standard reflective spherical ‘probe’ method

(hence the reflection of the cameraman). The light-fields were captured from

different surfaces (both shiny books) and in different rooms. Both show good

estimates of the environment map, picking up the colours of the lights and

windows. It is possible to see some of the green of a tree outside the window.

What is most positive about these results is that despite the surfaces having

varying colours and texture, the overall colours of the specular component still

accurately represent the real values. Note: this will not necessarily be the case

for all materials and surfaces. The surfaces we have experimented with here

are dielectric, a special class of surface that exhibits this property. This help

to affirm that the assumptions we made to combine measurements across the

surface into a single global lumisphere hold well.

The accuracy at which we can recover the environment map is dependent
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Figure 3.13: Environment maps for two different rooms captured using a

probe (left) and using our method based on specular reflections from a shiny

book (right). The direction, intensity and colour of the light sources is captured

well. The maps estimated from the light-field appear slightly blurry as they have

been convolved with the BRDF of the surface.

on the specular reflection properties of the surface. The α parameter in Eq. 2.61

determines how spread out the specularity is, and this is a material property.

The spreading has a similar effect to applying Gaussian blur to the true envi-

ronment map. A material with a small value of α will lead to a large spread

and, hence, a largely blurred environment map approximation. We have also

assumed that the intensity of the reflected light relative to the incident light is

constant over all angles. The Fresnel equations tell us that this is not true, but

it is a valid approximation except at very shallow angles.

Nowrouzezahrai et al . [92] used an environment map to apply realistic

shadows to augmented reality objects. They applied a spherical harmonic ap-

proximation to the environment map to greatly reduce the resolution and enable
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effective separation of light sources to cast hard and soft shadows. We believe

that our specular lumisphere method captures an approximation of the environ-

ment map of sufficient quality which is suitable for such shadow effects, without

the need for additional light probes or other capture devices. In essence, we

use the existing surface in the scene as the light probe.

3.12 Augmented Reality on Specular Surfaces

One of the key components in producing convincing augmented reality is to

make virtual objects fit with the illumination, shadows and reflection of the

real objects and surfaces with which they interact. Most previous works have

done this by estimating environment illumination and then using this to apply

realistic lighting to virtual objects and cast virtual shadows onto real surfaces.

However, none that we know have addressed the problem of placing virtual

objects onto surfaces with a large specular reflectance component. The most

considerable issue with augmented reality on such surfaces is that virtual objects

must occlude specularities. The previous works make no attempt to do this yet

the appearance of specularities must be handled in order to get a realistic AR

view, as can be seen in Fig. 3.14.

Our captured surface light-field gives us the ability to remove the specu-

larities in such a situation. There are two ways of doing this. The first is to

extract the specular component from the light-field and subtract this from the

incoming video feed. However, we found that our specular model is not yet ac-

curate enough to produce good results with this approach. The second method

involves replacing the occluded region with the diffuse term, as calculated from

the surface light-field. This gives very convincing results. Figures 3.14 and 3.15

shows how a virtual object occludes the specularities. In the occluded region we

have combined the surface’s diffuse component and the reflection of the virtual

object. The occlusion area is calculated by bouncing a ray off the surface and

performing a simple ray-object intersect. This is implemented on the GPU in

5-6ms.
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Figure 3.14: Augmented scenes with (right) and without (left) illumination,

shadows, occlusion and reflection. The views with the effects are much more

convincing. While augmented reality is generally performed on diffuse surfaces,

our method brings realistic AR to specular surfaces. The most obviously impor-

tant aspect for realism is the occlusion of the specularities by virtual objects.
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Figure 3.15: Sequence shots from two augmented video sequences. Notice

how the object occludes the reflection of the light. The reflection is combined

with the diffuse texture so that it joins seamlessly. Please see our video to view

these clips, all rendered in real-time.

3.12.1 Illumination

Illuminating the virtual object is a two-step process. So far we consider only

diffuse virtual objects. First we need to calculate the illumination of the object

with respect to the environment map. Then we need to calculate the illumina-

tion due to the surface. Since the surface is specular, the illumination effects

on the object will be direction dependent.

We are yet to implement this full reflectance model (as it was not considered

a part of our core research) but we show that even a simple model of the

illumination is good enough to provide convincing results. The lighting model

we use is as follows: we create a number of directional light sources based on the

most intense directions observed in the global specular lumipshere/environment

map. Currently, the selection of the light sources from the environment map is

manual, however, this could be automated using connected component labelling

or other blob detection methods. Once the light source directions are found we

use basic diffuse illumination based on surface normals to render the virtual

objects. This model is used in the examples and gives satisfactory results.

3.12.2 Shadows

Virtual shadows are added via a shadow map, this is essentially a mostly trans-

parent image layered on top of the planar surface. The areas in shadow are

made to be less transparent to darken the resulting image. We describe a few
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different methods for computing this shadow map.

We start with a brute-force method. For each point on the surface, we

estimate what proportion of radiance from the captured environment map is

occluded by the virtual object. The intensity of the shadow is then calculated to

be proportional to this value. We compute this by iterating over every viewing

direction for every point on the surface. This brute-force approach implemented

on the GPU takes 0.3 seconds and so is not suited to dynamic objects.

The preferred method that we use is based on the basic illumination from

the previous section. We use a number of dominant light sources extracted

from the environment map and generate shadows based on their position. By

sampling each light multiple times while slightly perturbing its position we are

able to create softer shadows.

Nowrouzezahrai et al . [92] provide an alternative method for environment-

map based shadows. They pick a dominant light source to give hard shadows

and use a spherical harmonic representation of the environment map to calcu-

late soft shadows. This method could easily be applied to our system as well.

However, in our experiments there has often been more than one dominant light

source.

Note Saturated pixels can cause visual artefacts when applying a shadow

map to a video feed - as seen in the middle images of Fig. 3.15. Given that

there is no true measure of irradiance at these pixels there is no correct way to

apply shadows.

3.12.3 Results

Figures 3.14 and 3.15 show the results of shadows, specular occlusion and basic

illumination for a variety of surfaces and environments. These effects clearly

make the virtual object look more realistically placed in the scene. For the glass-

fronted picture on the far right of Fig. 3.14, the specular reflection is almost

mirror-like and this makes the reflection of the object look very realistic. On

surfaces with less mirror-like reflections (like the books) the direct reflection

looks slightly out of place because it should be diffused by the surface. The

information on how this reflection should diffuse is contained in the surface
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light-field so we hope to improve this in the future.

Please see Appendix A for a video demonstrating the capture of a surface

light-field using this our method and some examples of augmented reality on

specular surfaces.

3.13 Bump-map estimation

Figure 3.12 showed that the planar assumption makes renderings overly smooth

for a class of surfaces which have locally non-planar normals. To this end we

attempt to improve the quality of the renderings by generating a bump-map

for the surface: each point on the surface is assigned an independent normal n̂

which is used in rendering the specular component and for computing specular

occlusion for AR.

To recover the normals in the bump-map we align each lumisphere L on

the surface to the global specular lumisphere Lg by minimising the following

error function:

E(n̂) =
∑
x∈Ω

∥∥∥L(x)− Lg
(
w(x; n̂)

)∥∥∥2

, (3.6)

where Ω is the set of valid measurements in the lumisphere L and w(x; n̂) is

the warp function (defined below) transforming coordinates on one lumisphere

into another lumisphere aligned with normal n̂. Note that as seen in Fig. 3.8,

the data in an individual lumisphere is sparse, hence it is more effective to

project points from the individual lumispheres into the densely filled global

lumisphere. For ease of implementation we use a 2D representation of the

lumispheres projected onto the plane, as described in Section 2.6.3. In this

situation the lumisphere occupies a circular region within the center of a square

image of width w. This is now a Lucas-Kanade type image alignment problem

as outlined in Section 2.9.

To derive the warp function w(x; n̂) let us define the lumisphere projection

function p(v) which maps 3D points v on the hemisphere (‖v‖ = 1,v2 > 0) to

a plane:

p(v) =
2 cos−1(v2)

π
√

v2
0 + v2

1

[
v0

v1

]
. (3.7)

In this case, all points on a lumisphere project within the unit circle centred at

the origin. The points then undergo a linear transformation to map them to
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image coordinates:

ω(v) = ap(v) + b, (3.8)

where a = w
2

and b = [a, a]T . We also need the inverse of this projection. To

start, we calculate the inverse of p(v):

p−1(x) =

[
sin
(
π
2
‖x‖

)
x
‖x‖

cos
(
π
2
‖x‖

) ]
. (3.9)

it is easy to verify that p−1
(
p(v)

)
= v for ‖v‖ = 1. Now the inverse of ω(v)

follows:

ω−1(x) = p−1

(
x− b
a

)
. (3.10)

We now need to write down the transformation between the two lumi-

spheres. Let us recall how the light-fields are built: a lumisphere measures the

light leaving the surface. For a specular lumisphere this is produced by taking

the incoming light and reflecting it through the surface normal. Hence, our

captured lumispheres are dependent on the surface normal. The incoming light

is not. Therefore, by reflecting a lumisphere back through the surface normal

we can get the incoming light on the surface. During capture we assumed that

the surface normal was êz. Hence, for a direction v on the lumisphere (outgoing

light), then the direction of the incoming light is given by:

R(êz)v =
(
I− 2êzê

T
z

)
v, (3.11)

where we have defined R(êz) to be the transformation matrix created by a

reflection in the plane with normal êz. We can then recover the outgoing light

direction for the new surface normal n̂ by doing another reflection. The overall

transformation is denoted by Rn̂:

Rn̂ = R(n̂)R(êz)

=
(
I− 2n̂n̂T

) (
I− 2êzê

T
z

)
.

(3.12)

It is simple to verify that the composition of these two reflections creates a

rotation matrix, hence the notation. We can now write down the full warp

function:

w(x; n̂) = ω
(
Rn̂ω

−1(x)
)
. (3.13)

In words, we take a point on an image, project it onto the lumisphere, transform

it to another lumisphere aligned with normal n̂ and then project it back onto

an image.
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To minimize the energy in Eq. 3.6 we re-write the normal vector as a

rotation applied to the z-axis: n̂ = Rêz. Our aim is now to find R which

minimises the energy. We follow the approach described in Section 2.9 and

rewrite the energy as a function of generators of the Lie group SO(3). Let us

define the following function:

f(u; x) = L(x)− Lg
(
ω
(
R(RR̂(u)êz)R(êz)ω

−1(x)
))
, (3.14)

such that the energy to be minimized can be written as

E(u) =
1

2

∑
x∈Ω

(
f(u; x)

)2
. (3.15)

We can compute derivatives of the energy using the chain rule:

∂f(u; x)

∂u

∣∣∣∣∣
u=0

= −∂Lg(x)

∂x

∣∣∣∣∣
x=w(x;n̂)

∂ω(β)

∂β

∣∣∣∣∣
β=Rn̂ω−1(x)

∂R(α)

∂α

∣∣∣∣∣
α=Rêz

R
∂R̂(u)

∂u

∣∣∣∣∣
u=0

êzR(êz)ω
−1(x) . (3.16)

In our case we are representing Lg as an image, so ∂Lg
∂x

is just an image derivative.
∂R̂
∂u

provides the generators of the Lie group SO(3) (Appendix B). Note that

when computing derivatives we end up with the product G2êz, where G2 is the

third generator of SO(3). It is easy to verify that this product is zero and hence

all derivatives w.r.t the third generator are always zero. Hence, we only need to

consider the changes with respect to the first two generators of the Lie group.

This reduction of one dimension is wanted (and needed) because we are solving

for a normal which only has two degrees of freedom. It arises because the axis

of rotation must always be perpendicular to êz.

We use Lucas-Kanade image alignment, as detailed in Section 2.9. We

compute the products JTJ and JTf(0) using

JTJ =
∑
x∈Ω

∇uf(0; x)T∇uf(0; x), (3.17)

JTf(0) =
∑
x∈Ω

∇uf(0; x)Tf(0; x), (3.18)

where:

∇uf(0; x) =
∂f(u; x)

∂u

∣∣∣∣∣
u=0

. (3.19)
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(a) 0 iterations (b) 2 iterations (c) 4 iterations (d) 6 iterations (e) 15 iterations

Figure 3.16: A mock example of aligning lumispheres. The top row shows

the reference lumisphere. The second row shows the lumisphere which is being

aligned, transformed by the current normal estimate. The bottom row shows the

error between the two. We see that the method converges quickly and results in

a normal rotated by 0.327 Radians (18.7 degrees).

We are only using the first two generators of SO(3), so u ∈ R2. We work on

colour images so f(u; x) ∈ R3, and ∇uf(0; x) ∈ R3×2.

Once the sums in Eqs. 3.17 and 3.18 have been computed we use the normal

equation (Eq. 2.71) to find the solution u∗, perform the update R ← RR̂(u∗)

and continue to iterate. Once we have found the final solution R∗ we apply the

rotation to êz to recover the optimal normal n̂∗ = R∗êz.

Note One may look at Eq. 3.13 and think that we could solve directly for Rn̂.

However, in this formulation we still have 3 degrees of freedom, the lumispheres

are allowed to rotate about the z-axis, which is inconsistent with the solution

we require.
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3.13.1 Results

Figure 3.16 shows a synthetic example of aligning 2 lumispheres by minimising

the energy in Eq. 3.6. The input data is generated by two Gaussian peaks

in intensity placed in different locations on the reference lumisphere and the

lumisphere to be aligned. The algorithm is able to quickly converge to the

correct solution; we can clearly see that the error has been minimized by looking

at the difference images in the bottom row of Fig. 3.16. Note that another

possible solution would be to rotate 180 degrees about the center, however, our

optimisation does not allow this type of transformation as it does not correspond

to a rotation between normal vectors.

Constraining the optimisation As stated earlier, the captured lumispheres

are sparse. Additionally, for a large class of surfaces the appearance of spec-

ularities is sparse over the range of possible viewing directions so there is a

good chance that a lumisphere could contain no specular information. If this

is the case there is no way to constrain the optimisation; we are trying to align

a textureless region. In reality, slight variations of intensity in the observed

diffuse-only directions would lead to the optimisation moving towards an incor-

rect result. Given the two degrees of freedom in the normal estimation, we need

to make sure that each lumisphere observes at least two distinct specularities

in order to get a correct result. This is achievable but requires more care and

time during light-field acquisition to ensure this is the case. It would be simple

to add user-feedback to help achieve this.

Once a surface light-field has been captured, we apply the above optimi-

sation to every lumisphere on the grid, initialised with n̂ = êz. Figures 3.17

and 3.18 shows the effect of the recovered bump-map on the synthetic ren-

dering of a specular surface. We also compare to a bump-map with random

normals and to the result without a bump-map. While the result using our

estimated bump-map does not exactly match the real view, it does provide a

much more convincing rendering than the other two. An alternative method

to achieve qualitatively similar results is the work of Wang et al . [126] who

estimate the parameters of a stochastic model representing the structure of the

surfaces bump-map.

Figure 3.19 shows a coloured representation of the estimated surface nor-
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(a) Real view (b) Diffuse view

(c) n̂ = ê3 (d) Random n̂ (e) Estimated n̂

Figure 3.17: Synthetic renderings of the surface (b-e) versus the real view

(a). The diffuse view (b) is independent of the normals in the bump-map. (c-e)

show specular lighting effects with different surface normals.

mals for the same book as in Figs. 3.17 and 3.18. We observe that, while our

bump-map estimation captures the local texture of the surface well, it also

seems to estimate larger scale deformations which don’t reflect the true surface

structure. We believe this is due to a lack of data to constrain the optimisation

in those areas.

3.14 Conclusion

We have demonstrated a new method for recovering detailed lighting and sur-

face information with a standard single hand-held camera AR configuration.

In standard monocular tracking and mapping systems the effects caused by

complicated lighting and specular surfaces are ignored or even cause problems.

These can, in fact, be used for estimation of properties crucial for realistic AR.

Specifically, in this chapter we have demonstrated easy and rapid light-field

capture from planar specular surfaces, and the straightforward use of this for

reflectance and environment map estimation without the need for any additional

probes or hardware. To our knowledge this is the first system to demonstrate

using a planar surface as a light probe, rather than a more traditional spherical
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Figure 3.18: The estimated bump-map of the surface is not absolutely accu-

rate to the original rendering. However, it does provide a much more convincing

rendering than the smooth result

probe. We have used the captured data to give convincing real-time demonstra-

tions of the placement of augmentations on specular surfaces with realistically

synthesized reflections, shadows, illumination and specularity occlusion.

3.14.1 Further Work

Currently the camera browsing the scene is restricted to have a constant shutter

time. For this proof-of-concept application this is adequate, but for real scenes

a wider dynamic range is needed. This constraint can easily be relaxed if we

know the shutter time and camera response function so that we can convert pixel

values to radiance values (as detailed in Section 2.7). Preliminary experiments

show that feature-based tracking such as PTAM continues to work robustly

through varying exposures if we renormalise the images. Clearly there is a

limit on this range; too short an exposure and the renormalized image will just

be noise, too long an exposure and too much of the image will be saturated and

motion blur becomes more likely.

A clear next step with this work is to seek to combine light-field capture

with live dense reconstruction, as discussed in Chapter 6. There are many

surfaces in the real world (such as the books we have used in our experiments)

which have significant texture but also partial specular reflection characteristics.

The shape of such surfaces can be reconstructed in 3D based on their diffuse

texture, and then a surface light-field can be defined relative to this shape for

the capture of specular lighting effects. The captured light-field could then
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Figure 3.19: Normals estimated by our bump-map optimisation. The hue

represents the normal direction and saturation starts at 0 when n = (0, 0, 1)

and increases proportionally to the angle of the normal from the z-axis. We see

in the high frequencies that the mottled texture of the book has been captured.

There are also significant low frequency components but it is not clear if these

are part of the true surface or errors in the optimisation.

be used to refine the geometry in way similar to Section 3.13. A longer term

challenge is to deal with objects whose surfaces are more purely specular, and

do not offer enough texture for standard stereo matching and reconstruction.

Coping with these will involve substantial future work on the joint estimation

of surface shape and reflectance properties.

The method should be easily extendible to surface light-field capture with a

plenoptic camera (Section 2.6.2). The amount of data captured on each frame

with a light-field camera is far greater than that of a normal camera. This

means we can fill the surface light-field structure quicker and more densely.

Additionally, it is possible to generate depth-maps from light-field cameras [56,

95]. This could be a step towards simultaneous dense reconstruction and surface

light-field capture.

Finally, if we capture an environment map and a surface light-field, we

know both the incoming and outgoing light at the surface. This should lead to

good BRDF estimation. This could then be used for material based segmen-

tation to aid object recognition. The estimation of a bump-map could also be

useful in material detection by recovering characteristic bump-map properties

of each material.
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4

Sculptural Stylization

(a) Input mesh (b) Input

segmented

(c) Abstracted

mesh

(d) Stylized

abstracted mesh

(e) Stylized output

mesh

Figure 4.1: An example of sculptural stylization applied to a bust. We trans-

form a scanned input mesh into a stylized output emphasizing anatomy and

characteristic features. The input is segmented into sculptor’s planes via align-

ment with a template model. The angular definition of the segmented mesh

is enhanced in a highly controllable optimization which generates smooth, full

resolution output interactively.

This work was started as part of an internship with Dan B Goldman and

Linjie Luo of Adobe Research8 and continued as a collaboration with Imperial

College London. A version of this work is published on arXiv [63].

4.1 Introduction

With the recent advances in 3D scanning using commodity hardware, the ability

for consumers to make their own 3D scans of objects and people is closer than

ever. Combine this with the recent availability of desktop 3D printers (Fig. 4.2)

and 3D printing services [62, 115, 116] and we open up a whole new creative

culture where consumers can scan, edit and then print their own 3D models of

8http://www.adobe.com/technology.html
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Figure 4.2: A selection of desktop 3D printers. The Makerbot Repli-

cator 2 (left, source: www .flickr .com )) and Ultimaker 2 (middle, source:

www .igo3d .com ) are ready-to-go complete solutions. The RepRap TriColour

Mendel from RepRapPro (right, source: www .reprappro .com ) is purchased as

a kit and is capable of printing 3 colours at a time. The RepRap [105] project

works towards designing 3D printers that are self-replicating.

real world objects or people. Just as photography democratized 2D imagery by

unchaining it from the painter’s hand, 3D scanning and printing may democ-

ratize 3D representations by decoupling them from the sculptor’s hand. Such a

system could even be envisaged as a “3D fax” that can scan objects of various

sizes, transmit them electronically, and reprint facsimiles of those objects at a

distant location.

Currently, one of the most common consumer use cases of this 3D scanning

and printing pipeline is the creation of figurines of family and friends. There are

do-it-yourself solutions mostly using Kinect style RGB-D sensors. FabliTec [42]

and ReconstructMe [104] both have the ability to create “3D selfies”; the user

mounts the RGB-D sensor on a tripod or desk at eye level and then rotates on

a swivel chair in front of the camera. The software then outputs a coloured,

water-tight model ready to be sent to an online 3D printing service or to be

printed at home on a desktop 3D printer. ReconstructMe also features a hand-

held scanning mode to reconstruct arbitrary 3D models. Shapify [117] also

provide software for home scanning with a Kinect sensor but additionally have

their own scanning booths distributed around various countries. The booths

use high-resolution scanning hardware for faster and better quality scans when

compared to Kinect style acquisition. Ego3D [38] is an online service which

requires just 3 photos of a person to create a high quality bust. However, they

make use of a digital sculptor to produce the final model.
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(a) textured (b) untextured

Figure 4.3: (a) Commercial 3D printing services offer the ability to produce

a textured model [42]. The texture is able to hide inaccuracies and low quality

geometry. (b) The majority of consumer 3D printers are only able to print in

a single colour, much like traditional sculpture.

Most scanning services and online printing services will output a textured

3D model. An example from Fablitec is seen in (Fig. 4.3a). The geometry of the

scanned model can be of low quality but the texture can still create a visually

pleasing result. In contrast, most consumer 3D printers only print in a single

colour (Fig. 4.3b). In this case there is no texture to hide low quality geometry

and features which may have been visible in the texture could disappear. This

provides the motivation for this work: how can we enhance 3D scans of human

busts to make them more visually appealing when 3D printed in a single colour.

We immediately see a close connection with traditional sculpture where a model

is made of a single material of a single colour.

Thus far, research on 3D scanning and printing has rightly focused on geo-

metric accuracy. However, 3D printed human figures often appear lifeless, par-

ticularly when generated with commodity scanning and printing. Casting aside

the physical limitations, which are already rapidly being eliminated, there is a

more artistic method to overcoming this problem: We propose a new, creative

approach expanding on these technologies called sculptural stylization, which

we define to be when a 3D model deviates from geometric accuracy to enhance

appearance in a manner analogous in many ways to that of non-photorealistic

rendering for 2D imagery. Sculptural stylization could be either for purely aes-

thetic purposes; or to improve the recognizability of the subject by emphasizing

characteristic features [130]; or to fit the limitations or requirements of a given
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sculpting medium; or simply to imitate historically popular styles of sculpture.

Well known sculptors consistently exaggerate away from geometric accuracy in

order to achieve some combination of these aims (a preliminary analysis of how

sculpted busts deviate from real human geometry is provided in Section 4.4).

As described in the rest of this section, one important class of styliza-

tions first decomposes a model into masses, planes or other components. These

decompositions could be purely geometric, but are often based on higher-level

object semantics or a knowledge of underlying anatomy. We use the term sculp-

tural abstractions to describe these semantically-based decompositions, using

the word abstraction in the sense of isolating essential qualities.

We propose an interactive approach to stylization of human faces, founded

on a specific sculptural abstraction used by artists called the planes of the head

— regions of the surface of the face which, although not literally planar, may be

grouped together by geometric consistency or separated by underlying anatomy.

We generalize this concept to scans of other objects beyond simply faces, and

refer to the general concept as sculptor’s planes. Our method’s stylizations

emphasize the contrast between these forms by accentuating the angles between

them and making the regions within them more planar. We imagine an expert

sculptor who first studies his subject and identifies these sculptor’s planes,

then produces a rough, low-detail model in which the surface angles between

planes are exaggerated and deviations within planes are smoothed, and finally

introduces fine details of the surface.

Our system, using a 3D scan of the subject as its input, supports an ama-

teur digital sculptor in several stages: First, the sculptor’s planes are automat-

ically identified — either by aligning a scan to a generic, pre-segmented head

model, or by automatic geometry analysis; and the scan is then simplified to

an abstracted mesh using the given segmentation. Second, we construct and

optimize an energy function to balance the exaggeration of angles of this ab-

stracted mesh with preservation of the original form and some key individual

facial characteristics. The sculptor can adjust both the global scale and local

scale of exaggeration as well as fidelity to the facial characteristics. Finally, we

map the resulting deformation back to the original full resolution scan, and the

sculptor can locally adjust the amount of detail to include from the original

scan, as well as the smoothness between sculptors planes. The last two stages

are performed continuously at interactive frame rates, providing detailed user
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control of both global and local parameters.

4.2 Related Work

The Non-Photorealistic Rendering (NPR) literature features a long history of

transforming photographs and 3D models into artistic depictions. In particular,

Gao et al . [47] used an abstracted model similar to the planes of the head for

2D stylization and exaggeration. Winnemoller et al . [130] demonstrated that

certain types of abstraction improve human memory tasks, including facial

recognition and scene recall. We hypothesize that sculptural abstraction can

play a similar role for 3D shape. Furthermore, many papers in NPR explore the

depiction of 3D scenes to improve shape understanding. Hertzmann and Zorin

developed a hatching technique to emphasize aspects of curved surfaces that

are otherwise hard to perceive [59]. Cole et al . [21] analyzed where people draw

lines when representing 3D surfaces, which might be similar to the features that

sculptors exaggerate.

We are unaware of previous work that defines the broader notion of sculp-

tural abstraction in 3D geometry. However, the idea of 3D collage [46] seems

to fall within this scope, as it attempts to represent the gestalt of a given 3D

shape by aggregating several smaller 3D primitives. Bhat et al . [10] also ap-

plied a method similar to image analogies [58] in the context of 3D geometry.

This method applied a learned geometric texture to an entire model rather

than local deformations based on existing geometry, and thus could be used as

a complement to our sculptural abstraction in order to reproduce the surface

texture imposed by various real-world sculpting tools and mediums.

Other existing methods for automatic non-metric mesh enhancement take

approaches which have predictable and global effects. Specific to faces, Blanz

and Vetter [11] fitted a parametric 3D model built from a large family of faces

to a new scan, and could create caricatures by shifting the parameters away

from the mean face. This results in a global linear deformation, in contrast to

our non-linear template-driven deformation. PriMo [13] is another deformation

strategy that has been used to demonstrate caricature, by modelling polygons

as prisms of finite thickness and constructing an energy function to increase an-

gles between them. This resembles our exaggeration energy term, but although

our system can be used for stylizations such as caricature — e.g. exaggeration
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of key individual features — we characterize our goal of abstraction as sharp-

ening visual contrast and form without modifying key individual features. This

distinction is explored in detail in Section 4.5.3, in which we propose Lanteri

constraints for maintaining fidelity to these features.

Various signal processing techniques exist for meshes which can exaggerate

features. The simplest is the 3D equivalent of the unsharp mask, where a 3D

shape is enhanced by smoothing its normals and then exaggerating their angles

in the opposite direction [133]. Eigensatz et al . [39] operate in the curvature

domain, but do not process meshes in real time. More recently, anisotropic

smoothing and exaggeration have been implemented in graphics hardware [19].

Although these methods can produce some results similar to ours, they don’t

offer simple local control.

Some previous works have explored automated abstraction of shapes [81]

and shape collections [134] into semantic groupings, though they do not demon-

strate stylizations based on these groupings. Similarly, Lee et al . [73] decom-

posed geometry into a base mesh plus displacements not unlike our two-scale

decomposition, but their model is not suitable for deformation because it asso-

ciates each high-resolution vertex with only one base polygon.

4.3 Background

In order to learn what techniques sculptors use in their abstraction, we inter-

viewed two accomplished professionals: Gio Nakpil, a sculptor who works both

in physical and digital sculpture, including work for Industrial Light and Magic

and Valve; and Mike Magrath, an instructor at Seattle’s Gage Academy of Art.

Although many techniques are particular to specific styles, we narrowed our

focus to abstraction techniques for human busts that span multiple styles.

Two common points of reference between the sculptors emerged: First,

both sculptors mentally and visually decompose a subject into component

masses or forms at a variety of scales — starting from larger groupings such

as the forehead, and working down to smaller details like the sides of the nose

and the folds of the eyelid. And second, in the case of human faces this de-

composition is often described in terms of planes of the head, as defined in

Section 4.1.
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Figure 4.4: Left: A scan acquired using KinectFusion. Right: The same scan

after sculpting by Gio Nakpil. Note exaggerated features such as cheekbones,

temples, jawline, chin, and sides of the nose.

Nakpil emphasized the role of highlight and shadow in sculpting technique;

in this context referring to the broad artistic definition of regions brighter or

darker than the mean, not only specular highlights and cast shadows. Napkil

noted that sculptors view their work under a range of lighting conditions and

from many angles to understand and control the shapes and relationships of

those highlights and shadows. Since sculptures are typically lit from above,

sculptors may tilt surfaces toward the horizontal, exaggerating the contrast

between highlights and shadows. Figure 4.4 shows a scan we provided to Nakpil

alongside his sculptural interpretation using ZBrush.

Magrath made special note of the exaggeration of “soft” and “hard” forms.

This nomenclature refers to the distinction between angular regions with rapidly

alternating high and low curvature (e.g. the bridge of a nose) versus rounded,

uniform medium-curvature regions (e.g. the forehead). He characterized his

abstraction technique as “making the hard forms harder, and the soft forms

softer.”

The notion of planes of the head permeates literature about sculpting, and

dates back at least to the turn of the 19th century, when the sculptor Edouard

Lanteri (whom Rodin described as “Dear Master” [71]) wrote a seminal text-

book. Although much of his work describes technical methods for ensuring
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Figure 4.5: Left: Examples of planar decompositions in painting and sculp-

ture, c©John Asaro 1976, excerpted with permission. Right: A variation of the

Planes of the Head entitled Memorized, intended for student memorization.

metric accuracy, he also suggests a methodical approach to exaggerating these

planes and their junctions using side lighting to reveal them more clearly to the

sculptor:

When these divisions of form have been obtained in their proper

drawing by studying each separately, the work may appear a little

hard. Then it becomes necessary to work by colour — that is to

say, by the comparative values of the half-tints, in simplifying or

accentuating the surfaces or planes which divide these forms. [72]

The concept of planes of the head was further formalized in the late 20th

century, most notably by John Asaro, an instructor at Art Center College in

Pasadena, California [4]. Asaro hypothesized that decompositions of facial form

into masses and planes have been used by painters and sculptors since antiq-

uity, and proposed planar decompositions for works by Cassatt, Rodin, Degas,

Rubens, Vermeer, Michelangelo and many others. As an aid to students of

sculpting and painting, Asaro developed a set of canonical busts which exag-

gerate the planes to their logical extreme, reducing a human head to a nearly

polygonal object (see Fig. 4.5).

While sculptors use these planes to exaggerate certain forms, Lanteri’s
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writing also makes it clear that certain aspects of human anatomy and individ-

ual facial characteristics are perceptually relevant, and must not be perturbed

by these stylizations. He writes voluminously about using calipers to ensure

that certain distances, ratios, and angles are preserved in a sculpture of a given

model. Here is one such passage:

From the tip of the nose measure the distance to the most project-

ing part of the chin, i.e. the subcutaneous mental eminence... To

make sure of the correctness of the previous measure, you now take

the distance from the ear to the mental eminence (see Fig. 40) in

your calipers, and if this measure, taken from both ears of course,

coincides with the previously fixed point on the chin, your measure

runs a fair chance of being correct. If it is not, you have to... retake

both measures, until they agree. [72]

Additional measurements proposed by Lanteri appear in Appendix F. We make

use of these in our algorithm to preserve the facial characteristics of the subjects

during stylization.

We hypothesize that the planes of the head perform a similar function to

lines in 2D illustration: Artists abstract detail that isn’t important and empha-

size features that do matter for recognition and understandability. Although

we may not yet know exactly what features are perceived as important for em-

phasis in 3D, we choose to follow methods employed by professional sculptors

because it is reasonable to assume they relate to perceptual importance.

Thus the challenge of sculptural abstraction is to enhance or exaggerate

visual contrast between sculptor’s planes, while simultaneously preserving cer-

tain critical global geometric relationships. Although it may seem these goals

are fundamentally incompatible, in the sections that follow we demonstrate a

system that accomplishes this automatically, interactively and under flexible

user control.

4.4 Analysis of scans of humans vs. sculptures

We observed informally that, in spite of some sculptors’ focus on geometric

fidelity, some features in realistic classical and modern sculptures appear exag-

gerated. This is hard to detect when comparing people directly to sculptures,
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because their reflectance qualities differ so drastically. However, these differ-

ences become more apparent when people and sculptures are scanned. Perhaps

most critically for our application, 3D prints of scanned faces often appear flat

and lifeless.

An ideal analysis of sculptural stylization would require extensive data col-

lection of existing sculptures and comparisons to human scans of the individual

models being sculpted. In the absence of such a dataset, we performed an infor-

mal comparison of the depth of the eye sockets between six scans of humans –

four from KinectFusion [87] and two using the method of Beeler et al . [7] – and

five scans of sculptures – three of Rodin’s “Burghers of Calais”9, and two busts

from the MIT CSAIL 3D Model Database10. First, a number of feature points

on the models were identified and manually labeled. Then, we measured the

depth of the eye sockets using four separate scale-invariant measures: Measure

A takes the distance from the midpoint of the inner corners of the eye to the

plane formed by the midpoint of each eyebrow and the tip of the chin, normal-

ized using the distance between the points at the base of the ears. Measure B

is the same as measure A, but using the outer corners of the eyes. Measure

C takes the distance from the midpoint of the inner corners of the eye to the

plane formed by the saddle point at the bridge of the nose and the corners

of the mouth, also normalized using the distance between the ears. Measure

D is the same as C, but using the outer corners of the eyes. Each measure

was aggregated across human and sculpted scans using both the mean and the

median. A summary of the results can be found in Table 4.1.

A B C D

Mean

Human 0.069 0.134 0.094 0.157

Sculpt 0.112 0.177 0.131 0.193

% Increase 63.1 32.5 39.3 23.1

Median

Human 0.065 0.127 0.091 0.156

Sculpt 0.091 0.169 0.127 0.183

% Increase 40.2 33.5 40.4 17.4

Table 4.1: Measures of the depth of the eye sockets on scans of humans vs.

sculptures.

9http://www.stanford.edu/~qianyizh/projects/scenedata.html
10http://people.csail.mit.edu/tmertens/textransfer/data/
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For each aggregate measure, the sculpted scans had significantly deeper

eye sockets than the human scans. Note that all fiducial points were identified

by hand, the quality and resolution of the scans varies significantly, and the

measures we propose are somewhat ad hoc. Furthermore, the size of the sample

is much too small to draw concrete conclusions. Nonetheless we see a strong

suggestion that sculptors such as Rodin routinely exaggerated features of facial

anatomy such as the depth of eye sockets.

4.5 Interactive sculptural stylization

Our goal is to allow a user to interactively stylize an input mesh guided by

sculptural abstraction principles. While the principles we use are applicable to

any type of input, we focus mainly on faces because these are more relevant

in a sculptural context. Our system first computes an abstracted mesh from

the input model. The abstracted mesh serves as the sculptural abstraction

framework for the subsequent stylization steps, and is divided into meaningful

regions corresponding to the planes from the template model.

The subsequent sculptural stylization optimization and stylization transfer

phases of our system run at real-time rates and are designed for interactive use

by a user in control of global and/or local parameter settings. We stylize

the abstracted mesh by minimizing an energy function with several terms of

various purposes: to exaggerate angles between different regions; to enforce

flatness within each segment; to regularize the stylization towards the original

shape; and to enforce Lanteri constraints that preserve geometric measurements

characteristic of a person’s identity. The transfer of these stylizations back to

the input mesh produces real-time full resolution results for inspection and

further adjustment. The amount of smoothing can be controlled here both

globally and locally; and the interactive display of the full resolution deformed

mesh is crucial in permitting fine user control over subtle deformations.

4.5.1 Abstracted Mesh Generation

We first generate the abstracted mesh MC that captures locally meaningful

sculptural abstractions from the input mesh M. The process of constructing

the abstracted mesh consists of segmenting the input mesh into sculptor’s planes
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Mesh source: [28] Mesh source: [29] KinectFusion scan

Figure 4.6: Some examples of segmentation using the method from Varia-

tional Shape Approximation [20]. For the human head, the regions are not

always aligned with the anatomy which can cause unappealing artefacts during

our processing.

and then creating a coarse mesh approximation based on this segmentation.

For general 3D models, we find that Variational Shape Approximation

(VSA) [20] often derives plausible geometric abstractions from the input mesh

by grouping faces of similar normals into contiguous regions, as seen in Fig. 4.6.

However for human faces, due to our heightened perceptions, VSA can cause

noticeable artefacts because it does not preserve semantically meaningful seg-

mentations and salient features such as eyes and lips.

Thus, we employ a semantically segmented human head template to gen-

erate the abstracted meshes from human face models. More specifically, we

use the Planes of the Head model (Fig. 4.5) because it takes into account both

the principles of sculptural abstraction and facial semantics. To acquire the

3D template, we scanned a Planes of the Head model using KinectFusion [87]

and manually segmented the model into sculptor’s planes (shown with coloured

segments in Fig. 4.7). For each novel input mesh M we manually pre-align it

to the template and then use the non-rigid alignment method of Li et al . [75] to

refine it. Now, the vertices of the input and the template match very closely so

we transfer the segmentation by taking the nearest vertices as correspondences

while ensuring the regions are distinct and connected (Fig. 4.8b).

The transferred segmentation divides M into K regions {Rr}Kr=1 (when
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Figure 4.7: Planes of the Head: Memorized scan and segmentation.

using VSA for segmentation the number of regions can vary, when using the

Planes of the Head model then K = 32). We generate the abstracted mesh

MC by approximating each sculptor’s plane with a small number of triangles.

We follow the approach of Cohen-Steiner et al . [20]: anchor vertices are auto-

matically placed along the borders between sculptor’s planes and a constrained

Delaunay triangulation is used to fill the regions. Note that our algorithm only

uses the anchor vertices on the boundaries between regions; the triangulated

mesh is used for visualization purposes.

4.5.2 Abstracted Mesh Stylization

After we compute the abstracted meshMC for the input meshM, we build up

a stylization framework on the abstracted mesh in order to eventually transfer

the stylization to the input mesh (Section 4.5.5). This yields the stylized ab-

stracted mesh M′
C . The stylization framework includes both exaggeration of

the angles between the regions and planarization of the features within each

region, our interpretation of techniques described by professional sculptors in

Section 4.3. Here we introduce a few definitions to facilitate our formulation of

the stylization framework.

We first define the sculptor’s plane πr approximating each region Rr by the
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(a) (b) (c)

Figure 4.8: The segmentation of the template model is transferred to the input

mesh using nonrigid alignment.

normal n̂r and centroid cr. cr is computed as the mean position of all vertices

in Rr and n̂r as the average of the triangle normals weighted by the triangle

areas within Rr:

cr =
1

|v ∈ Rr|
∑
v∈Rr

v , (4.1)

n̂r =

∑
t∈Rr Atn̂t∣∣∑
t∈Rr Atn̂t

∣∣ , (4.2)

where t ∈ Rr is the set of triangles in region Rr and At is the area of triangle

t. Since Atn̂t = 1
2
(vt1 × vt2 + vt2 × vt3 + vt3 × vt1), where vt1,vt2,vt3 are

the vertices of triangle t, all the terms with respect to the internal edges in

Eq. 4.2 cancel out due to the anti-symmetry of the cross product. Thus, we

only need to include the terms with respect to each directed boundary edge

e = (ve1,ve2) ∈ ∂Rr. We therefore use the following formula to compute the

normal and area of a region:

A(Rr)n̂r =
1

2

∑
e∈∂Rr

ve1 × ve2 , (4.3)

where we traverse the boundary in an anti-clockwise direction. To facilitate the

stylization transfer in Section 4.5.5, we define an affine transformation Tr for

each region Rr. This will be a composition of two affine transformations:

Tr = TrrT
p
r , (4.4)

where Trr defines the rigid transformation implied by the change of n̂r to n̂′r and
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cr to c′r in the stylization optimization in this section:

Trr = [R(n̂r, n̂
′
r) | c′r − R(n̂r, n̂

′
r)cr] . (4.5)

R(n̂r, n̂
′
r) is the rotation matrix transforming n̂r to n̂′r (see Eq. 2.15). This

transformation represents the exaggeration of angles between sculptor’s planes.

The transformation Tpr scales the affine space in the n̂r direction relative

to cr and represents the planarization of features with a region:

Tpr(µ) =
[
I3 − µn̂rn̂

>
r |µ(n̂r · cr)n̂r

]
, (4.6)

where µ ∈ [0, 1] is a user-defined variable which determines the amount of

planarization and I3 is the 3x3 identity matrix. Under this transformation, all

points in space are moved closer to the plane defined by n̂r and cr along the

normal direction. If a point p is at a distance d from the plane then Tpr(µ)p

will be a distance (1− µ)d from the plane πr. Hence, µ = 0 corresponds to the

identity transformation and µ = 1 transforms all points in space to lie on the

plane.

Note that we can derive all the quantities mentioned above (Eqs. 4.1 to 4.6)

directly from vertex positions. Our optimization in the following will be for-

mulated in terms of vertex positions directly or indirectly using the formulas

above.

Energy formulation

We pose the stylization of our abstracted mesh as an energy minimization

problem. We consider two types of energys in our formulation. The styliza-

tion energy exaggerates the angles between adjacent regions while keeping the

regions themselves roughly planar; and the regularization energy keeps the so-

lution close to the original abstracted mesh and can also include the Lanteri

constraints as suggested by Lanteri [72] and discussed in Section 4.3. The total

energy to be minimized is the sum of all stylization and regularization energies:

E = Estyle + Ereg . (4.7)
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Stylization energy

The stylization energy consists of two terms for exaggeration between adjacent

regions Ri and Rj and planarization within each region:

Estyle = λd
∑
Ri∼Rj

wi,jn̂i · n̂j + λf
∑
r

∑
v∈Rr

(n̂r · (cr − v))2 . (4.8)

Here, Ri ∼ Rj means that region Ri shares a boundary with region Rj. Weights

wi,j scale the amount of exaggeration between Ri and Rj. λd (d for dihedral

angle) controls the overall amount of exaggeration while λf controls how flat the

regions should be. Minimising the first term of Eq. 4.8 causes exaggeration of

the angle between planes since n̂i · n̂j decreases as the angle between the vectors

(the dihedral angle between planes) increases. The second term minimises the

distance of vertices from each region’s plane approximation, thereby enhancing

the planar abstraction of the mesh.

Initially, the weights wi,j are set as the boundary length between Ri and Rj

normalized by the average boundary length. We find that this weighting scheme

ensures that each edge’s deformation is weighted approximately according to

its visual impact on the final model. Our interactive system allows the user to

alter these weights by specifying a scale factor si,j such that: wi,j ← si,jwi,j.

To make the overall problem easier to solve we can transform the dot

product between unit normal vectors n̂i · n̂j into an energy with a sum of

squares form:

n̂i · n̂j = 1
2
‖n̂i + n̂j‖2 − 1 . (4.9)

The resulting sum of squares formulation facilitates the use of efficient solvers

such as Levenberg-Marquardt.

Regularization energy

The regularization energy Ereg includes the following terms:

Ereg = Earea + Eedge + Evertex + Enormal + ELanteri. (4.10)
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The edge and area terms are as follows:

Earea = λa

K∑
i=1

(
1− A(Rr)

A0(Rr)

)2

, (4.11)

Eedge = λe
∑
e∈MC

(
1− |e|
|e0|

)2

, (4.12)

where A(Rr) is the area of Rr, |e| is the length of edge e and the sum only

includes edges on the borders between regions. The superscript “0” denotes

the initial value. These are simple quadratic penalties but by using ratios with

the initial value we make the terms scale invariant.

The vertex and normal terms are simple quadratic error metrics:

Evertex =
λv

2|ē|2
∑
v∈VC

‖v − v0‖2 , (4.13)

Enormal =
λn
2

K∑
i=1

∥∥n̂r − n̂0
r

∥∥2
, (4.14)

where |ē| is the mean edge length of the mesh used to make the vertex term

scale invariant.

All of these regularization terms are needed to avoid various degeneracies

of the energy function and maintain closeness to the original mesh, but the

results are not critically affected by their weights. We used constant values of

λv, λn, λe, and λa (given in Section 4.6) for all results shown in this paper.

4.5.3 Lanteri constraints

Based on the writings of Edouard Lanteri, we posit that certain relative mea-

surements on the face are critical to maintain the individual “personality” of

the model (Fig. 4.9). Therefore, in an attempt to preserve the recognisability

of our results we consider three types of Lanteri constraints to formulate the

Lanteri energy ELanteri. An absolute position constraint (Eq. 4.15a) ensures

that certain points of interest remain at their original positions, a relative po-

sition constraint (Eq. 4.15b) ensures that the relative position of two points

remains the same, and a relative distance constraint (Eq. 4.15c) ensures a con-

stant distance between two points during stylization. The energy is formulated
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(a) Stylized with

Lanteri constraints

(b) Original mesh (c) Stylized without

Lanteri constraints

Figure 4.9: Lanteri constraints help to retain the personality of the original

mesh (middle) in the stylized mesh (left). Without the constraints unwanted

deformations can occur such as the eyes getting closer together (right).

as a sum of terms of the following form:∑
p

λv
2|ē|2
‖T(p)p− p‖2 , (4.15a)

∑
p1,p2

λv
2

‖(T(p1)p1 − T(p2)p2)− (p1 − p2)‖2

‖p1 − p2‖2
, (4.15b)

∑
p1,p2

λv
2

(‖T(p1)p1 − T(p2)p2‖ − ‖p1 − p2‖)2

‖p1 − p2‖2
, (4.15c)

where T(p) is the affine transformation for the region containing p, defined

using Eq. 4.4. The specific feature points used to formulate these constraints are

given in Appendix F. The positions of these features on the mesh are currently

manually annotated by the user. However, this could easily by automated by

using the template model.

4.5.4 Energy minimization

To find the minimum of Eq. 4.7 the energy is written as a function of the vertex

positions (making use of Eqs. 4.1 and 4.3) and minimized using the Levenberg-

Marquardt method in Ceres Solver [2]. Any vertices on an open boundary of

the mesh are kept constant during the optimization. Standard thresholds on

function tolerance and gradient tolerance are used to determine convergence.
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Figure 4.10: Varying levels of stylization smoothness can enhance or smooth

the boundaries between sculptors’ planes while the orientation of the planes

remains the same. We have deliberately applied excessive planarization to em-

phasize the effect. The segmentation of the planes of the head model is clearly

visible.

4.5.5 Stylization Transfer

The final step is to transfer the stylization from the abstracted mesh to the high

resolution mesh. To do this we make use of affine transformations combined

with skinning weights. This approach allows the implementation of Lanteri

constraints and planarization terms, as well as allowing interactive use.

When doing the stylization transfer we need to ensure smooth transitions

between different regions to avoid any visible artefacts. We define a set of

skinning weights wi,r for each vertex vi with respect to each region Rr. The

final affine transformation T(vi) for each vertex vi of the input mesh is defined

as the weighted average of all relevant Tr:

T(vi) =
K∑
r=0

wi,rTr, (4.16)

where we define T0 to be the identity transformation which is assigned to the

region outside of the optimization area to enable smoothing over this boundary.

We initialize the skinning weight wi,r to be the number of faces in Rr that

contain vertex vi, and then normalize so that
∑

r wi,r = 1. For all vertices not

on a region border there will only be a single non-zero weight.

Our system allows the user to adjust the stylization smoothness across

different regions. Figure 4.10 shows one example where the user creates differ-
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ent stylization smoothness using our interactive user interface. To do this we

apply iterations of Laplacian smoothing to the original, un-smoothed skinning

weights:

wi,r ←
1

|vi ∼ vj|
∑
vi∼vj

wj,r, (4.17)

where vi ∼ vj is the set of vertices vj adjacent to vi. The user can increase

the amount of smoothing by increasing the number of iterations.

Applying a large number of iterations of Laplacian smoothing on a high

resolution mesh can be slow. The naive approach is to recompute the smoothed

weights every time the user adjusts the slider controlling the number of iter-

ations. However, this is slow and very wasteful. Therefore, we make use of

a stack of weight matrices that represent increasing levels of smoothness and

interpolate in between these levels to allow a fast evaluation on a continuous

domain of smoothness.

We pre-compute the stack of skinning weights {wli,r}Ml=0 with different levels

of smoothing (Fig. 4.11). w0
i,r represents the original, un-smoothed skinning

weights and wli,r represents 2l iterations of Laplacian smoothing. We increase

the iterations as a geometric sequence because this better represents the visual

change of the result. Given an arbitrary smoothing scale s we compute wsi,r
by linearly interpolating between between the two closest layers of skinning

weights wli,r and wl+1
i,r in the stack, where l is the layer with the highest number

of smoothing iterations such that l ≤ s.

We extend the method by allowing the user to interactively specify different

amounts of smoothing for different areas of the mesh. The level of smoothing

must be continuously varying over the mesh to avoid visual artefacts. To ac-

complish this at interactive rates, we adapt a method for controlling spatially

varying blur from Diffusion Curves [94]: The user selects a boundary {i, j}
between regions Ri and Rj and assigns a smoothing scale s. All vertices on

the boundary {i, j} are assigned the smoothing value s. Any other region

boundaries emanating from the ends of the {i, j} boundary have their values

interpolated along the boundary, as in Fig. 4.12. The system then propagates

the smoothing scale into all relevant regions by solving a Laplace equation with

Dirichlet boundary conditions:

∇2s = 0 , (4.18)

where the Laplacian operator is discretized by the cotangent weights (Sec-
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Figure 4.11: A stack of weight matrices is precomputed to efficiently compute

skinning weights for varying levels of smoothness. We use linear interpolation

to set the weights for levels of smoothness lying in between layers of the stack.

Each layer of the stack has the same amount of smoothing applied to the whole

mesh but we allow the smoothness to vary over the mesh, as set by the user.

tion 2.10.2). To do this, we write the Laplace operator as a matrix multipli-

cation and split the set of vertices into those on the border and those inside a

region:

Ls =

[
A B

BT C

][
x

y

]
= 0, (4.19)

where L is the sparse Laplacian matrix consisting of cotangent weights on edges

of the mesh, s is the vector containing the smoothing scale at all vertices in

a region. L is split into a block-matrix where A represents the edges which

are all internal to the region, B contains edges joining the boundary vertices

to internal vertices and C contains all boundary edges. s is split into two

parts x and y representing the smoothing scale at the internal vertices and the

boundary vertices respectively. y represents the Dirichlet boundary conditions

and, hence, is fixed. The unknowns are x. To solve we rearrange Eq. 4.19 to

obtain the following equation:

Ax = −By =⇒ x = −A−1By. (4.20)

This system is solved using a sparse Cholesky decomposition of A and the

solution is used to look up the smoothed weights from the skinning weight

stack. Since A is constant for a given mesh we can pre-compute the Cholesky
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Figure 4.12: The smoothing weights are generated by solving the Laplace

equation with Dirichlet boundary conditions. First (left) the mesh is initialized

with all weights the same. Next (middle), the user selects the region boundary on

the left side and changes the weight. The weights are linearly interpolated along

adjacent region boundaries. Finally (right), we solve the Laplace equation to get

weights for the vertices internal to the region. The result is a smooth transition

of the weights.

decomposition. It is then very fast to compute the new values x when the

boundary conditions y are updated by the user.

4.5.6 Interaction

Given a new input mesh, we first do a rough manual alignment with the planes-

of-the-head template model which is then refined by the non-rigid alignment

of Li et al . [75]. The segmentation is transferred from the template to the

aligned input mesh on a nearest neighbour basis, after which the abstracted

mesh is generated. Lanteri constraint points are manually annotated by the

user clicking on specified parts of the input mesh. These pre-processing steps

do not run at interactive rates but only need to be done once for a given input

mesh. From now on, our full optimization framework for abstracted mesh

stylization (Section 4.5.2) and stylization transfer (Section 4.5.5) runs at an

interactive frame-rate of 10Hz on a standard desktop workstation. Our GUI

(Fig. 4.13) provides users with intuitive controls for the amount of exaggeration,

the amount of planarization and transform smoothness. Each of these can be

adjusted globally, or for more detailed control, exaggeration and smoothness

amounts can be adjusted for each edge (Fig. 4.14) and planarization amounts

can be adjusted for each face. These correspond to intuitive visual changes,

modifying the visual contrast between regions, displayed live in the form of the
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Figure 4.13: A user can adjust intuitive exaggeration and smoothing terms

for specific edges (left) or planarization terms for specific faces (right) of the

abstracted mesh. The resulting deformations are shown interactively on the full

resolution mesh.

Figure 4.14: Our system allows for local as well as global controls. Here, we

show increasing local exaggeration of the brow.

full resolution deformation result. Please see Appendix A for a screen-captured

demonstration.

4.6 Results

The input triangular mesh can come from any source. The only requirement is

that the areas to be abstracted are connected, manifold and contain no holes.

We tested our system on meshes from two different sources; scans we made

of a number of volunteers using the method of KinectFusion [87], and meshes

obtained from a state-of-the-art multi-view stereo reconstruction system [7].

The deformations produced by our method typically enhance cheekbones,

deepen eye sockets, and emphasize the brows, chin and lips (see Fig. 4.15). This

approach is especially effective for the KinectFusion scans, which are sometimes

lifeless and hard to recognize due to their lower fidelity. Further, materials used
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(a) (b) (c) (d) (e) (f)

(a) (b) (c) (d) (e) (f)

Figure 4.15: (a)–(d) KinectFusion scans; (e),(f) scans from Beeler et al. [7].

Top row: input; bottom row: output.

in 3D printing can be more translucent than skin, giving a blank look to printed

busts. Our method gives such busts stronger definition by accentuating facial

features, often making them more recognizable (see Fig. 4.16).

Due to the interactive nature of the system, the user is easily able to adjust

the amount of stylization (Fig. 4.17), planarization (Fig. 4.18) and smoothing

(Fig. 4.10) both globally and locally to their liking. Once these local and global

weights have been set by the user they can be stored and transferred to other

meshes with the same segmentation structure, as seen in Fig. 4.19. Hence, it

would be possible to present the user with a selection of pre-set styles as a

starting point for their own adjustments.

We are not aware of any other methods which attempt what we call sculp-

tural stylization. The closest methods we can find to compare against are

those which do curvature-aware detail exaggeration/sharpening on meshes. Fig-

ure 4.20 shows a comparison against the method of PriMo [13] and exaggeration

using the screened Poisson equation [19]. We can see that our method allows

a wider range of custom stylizations, better preserves recognisability and, due

to our anatomically based model, can apply deformations which are more in-

keeping with the human facial structure. The results of the other two methods

show quite similar stylizations.
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Figure 4.16: 3D printed busts — original (top) vs. stylized (bottom).

λd = 0.5 λd = 1.0 λd = 1.6 λd = 2.3

Figure 4.17: Increasing amounts of stylization, from left to right. We in-

tentionally push the exaggeration too far to demonstrate how the Lanteri con-

straints keep salient features in correct positions.

113



Figure 4.18: Increasing planarization (left to right)

Figure 4.19: A style can be transferred to other meshes by using the same set

of weights. Here, each row shares the same set of weights.

Our method can also be applied to models other than faces by using VSA

for abstraction. In this case, the models are often thinned, and concavities

become more pronounced (see Fig. 4.21). The deformations shown in these

figures are subtle, by design, and may be hard to see clearly in the printed

thesis. We direct the reader to view the electronic version, and especially to

the video (Appendix A), which demonstrates the abstractions more clearly

by cutting rapidly between inputs and outputs. One drawback of the VSA

approach is that exaggeration edges can be created in areas in which the user

does not want any exaggeration. It is then up to the user to manually change

the weights of these edges to prevent unwanted deformations.
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For the stylization of the abstracted mesh (Section 4.5.2), the optimization

is typically performed over a small number (n < 100) of vertices on the coarse

mesh, and thus takes only a fraction of a second, regardless of the input scan

resolution. The stylization transfer step (Section 4.5.5) works with the full

resolution mesh, but since only local linear solves and linear operations are

required, both steps together can be run interactively. For an input mesh

with 30k vertices our system runs at 10Hz on a Linux laptop, including all

rendering, with room for further optimisation. For one of the Beeler et al .

meshes containing 375k vertices the system runs at about 2Hz. Currently the

system runs entirely on the CPU, however, the stylization transfer step would

be well suited to GPU acceleration.

Most of the weight parameters described in Section 4.5.2 and Section 4.5.5

are held constant for all examples: λa = 10 and λe = 4, λv = 60, λn = 1,

and λf = 1. The default exaggeration weights yield pleasing results with the

user just specifying 0 ≤ λd < 3 to control the overall amount of deformation.

However, the user can customize the output by specifying per-edge exaggeration

and smoothing weights and per-face planarization weights.

A video (Appendix A) and a selection of the results (including original,

segmented, abstracted and stylized meshes) are made available on the project

webpage:

http://wp.doc.ic.ac.uk/robotvision/project/face-stylization/

4.7 Discussion and Conclusion

Experts in sculpture will note that both the approach and algorithm we have

chosen are both oversimplifications of a sculpting process. Our interpretation

of the planes of the head, inspired by Lanteri and Asaro, is only one abstraction

used by sculptors, and our algorithm is only one possible implementation of this

abstraction. We hope and expect that future researchers will explore alternate

interpretations and methods with us. We expect that much further insight

will be gained by extending the initial comparative study of the geometrical

properties of real versus sculpted faces which we present in our supplementary

material.

The stylizations achievable on busts is clearly dependent on the segmenta-
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tion model used. By using a number of different template models and segmenta-

tions it should be possible to obtain a wide variety of abstractions/stylizations.

Both Nakpil and Magrath described working at multiple scales in their

sculpting work, from large planes to smaller forms. In this paper we have

utilized only two scales, but combining deformations at multiple scales may

produce a wide variety of sculptural styles.

One significant limitation of our approach is that it works best on surfaces

with a mixture of convex and concave regions. (As a trivial example, it is

impossible to uniformly decrease all the angles of a convex polygon, because

the sum of the internal angles is constant.) Further, our method is largely ad

hoc, based on conversations with sculptors and our analytical interpretation

of their intent. But we believe that given an appropriate dataset, it may be

possible to learn sculptural abstraction in a more principled way from real

data.
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(a) (b) (c)

(d) (e) (f)

Figure 4.20: (a) original mesh, (d)-(f) results from our system, (b) result

from PriMo [13], (c) result using the screened Poisson equation [19]. Our

system is capable of a wider range of custom stylizations: (d) bulbous nose,

sharpened chin and accentuated brow, (e) planarization with low exaggeration,

(f) rounder face, larger cheeks.
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Figure 4.21: Original mesh (left), segmentation (middle), and stylized mesh

(right). For these non-bust meshes we use Variational Shape Approxima-

tion [20] to segment the mesh into sculptors planes based purely on geometry.

Note the emphasis of facial features on the bunny (Mesh source: [119]) and

sharper definition of the eye sockets on the lion head (Mesh source: [29]).
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5

Real-time Depth from Stereo

Figure 5.1: In stereo, two (or more) images (top row) are used to recover the

geometry of the scene in the form of a depth-map (bottom row). Lighter pixels

indicate that the surface is closer to the camera.

Following the work in Chapter 3, we start work on trying to expand planar

surface light-field capture to general 3D surfaces. A first step towards this goal

is to recover the 3D geometry from a monocular moving camera. To do this

we use a depth-map fusion approach, outlined in Chapter 6. The goal of this

chapter is to investigate fast and efficient ways to generate the required depth-

maps from a set of tracked frames from a monocular camera (i.e. the relative

poses between camera frames are known).

In the computer vision world, “stereo” is the process of recovering geometry
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(usually represented as depth or disparity maps) from two (or more) images

(Fig. 5.1). Quite often, stereo algorithms will assume a rectified stereo pair

— this means that the cameras have been aligned so that the transformation

between the two only consists of a translation in the x-direction, the length

of which is known as the baseline. In this situation, we will often solve for

disparity : given a point (u, v) in the left image then the disparity d is defined

so that the 3D point observed at that pixel projects to position (u−d, v) in the

right image. We can then find the depth D of that pixel as D = fB
d

, where f

is the focal length and B is the baseline. This type of rectified configuration is

clearly not suited to pairs of images taken from a hand-held monocular video

feed, the relative transformation is unconstrained. Additionally, since we have

a full 30fps video feed there is no reason to limit ourselves to only using two

frames to estimate a depth-map. Therefore, in this chapter we will consider non-

rectified, multi-view, short baseline stereo; as this is the type of data available

in a monocular video stream. Our focus will be on algorithms which have

the potential to run at real-time rates so that they can be used for online 3D

reconstruction, such as the system outlined in Chapter 6.

In Section 5.1 we will discuss existing stereo methods and some of their

strengths and limitations. In Sections 5.2 to 5.4 we will give an overview of

some common high-performance algorithms applied to the stereo problem. In

Section 5.5 we will take a close look at the PatchMatch Stereo algorithm and

how it can be used for non-rectified, multi-view stereo. PatchMatch Stereo and

its variants have managed to obtain state-of-the-art accuracy on the Middlebury

Stereo Datasets [111, 112, 113, 114]. However, these datasets are mostly focused

on accuracy rather than speed and efficiency. For robotic and augmented reality

applications, real-time constraints force us to use the fastest algorithm possible

but we still strive to retain the highest quality results. To this end, in Section 5.6

we will take the high accuracy PatchMatch Stereo algorithm and investigate

ways to optimise and speed up convergence in the hope of obtaining a high

quality stereo algorithm that can run at interactive rates.

One of the key points that makes PatchMatch Stereo unique and is key

to its performance is the use of slanted patches. In Section 5.7 we do some

analysis on when the use of slanted patches will actually produce a worthwhile

increase in quality. In some cases the effect is minimal.
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Figure 5.2: The stereo correspondence problem. We wish to find the position

of a 3D point P which lies along the ray emanating from pixel u in camera Ca.

All points along the ray project onto the epipolar line in camera Cb. By esti-

mating the position of u′ along the epipolar line, corresponding to the projection

of P, we can solve for the position of P.

5.1 Background

Stereo is a correspondence problem; we wish to find pixels in two (or more)

images which correspond to the same 3D point, as seen in Fig. 5.2. In general

we do this by assuming that the point will look the same in both images and

so minimise an error which is the difference of the two pixels, known as the

photometric error :

u′ = arg min
v∈L

(
Ia(u)− Ib(v)

)
, (5.1)

where Ia is the image in camera Ca, as shown in Fig. 5.2, and L is the set of

points on the epipolar line. To reduce ambiguity causing incorrect correspon-

dences we often compute the photometric error by summing over a patch, as

we will demonstrate in Section 5.5.1.

In the most simple case we can just sample a discrete number of depths, or

points on the epipolar line, and take the one with the lowest cost as the solution.

This simple method is referred to as plane-sweep or cost-volume stereo and is

explained further in Section 5.2.
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Stereo is very closely related to the optical flow problem. Just like stereo,

optical flow finds corresponding pixels between two images but without the

constraint that the correspondence must lie on the epiploar line. In fact, some

works use optical-flow as a precursor to estimating geometry: In [86], New-

combe and Davison make use of real-time optical flow combined with sparse

structure from motion to estimate depth for live dense reconstruction. Val-

gaerts et al . [125] jointly solve for depth and the fundamental matrix by first

estimating the optical flow and then iteratively incorporating an epipolar con-

straint.

Another way to reduce bad correspondences and improve the overall quality

of the result is to incorporate regularisation or smoothness constraints. There

are a number of stereo methods which make use of Total Variation style op-

timisations as outlined in Section 2.5.1. This is achieved by minimising an

energy consisting of a sum of a regularisation term and a photometric data

term. Due to linearisation of the function during minimisation a good initial

estimate is required. Therefore, the initial guess is either estimated from some

other method, as in [85, 88], or a coarse-to-fine method is used [102]. Ranftl

et al . [102] make use of second order Total Generalised Variation (TGV) [14] in

their stereo system. This higher-order regularisation allows for reconstruction

of piecewise-planar surfaces, rather than the first-order total variation which

favours piecewise-constant solutions. Newcombe [85] makes the claim that

given a tight computational budget, the increased processing time of TGV

is not worth it given the only slight increase in accuracy over using a Huber

regularisation term. More recently, Graber et al . [49] present a novel regular-

isation term which attempts to smooth the 3D surface rather than just the

depth-map. They present a way to efficiently solve in a primal-dual framework

and show how their approach does not exhibit the stair-casing of classic TV.

However, they do not make a comparison to second-order TGV which also does

not exhibit stair-casing.

There are now a large number of stereo algorithms based on the Patch-

Match [6] randomised correspondence algorithm. The original, PatchMatch

Stereo [12], over-parameterises depth by fitting a 3D plane per pixel. This al-

lows for effective reconstruction of slanted planes and PatchMatch provides an

efficient optimisation framework (we give an overview of the PatchMatch Stereo

algorithm in Section 5.5.1). PM-Huber [57] extends that work by adding Huber

regularisation. To optimize the non-convex energy they alternate between it-
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erations of PatchMatch Stereo and primal-dual based gradient ascent/descent.

Another approach to regularization with PatchMatch is to use belief propaga-

tion, as in PMBP [9]. Using methods from particle belief propagation they are

able to add a pairwise energy to the otherwise unary energy of PatchMatch

Stereo. Their approach is effective but requires a number of particles per node

which increases computation and is a hindrance in real-time scenarios. Uh

et al . [124] use PatchMatch in a multi-view stereo setting — reconstructing

a full geometric model rather than just a depth map. The reconstruction is

represented by a set of oriented patches in 3D which are projected into the

camera coordinates for efficient propagation. PatchMatch Filter [77] combines

PatchMatch Stereo with efficient edge-aware filtering, which has already been

shown to be effective for the stereo correspondence problem [106]. They make

use of a superpixel segmentation to achieve this and also propose an extension

of the PatchMatch algorithm to achieve propagation at the level of superpixels,

potentially speeding up propagation and convergence over larger areas. Mono-

Fusion [101] uses a cut-down version of PatchMatch Stereo which only estimates

depth. They also only perform a single iteration of scanline propagation. This

simplification allows real-time performance but the quality of the depth-maps

is greatly reduced.

Heber and Pock [56] detail a novel approach to multi-view stereo where

each image is compared to every other image in the set. This is in contrast to

many of the algorithms detailed above which only compare to a single reference

image. Two images which are not the reference image are never directly com-

pared. They make use of densely acquired data from light-fields and use robust

PCA methods to solve the stereo problem. This interesting approach could be

a step towards joint geometry and lighting estimation using light-field cameras

as hinted at in Chapters 3 and 6.

One of the major difficulties of passive stereo methods is recovering the

geometry of textureless regions. The use of very large image patches can help

up to a point but seriously increases the processing time. Some recent works

have attempted to incorporate higher level priors to help deal with texture-

less regions. Pinies et al . [97] make use of non-local total generalized variation

(an extension of total variation which enables pairwise terms between any two

nodes) to incorporate a planar constraint on textureless regions. This approach

essentially propagates depth from the edge of the textureless area and so strug-

gles if the edges are not seen in the image. [22, 24] make use of a superpixel
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segmentation and novel superpixel matching techniques to fit planar geometry

to textureless regions. DPPTAM [23] combines this superpixel approach with

semi-dense SLAM to create real-time dense reconstructions on the CPU.

Recently the rapid upsurge in deep learning and Convolutional Neural

Networks (CNNs) has led to learning based approaches to stereo and related

problems. DeepStereo [44] trains a CNN to predict new views from a set of

posed views. The input to the CNN is similar to a cost-volume, each reference

image being projected into the virtual camera at a discrete set of depths. This

means that the network does not need to learn the complex camera projection

and rigid transformation operations. Such a system could also be used to

generate depth-maps, but the main obstacle is obtaining enough training data

to make this possible. FlowNet [43] applies CNNs to the problem of optical flow.

Due to insufficient amounts of real-life training data they generate synthetic

training data by rendering “Flying Chairs” over random images from Flickr as

the background. The synthetic training data is good enough to achieve state-

of-the-art accuracy among real-time optical flow methods. Wang et al . [127]

use CNNs to predict surface normals from just a single image. This prediction

can be used as an additional scene prior for stereo as discussed in [25].

5.2 Cost-volume

In this section we will give a brief overview of cost-volume stereo, a relatively

common approach we will refer to in later sections.

Given a reference image, a discrete set of depth hypotheses is created and

the photometric cost is evaluated at each depth for each pixel by projection into

one or more other images. Hence, a three-dimensional cost-volume is effectively

created.

In the simplest case we just take the minimum cost depth-hypothesis per-

pixel. If this is all that is required then we do not need to store then entire

volume, we can just store the current best depth hypothesis and its cost as we

loop over the possible depth values. This is often referred to as plane-sweep

stereo.

Generally there is a fixed minimum and maximum depth, Dmin and Dmax

respectively, and discrete depth samples come from a uniform sampling in in-
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verse depth between these values. We make the sampling independent of the

depth range by using the parameter ξ ∈ [0, 1] defined by:

ξ =
1
D
− 1

Dmax
1

Dmin
− 1

Dmax

=⇒ D =
1(

1
Dmin

− 1
Dmax

)
ξ + 1

Dmax

. (5.2)

For a cost-volume with B depth bins, the discrete depth hypotheses will be

defined by ξi = i
B−1

for i = 0, ..., B − 1.

Let I be the set of images that will be incorporated into the cost-volume.

Then the cost at pixel u and inverse depth ξ is given by:

Cu(ξ) =
1

|I|
∑
Ik∈I

Ψ(Ik,u, ξ), (5.3)

where Ψ is a function representing the photometric error. For example, we

could use the absolute pixel error:

Ψ(Ik,u, ξ) =
∣∣I(u)− Ik

(
uk(ξ)

)∣∣ , (5.4)

where I is the reference image and the reprojected pixel position uk(ξ) is given

by Eq. 2.30. Generally for a cost-volume the photometric error is computed

using just single pixels but we could also use patches in this error.

Once this cost-volume has been created we take the minimum cost depth

per pixel to obtain the depth-map. Due to the discrete sampling of the cost-

volume, the depth values obtained will always lie at the sampling points. To

improve on this we can perform sub-pixel refinement by fitting a quadratic to

the cost function about the minimum. Let ξi be the minimum cost inverse

depth at pixel u. The sub-pixel refined inverse depth is given by:

ξ∗ = ξi −
C ′u(ξi)

C ′′u(ξi)
(5.5a)

= ξi −
Cu(ξi+1)− Cu(ξi)

Cu(ξi+1)− 2Cu(ξi) + Cu(ξi−1)
ξstep, (5.5b)

where we have used the forward difference to compute the first derivative of

the cost and central difference for the second derivative.

One of the advantages of the cost-volume approach is that many frames

can be combined into the cost-function iteratively, as made use of by Newcombe

et al . [88] in their real-time dense tracking and mapping system.
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Some methods apply filtering or regularization techniques to the volume to

reduce the level of noise in the solution. DTAM [88] uses variational denoising

methods (Section 2.5.1) to obtain a regularized solution. Rhemann et al . [106]

use efficient, edge-aware filtering techniques to average samples over each slice

before taking the per pixel minimum. This is almost equivalent to having a

patch based error per pixel in Eq. 5.3 but their formulation means that they

can make use of fast, efficient filtering algorithms.

5.3 Coarse-to-Fine Stereo

As an alternative method for comparisons in Chapter 6 we describe an ex-

tremely efficient coarse-to-fine approach to stereo which is capable if running

well over 30fps on modern GPUs.

We generate an image pyramid with L levels for each frame. Level 0 of

the pyramid is the original image and level l+ 1 is the downsampled version of

level l. Hence, if level l has dimension M × N then level l + 1 has dimension
M
2
× N

2
. We perform down-sampling by computing the mean of the four-pixel

neighbourhood. This means that the camera centre of projection stays in the

same place, we just scale it by a factor of 0.5 (the focal length is also scaled

by 0.5). Some other down-sampling techniques, for example, blurring and sub-

sampling, can result in a translation of the camera centre which would need to

be accounted for in the camera calibration matrix.

Once the pyramid has been built we perform plane-sweep stereo on the

coarsest level of the pyramid. Since the resolution is very low this is computed

very quickly. Starting with the coarsest level depth-map we now traverse the

pyramid. Given the depth-map for pyramid level l > 0 we compute the depth-

map on level l−1 by up-sampling the lower resolution depth-map and sampling

s points evenly distributed about that point. Let ξstep be the inverse depth

step which moves a distance of one pixel along the epipolar line (estimated by

dividing the length of the epipolar line by the inverse depth range). If Ξl is the

inverse depth map for level l of the pyramid then the sampled depth points for

pixel u on level l − 1 are:{
Ξl

([u
2

]
,
[v

2

])
+

(
k − s− 1

2

)
ξstep

∣∣∣∣ k = 0, ..., s− 1

}
. (5.6)
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With both the plane-sweep on the coarsest level and the depth-sampling

on the subsequent levels of the pyramid we perform sub-pixel refinement in the

same way as described in Eq. 5.5 (this requires s ≥ 3 in the up-sampling steps).

There are three main parameters which define the behaviour of this stereo

method: the number of pyramid levels L, the number of depth samples when

up-scaling s, and the size of the patches used to compute the photometric error.

If L is small the plane-sweep step takes longer because it is working at a higher

resolution. However, if L is too large and s is small we are more likely to

get stuck in a local minimum and miss some fine geometric details, a common

limitation of coarse-to-fine methods.

Table 5.1 shows some timings and errors for a variety of parameters of this

method, tested on the synthetic dataset outlined in Section 2.11.1. We see that,

as expected, the computation time starts to go down as the number of pyramid

levels goes up. This is because the number of photometric cost computations on

the coarsest level goes down. However, once we pass four levels of the pyramid

the runtime starts increasing again due to the extra computation. Obviously the

runtime increases as we increase the number of samples but a small number of

samples gives a large error. Once the number of samples is greater than two the

error reduces dramatically due to the ability to perform sub-pixel refinement.

From the data in the tables we see that four levels and four samples per level

appears to be the best compromise between runtime and accuracy.

5.4 Temporal Consistency Check

Most high accuracy binocular stereo algorithms use left-right consistency checks

to remove outlier depth estimates. This works by generating a depth map for

both the left and right images and comparing the depths of corresponding pixels.

If the difference in depth is greater than a threshold the pixel is removed.

This approach is very effective but immediately doubles the amount of

computation required since two depth-maps must be generated. In an interac-

tive setting this is very wasteful. Instead, we propose a temporal consistency

check which is applicable to real-time stereo methods and monocular sequences.

Given a new depth-map and a reference depth-map (from a previous point

in time) we project each pixel into the reference depth-map’s coordinate frame
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# Samples

1 2 3 4 5
#

L
ev

el
s

1 38 38 38 38 38

2 7.0 7.1 8.0 8.7 9.4

3 3.3 3.4 4.7 5.5 6.3

4 2.8 3.0 4.3 5.1 6.0

5 2.9 3.1 4.5 5.3 6.3

6 3.0 3.2 4.6 5.5 6.5

(a) Timings in ms

# Samples

1 2 3 4 5

#
L

ev
el

s

1 0.069 0.069 0.069 0.069 0.069

2 0.049 0.091 0.055 0.053 0.056

3 0.080 0.10 0.048 0.049 0.050

4 0.15 0.15 0.063 0.047 0.049

5 0.30 0.31 0.073 0.051 0.055

6 0.34 0.51 0.093 0.060 0.049

(b) Mean absolute depth error

Table 5.1: Comparison of the time taken and the mean absolute depth error

for the coarse-to-fine stereo method when varying the number of pyramid levels

and the number of samples when up-scaling. Analysis done on the dataset in

Section 2.11.1 with a patch-size of 5 × 5. Timings for an NVIDIA GTX 780

Ti GPU.

and compare the depth to the depth-map values of the four nearest pixels (if

the point projects to floating-point pixel location u then we look at the four

integer pixel locations surrounding u). If the depth-error of at least one of those

pixels is less than a threshold we mark the pixel as consistent.

To make the system more robust we store a buffer of N previous depth-

maps and a pixel is marked as consistent if it is consistent with at least M ≤ N

of the frames in the buffer.

Generally, if a pixel is not marked as consistent (an outlier) then it is

removed from the depth-map. In some cases we may use some kind of filling

method so the resulting depth-map does not contain holes.

Figure 5.3 shows the result of applying this temporal consistency check to

the output of the coarse-to-fine stereo method detailed in Section 5.3. We use

a patch-size of 3× 3, 3 pyramid levels and 3 sample points.

5.5 PatchMatch Stereo

In contrast to the fast-but-basic coarse-to-fine stereo method, PatchMatch

Stereo [12] is a high quality stereo method which makes use of the Patch-

Match [6] randomized correspondence algorithm. The depth/disparity map is
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(a) (b) (c) (d)

(e) (f)

Figure 5.3: An example of temporal consistency check. (a)-(d) are noisy

depth-maps in the buffer and (e) is the current depth-map. (f) shows inconsis-

tent pixels marked with red.

over-parametrized by fitting a 3D plane per pixel. The use of slanted patches

allows high-quality reconstruction of sloped surfaces. Therefore, instead of one

variable per pixel, there are now three variables to solve for. The solution

space is now high dimensional and would be difficult to solve via traditional

optimisation methods. However, by propagating high quality random guesses

to neighbouring pixels, the PatchMatch algorithm makes it efficient to solve.

5.5.1 A brief overview

Most high quality stereo methods compute the matching cost with a summation

over a patch around the pixel in question. This works well because the increase

in data helps to remove ambiguities and reduce noise. However, it makes the

assumption that all pixels in the patch share the same depth/disparity value,

which is only true for surfaces which are fronto-parallel to the camera. This

assumption can cause unwanted artefacts when attempting to find the depth

of slanted planes.
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PatchMatch Stereo (PM-S) introduces slanted support regions — the depth

at each pixel is over-parametrised by a 3D plane. While the final result is

still a single depth-map, the plane parameters are applied to the patch when

computing the stereo matching cost and during the propagation step.

The original PatchMatch Stereo paper formulates the problem for recti-

fied, binocular stereo. We will present the same algorithm for general stereo

correspondence.

A plane will be represented by f ∈ R3. We define a per-pixel matching

cost for each pixel p:

m(p, f) =
∑

q∈N(p)

g(p,q)ρ
(
q, w(q, f)

)
, (5.7)

where N(p) is the set of pixels in the patch centred at p, g(p,q) is a weight

function, ρ(·, ·) is the photometric error function and w(q, f) is the warp func-

tion transforming the pixel q to the other camera by projection onto the plane

f .

The goal is to find the optimum plane per pixel:

f∗p = arg min
f∈F

m(p, f). (5.8)

We define the plane f by a normal vector n such that points lying on the

plane satisfy the equation x · n + 1 = 0. Now, the intersection of the ray from

pixel p and the plane is:

x = − K−1ṗ

nTK−1ṗ
. (5.9)

Using this, the warp equation in Eq. 5.7 can be written down:

w(p, f) = π (KRx + Kt) (5.10)

= π

(
−KR K−1ṗ

nTK−1ṗ
+ Kt

)
. (5.11)

The photometric error function is defined in [12] as:

ρ(p,q) = (1− α) min
(
‖I(p)− I ′(q)‖, τcol

)
+ αmin

(
‖∇I(p)−∇I ′(q)‖, τgrad

)
,

(5.12)

although any sensible cost-function could be used. The weight function:

g(p,q) = e−
‖I(p)−I(q)‖

γ (5.13)
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is defined that so that pixels in the patch have a lower weight if their intensity

does not match the centre pixel.

Solving Eq. 5.8 is not a trivial problem. If we only considered fronto-

parallel planes then the search space is small and brute force methods such

as plane sweep work well. However, with three degrees of freedom per pixel,

the space to too large to solve via brute force. Therefore, we make use of the

PatchMatch algorithm.

To start with, the plane parameters are randomly initialized. The space

over which the planes are sampled is such that the pixel depths are within the

depth-range under consideration and so that the plane normals are no more

than θmax from fronto-parallel.

Following initialisation we perform spatial propagation. We define a set of

candidate planes Sp per pixel consisting of the plane parameters from neigh-

bouring pixels. We look at the matching cost for each of the candidate planes

and assign the lowest cost plane to the pixel. The shape of the neighbourhood

and the order in which the pixels are processed has a big effect on performance

and is investigated further in Section 5.6.1. In the original PatchMatch method

the pixels are processed in scanline order. On odd iterations they start in the

top-left corner and finish in the bottom-right. On even iterations they start

bottom-right and finish in the top-left. The neighbours which contribute to the

set of candidate planes are the above and left or below and right for odd and

even iterations respectively.

In the original PM-S paper the optimisation is performed on both the left

and right frames of a stereo pair. Therefore they can also do view propagation.

This is where a plane from one frame is projected into the other frame and used

as another candidate plane. This step requires that PatchMatch Stereo is com-

puted for both images, and, hence, doubles the computational cost. Therefore

we do not make use of this step in real-time systems.

The next step is plane refinement. We randomly perturb the plane param-

eters per pixel and check to see if this lowers the cost. To do this we convert the

plane parameters into a depth d and unit normal n̂. A new depth hypothesis

is uniformly sampled from the range [d − ∆d, d + ∆d] where ∆d decreases on

each iteration. A new normal hypothesis is generated by n̂+∆n
|n̂+∆n| where ∆n has

each component randomly sampled from the range [−∆n,∆n].
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The algorithm then continuously loops, performing spatial propagation and

plane refinement until convergence or some other stopping criteria has been met

(such as time constraints).

5.5.2 Multi-view PM-S

PM-S can easily be extended to use multiple views, all projected into a single

reference frame. To do this all we need to do is modify Eq. 5.7 to sum over all

the images:

m(p, f) =
∑
k

∑
q∈N(p)

g(p,q)ρk
(
q, wk(q, f)

)
, (5.14)

where ρk is the error between the reference image I and Ik, and wk is the warp

between the two frames.

Computing this cost function is linear in the number of images used. How-

ever, in Section 5.6.3 we explore ways to speed up this computation.

5.6 Accelerating PatchMatch Stereo

PatchMatch Stereo was originally designed as an offline stereo method. It made

use of very large patch-sizes (35 × 35) and used a serial scanline propagation

approach. However, by considering different propagation schemes we can make

the system highly parallelisable and GPU friendly (Section 5.6.1). There are

also some other tricks that can be done to speed up computation and conver-

gence of the algorithm (Sections 5.6.2 and 5.6.3) so that we can use PM-S in

an online setting.

All timings results in this section are run on an NVIDIA GTX 780 Ti GPU

with a processing power of 5000 GFLOPS.

5.6.1 Comparison of Propagation Methods

A variety of propagation methods have been proposed for the PatchMatch

algorithm. In this section we will compare the performance of each with a

parallel GPU implementation. We look at both the rate of convergence per

iteration and the rate of convergence in time.
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The original PatchMatch formulation [6] describes a scanline propagation

method (Fig. 5.4a), as discussed in Section 5.5.1. This seemingly serial method

can be parallelised slightly by processing all pixels on a diagonal at once. The

propagation method allows information to propagate arbitrarily far in a single

iteration but exhibits the lowest degree of parallelism of the methods.

To fully utilize the highly parallel processing ability of modern GPUs we

look for a propagation method which can process each pixel independently.

The most basic way to do this is for each pixel to look at its nearest neighbours

(Fig. 5.4d). This approach means that information can only propagate one

pixel on each iteration but the high parallelism makes it fast to compute. We

refer to this as the parallel method.

Barnes et al . [6] also proposed a parallel GPU implementation using the

jump flooding method outlined in [107]. This approach is also fully parallel but

accelerates the rate of propagation by using a varying stride when looking for

neighbours (Fig. 5.4e). For some N the first iteration will have a stride of 2N ,

the next iteration will have a stride of 2N−1 and so on until we reach a stride of

1 (which is equivalent to the parallel method). In our implementation we set

N = 3 and repeat the loop again when the stride reaches 1.

Bailer et al . [5] introduce a sweep method which uses horizontal and ver-

tical passes combining three pixels into one (Figs. 5.4b and 5.4c). This allows

information to propagate across the whole width (or height) of the image in a

single iteration. For horizontal passes each pixel in a column can be processed

in parallel and for vertical passes each pixel in a row can be processed in par-

allel. We cycle through each of the directions as iterations increase so each

direction is repeated every 4 iterations.

Each propagation method is implemented with a parallel GPU implemen-

tation. The parallel and jump flood methods are trivially parallelisable. Each

pixel can be processed independently at the same time. To avoid data races

we use a double buffer, one to store the old values which provide the plane

hypotheses and one to store the new best result.

The other two methods have less parallelism. For the sweep method we

can process each row (or column) in parallel for each vertical (or horizontal)

pass. In this case the number of parallel threads is the width (or height) of the

image. For the scanline method there are a maximum of min(width, height)
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(a) Scanline (b) Sweep down

(c) Sweep right (d) Parallel
(e) Jump flood, step = 4

Figure 5.4: PatchMatch propagation methods. (a), (b) and (c) exhibit a

dominant propagation direction (diagonal, down and right, respectively) which

allows for sequential processing and further propagation in a single iteration. (d)

and (e) must be processed using an additional buffer because of cross-dependency

between pixels.

threads active at once, but often less since the diagonals have varying sizes.

The sweep and scanline methods do not require an extra buffer but require

synchronisation between each strip (horizontal, vertical or diagonal) which is

processed in parallel.

In CUDA we can only synchronize threads in the same block within a

kernel. On modern CUDA GPU architectures the maximum number of threads

per block is 1024. Therefore, with the image sizes we are using we can use a

single block of threads and synchronize within the kernel.

Appendix E provides the source-code for the propagation kernels so that

the reader can see exactly how the parallelism was implemented.

Table 5.2a shows the time taken to perform a single iteration of each propa-

gation method for a number of patch-sizes. The biggest bottleneck is computing

the photometric error because of the number of texture accesses required. Even

though the scanline and sweep methods do not require as many computations

of the photometric error per pixel, (only 2 and 3, respectively against 4 for the

parallel and jump-flood methods) their reduced level of parallelism means that
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Patch size Scanline V-Sweep H-Sweep Parallel Jump Flood

3× 3 54ms 68ms 72ms 4.7ms 4.7ms

11× 11 0.59s 2.2s 0.71s 45ms 50ms

19× 19 2.1s 11s 2.2s 0.16s 0.18s

(a) Without cache, 2 images

Patch size Scanline V-Sweep H-Sweep Parallel Jump Flood

3× 3 28ms 28ms 37ms 2.4ms 2.4ms

11× 11 0.28s 0.83s 0.33s 22ms 23ms

19× 19 0.97s 4.1s 1.5s 75ms 84ms

(b) With cache

Table 5.2: Average timings for a single propagation iteration for the various

methods. Note that the parallel and jump flood methods actually perform twice

as much computation (in terms of photometric error calculations) as the scan-

line method and 33% more computation than the sweep method. Experiment

performed on the dataset in Section 2.11.1.

they are much slower to compute. As expected, the jump flood timings are

almost the same as the parallel timings. For some reason the vertical sweep

passes slow down considerably more than the horizontal sweep passes as patch-

size increases. Our current hypothesis is that the ordering of the vertical passes

does not suit the caching structure on the GPU resulting in a high number of

cache misses. The vertical passes exhibit higher parallelism (for landscape im-

ages) and better concurrency of memory reads, which is reflected in the faster

times for small patch-sizes. The hypothesis is that the order in which plane

samples are processed in vertical passes leads to a much lower rate of texture

cache hits when computing the photometric error.

Figure 5.5 shows the rate of convergence for each of the propagation meth-

ods against iteration count and time taken. The test data is the synthetic scene

introduced in Section 2.11.1. We see that due to the ability to propagate large

distances in a single iteration, the sweep and scanline methods reduce the error

very rapidly per iteration. However, because of their less efficient GPU utilisa-

tion they actually are much slower than the parallel and jump flood methods.

We also see one of the interesting properties of the PatchMatch algorithm in

Fig. 5.5b: the error goes down and then increases slightly. Consider running

the PatchMatch algorithm for infinite time — the result would be the per-pixel
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(d) Patch normal error time

Figure 5.5: Plots showing the convergence of the PatchMatch Stereo algorithm

for a variety of propagation methods. While the parallel and jumpflood methods

are slower to converge per iteration (top row) we see that they can be computed

much faster so that they are quicker to converge in time (bottom row). The

jump-flood method performs the best overall.

global minimum. Due to noise and ambiguities this is not necessarily the opti-

mum result — this is why we often use regularisation. The propagation step of

PatchMatch acts as a kind of regularisation by initially sampling planes which

match neighbours. However, as time goes on the random sampling has the

potential move away for the smoother solution in favour of the per-pixel global

minimum, resulting in the increase in error.
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5.6.2 Plane Fitting

As can be seen in Fig. 5.5, the patch normals converge slower than the depth

estimate. This is because normals are a second-order quantity and the fact that

the photometric error is much less dependent on the normal of a patch than its

depth. To accelerate the convergence of normals, a trivial extension is to use

the current depth estimate as a hypothesis for the slanted plane.

To compute the new plane hypothesis the normal is obtained from the cur-

rent depth estimate using the formula in Section 2.4.4, and the depth hypothesis

is computed from the mean inverse depth of the four neighbour vertices. The

normal is constrained to stay within the threshold specified in Section 5.5.1.

Figure 5.6 shows the convergence rate with and without plane fitting when

using the parallel propagation scheme. The top row of results use a large

baseline and large patches so patch normals have a significant effect. We see

that plane fitting accelerates the convergence of both the depth (Fig. 5.6a) and

the normals (Fig. 5.6b). In the bottom row we show results for a smaller baseline

and a very small patch-size. In this situation the normals have almost no

effect on the photometric cost. The results show that the plane fitting can still

accelerate the convergence of the depth component (Fig. 5.6c) but estimating

normals with such small patches actually has a negative effect and the plane

fitting makes it worse (Fig. 5.6d). We believe this is because the photometric

cost is very sensitive to a change in depth but a change in the normal has almost

no effect. This means that a plane hypothesis with an accurate depth estimate

but an arbitrary normal will be taken as the minimum. Due to the random

nature of the optimisation and noise in the system it is now very unlikely that

the depth estimate will be refined with a better normal hypothesis.

5.6.3 Cost-Volume Cache

The evaluation of the photometric cost is the most computationally expensive

part of the PatchMatch stereo algorithm. When benchmarking the performance

on modern NVIDIA GPU architectures it is clear that the bottleneck is the

texture access. For N images with a patch-size of K × K, evaluating the

matching cost requires NK2 texture lookups per pixel. When using more than

2 images, the computation time does not scale well with increasing patch-
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Figure 5.6: Plots showing the change in error with increasing iterations with

and without using plane fitting.

size. One method we introduce to reduce this overhead is to construct a cost-

volume (Section 5.2) and use it as a cache. For a cost-volume with B bins this

requires NB texture lookups per pixel to create and then K2 texture lookups

to compute the photometric cost. For large patches and more images the gains

can be considerable.

Since PatchMatch Stereo is an iterative process, the matching cost is eval-

uated multiple times. Let M be the number of evaluations. Then the total

number of texture lookups when computing the matching cost per pixel comes

to MNK2 for the original method and NB + MK2 when using the cache.

Hence, for large M we have reduced the number of lookups by a factor of N

(note that N ≥ 2).

The depth in the cost-volume is sampled at discrete depths and then we
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Figure 5.7: Using a cost-volume as a cache when computing photometric error

can massively increase performance, especially when more than 2 images are

used. On the left (a) we show the time taken for one iteration of propagation and

refinement. On the right (b) we show the time taken to initialise the system (i.e.

build the cost volume) followed by 10 iterations of propagation and refinement.

We see that the initialisation time becomes negligible compared to the time spent

on iterations and the cache massively increases performance. The cache here

has 64 bins.

sample the cost at continuous depths by using linear interpolation in the depth

component. The use of a cost-volume as a cache creates a restriction on the

form of the patch-based photometric error. It must take the form of a sum over

individual pixel errors and the sums must be separable:

m(p, f) =
∑

q∈N(p)

g(p,q)
∑
k

ρk
(
q, wk(q, f)

)
. (5.15)

The cost-volume stores the sum of the pixel errors over the images (indexed by

k) and then computing the full matching cost consists of just summing over the

neighbourhood N(p).

Figure 5.7 shows how this caching method can increase the performance

of PatchMatch Stereo. We use a cache with 64 depth bins. In Fig. 5.7a we

see the times increase quadratically with the patch-size, as expected due to

the number of texture lookups. However, that graph does not account for the

added computation time to build the cost-volume. Therefore, we include the

initialisation time in Fig. 5.7b. We note that with a high number of iterations

the initialisation time becomes negligible compared to the time spent on the
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(a) Linear approximation (b) Quadratic approximation

Figure 5.8: If we use a linear approximation of the cost function (a) then the

minimum cost will always lie at one of the discrete sample points. By using

a quadratic approximation (b) we get a much better approximation of the real

function allowing the minimum to lie at non-discrete locations.

iterations. Table 5.2b shows timings for a single propagation iteration for all of

the propagation methods outlined in Section 5.6.1.

If we use linear interpolation to approximate the cost function within the

cache, the global minimum per pixel will always lie at one of our discrete sample

points (see Fig. 5.8a). Even when we sum together these discrete minima in

the patch we still end up with significant quantisation artefacts and a tendency

to favour fronto-parallel plane solutions (see Fig. 5.9b).

We introduce the quadratic version of the cache (Fig. 5.8b). This requires

three texture lookups in the cache instead of two but does increase the accuracy

of the results. To find the cost of pixel u at inverse depth ξ we find the

closest discrete inverse depth sample ξi, for i ∈ 1, ..., B − 2, where the cache

has B inverse depth bins. We then fit a quadratic to this point and its two

neighbouring inverse depth samples:

Cu(ξ) = Cu(ξi) + C ′u(ξi) (ξ − ξi) +
C ′′u(ξi)

2
(ξ − ξi)2 , (5.16)

where Cu(ξi) is the cost for pixel u and inverse depth ξi sampled directly from

the cost-volume cache. The derivatives are computed using the finite difference

operators:

C ′u(ξi) =
Cu(ξi+1)− Cu(ξi−1)

2∆ξ
(5.17)

C ′′u(ξi) =
Cu(ξi+1)− 2Cu(ξi) + Cu(ξi−1)

2(∆ξ)2
, (5.18)
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Bins Init.
Iterate

Lin. Quad.

0 0.40ms 84ms 84ms

16 1.0ms 37ms 39ms

32 1.9ms 38ms 40ms

48 2.9ms 39ms 42ms

64 3.8ms 40ms 45ms

128 7.4ms 45ms 57ms

256 15ms 57ms 74ms

(a) Timings for initialisation of the cache and to

perform an iteration of propagation and

refinement.

Bins
Depth Error Normal Error

Lin. Quad. Lin. Quad.

0 0.013 0.013 0.24 0.24

16 0.046 0.027 0.52 0.57

32 0.023 0.015 0.41 0.31

48 0.018 0.013 0.32 0.26

64 0.015 0.013 0.28 0.25

128 0.013 0.013 0.24 0.24

256 0.012 0.013 0.24 0.24

(b) Depth and normal errors for both caching

methods.

Images 2 3 4 5 6 7 8 9 10

Init. time (ms) 3.8 5.0 6.3 7.6 9.0 10.3 11.7 13.1 14.5

(c) The initialisation time to create the cost-volume cache is linear in the number of images used. Once

created, the iteration times are constant for any number of images. Here we show initialisation times for a

cache with 64 bins.

Table 5.3: Tables demonstrating the timings and errors when using a cost-

volume cache with varying number of depth bins (0 bins corresponds to no

cache). The tests were run on the dataset in Section 2.11.1 with a patch-size

of 11× 11 and baseline of 0.9. We see that for a small increase in computation

time we can get significant increases in accuracy when choosing quadratic over

linear.

where ∆ξ is the size of the discretisation in inverse depth ∆ξ = 1
B−1

. Note

that in this case the finite difference operators provide the exact solution for

the quadratic passing through the three points, not just an approximation.

The result of using the quadratic cache is that we get higher accuracy with

fewer bins in the cache. This can be seen in Table 5.3 where we show how the

processing time and the error in the result change with varying number of bins

for both linear and quadratic cache approaches. To get a good accuracy for the

linear approach we need a large number of samples but the quadratic approach

allows us to use a significantly smaller cache with only a very small increase in

processing time.

Figure 5.9 shows how the use of a small number of bins causes significant

discretisation artefacts when using a linear cache. The artefacts disappear
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(a) No cache (b) Linear cache (c) Quadratic cache

Figure 5.9: A comparison of the depth result when using the caching mecha-

nisms introduced in this section. The linear approach causes quantisation arte-

facts which are not present when using the quadratic approach.

when using the quadratic approach. Note that in this example the length of

the epipolar line over the depth range is 43 pixels. Therefore, there is very

minimal increase in accuracy once the number of bins exceeds this value.

One could compare this method to the approach of [106]; in this work a

cost-volume is created and then filters are applied to each slice. The use of

filtering is equivalent to aggregating the patch-based cost for fronto-parallel

planes at each discrete depth sample. They use fast filtering techniques to

be computationally efficient. Our approach is similar in terms of aggregation

from a cost-volume but our method allows the use of slanted patches. The

compromise is that we lose the ability to use the fast filtering techniques used

in [106].

5.7 When do slanted windows make sense?

One of the reasons PatchMatch Stereo produced such high quality results on

the Middlebury datasets is the use of slanted support regions. This enabled

much better reconstruction of slanted surfaces. However, the question may be

asked “do slanted patches always provide an improvement?” In this section we

will try to answer this question.

We will start by doing some simple analysis in the case of rectified stereo

to see the effect of slanted planes on the homography. We will quantify the

change in the homography as the patches become slanted as a function of the

baseline, depth and patch-size. From this we will draw some conclusions about

142



Figure 5.10: The shape of the re-projected patch changes as the normal

changes. On the left, a fronto-parallel patch re-projects to square. In the middle,

the normal points in the x-direction resulting in a scaling in that dimension.

On the right, the normal points in the y-direction resulting in a shearing trans-

formation. In general, the shape of the reprojected patch will be related to the

square by an affine transformation.

when the slanted planes have a noticeable effect. We will then follow this up

with some experiments on synthetic data to see the effect of the slanted planes

on the depth-map error for a variety of baselines and patch-sizes.

Let us consider a rectified stereo pair of cameras C and C ′. In this case a

square, fronto-parallel patch in camera C re-projects to a square patch in camera

C ′. The projection between image coordinates (Section 2.4.1) is simplified:[
u′

v′

]
=

[
u+ fxβ

D(u)

v

]
. (5.19)

To quantify the effect of slanted patches we will look at the position of the re-

projection of all pixels in a patch. We can see how the position changes when

the normal of the patch is changed.

For a fronto-parallel patch, a pixel u + δu in the patch centred at u has

the same depth as u and projects to:[
u+ δu+ fxβ

D(u)

v + δv

]
. (5.20)

By using the plane equation x · n̂ + d = 0 and inverse projection (Eq. 2.6) we
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can show that a planar surface leads to a constant gradient of inverse depth:

x · n̂ + d = 0, x = D(u)K−1u̇, (5.21)

=⇒ 1

D(u)
= − n̂TK−1u̇

d
, (5.22)

=⇒ ∂

∂u

1

D(u)
= −1

d

[
n̂x
fx
n̂y
fy

]
. (5.23)

Let g(u) = (gx(u), gy(u)) be the gradient of the inverse depth for the slanted

patch at u, as defined by the plane parameters and focal length in Eq. 5.23.

Now, a pixel u+δu in a slanted patch will have depth dependent on its position

relative to the patch centre:

1

D(u + δu)
=

1

D(u)
+ δu · g(u), (5.24)

and, hence, the pixel will re-project to:[
u+ δu+ fβ

D(u+δu)

v + δv

]
=

[
u+ δu+ fβ

(
1

D(u)
+ gx(u)δu+ gy(u)δv

)
v + δv

]
. (5.25)

Therefore, the change in re-projection (change in disparity) of a pixel in a

slanted patch compared to a fronto-parallel patch is given by the difference

between Eq. 5.25 and Eq. 5.20:

δx = fβ
(
gx(u)δu+ gy(u)δv

)
= −β

d
(n̂xδu+ n̂yδv) , (5.26)

where we have made use of Eq. 5.23. To infer useful information from this

equation, we need to have it in terms of measurable parameters. β, n̂,and δu

are measurable but the value of the plane parameter d is unclear. We therefore

make use of Eq. 5.21 to rewrite d in terms of useful quantities:

d = −x · n̂ (5.27a)

= −D(u)

(
n̂x
fx

(u− u0) +
n̂y
fy

(v − v0) + n̂z

)
. (5.27b)

To simplify this equation we will consider the centre pixel of the image, u = u0.

In this case Eq. 5.27a simplifies so that d = −D(u)n̂z. We write the plane

normal in spherical polar coordinates:

n̂x = sin θ cosφ, (5.28a)

n̂y = sin θ sinφ, (5.28b)

n̂z = cos θ. (5.28c)
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We now have all the tools we need to write down the change in re-projection

for a pixel in the patch centred at u = u0:

|δx| =
∣∣∣∣ β

D(u0)n̂z

(
n̂xδu+ n̂yδv

)∣∣∣∣ (5.29a)

=

∣∣∣∣ β

D(u0)
tan θ

(
cosφδu+ sinφδv

)∣∣∣∣ . (5.29b)

We can now deduce that the change in position from Eq. 5.26 is linear in the

baseline, inverse depth and the distance of the pixel from the patch center. It

would be useful to have an upper bound for the magnitude |δx|. To this end,

consider the term in parentheses in Eq. 5.29b. This can be thought of as the

dot product of a unit vector v̂φ = (cosφ, sinφ)T and the displacement vector

δu. The magnitude of this dot product will have a maximum when the two

vectors are parallel such that v̂φ = ± δu
|δu| and the maximum is given by:

|v̂φ · δu| ≤ |δu| =
√
δu2 + δv2. (5.30)

Over the the square domain of a patch |δu| has a maximum when u = (K,K)T ,

where the patch is of size (2K + 1) × (2K + 1). Hence, |δu| ≤
√

2K and we

now have an inequality constraint on |δx|:

|δx| ≤

∣∣∣∣∣β
√

2K

D(u)
tan θ

∣∣∣∣∣ . (5.31)

Using Eq. 5.31 we can now do a quantitative analysis of the effect of using

slanted patches for a given camera configuration. Is there a configuration where

the use of slanted patches will make no difference? Suppose we want the change

in projection to be less than 1 pixel for all planes up to π
3

(60◦) from fronto-

parallel, with a patch-size of 5× 5 (K = 2):

|δx| ≤

∣∣∣∣∣β
√

2K

D(u)
tan θ

∣∣∣∣∣ ≤ 1 (5.32)

=⇒ β

D
≤ 1

2
√

6
= 0.20. (5.33)

So for this to hold the baseline must be less than 0.20 times the minimum

depth.

We now take a look at the popular Middlebury stereo dataset. The dataset

from 2005/06 comes with calibration information. The focal length is 3740

pixels, the baseline is 160mm. The data is in the form of disparity maps stored
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Figure 5.11: The maximum change in re-projection when using slanted

patches vs fronto-parallel patches for the Middlebury dataset. The blue line

is for a patch-size of 35× 35, as used in the PatchMatch Stereo paper. The red

line is for a patch-size of 5× 5, a typical size for real-time applications.

as PNG images along with a file containing a value dmin such that the value

in the disparity map ∈ [0, 255] plus dmin provides the disparity to map to 3D

coordinates (this is due to image cropping).

We can therefore say that

fβ

D
≤ 255 + dmin, (5.34)

and, hence,

|δx| ≤

∣∣∣∣∣β
√

2K

D
tan θ

∣∣∣∣∣ (5.35)

≤
∣∣∣∣√2K

255 + dmin
3740

tan θ

∣∣∣∣ . (5.36)

Again, substituting θ = π
3

and using dmin = 200 (from the Art dataset) we see

that the pixel error δx ≤ 0.30K. The original PatchMatch stereo paper used a

patch-size of 35× 35 so that K = 17. This means the maximum displacement

is 5.1 pixels.

Figure 5.11 shows a plot of the function for a patch-size of 35× 35 as used

in the PatchMatch Stereo paper and a patch-size of 5×5, which is a typical size
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(b) Change in normal error

Figure 5.12: Plots showing the change in error between using fronto-parallel

patches and slanted patches in PatchMatch Stereo. A positive value means that

slanted patches outperform the fronto-parallel patches. We see that using slanted

patches with a small baseline and patch size has a negative effect on the stereo

result.

used in real-time applications. The change in re-projection for a 5 × 5 patch

does not exceed one pixel until the angle exceeds 70 degrees for fronto-parallel.

The tangent function starts to increase rapidly, and at 80 degrees tangent

it is 3.3 times larger than at 60 degrees. Therefore, it seems that slanted planes

are most useful for planes which are very far from fronto-parallel but not so

useful for the majority of cases.

Now we look at some experimental results. Using a synthetic rendered

stereo pair we apply the PatchMatch Stereo algorithm with and without the

use of slanted planes. In Fig. 5.12 we plot the change in error when using slanted

patches versus fronto-parallel patches. The results show that for small patch

sizes and baselines the use of slanted patches can actually make the depth-map

worse. We believe this is due to the increase in the solution space which results

in more local minima and less effective propagation – a correct depth hypothesis

with a bad normal hypothesis can have a low cost but does not propagate its

depth to its neighbours well, although, our plane fit sampling helps here.

In Fig. 5.13 we look at how accurately the normals of the patches reflect the

true normals of the surface and compare this to the normals computed directly

from the depth-map. As expected, the accuracy of the estimated normals (for
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Figure 5.13: Plots showing the mean normal error for a test sequence with

varying baseline and patch-size. On the left we have the normals recovered from

the patches. In the middle we show the normals computed from the depth-map.

In both cases the normal error reduces with larger patches and larger baselines.

On the right we show the depth-map normal error minus the patch normal error.

A positive value means that the patches give a better estimate of the normal than

the depth-map.

both the patches and from the depth-map) increases with increasing patch size

and baseline. In general, the normals estimated from the patches are better

than those estimated from the depth-map and the bigger patch size, the bigger

the difference.

In our implementation of PatchMatch Stereo we see that texture access

is the bottleneck of the algorithm. Therefore we did not see much change in

processing time when using slanted patches vs. fronto-parallel patches.

5.8 PatchMatch Stereo with Regularization

One of the drawbacks of PatchMatch Stereo is the lack of regularisation or

smoothing. In the original paper they use a patch-size of 35× 35 which means

there is less ambiguity between patches and hence outliers are not very common.

This is in opposition to a real-time scenario where we are limited to small patch

sizes resulting in a much noisier depth-map. In addition, PM-S compute depth-

maps for both the left and right images in the stereo pair and so uses consistency

checks between the two to remove any outliers.

Computing depth-maps for both images images immediately doubles the

computation needed, something infeasible in an interactive setting. However,
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due to the interactive setting we can use temporal consistency to help remove

outliers on the current frame, as outlined in Section 5.4.

Various approaches have been made to add pairwise regularisation terms to

PatchMatch Stereo. The most notable of these are PM-Huber [57], which uses

variational denoising methods to smooth the result, and PMBP [9], which uses

belief propagation to solve an energy which includes a pairwise term. Out of the

two methods, PM-Huber shows a lot more potential for interactive applications

due to the use of primal-dual optimisation schemes which have already been

demonstrated as real-time capable. Therefore, we will focus our analysis on

this approach.

The results demonstrated by PM-Huber were again on the Middlebury

Stereo Datasets. Due to the clear focus on accuracy the patch-size used was

41 × 41 pixels. This is not a usable patch-size in real-time stereo so we have

no intuition for how this algorithm will perform when small patches are used

which will lead to more outlier noise. The effect of PM-Huber versus Patch-

Match Stereo is expected to be much more noticeable when there is significant

noise present, as in short baseline stereo with small patches, which is common

in real-time methods. The full PM-Huber approach consists of a joint optimi-

sation which alternates between PatchMatch Stereo and Huber regularisation.

We also compare against applying Huber regularisation to the final output of

PatchMatch stereo, denoted “PM + Huber”.

Figure 5.14 shows the effect on the error when using PM-Huber versus

PatchMatch Stereo for varying patch-sizes. We see that the reduction in error is

much greater for small patches which reinforces the view that PM-Huber could

be very effective when working within the constraints of real-time systems.

Table 5.4 compares the inverse depth error for PatchMatch Stereo, PM +

Huber and PM-Huber. PM-Huber gives the lowest error and the largest error is

without any regularisation. We note that the reduction in error from using the

full PM-Huber joint optimisation is smaller than the improvement from just

applying Huber regularisation to the PatchMatch Stereo result. Therefore, PM

+ Huber is a good balance between accuracy and computational cost.

149



1 2 3 4 5 6 7 8 9
Patch size

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

E
rr

o
r

PatchMatch Stereo
PM-Huber - High
PM-Huber - Low

(a) Depth error

1 2 3 4 5 6 7 8 9
Patch size

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

E
rr

o
r

PatchMatch Stereo
PM-Huber - High
PM-Huber - Low

(b) Patch normal error

Figure 5.14: A comparison of PatchMatch Stereo versus PM-Huber. ‘High’

and ‘Low’ refer to the amount of smoothing applied using PM-Huber. With

a high level of smoothing PM-Huber is very effective at reducing the error

from small patches but over-smooths and degrades the result when using larger

patches. The effect of PM-Huber in reducing the error of PatchMatch Stereo

appears to be reduced as patch-size increases.

5.9 Conclusions

In this chapter we have presented a number of ways to solve the depth-from-

stereo problem, targeted at a real-time system. Taking inspiration from New-

combe et al .’s DTAM [88] we aimed to make a stereo system capable of making

high-quality depth-maps in real-time. However, while DTAM uses several hun-

dred frames to create each individual depth-map, we aim for a method using

only a few frames. In the case of a moving camera this leads to a temporally

dense stream of depth-maps which we then fuse into a 3D model in Chapter 6.

While investigating different stereo methods we first gave an overview of a

fast, basic coarse-to-fine method which can easily run at real-time rates. In the

quest for higher quality depth maps we took a close look at the PatchMatch

Stereo algorithm and proposed a number of optimisations and modifications

which allowed a once offline method to run at close to real-time speeds. Both

these approaches to stereo will be used in the next chapter as part of a full 3D

reconstruction system.
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PatchMatch PM + Huber PM-Huber

all no outliers all no outliers all no outliers

Median 0.016 0.011 0.010 0.0068 0.0076 0.0054

Mean 0.068 0.018 0.051 0.0094 0.044 0.0075

Std. Dev. 0.12 0.019 0.11 0.0087 0.10 0.0067

Table 5.4: The inverse depth error for a variety of PatchMatch Stereo meth-

ods. The first column is just PatchMatch, the second is PatchMatch followed

by Huber regularisation and the third is the joint optimisation approach of PM-

Huber. The “no outliers” statistic is computed by removing any errors which

are greater than 1.5 times the upper quartile error.
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6

Real-time Monocular Reconstruction using

Depth-map Fusion

Figure 6.1: An example reconstruction of a scene using the system described

in this chapter.

The work in Chapter 3 showed that the surface light-field is a convenient

representation for inferring illumination and reflectance information. However,

that work was initially limited to planar surfaces and we wish to extend it to

work with general 3D surfaces. Therefore, in this chapter we will present a

novel system to generate dense 3D models from a hand-held monocular camera

in real-time. Such a system we hope can be a foundation on which to capture

general 3D surface light-fields. A reconstruction is created by combining the

multi-view stereo methods of Chapter 5 with a surfel-based fusion approach.

The system can theoretically run with any tracking method: we initially use

ORB-SLAM as a robust feature-based tracker and also demonstrate how to

perform dense, direct tracking of the camera to the surfel model. We then

compare the results obtained from both approaches..
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6.1 Background

Real-time, dense reconstruction has only recently (within the last 5 years) be-

come feasible due to the increased performance and programmability of con-

sumer GPUs. In 2010, Newcombe and Davison [86] demonstrated live, dense

reconstruction with a moving camera. They generate a coarse base mesh using

feature points and then deform the base mesh into highly accurate depth-maps

using variational optical flow on a GPU. In 2011, KinectFusion [87] made a huge

impact demonstrating 30fps dense tracking and depth-map fusion of a RGB-

D Microsoft Kinect sensor. The system uses the Truncated Signed-Distance

Function (TSDF) to fuse depth-maps on every frame into a consistent, smooth

3D model. Also in 2011, Newcombe et al . [88] presented Dense Tracking and

Mapping (DTAM) which, in real-time, fuses hundreds of frames into a cost-

volume and uses variational methods to extract smooth depth-maps for sparse

key-frames. At the same time, Graber et al . [50] used plane-sweep stereo to

generate depth-maps for key-frames and use variational methods to fuse the

depth-maps in a TSDF framework.

Further extensions of the KinectFusion method have focused on making it

more scalable. Kintinuous [129] uses a sliding volume approach to make very

large scale maps and adds the ability to perform large-scale loop closures. Niess-

ner et al . [90] use efficient voxel hashing to avoid storing the complete TSDF

leading to huge memory savings. Zhou and Koltun [138] add full pose graph

optimisation as a post-processing step and focus on high quality reconstruction

of points of interest. Poses on the paths in between the points of interest are

considered more flexible in the optimisation.

As an alternative map representation, Keller et al . [65] make use of a

surfel map to represent the world instead of the memory hungry TSDF volume.

Their method allows better reconstruction of thin structures and also extends to

handle basic dynamic scenes. Salas-Moreno et al . [110] detect planar surfaces

within a surfel-based reconstruction. By combining surfels belonging to the

same plane a more compact representation if achieved. The extracted planes

are then used as surfaces for augmented reality. ElasticFusion [128] also uses a

surfel map but adds support for small scale and large scale loop closure. This

makes it especially suited to the loopy trajectories often experienced when

making scans of rooms.
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The interesting thing that most of these methods have in common is that,

as input they take a depth-map from an RGB-D sensor. However, there is no

constraint that this must be the case. If depth-maps can be provided from

another source, such as multi-view stereo from a moving monocular camera,

then all of these methods should be directly usable, hence the inspiration for

this chapter.

Newcombe demonstrates this in his thesis [85]; that it is possible to gen-

erate depth-maps from a monocular camera at near frame-rate (∼ 20fps) and

then fuse these depth-maps using the TSDF. The 3D model can then be tex-

tured and used for direct tracking of the camera. The system is bootstrapped

with a feature-based tracker and once there are enough tracked frames to gen-

erate a reliable 3D model, the feature tracker can be deactivated to create a

fully-dense tracking and mapping system.

REMODE [99] is another dense, monocular 3D reconstruction approach.

They generate dense depth maps within a probabilistic framework. Each pixels

depth is represented using a Gaussian plus outlier model. The parameters of

the model are then used to weight each pixels contribution in a variational

regularisation framework. The result is a set of keyframe depth-maps but they

don’t appear to fuse them together. MonoFusion [101] uses a greatly simplified

version of the PatchMatch Stereo algorithm to generate depth-maps and fuses

them together using a TSDF volume. However, the minimal number of results

and no quantitative evaluation casts doubt over the robustness of the system.

We goal of this chapter is to create a monocular 3D reconstruction frame-

work on which we can expand the surface light-field work of Chapter 3. There-

fore, the map needs to be represented in world space rather than a keyframe-

based representation. The two potential representations that stand out from the

prior works above are the TSDF volume and the surfel model. Both of these

have previously been used for RGB-D reconstruction and the TSDF volume

has been demonstrated to work within a monocular system [85]. However, the

TSDF representation is not well suited to surface light-field capture. Within a

surfel based system the surface is already discretised into elements which could

easily be extended to contain lumispheres. The TSDF’s implicit volumetric

representation does not have a simple extension to include surface light-field

data. Additionally, the resolution of the TSDF volume is fixed and indepen-

dent of the resolution of the camera whereas a surfel based model adapts to
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the resolution and scale of the input images and can even handle multiple dif-

ferent scales in one model. Due to these differences we see a surfel-based fusion

approach to be the superior method when the end goal is to capture surface

light-fields.

6.1.1 Tracking

None of these dense-reconstruction methods would be possible without the

massive advancements in camera tracking made over the last decade. Davi-

son’s MonoSLAM [32] was one of the first real-time camera tracking algorithms

which made use of sparse features in a probabilistic framework, notable by

the uncertainty ellipses surrounding each feature in the map. On of the next

big advancements is with Klein and Murrays Parallel Tracking And Mapping

(PTAM) [68] which split tracking and mapping into two separate CPU threads

allowing the use of costly but accurate bundle adjustment in a real-time sys-

tem. This parallel approach has been reused in many other systems since. The

source-code for PTAM was released open-source which gave many researchers

access to efficient, accurate camera tracking to build upon. More recently, ORB-

SLAM [83] is a full SLAM system which is very robust and highly scalable. It

has features not available in PTAM, such as fully automatic initialisation and

large-scale loop closure. As implied by the name, the system uses highly ef-

ficient ORB features [108] and does so for every part of the SLAM pipeline:

tracking, mapping, relocalisation and loop closure detection. This state-of-the-

art SLAM system has been made available open-source and we make use of it

later on.

Another sparse approach is the work of Forster et al . [45] with their Semi-

direct Visual Odometry (SVO) system. This differs from traditional feature-

based methods because it does not use features to compute correspondences

between images, instead it uses the features to define patches on which to per-

form direct Lucas-Kanade style image alignment. Removing the costly feature

extraction and matching during tracking makes the system very efficient and

so it runs at more than twice the frame-rate of PTAM.

More recently with increased processing power dense and semi-dense meth-

ods have appeared. Engel et al . [41] introduce semi-dense visual odometry.

Their system is efficient because it only processes pixels of the image which are
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useful for tracking purposes. They do this by introducing an uncertainty mea-

sure (as in Section 2.4.3) and discarding pixels below a threshold. One of the

reasons that this method works so well is that the distribution of errors in stereo

is generally non-Gaussian due to the presence of outliers, while the inliers do

tend to be well approximated by a Gaussian error model in inverse depth. The

approach of [41] essentially discards pixels which would not fit with their Gaus-

sian error model and the system works well. The surfel fusion approach we use

permits a somewhat similar idea but allows possible outliers to be initially mod-

elled and then discarded when they are known to be outliers. LSD-SLAM [40]

extends the visual odometry of [41] into a full semi-dense SLAM system which

handles loop-closures and scale-drift. They show how the system can scale to

reconstruct entire buildings and can even be adapted to omni-directional cam-

eras [16]. Mur-Artal and Tardós [84] also present a semi-dense mapping system.

For camera tracking they make use of the highly accurate, feature-based ORB-

SLAM and only use the keyframes, which have been optimised using bundle

adjustment, to generate the semi-dense map. The claim is that such a system

is more accurate than a fully semi-dense approach due to the improved local

tracking of keyframes from bundle adjustment.

In this chapter we experiment with various different approaches to camera

tracking; we look at two feature-based trackers, PTAM and ORB-SLAM, which

are available open-source and also implement direct, dense tracking.

6.2 Surfel-based Fusion

Keller et al . [65] proposed a real-time method to fuse RGB-D data based on

surfels (surface elements). We adapt some of the details of their fusion approach

for use in a monocular reconstruction framework: the main differences being

the criteria for deciding whether two surfels should be fused (we use a threshold

that increases with depth) and the confidence function applied to each depth

measurement.

The representation of the world (i.e. map) will be a collection of surfels.

Each surfel is minimally specified by its position in space, a normal vector

defining its orientation, and a radius. Additionally, each surfel can store some

associated metadata. In our case we store a timestamp of when it was created,

an RGB colour value and an uncertainty measure. Rendering of the map can
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be done efficiently with standard graphics pipeline, in this case OpenGL. A

surfel is rendered as a disk with its given position, normal, radius and colour.

As each new depth-map is generated it is fused with the existing surfels

or creates new surfels when no data association can be found. To do the data

association we render the current map as a set of points (zero radius) from the

same viewpoint as the depth-map to create an index map I. It is possible that

multiple surfels render to the same pixel, in which case only one of them will

appear in the index map. To overcome this, Keller et al . render the index-map

at 4 × 4 the resolution of the depth-map and then perform data association

within a 4 × 4 window. We have found this to be unnecessary and prefer to

have the increased performance of rendering at the lower, native resolution.

However, we still search for data associations within a local window.

For each pixel u we look within the local window and find the best associ-

ated surfel from the index-map using the following criteria:

• We discard any surfel where
|D(u)−DSi |

DSi
> τdepth where DSi is the depth

of surfel i in the local window. Unlike in [65] the fuse threshold increases

with depth which better reflects the uncertainty.

• We discard any surfel where cos−1(n̂(u) · n̂Si) > τangle so that the angles

between the normals are too large. We use a larger threshold of τangle =

60◦ due to increased noise from monocular depth-maps.

• From the remaining surfels choose the one whos centre is closest to the

viewing ray emitted from pixel u. Working in the camera frame of refer-

ence, if du is the direction of the ray emitted from u then the distance

from the ray to surfel Si centred at vi is |du×vi|
|du| .

If no surfels were remaining after the first two filtering steps then a new surfel

is created with a timestamp of the current frame.

Once data associations have been made we combine the new depth mea-

surement with the existing surfel information in a Kalman filter style approach.

In reality we store the inverse of the variance, which we will refer to as con-

fidence. Let λs = 1
σ2
s

be the confidence of an existing surfel in the model and

let λm = 1
σ2
m

be the confidence of a new measurement associated with that

surfel. Then, for any quantity vs (position, normal, or colour) of the surfel, the
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confidence-based update is as given by

vs ←
λsvs + λmvm
λs + λm

, λs ← λs + λm. (6.1)

If we re-write this in terms of the variances then we see that this is equivalent

to a Kalman filter update:

vs ←
σ2
mvs + σ2

svm
σ2
s + σ2

m

, σs
2 ← σ2

sσ
2
m

σ2
s + σ2

m

. (6.2)

Keller et al . used an estimate of uncertainty based on the radius from the centre

of the image. This seems to correspond to some approximate measure of un-

certainty when working with Kinect images. In our monocular reconstruction

system we use the depth uncertainty as outlined in Section 2.4.3 although mod-

ified with a maximum uncertainty (minimum confidence) so that texture-less

regions will still fuse into the model.

We also remove surfels to help clean-up the model. For this we use the

same heuristics as Keller et al .:

• Surfels are removed if their uncertainty is still less than some threshold

after a time tmax since the surfel was created.

• We remove any surfels that occlude surfels which have just been fused

with a measurement. This to to satisfy the free-space constraint.

• If after fusion there are surfels with very similar positions and normals

we join them together into one.

As discussed in Section 6.1.1, Engel et al .’s LSD-SLAM works well because

it only considers the pixels which are well modelled by a Gaussian inverse depth

uncertainty. In our surfel fusion approach we are assuming a similar Gaussian

model in the way we fuse and update surfels. But since we are aiming for a

fully dense system, what happens to the pixels which do not obey the Gaussian

model? There are essentially two stages where these outlier pixels can be filtered

out. The first is in the stereo algorithm where we can apply outlier rejection

using the consistency check outlined in Section 5.4. The other place where

outliers are filtered is in the surfel model clean-up. Pixels which have outlier

depth measurements will not be consistent from frame to frame, also they

tend to have a low confidence weighting. The spurious nature of the outliers

means that the surfel created by one is unlikely to be fused with any other
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Figure 6.2: Flowchart of our monocular reconstruction pipeline. When using

a feature-based tracker the dashed line does not connect and, hence, the camera

tracking is not linked to the 3D model. Using dense tracking closes the loop

resulting in a more consistent model and framework.

new measurements which means that it will be discarded after tmax when the

confidence is still below the threshold.

6.3 System Overview

Figure 6.2 gives an overview of the pipeline of the system. Each new image from

the camera is sent to the tracker (feature-based or dense) and, if successfully

tracked, added to a buffer. Frames are then selected from the buffer (Sec-

tion 6.3.2) to generate a depth-map using the methods outlined in Chapter 5.

Finally, the depth-map is fused into the surfel model.

If using dense tracking then the surfel model is used directly for tracking

purposes which, in theory, should result in a more consistent reconstruction.

As the current implementation stands, when using a feature-based tracker the

feature map is disjoint from the surfel map. An area of future work is to unify

these maps.

We consider two implementations of the same system, which depends

on the computation time of the multi-view stereo step. The single-threaded

approach does all processing in the main thread. This includes, image pre-

processing, camera tracking, depth-map generation, fusion and rendering. This

system works well provided the stereo algorithm is fast enough so that the

tracking can still run at a high frame-rate so we use this with the efficient
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coarse-to-fine stereo method detailed in Section 5.3. The double-threaded ap-

proach shifts just the multi-view stereo part into a separate thread. Once a

depth-map has been generated it is passed back to the main thread for fusion

and more frames are grabbed to generate the next depth-map. We use this

approach with our PatchMatch Stereo implementation which does not quite

run at 30fps to allow fast camera tracking.

6.3.1 Tracking

We explore two approaches to camera tracking: the first is to use an existing

feature-based tracking method and the second is to use dense alignment to the

model as discussed in Section 6.4. Using existing feature-based trackers is the

easiest approach to building a reconstruction system but the common approach

of running bundle adjustment in a separate thread causes inconsistencies with

the framework we have established. One can argue that the initial pose (before

bundle adjustment) could be inaccurate and not globally consistent but the

alternative of using the bundle adjusted pose introduces a delay in the system.

We are approaching the reconstruction problem with the application to

robotics and augmented reality. In these situations the thing that really matters

is the estimate of camera position right now and the estimate of the world

geometry right now. Feature-based trackers may provide excellent globally

consistent models with the use of bundle adjustment and loop closure but, as

will be discussed further in Section 6.5.1, these things don’t necessarily matter

for robotics and AR where we are only interacting with things within our current

field-of-view.

The difficulties of using an off-the-shelf feature-based tracker with a sep-

arate dense model is the fact that there are 2 separate maps which aren’t

consistent with each other. If bundle adjustment and loop closure cause defor-

mations to the feature map then these must also be propagated to the dense

map otherwise inconsistencies appear. In practice we have obtained quality

reconstructions using this approach but once the size of the map increases and

large-scale loop-closures need to be performed this issue will need to be ad-

dressed. One approach could be to associate each surfel with a key-frame and

optimise the key-frame poses in the event of a loop-closure. However, such

a system leads to tearing in the dense model at the boundaries between key-
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frames. We hope that future work will be done into combined feature and dense

map representations so that the two can be processed simultaneously.

The recent work of Whelan et al . [128] demonstrates that it is possible to

perform loop-closures on dense surfel-maps obtained from an RGB-D sensor.

As well as large scale loop closures their system is able to cope with smaller

scale loopy trajectories that are often found when scanning with a 3D sensor,

revisiting places which need more detail. Their system works by adding a

temporal dimension to the surfel-map. Surfel fusion will not happen unless

the timestamps of the surfels to be fused are within a threshold. This leads

to a map which can have overlapping geometry from separate passes but can

then be fused when a loop-closure is detected. Loop closure is performed by

warping the space, rather than using key-frames, in order to prevent tearing of

the dense geometry. Such a system shows promise for loop-closure in a dense

RGB tracking and reconstruction system.

6.3.2 Frame selection

In order to ensure good quality results from multi-view stereo we need to have

sufficient baseline between the frames used. We store a fixed size ring-buffer of

past frames from which we select the frames used for stereo. For a new camera

frame to be added to the buffer it must satisfy two conditions: First, the frame

must be successfully tracked relative to the model. Second, the baseline between

the new frame and the last frame added to the buffer must be greater than a

threshold. This is to prevent the buffer filling up with very low baseline images

in the event that the camera stays still.

Given a choice of stereo method from Chapter 5 we choose an optimum

baseline β∗ based on the the last views minimum and maximum observed

depths: We approximate the median inverse depth γ as the mean of the mini-

mum and maximum inverse depths. Then, the optimum baseline is computed

as:

β∗ =
τf

γ
, (6.3)

where τ is a fixed, user defined parameter. The inspiration for this equation

comes from the formula relating focal length, baseline and depth to disparity in

rectified stereo. The variable τ is essentially the disparity of the median inverse

depth value. Given β∗ we then choose the frames from the buffer which are
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Figure 6.3: Left: When using the coarse-to-fine stereo method we use the

latest frame as the reference frame (blue) and another frame chosen from the

buffer (red) for stereo. Right: When using PatchMatch Stereo we choose frames

on either side of the reference frame. Therefore, the reference frame (blue) is

in the middle of the buffer and one of more frames are chosen from either side

(red) closest to the optimum baseline.

closest to this optimal baseline from the current view.

Depending on the stereo method chosen, the reference frame we use may

not be the most recent frame (Fig. 6.3). In our implementation, when using the

coarse-to-fine stereo method of Section 5.3 we use the most recent frame as the

reference and one other frame from the buffer to do stereo. In our PatchMatch

Stereo method we prefer to use images from either side of the reference frame

to help reduce occlusions. Therefore, the reference frame is not the latest but

one from the middle of the buffer. We then choose frames for stereo from either

side of the reference frame, close to the optimum baseline.

6.4 Dense, surfel-based tracking

Once we have a system capable of reconstructing coloured, dense 3D models it

is possible to use dense tracking methods. The camera pose is found by direct

image alignment with the rendered model.

We use the Lucas-Kanade style approach, as outlined in Section 2.9. In

our pipeline we effectively invert the RGB-D odometry method of Steinbrücker

et al . [120]. In their system they perform frame-to-frame tracking by warping

the current image via its depth-map into the previous frame and minimising

the photometric error. In the case of a monocular camera, the frames have no
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depth. However, we can render the fused model to generate an RGB-D frame

from the model. We then track the current monocular RGB image by warping

the rendered RGB-D frame. We use a zero-motion prior, that is, the pose at

which we render the model for tracking is the pose of the previous frame. In

the case when tracking may have failed on the previous frame we use the last

successfully tracked frame.

Let Ir be the RGB-D frame obtained by rendering the surfel model from

the previous camera position and let Ic be the current camera image. The goal

is to obtain the incremental transformation T ∈ SE(3) between the two images.

We define a warp function w() transforming points between two images as in

Eq. 2.30:

w(u; T) = w(u; [R| t]) (6.4)

= π
(
KRK−1D(u)u̇ + Kt

)
. (6.5)

We wish to minimise the error between the current camera image and the ren-

dered RGB-D frame warped into the frame-of-reference of the current camera:

E(x) =
∑
u∈Ω

(Ir(u)− Ic(w(u; T(x)))2 , (6.6)

where Ω defines the set of valid pixels u such that both u and w(u; T(x)) are

within the bounds of the images. As detailed in Section 2.9 we take an iterative

approach to the optimisation and linearise around the current estimate after

each iteration. This leads to minimising the following energy on iteration (k+1):

E(k+1)(x) =
∑
u∈Ω

(
Ir(u)− Ic(w(u; T̂(k)T(x))

)2
, (6.7)

where T(k) is the estimate after the k-th iteration. After each iteration we

compute the update to the estimate as:

T(k+1) = T(k)T(x∗). (6.8)

With this forward-compositional formulation the computation of the jacobian

is dependent on the current estimate T(k). It is also possible to formulate and

inverse-compositional approach:

E(k+1)(x) =
∑
u∈Ω

(
Ir(w(u; T(x))− Ic(w(u; T̂(k))

)2
, (6.9)
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where the update vector x is now estimating the inverse of the transform.

Hence, the update changes to:

T(k+1) = T̂(k)T−1(x∗) (6.10)

= T̂(k) exp(−x∗). (6.11)

Note that with this inverse formulation we do not need to compute two warped

images because we only evaluate the function and its derivatives at x = 0. In

the this case the warp function on Ir is just the identity: w(u; T(0)) = u. The

derivative of the energy is now independent of the current estimate. This means

that JTJ is constant over all iterations (unless using an M-estimator) and does

not need to be recomputed, saving processing time.

6.4.1 Removing outliers

We use the rendering of the model from the previous camera pose for tracking.

Due to lighting changes and incomplete or inaccurate geometry there may be

surfels rendered which are not consistent with that viewpoint. Therefore, to

make tracking more robust we compare the RGB rendering of the model to the

RGB image associated with that camera pose. Given the rendered reference

frame Ir we compare to all corresponding pixels in a local neighbourhood of the

reference camera image Irc . If there are no values within the threshold τoutlier of

each other then we remove those pixels from the tracking step. We look within

a local neighbourhood, rather and just direct pixel correspondences, to make

it more robust to slight tracking and aliasing errors. We introduce the weight

woutlier which is zero when the pixel is removed from the tracking:

woutlier(u) =

0, if ‖Irc(u′)− Ir(u)‖ > τoutlier for all u′ ∈ N (u),

1, otherwise.
(6.12)

We generally set τoutlier = 20 and the neighbourhood N (u) is a 5× 5 window.

In practice, this process removes specular regions and inaccurate geometry

caused by occlusions or motion of objects. Figure 6.4 demonstrates this.

6.4.2 Surfel weighting

Some surfels will provide better information for camera tracking than others.

Therefore we apply a weighting scheme to each surfel based on a number of
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Figure 6.4: Outlier removal. The rendered model image (middle) is compared

to the camera image (left). Pixels that are inconsistent are removed (right).

Removing the outliers can make tracking more robust. Specularities, such as

on the table in the bottom left of the images, are a typical occurrence which are

removed by this processing.

factors. The weights are defined in the coordinates of the rendered reference

image Ir as we have direct pixel to surfel correspondences after the initial render

pass.

To track the camera at pixel or sub-pixel accuracy, the resolution of the

rendered model needs to match (or exceed) the resolution of the camera. In

other words, the size of the surfels projected into the camera should be the

same (or smaller) than the size of the pixels. Therefore we weight the pixels to

be tracked by their projected surfel sizes.

wradius = min

(
1,

Rpixel

Rsurfel

)
, (6.13)

where Rpixel is the radius of the pixel with the current rendered depth estimate

and Rsurfel is the radius of the surfel rendered to that pixel. If the radius of

the surfel is larger than that of the pixel then it is down-weighted.

Another important surfel property to use in tracking is the normal. Every

surfel has a normal and surfels which are fronto-parallel to the camera view will

provide more reliable information than those at oblique angles. This leads to

the following weight function:

wnormal = n̂z. (6.14)

Surfels with normals pointing towards the camera (n̂z = 1) are given the most

weight and surfels with normals pointing away from the camera are ignored in

the rendering step (hence wnormal > 0).
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(a) (b) (c) (d)

Figure 6.5: Some examples of the weights used for surfel-based tracking. Most

noticeable is the effect of surfel radius; points closer to the camera in (a) and (b)

have been down-weighted because they lack the resolution for accurate tracking.

In (c) the weights are lower than in (d) because the camera is closer. Fusion

was turned off while capturing these images, if it had been active then the surfels

would have reduced in size to match the resolution of the camera and the weights

would be more even.

The final weighting term is based on the surfel confidence. When rendering

the reference frame from the model we have already discarded unstable surfels

which have a confidence below a given threshold. However, there are still a

range of confidences in the remaining surfels and it makes sense to give more

weight to those which are more certain. To this end we introduce the following

energy.

wconfidence = min

(
1,

λ

αλthresh

)
, (6.15)

where λ is the confidence measure of the pixel, λthresh is the confidence threshold

used when rendering the frame model for tracking, and α ≥ 1 is a tunable

parameter. The pixels will then have weights on the range [α−1, 1]. We typically

set α = 2.

We combine all these weights as a product and an example of the final

weights is given in Fig. 6.5.

6.4.3 M-Estimators

As well as the fixed, surfel-based weighting we make use of an M-estimator to

further enhance robustness. M-estimators have been used extensively in the

literature on dense tracking methods [40, 66, 76, 85]. The principal is to have a

model predict whether a pixel is an outlier or not and then automatically down-

weight the outliers to minimise their effect on the result. With a traditional
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L2 metric on the pixel errors, large outliers cause large gradients which can

pull the solution away from the true optimum. By being able to automatically

remove these pixels their effect is minimized. We outline the approach to using

an M-estimator in Section 2.9.2.

For tracking we make use of Tukey M-estimator (as used in [76]) which is

defined as follows:

ρ(x) =


c2

6

(
1−

(
1−

(
x
c

)2
)3
)
|x| ≤ c,

c2

6
otherwise,

(6.16)

w(x) =


(

1−
(
x
c

)2
)2

|x| ≤ c,

0 otherwise.
(6.17)

Because the Tukey function down-weights pixels with large errors, starting with

a small value of the Tukey parameter, c, is bad for tracking; initially, almost all

pixels have high residuals and end up with zero weight. Therefore, we start with

a large value of the Tukey parameter to enable initial convergence towards the

solution and then decrease it on subsequent iterations to remove any outliers.

Note that the M-estimator could be used to automatically remove the

outliers processed in Section 6.4.1. However, given that it is easy enough to

remove these pixels manually, it makes sense to do so and this enhances the

convergence of the M-estimator problem.

Combining the M-estimator with the weights defined in Section 6.4.2, the

final energy which we minimize for tracking purposes is:

E(x) =
∑
u∈Ω

w(u)ρ
(
Ir(u)− Ic(w(u; T(x)))

)
, (6.18)

where ρ(x) is the Tukey function and w(u) are the fixed weights computed as

the product of the outlier, radius, normal and confidence weights introduced

above.

6.4.4 Initialisation

When using a feature-based tracker the initialisation of the dense reconstruction

system is trivial, it just follows from the initialisation of the tracker. When using

a dense tracking system this is not so trivial.
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Typically a feature-based system will initialise by taking two frames which

involve camera translation and use feature matching to estimate the fundamen-

tal matrix. PTAM provides a manual interface for the user to select these two

frames while ORB-SLAM does this automatically once sufficient translation

baseline has been achieved.

When we want to use dense tracking with our system there are two ways

that we have used to initialise. The first method is to just bootstrap the system

with a feature-based tracker. Once a partial model of the world is constructed,

we turn off the feature-based tracking and rely solely on the dense tracking

from the dense model. The second method is to give a random or constant

depth-map to the first camera frame, fuse it into the model and then track

from it. This artificial initialisation is often good enough to start tracking a

few frames to get better depth-maps and start refining the model. The constant

depth assumption works especially well if the system looks at a roughly planar

surface face-on. A similar random depth initialisation scheme is used by Engel

et al . [40] to initialise their semi-dense SLAM system.

In practice we tend to use a feature-based tracker to bootstrap the system

because it is more robust than the random initialisation method.

A future avenue to explore in fully-dense SLAM initialisation is joint optical

flow and fundamental matrix estimation. Valgaerts et al . [125] use variational

methods to do exactly that; Optical flow is estimated between two camera

frames and then the weighting of an epipolar constraint is incrementally in-

creased. This constrains the flow to be along the epipolar lines defined by the

estimated fundamental matrix. The recovered fundamental matrix and optical

flow can then be used to generate a depth-map and we now have a fully dense

equivalent of the two frame initialisation used in feature-based systems.

6.5 Results

Figure 6.6 shows a number of scenes reconstructed with the described sys-

tem. We also provide some screen-captures of the reconstruction process in

Appendix A.

The reader will note that the models are not fully dense, they still show

holes in some areas. The holes are regions where there has not been sufficient
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Figure 6.6: Reconstructions made using the reconstruction system outlined in

the previous section. We use a coarse-to-fine approach to estimate depth maps

and use ORB-SLAM for tracking.
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(a) ORB-SLAM, PM-S (b) ORB-SLAM, C2F (c) Dense tracking, C2F

Figure 6.7: Reconstructions of the same scene using different stereo methods

and different tracking methods.

confidence to know the placement of the model. Regions where this occurs are

usually due to texture-less regions. The depth measurements in these areas

tend to be highly noisy, so are either discarded in the temporal consistency

check (Section 5.4) or low-confidence surfels have been created but not enough

of them have fused to pass the confidence threshold required. Unlike semi-dense

systems we don’t discard low-confidence measurements from the beginning but

allow multiple low-confidence measurements the chance to fuse into a more

confident estimate. Holes can also appear in regions which don’t adhere to the

Lambertian assumption, like specular regions, which causes erroneous depth

measurements which don’t fuse (further discussed in Section 6.5.2).

Figure 6.7 demonstrates the reconstruction of the same scene using dif-

ferent stereo methods and tracking methods. For tracking we use the feature-

based ORB-SLAM and the direct, dense method outlined in Section 6.4. For

depth-map generation we use the accelerated PatchMatch Stereo with Huber

regularisation and compare to the fast coarse-to-fine method in Section 5.3.

In this example, the is qualitatively not much difference between the various

methods. However, our PM-S method only runs at 2Hz, compared to the C2F

method running at the full 30Hz of the camera. This means that there is a

noticeable delay between a camera viewing an area of the scene and it being

fused into stable vertices in the reconstruction. This lag makes the system less

user friendly, less intuitive and is also the reason why there is no example show

of it combined with dense tracking – the dense tracking relies on the surfel

model being updated quickly so it has something to track from, it was unable

to cope with the lag in the system. With the C2F method the fused model ap-

pears almost instantaneously leading to intuitive scanning of unseen areas and

effective dense tracking. Overall, even though the PatchMatch based stereo
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(a) ORB-SLAM (b) ORB-SLAM, zoomed (c) Dense tracking

Figure 6.8: Reconstructions of loop trajectory around a 4m×4m room to

evaluate the drift of different tracking methods. The drift with ORB-SLAM is

minimal, as indicated by the green angles in (b) (which should align). The dense

tracking appears to suffer from significant scale drift.

method gave higher quality individual depth maps there was not a significant

difference between the two approaches, possibly due to many more frame being

fused in the coarse-to-fine approach. We found that using the simple coarse-

to-fine method and fusing at 30fps gave a much more usable system for online

reconstruction.

To evaluate the tracking accuracy over larger scale trajectories we per-

formed a reconstruction of a 4m×4m. The camera was kept an average of

50cm from the surface around the edge of the room so that the relative length

of the trajectory was large. The results for both ORB-SLAM and dense track-

ing are shown in Fig. 6.8. Note that loop closure in ORB-SLAM was turned

off. ORB-SLAM performs remarkably well with a very low level of drift. In

contrast, the dense tracking exhibits a significant scale drift. The reason for

which is currently unknown. Both trackers used the same camera calibration

parameters. One possible explanation is bias in the depth estimates. If, for

some reason, there was a systematic under-estimate of the depth values then

tracking from these could lead to the scale drift.

When generating the reconstructions in Fig. 6.8 it was interesting to note

that the dense tracking approach appeared to fuse data much more quickly into

the model. Given that the fusion parameters were exactly the same between the

two this indicates that the frame-to-frame depth estimates were more consistent

leading to more surfels fusing and become stable quicker. This in a way makes

sense because the tracking should be self-consistent with the current estimate

of the model. The effect of this is further noticable in the right hand side of the
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trajectory. The ORB-SLAM based reconstruction in Fig. 6.8a has siginifcant

holes in the top right hand corner. The depth estimates here were not consistent

enough to fuse into stable surfels. In contrast, the dense model was able to

reconstruct this area, although there were a significant number of un-tracked

frames when navigating that area.

6.5.1 Evaluation of Dense Reconstruction

The evaluation of dense reconstruction methods is a tricky problem in itself.

As far as we are aware there are no evaluation datasets aimed specifically at

real-time monocular reconstruction. We therefore take a look at some RGB-D

evaluation datasets which provide some useful tools we can use to evaluate on

our own datasets.

The TUM RGB-D Dataset [122] is aimed at benchmarking visual odometry

and visual SLAM systems using RGB-D input. They provide a number of

ground-truth trajectories to evaluate tracking accuracy but no 3D model data.

The ICL-NUIM Dataset [54] is a synthetically rendered RGB-D dataset.

Each trajectory consists of highly realistic, ray-traced RGB-D images, again

it is mainly aimed at evaluating depth-sensor based systems. Since it is syn-

thetic, ground-truth trajectories as well as the 3D model are available for accu-

rate benchmarking. The metrics which they provide are focused at computing

the mean error of the full reconstruction after processing an entire trajectory.

Because the dataset is mostly aimed at RGB-D reconstruction systems, the

trajectories don’t always contain sufficient translation for monocular tracking

to work robustly. There are also large areas with very little texture which are

challenging for passive vision systems. Indeed, when processing these datasets

we found that only a partial model could be reconstructed before the tracking

would fail. ORB-SLAM performed the best job of tracking but still suffered

from significant drift due to lack of features in some parts and lack of baseline

for matching on others. Our reconstruction system currently does not handle

loop closures in ORB-SLAM so this feature is turned off. This means that drift

in the tracking causes inconsistent models, as seen in Fig. 6.9.

Since these existing datasets do not map well to monocular systems, we

do some basic evaluation of our reconstruction system using the desk dataset
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Figure 6.9: Our reconstruction system does not yet handle loop closures. If

drift accumulates the model severely deteriorates.

in Section 2.11.2. The sequence is synthetically rendered using POVRay so we

have ground-truth trajectory, depth-maps and a 3D model. We make use of the

error metrics from the datasets detailed above and introduce our own metric

as well.

To measure the trajectory error we use the absolute trajectory error metric

as used in the TUM RGB-D dataset. They first align the trajectories using

the method of Horn [61] and then compute the mean absolute error between

corresponding poses. Since their dataset is aimed at RGB-D sequences the scale

is known. We augment the trajectory alignment script to also solve for the scale

difference between our captured monocular sequence and the ground-truth.

To measure the reconstruction error we use the SurfReg tool provided with

the ICL-NUIM datasets. This system aligns the reconstructed point-cloud via

ICP to the ground-truth and outputs the RMSE. Again, we must account for

the scale difference when using this tool.

The results of using these metrics are shown in Table 6.1 where we com-

pare the reconstruction when using sparse tracking (ORB-SLAM) versus direct,

dense tracking. We see that the state-of-the-art feature-based SLAM system

is able to give a more accurate trajectory and a more accurate reconstruction.

The quality of the reconstruction is likely still the limiting factor for dense

tracking. When comparing the final 3D reconstructions in Fig. 6.10 the dense-

tracked version has more outliers and erroneous points. The build up of these

bad surfels will affect the robustness and accuracy of the tracking. It is clear
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Trajectory Reconstruction

Sparse 0.135474 0.0119082

Dense 0.213217 0.0204913

Table 6.1: A comparison of the absolute trajectory error and the RMSE of

the reconstruction for the desk dataset (Section 2.11.2). We compare the result

using sparse tracking (ORB-SLAM) and direct, dense tracking.

Figure 6.10: Reconstruction of the desk dataset in Section 2.11.2 using ORB-

SLAM for tracking (left) versus direct, dense tracking (right).

to see that an overall in the quality of the depth-maps and reconstruction will

have a positive effect on tracking performance as well.

We propose an alternative metric for reconstruction accuracy based on the

current viewpoint error, which we feel is highly relevant to online reconstruction

algorithms, especially when used in AR or robotic interaction scenarios. In

both of these cases it is the accuracy of the current, incremental estimate of the

world which is relevant. For AR the accuracy and realism of how virtual objects

interact with the scene is dependent on this. For robots it is the current estimate

of the geometry that will be used for interaction. Using the final reconstructed

result does not seem to make sense in these situations. For example, a trajectory

could have accumulated significant drift which will severely degrade the absolute

trajectory and reconstruction errors. However, if the local, incremental estimate

is good then the system could still be a good choice for AR or robotics.

Our metric compares the current model estimate to the ground-truth on

every frame during incremental reconstruction. After a frame has been fused

into the model we render the model from the current estimated camera pose,

yielding an RGB image and a depth-map (Fig. 6.11b). We then compare this to
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(a) Ground-truth (b) Reconstruction (c) Difference

Figure 6.11: An example of comparing the ground-truth to the current, in-

cremental estimate of the surfel model. We believe that evaluating the error on

a per-frame, incremental basis is more relevant in scenarios like AR.

the ground-truth RGB frame and depth-map for the current frame (Fig. 6.11a)

and compute the mean absolute error between the two.

Figure 6.12 shows an example of this metric applied to both dense and

sparse tracking on the desk dataset Section 2.11.2. We see that, in general,

dense tracking gives a lower RGB error. This is to be expected because this

is the exact error minimised to perform dense tracking. However, the sparse

tracking appears to give slightly better depth estimates. Since the dense track-

ing is performed frame-to-model and the depth-map generation is dependent

on the frame-to-frame transform, it may be possible to improve the depth-maps

estimated from the dense method by doing a frame-to-frame pose refinement.

This is a topic for future research.

6.5.2 Reconstructing Specular Surfaces

One of our initial motivations for dense 3D reconstruction was the ability to

extend the work in Chapter 3 to capture surface light-fields on non-planar sur-

faces. However, one will note that the assumptions made of photo-consistency

break down when surfaces exhibit specular lighting effects. In practice we have
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Figure 6.12: The RGB error (left) and inverse depth error (right) of the

incrementally reconstructed surfel model versus the ground truth RGB and in-

verse depth data. Here we compare the same algorithm run with both dense and

sparse (ORB-SLAM) tracking.

Figure 6.13: The specularity on the lower right corner of the table (left) pre-

vents the surface from being reconstructed (middle), resulting in a hole. How-

ever, with a change of viewpoint we are able to reconstruct the surface from

views where there is no specular component (right).

found that this isn’t always a big problem.

Very often the specular component of the illumination is negligible except

for a small set of viewing directions. What we observe is that when there

is a strong specular component, the stereo algorithm does not give consistent

depth from frame to frame. As a result, the points never fuse together to

form stable surfels in the model and these do not pose a problem. If the

viewing direction now changes to one without specularities the surface can be

reconstructed accurately from the diffuse component.

Figure 6.13 shows an example of this happening. In the left image the sur-

face of the table has not been reconstructed due to the large specular component
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leading to inconsistent depth measurements. With the change of viewpoint in

the right image the surface has been reconstructed from the diffuse component.

6.6 3D Surface Light-fields

Extending the planar surface light-fields of Chapter 3 to 3D surfaces is an

extremely hard problem. Accurately recovering the geometric information and

surface light-field is both computationally and memory intensive. This is made

even more difficult by the decision to do acquisition using a single moving

camera. The work in this chapter has taken a big step towards recovering the

geometry required for the surface light-field but there is still work to do before

we can apply the algorithms of Chapter 3 to general 3D surfaces.

The computational and memory demands for such a system are great.

In a typical use case of our point-based fusion system we have approximately

4 × 105 surfels for a small desk sized scene and easily > 1 × 106 for a larger

scene. Compare that to typically < 1 × 105 in our planar surface light-field

work. The basic extension of the surface light-fields to 3D would be to allow a

lumisphere per surfel, requiring 6.4GB of GPU memory to store the entire light-

field, excluding surfel data (with 4000 points per lumisphere). A simple memory

saving technique would be to subsample the surfels which will be selected to hold

lumispheres, either focusing them densely on a particular region or spreading

them sparsely over the entire scene.

Currently, the accuracy requirements are the biggest factor preventing our

system generalising to 3D. Firstly, geometry must be estimated accurately

enough to ensure that each light ray in a lumisphere corresponds to the ex-

act same point on the surface. A slight error in the position can result in a

significant misalignment, as shown in Fig. 6.14. In this case, the data in the

lumisphere samples different points on the surface, instead of the same point

from different direction, and so cannot give us true reflectance information.

Secondly, if we would like to estimate illumination from the captured model

then noise in the surface normals also becomes a significant problem. The an-

gle between the incident ray and the reflected ray is twice the angle between

the incident ray and the normal. Therefore a slight error in the orientation of

the normal leads to double the error in estimating the light-source direction.
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Figure 6.14: When capturing a surface light-field the position of the lumi-

sphere must be accurate to the true geometry (left). Otherwise, instead of sam-

pling varying view directions of the same surface point we sample different points

on the surface (right).

Wood et al .’s [131] work on general 3D surface light-fields makes use of

a laser scanner to acquire the 3D geometry of the object, so it is known very

accurately. It would be possible to adopt such an approach while still using

a hand-held camera to do the acquisition of the light-field, however, the focus

of this thesis is to have the entire pipeline fully monocular. Currently, the

monocular reconstruction system demonstrated above is not accurate enough

for full surface light-field capture but we believe that the basic building blocks

are in place. A monocular 3D reconstruction system is a union of a number

of already complex systems (camera tracking, depth estimation, fusion) and to

work to its full potential requires each component to be working at its best and

complementing the other parts.

Aside from improving the 3D reconstruction there could be other ap-

proaches to overcome the accuracy problem. Even if the geometry is inaccurate,

the data stored in the captured lumispheres is still valid light-field data; they

store the intensity of the light ray passing through that 3D point in space. If

the geometry could be refined in some way, via post-processing or otherwise

then the data in the captured light-field could be remapped to lumispheres on

the real surface. An interesting area of future work is to use light-field data

captured from the inaccurate geometry to refine the 3D model.
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7

Conclusion and Future Work

In this thesis we have taken some steps towards enhanced scene understanding

from a monocular camera. There is still a lot to learn and to be discovered

about how to efficiently interpret the huge wealth of data from a monocular

video feed and we hope that the work presented here can help direct some of

that future work.

In Chapter 3 we showed that real-time acquisition of planar surface light-

fields is possible when harnessing the increased processing power of modern

GPUs. We went on to use the surface light-field to estimate the environment

map, in essence demonstrating the use us of the specular surface as a planar

light probe. The recovered environment map can then be used to improve the

realism of virtual objects placed in augmented reality, this was demonstrated by

placing virtual objects on a specular surface while casting realistic shadows and

handling specular occlusions. Finally, in the end of the chapter we used dense

image alignment techniques to recover the bump-map of the surface, further

enhancing the realism of augmented reality.

The work in Chapter 4 introduced a new class of mesh deformations known

as sculptural stylization. Our motivation was based on the fact that sculptors do

not always aim for geometric accuracy but will manipulate shapes to change the

interaction of the illumination, reflectance and shadows which brings depth to

a sculpt in a material of constant albedo. We built up a mathematical model

of some techniques used in classical sculpture and put it into optimisation

framework allowing the user to enhance, smooth and deform a mesh in an

entirely new way.

The research in Chapters 5 and 6 was undertaken to try to expand the

work of Chapter 3 to work with general 3D surfaces. In Chapter 5 we first gave

an overview a few classic and high performance methods for real-time stereo

and introduced a temporal consistency check to aid in the removal of outliers.
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We followed this with an in-depth performance analysis of PatchMatch Stereo

and presented a number of tweaks and modifications to help the once offline

algorithm to run at real-time rates. Chapter 6 then built upon the real-time

stereo work, integrating it into a full 3D reconstruction system. We outlined the

key components needed to build a such a system and demonstrated it with both

feature-based tracking and dense, camera-to-model tracking. During evaluation

we showed that the quality of the reconstruction and dense tracking was not yet

able to keep up with the accuracy of a state-of-the-art feature-based tracking

method.

7.1 Discussion and Future Work

In the introduction we discussed the potential for lighting and reflectance infor-

mation to aid in recognising materials. A real-time surface light-field capture

tool, such as the one we presented, could be used to acquire training data for

material classification problems. Designing a system to capture large quantities

of data and finding the best representation on which to train a classifier are big

challenges to overcome to achieve this goal. However, making use of surface

reflectance properties has the potential to dramatically increase classification

accuracy compared to current single image systems.

While we were not able to successfully expand our light-field capture work

to general 3D surfaces, it is something we still believe to be achievable. The

main limitation of our approach was the accuracy of the 3D reconstruction. We

accepted a huge challenge by attempting to do everything from a monocular in-

put, many components needed to work together in unison to ensure a consistent

model and we don’t feel the maximum potential of the system was achieved.

To accelerate future work in the area it may be advantageous to capture the ge-

ometry initially using an active RGB-D sensor, like those from Primesense, and

then switching to a monocular camera for surface light-field acquisition. High

quality RGB-D reconstruction systems already exist and hence the complexity

of the system and dependency on individual components to perform their best

is greatly reduced.

In our experiments the feature-based tracker outperformed the dense track-

ing approach. With increases in the quality of the depth-maps from stereo we

expect the dense tracking to improve but future work should also focus on

180



finding a way to tightly integrate live dense reconstruction with feature-based

tracking. The maps from both dense stereo and feature-tracking should be

consistent with each other and correctly handle bundle adjustment and loop

closures.

We believe our work on sculptural stylization to be the first in this area of

research and we hope that it will inspire more innovation in this field. So much

work has been done stylizing 2D images to look like the work of famous artists

that surely it is natural to extend much of this work to the 3D domain. We

predict that decreasing costs of scanning hardware and easy access 3D printing

services will help drive research in this area.
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Appendices

A

Video Appendix

Real-Time Surface Light-field Capture for

Augmentation of Planar Specular Surfaces

https://youtu.be/pky822zG4hM

Interactive 3D Face Stylization Using

Sculptural Abstraction

https://youtu.be/CwclaQ1NpeM

Monocular reconstruction of a desk scene

using ORB-SLAM for camera tracking

https://youtu.be/KaGhgzVEvDc

Monocular reconstruction of a desk using

dense, surfel-based tracking

https://youtu.be/IKLp1Af vdE
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B

Lie Group Generators

B.1 Special Orthogonal Group: SO(3)

G0 =

0 0 0

0 0 1

0 −1 0

 , G1 =

0 0 −1

0 0 0

1 0 0

 , G2 =

 0 1 0

−1 0 0

0 0 0

 .

B.2 Special Euclidean Group: SE(3)

G0 =


0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 , G1 =


0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , G2 =


0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 ,

G3 =


0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , G4 =


0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , G5 =


0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 .
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C

Huber Conjugate

I’ve seen many unsatisfying derivations of the Legendre-Fenchel conjugate of

the Huber norm, I hope to clarify here. Let us first recall the definition of the

Huber function and the Legendre-Fenchel transform:

F (x) = |x|α =


|x|2
2α
, |x| ≤ α

|x| − α
2
, otherwise.

(C.1)

F ∗(y) = max
x

(
yTx− |x|α

)
(C.2)

= max

(
max
|x|≤α

(
yTx− |x|

2

2α

)
,max
|x|>α

(
yTx− |x|+ α

2

))
(C.3)

Let’s look at the first case |x| ≤ α. This is a simple quadratic so we can find

the maximum by setting the derivative w.r.t x to 0. This gives that x = αy.

Substituting this into the function and the constraint we get:

max
x≤α

(
yTx− |x|

2

2α

)
=
α

2
|y|2 , for |y| ≤ 1 (C.4)

Now we look at the other case. The maximum of yTx− |x| must be when x is

in the same direction as y such that x = λ y
|y| for some λ > 0. Now, considering

the restricted domain |x| > α =⇒ λ > α we can compute the following:

max
|x|>α

(
yTx− |x|+ α

2

)
= max

λ>α

(
λ
(
|y| − 1

)
+
α

2

)
=

α |y| − α
2
, |y| ≤ 1

∞, otherwise.

(C.5)

If we now look at the case when |y| ≤ 1 we see that the quadratic function in

Eq. C.4 is always greater than the linear term in Eq. C.5. Therefore, on this

domain the quadratic term wins in Eq. C.3 and outside this domain the infinity

term in Eq. C.5 wins. We can now write down the conjugate:

F ∗(y) =

α
2
|y|2 , |y| ≤ 1

∞, otherwise.
(C.6)
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D

Derivatives on Graphs

Zhou and Schölkopf [135] give a good definition of a graph:

A graph G = (V,E) consists of a finite set V , together with a subset

E ⊆ V × V . The elements of V are the verticies of the graph, and

the elements of E are the edges of the graph. We say that an

edge e is incident on vertex v if e starts from v. [...] A graph is

undirected when the set of edges is symmetric, i.e. for each edge

[u, v] ∈ E we also have [v, u] ∈ E. [...] A graph is weighted when

it is associated with a function ω : E → R+ which is symmetric,

i.e. ω([u, v]) = ω([v, u]), for all [u, v] ∈ E. The degree function

d : V → R+ is defined to be d(v) =
∑

u∼v ω([u, v]), where u ∼ v

denote the set of vertices adjacent with v, i.e. [u, v] ∈ E. Let H(V )

denote the Hilbert space of real-valued functions endowed with the

usual inner product 〈f, g〉H(V ) =
∑

v∈V f(v)g(v), for all f, g ∈ H(V ).

Similarly define H(E).

From this definition it is easy to see that a triangular mesh is a type of undi-

rected graph.

To define the gradient of a function on a graph we take inspiration from

the finite difference gradient (in this case forward difference):

f ′h(x) =
f(x+ h)− f(x)

h
. (D.1)

In this case the change of f is divided by the finite difference length. We use

a similar method on the graph. Let g(u, v) be some distance function on the

graph (for example, edge length) then we define the gradient along edge [u, v]

to be:

(∇f)([u, v]) =
f(v)− f(u)

g(u, v)
= ω([u, v])

(
f(v)− f(u)

)
, (D.2)

where we define the edge weight ω([u, v]) to be the inverse of the distance
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function. We define the divergence operator using the following inner product

relationship:

〈∇f, F 〉H(E) = 〈f,− divF 〉H(V ). (D.3)

We can then derive the divergence explicitly:

〈∇f, F 〉 =
∑

[u,v]∈E

∇f([u, v])F ([u, v])

=
∑
v∈V

∑
u∼v

ω([u, v])
(
f(v)− f(u)

)
F ([u, v])

=
∑
v∈V

∑
u∼v

ω([u, v])f(v)F ([u, v])−
∑
v∈V

∑
u∼v

ω([u, v])f(u)F ([u, v])

=
∑
v∈V

∑
u∼v

ω([u, v])f(v)F ([u, v])−
∑
v∈V

∑
u∼v

ω([u, v])f(v)F ([v, u])

= −
∑
v∈V

f(v)
∑
u∼v

ω([u, v])
(
F ([v, u])− F ([u, v])

)
= −

∑
v∈V

f(v) divF (v) = 〈f,− divF 〉.

Hence, the divergence operator is:

divF (v) =
∑
u∼v

ω([u, v])
(
F ([v, u])− F ([u, v])

)
. (D.4)

We now combine define the Laplacian in terms of the divergence of the gradient

operator:

(∆f)(v) = −1

2
div(∇f)(v) (D.5)

=
∑
u∼v

ω2([u, v])
(
f(u)− f(v)

)
(D.6)

It is easy to see that this is the same as the mesh Laplacian in Section 2.10.1.
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E

PatchMatch Propagation Kernels

1 __global__ void DownPassKernel(Image planes , ...) {

2 const int x = threadIdx.x;

3

4 if(x>width -1) return;

5

6 for( int y = 1; y<height; y++)

7 {

8 planes(x,y) = GetMinCostPlane(

9 planes(x,y), // current

10 planes(x-1,y-1), //above , left

11 planes(x,y-1), // above

12 planes(x+1,y-1) //above , right

13 );

14

15 // Synchronize threads in the block

16 __syncthreads ();

17 }

18 }

1 __global__ void ScanlinePassULKernel(Image planes , ...) {

2 const int y = threadIdx.x;

3 const int smax = width+height -1;

4

5 if(y>height -1) return;

6

7 for(int s=0; s<smax; s++)

8 {

9 const int x = s - y;

10

11 if( x<0 ) continue;

12 if( x>width -1 ) return;

13

14 planes(x,y) = GetMinCostPlane(

15 planes(x,y), // current

16 planes(x-1,y), //left

17 planes(x,y-1) // above

18 );

19

20 // Synchronize threads in the block

21 __syncthreads ();

22 }

23 }
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1 __global__ void ParallelKernel(

2 Image old_planes , Image new_planes , ...) {

3 const int x = blockIdx.x*blockDim.x + threadIdx.x;

4 const int y = blockIdx.y*blockDim.y + threadIdx.y;

5

6 if(x>width -1 || y>height -1) return;

7

8 new_planes(x,y) = GetMinCostPlane(

9 old_planes(x,y), // current

10 old_planes(x-1,y), //left

11 old_planes(x+1,y), //right

12 old_planes(x,y-1), //above

13 old_planes(x,y+1) //below

14 );

15 }

1 __global__ void JumpFloodKernel(

2 Image old_planes , Image new_planes , int step , ...) {

3 const int x = blockIdx.x*blockDim.x + threadIdx.x;

4 const int y = blockIdx.y*blockDim.y + threadIdx.y;

5

6 if(x>width -1 || y>height -1) return;

7

8 new_planes(x,y) = GetMinCostPlane(

9 old_planes(x,y), // current

10 old_planes(x-step ,y), //left

11 old_planes(x+step ,y), //right

12 old_planes(x,y-step), //above

13 old_planes(x,y+step) //below

14 );

15 }

To call these CUDA kernels we must also specify the configuration arguments:

1 DownPassKernel <<<1,width >>>(planes ,...);

2 UpPassKernel <<<1,width >>>(planes ,...);

3 LeftPassKernel <<<1,height >>>(planes ,...);

4 RightPassKernel <<<1,height >>>(planes ,...);

5 ScanlinePassKernel <<<1,max(width ,height) >>>(planes ,...);

6

7 dim3 threadsPerBlock (16 ,16);

8 dim3 blocksPerGrid(

9 width /16 + ( width %16 ? 1 : 0 ),

10 height /16 + ( height %16 ? 1 : 0) );

11

12 ParallelKernel <<<blocksPerGrid ,threadsPerBlock >>>(old_planes ,

new_planes ,...);

13 for( int power =3; power >=0; power --) {

14 int step = 1 << power; // power of 2

15 JumpFloodKernel <<<blocksPerGrid ,threadsPerBlock >>>(

old_planes , new_planes , step ,...);

16 }
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F

Lanteri Constraints

In selecting geometric constraints to preserve individual facial characteristics,

we identified seven passages of Lanteri [1911, 1985] that correspond to nine

relative measurements between points on the surface of the model. All of these

passages refer to maintaining distances between points, but our optimization

only modifies the face region, so measurements to points such as the ears or the

top of the sternum are treated as absolute positional constraints rather than

relative ones. The table below provides these seven passages, along with our

interpretation of each as a distance constraint.

Page Passage Constraint

15 “...with your calipers measure the distance from

corner to corner of the mouth, and set this

distance off on your horizontal line.”

distance between mouth

corners

19 “measure with calipers the length of the nose” distance from bridge to

tip of nose

43–44 “calculate or measure (from the place where you

fixed the articulation of sternum and collar-bone)

the height of the chin...”

absolute position of chin

tip

48 “Measure on your model the distance from the

notch of the ear to the most projecting part of the

nose-tip (Fig. 38) (take this measure on both

sides, for you will frequently find that the distance

on right and left side varies)”

absolute position of nose

tip

50 “...the distance from the chin to the eyebrows...

by describing an arc on the model, in order to find

out if the eyebrows are of the same height on

either side...”

distance from chin to

each eyebrow (2)

53 “...model the upper jaw, marking at once the two

corners of the mouth, well observing their relation

to the size of the nostrils.”

distance from each corner

of mouth to same side of

nose (2)

58–59 “A careful measurement from inner corner to

inner corner...”

distance between inner

corners of eyes
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