
Imperial College London

Department of Computing

Parametric Dense Visual SLAM

Steven Lovegrove

September 2011

Supervised by Dr. Andrew Davison

Submitted in part fulfilment of the requirements for the degree of PhD in

Computing and the Diploma of Imperial College London. This thesis is entirely

my own work, and, except where otherwise indicated, describes my own research.

Abstract

Existing work in the field of monocular Simultaneous Localisation and Map-

ping (SLAM) has largely centred around sparse feature-based representations of

the world. By tracking salient image patches across many frames of video, both

the positions of the features and the motion of the camera can be inferred live.

Within the visual SLAM community, there has been a focus on both increasing

the number of features that can be tracked across an image and efficiently man-

aging and adjusting this map of features in order to improve camera trajectory

and feature location accuracy.

Although prior research has looked at augmenting this map with more so-

phisticated features such as edgelets or planar patches, no incremental real-time

system has yet made use of every pixel in the image to maximise camera tra-

jectory estimation accuracy. Moreover, across many practical domains, these

feature-based representations of the world fall short. In robotics, sparse feature-

based models do not allow a robot to reason about free space and are not so

useful for interaction. In augmented reality, sparse models do not allow us to

place virtual objects behind real-ones and cannot enable virtual characters to

interact with real objects.

In this research we show how a dense surface model offers many advantages

and we explore different methods of reasoning about dense surfaces over a sparse

feature-based map. We continue by developing different methods for dense

tracking and constrained dense SLAM in different applications such as spherical

mosaicing. Finally, we show how live dense tracking can be tightly integrated

with dense reconstruction to create a 6 DOF monocular live dense SLAM system

which outperforms the current state of the art in many respects.

Acknowledgements

First and foremost, I would like to thank my supervisor Andrew Davison

for his unwavering encouragement, guidance and support. His patience and

generosity has seen me through what I have found to be a tough few years,

and he has shown great faith in my work when at times I have felt none for it

myself.

I would also like to thank my fantastic lab mates from whom I’ve drawn

a great deal of inspiration. I’ve enjoyed many a lively discussion and learnt

plenty over beers and coffees, particularly from my Lycra clad buddy Richard

Newcombe. He never fails to have something interesting or thoughtful to say,

and collaborative work with him has been especially fun.

I’m grateful to Kaidi for her love and patience, particularly while I have

been writing up. Our recent travels together form my fondest memories, and

without those moments and her support I don’t know how I would have finished.

I also owe a great deal to my past and present long-suffering flatmates —

each has known how to raise my spirits when they were low, be that with tea,

desserts, Fußball or a little hacking.

Finally, I would like to thank my family. They have always looked out

for me and offered such unfaltering support that it would be all too easy to

take them for granted. I owe my sister and Tina a particularly large debt of

gratitude for supporting me throughout university and for always seeming to

have my back. Most of all, I would like to thank my mother — all qualities that

I value in myself can be found within her, and I am so grateful for her time and

love over so many years.

Contents

Contents

1 Introduction 9

1.1 Motivating Technologies . 11

1.2 Potential Applications . 12

1.3 A Brief Review of Visual SLAM . 15

1.4 Contributions . 20

1.5 Publications . 21

1.6 Thesis Structure . 22

2 Preliminaries 23

2.1 Frames of Reference . 23

2.2 Projection . 25

2.3 Planes . 31

2.4 Lie Groups and Their Algebra . 34

2.5 OpenGL for Vision . 37

2.6 Software . 48

2.7 Summary . 49

3 Augmenting Feature-Based SLAM for Live Modelling 51

3.1 Introduction . 51

3.2 Background . 52

3.3 Minimum Energy Surfaces . 54

3.4 Visibility . 54

3.5 Using Visibility to Define Volumes 57

3.6 Results . 63

3.7 Evaluation . 63

3.8 Summary . 63

6

Contents

4 Direct Parametric Visual Tracking 65

4.1 Introduction . 65

4.2 Background . 67

4.3 Methodology . 70

4.4 Coarse-to-Fine Warping . 81

4.5 Iteratively Reweighted Least Squares 83

4.6 Visual Gyroscope, Rotational Odometry 85

4.7 Visual Odometry From a Parking Camera 90

4.8 Localisation From a Parking Camera and GPS 99

4.9 Summary . 103

5 Direct Parametric SLAM 105

5.1 Introduction . 105

5.2 Real-Time Direct Spherical Mosaicing / SLAM 107

5.3 Real-time Planar Mosaicing / SLAM 130

5.4 Summary . 150

6 DTAM: Dense Tracking and Mapping in Real-Time 153

6.1 Introduction . 153

6.2 Background: Towards Dense 3D SLAM 154

6.3 Method . 158

6.4 Evaluation and Results . 172

7 Conclusions 179

7.1 Contributions . 179

7.2 Discussion and Future Research . 180

A Lie Group Generators 183

B Video Material 185

List of Figures 187

Bibliography 191

7

8

Chapter 1

Introduction

Establishing the positions of a set of cameras and the structure of the scene they

observe through their images alone belongs to an area of research known as structure

from motion (SFM). The related problem of incrementally estimating a video cam-

era’s motion and the scene structure as images are received, is known as monocular

Simultaneous Localisation and Mapping (SLAM), or alternatively incremental SFM.

Prior research in the field of monocular SLAM has largely centred around sparse

feature-based representations of the world; by tracking the 2D locations of salient

image patches across many frames of video, both the 3D positions of these point

features and the motion of the camera itself can be estimated. So far, the aim of

monocular SLAM systems has primarily been for camera pose estimation, relative

to some fixed frame of reference — sparse structure being estimated largely as a

necessary by-product of attempting to minimise localisation error relative to a static

world-centred coordinate system.

State of the art monocular SLAM systems have improved their tracking accuracy

and robustness over time by increasing the number of features which they can suc-

cessfully match between frames and by finding efficient ways to manage increasingly

large sparse feature maps. Many useful applications from robotics to augmented

reality certainly require real-time estimation of a camera’s pose. However, there

is much more that needs to be learned about the world in order to enable other

applications where true interaction is possible. Point cloud scene models fall short

9

1. Introduction

when detailed predictive information is needed beyond pure localisation.

Seeing the limitations of the point feature-based visual SLAM systems available at

the start of this project, the original focus of this research was to augment feature-

based maps with more complete representations that would be more useful across

different application areas. The idea was that further information could be extracted

from images to ‘fill in’ the spaces between sparse features in a model, but still that

the main framework on which this extra information was hung was essentially the

same point feature cloud. We demonstrate some interesting early results based on

this idea.

Although it was always clear that a surface model generated in this way could

aid visual SLAM by offering information regarding expected occlusion and perhaps

patch normals, we started from the point of view that SLAM itself was practically

solved. However, reconsidering this point from our current perspective, we now see

that is is possible to perform visual SLAM in ways which do not require a point

feature framework at all; and that taking such an approach which aims at dense

scene modelling right from the beginning in fact has such advantages that we might

regard the use of point features at all as quite limiting, not only as a useful scene

representation but as a part of a video-rate visual SLAM itself.

This view inspired a large proportion of the work presented here, where SLAM

systems are constructed from dense whole-image approaches in constrained envi-

ronments, such as spherical and single planar worlds, breaking away from popular

point feature-based methods. We demonstrate that ‘expensive’ every-pixel methods

that had been popular in classic off-line vision literature are particularly well suited

to modern computing hardware and are now amenable to real-time implementation

and enable very high SLAM performance, in terms of both accuracy and robustness.

Through collaboration, this research concludes by returning to visual SLAM

within an unconstrained general 3D scene, showing that dense structure can be

estimated and robustly tracked live using whole-image methods. By making use of

information from every pixel without extracting point features, we show that signif-

icant advantages in accuracy and robustness can be found. Further, the by-product

of dense visual SLAM systems is a dense photometric surface model useful for a host

of interesting and important applications, particularly when available live.

10

1.1. Motivating Technologies

1.1 Motivating Technologies

Several key technologies have come together in recent years to inspire the direction

of this work, and enable it to proceed.

The biggest of these is monocular SLAM itself, whose development has progressed

quite rapidly since the first systems were seen. We will give a review of monocular

SLAM in Section 1.3. At the start of this project, MonoSLAM [27] was the best

system available, but the arrival of PTAM [62] made a big impact, particularly

with the availability of the software for research use. PTAM is both more robust

and accurate than MonoSLAM, has excellent engineering throughout, and made it

very clear what both the advantages and limitations are of a point-based SLAM

framework which aims to build consistent maps in real-time. Also important have

been ‘visual odometry’ approaches which showed what is possible when a camera

just moves away from its starting point and explores new areas; pioneering methods

such as that of Nistér et al. [97] showed the surprisingly low level of drift that can

be achieved with monocular or stereo vision.

Image alignment based on iterative adjustment to maximise photoconsistency has

been the core specific method we have used in the main parts of the thesis. There

have been several developments of the original method presented by Lucas and

Kanade [77], which was nicely revisited by Baker and Matthews in a series of recent

papers [7]. Of particular interest is the related ESM approach [78] which had been

used in other recent attempts at SLAM [114].

Highly related to these alignment methods and always a motivation of our work

are offline approaches which estimate dense surface geometry via photoconsistency

over small planar scene regions and join many of these into full models such as

[46] and [41]. These particular papers were our original route into the world of

dense multi-view stereo and the amazing dense reconstruction results which had

become possible. It was the arrival of live dense reconstruction systems such as

that of Newcombe and Davison [93] (also [122]), however, taking advantage of the

latest variational optimisation techniques and parallel implementation (as also seen

in optical flow estimation such as [135]), which finally allowed the path to open up

towards the DTAM system presented at the end of this thesis.

Another major theme running through this work has been the emergence of

11

1. Introduction

Graphics Processing Units (GPU’s) as the newly dominant desktop processing re-

source for computer vision which finally enable real-time processing of every pixel

in a video stream. We have closely followed the latest advances in commodity GPU

hardware and programming techniques using both graphics APIs and the custom

general purpose languages such as CUDA and made design decision in our vision

algorithms to best target these architectures. We believe future architectures will

rely increasingly on parallelism for power efficiency and performance.

1.2 Potential Applications

Through the accurate real-time estimation of the pose of a moving camera and the

dense geometry that it observes, many useful applications will be made possible

or enhanced. We expect these applications to fall into one of the following main

categories: camera tracking, interactive modelling, spatial awareness, augmented

reality or live video compression. We discuss each of these below.

Camera Tracking

Accurate and robust camera tracking itself has some useful applications, where even

small improvements in precision and reliability over previous systems offer an ad-

vantage. On the road, assisted navigation systems are currently limited by poor

localisation normally provided by a single sensor such as GPS. Augmenting exist-

ing solutions with accurate camera tracking could offer an inexpensive means to

high-quality driver assistance systems. We present such a system in Chapter 5.

Perhaps one of the simplest conceivable applications is in using a camera as an

input device. By precisely knowing the absolute pose and orientation of a camera,

it could be used as an inexpensive 3D mouse for CAD tool manipulation or within

computer games as a means for increasing the non-drifting capabilities of motion

controllers without the need for external infrastructure.

12

1.2. Potential Applications

Interactive Modelling

Within several industries, the digitisation of physical objects or scenes is very valu-

able. Frequently, trained visual artists are hired to model objects from scratch as

a route to high quality reconstructions, but there is a great demand for automatic

technologies with the potential for much-reduced cost as well as increased fidelity.

State of the art multi-view stereo (MVS) systems for dense reconstruction are often

able to produce very detailed models from images from known camera positions, but

many limitations remain. Firstly, they typically take large quantities of computation

time to produce any model at all. Since they operate in batch processes, the user

has no feedback when capturing data to determine if they have acquired a sufficient

number of images from different viewpoints to cover the target. Returning to a

scene to capture more data might be expensive, or prone to changing structure or

lighting. Real-time dense reconstruction can enable a user to receive feedback with

regard to coverage or capture more data in areas with poor model resolution. Later,

an offline MVS system may be used to refine the model.

In telerobotics, a human operator sits at a terminal controlling a remote robot

receiving visual feedback. In this scenario, an operator’s visual perception is limited

by the field of view of the camera. Dense visual SLAM might enable increased per-

ceptual awareness by allowing the user to view the history of previous observations

within a single, intuitive 3D model.

Spatial Awareness

Despite what science fiction may have promised, in the 21st century robots are still

unable to interact in useful ways within general man-made environments. Although

there are several obstacles to overcome in realising such a future, surely the biggest

is that of achieving timely spatial awareness. At present, robots typically rely on

active sensors such as laser scanners which are prohibitively expensive for many

areas and have shortcomings in terms of scanning density. New active depth camera

technology, such as Primesense / Microsoft Kinect, will no doubt have a large effect

on rapid progress in this area and is particularly exciting now it is available at

commodity prices that allow many thousands of researchers to enable its possibilities.

However, we still have a strong belief that standard passive vision will only con-

13

1. Introduction

tinue to increase in importance in robotics because we have only begun to scratch

the surface of the vast amount of information, both geometrical and semantic, which

can be extracted from images. This is particularly true as the ever-growing compu-

tational resources we have available enable the real-time uses of imaging technologies

already widespread which have much higher resolution, dynamic range, or frame-

rate than those used in this thesis. Visual SLAM systems which currently build

only sparse feature maps can help a robot to know where it is but not to explore or

interact. Dense surface geometry would enable a robot to explicitly reason about

the free space in which it can move and to estimate points of contact for potential

interaction. In this sense, dense SLAM can endow a robot with at least some form

of spatial awareness.

Augmented Reality

In the area of augmented reality (AR), a live video, perhaps from a head-mounted

display or broadcast sporting event, is composited with an overlay in which virtual

objects or characters generated with computer graphics can be seen to interact with

physical ones. In this sense, we aim to augment users’ knowledge, or immerse them

in an entirely or partially artificial world. These virtual items must exist in a static

coordinate system consistent with the real world. For AR to be convincing, the

virtual and real must be tightly locked together, and this requires accurate real-

time tracking of the moving real camera; visual SLAM based on point features is

already the most promising technology for this to be generally achieved. However,

dense SLAM would enable much more ambitious applications where virtual items

are not just positioned with respect to the real world but can actually fully interact

with its geometry. We show some examples of this in Chapter 6.

The potential applications of AR are many; much interest exists in the entertain-

ment industry where we might envisage playing games situated in real environments

around the home. There is particular excitement about this technology in the mobile

computing area, with many companies already developing AR-based smartphone ap-

plications for both assistive tasks and entertainment. Augmented reality is starting

to gain ground in television too — broadcasters hope to engage viewers by displaying

interesting information in intuitive ways on top of the live video footage.

14

1.3. A Brief Review of Visual SLAM

Live Video Compression

In the modern age, bandwidth has become a valuable resource, but at the same time

video streaming and consumer demand for high-definition content has increased.

Existing compression schemes typically take advantage of spatial and temporal re-

dundancy of images across video by calculating the motion of pixels over time, an

area of research referred to as optic flow. For many parts of a video, where the

majority of the scene is static, it is clear that only a few parameters are required

to describe how pixels will move between two frames if the structure of the scene is

known.

A potential future application of monocular dense SLAM methods may lie in

extreme compression of video streams. In current compression algorithms where

common pixel motion priors are used, we might expect smooth structure priors

and mostly rigid scene priors to greatly enhance compression ratios for comparative

image quality.

1.3 A Brief Review of Visual SLAM

In this section we will give a short review of the overall research area of visual SLAM

as is relevant to the overall aims of this project. Substantial further review material

specific to each of the main chapters will be given in context later in the thesis.

The area of SLAM of course originates in the mobile robotics community, with the

goal of providing a robot which is dropped into an environment it has not previously

visited with the capability to localise with respect to a continuously growing map

it builds itself from on-board sensor measurements. The main assumption nearly

always made which makes the whole problem tractable is that the robot is the

only moving entity within an otherwise static or rigid environment. Importantly, in

robotics it is clearly necessary to achieve SLAM in real-time for it to be generally

useful. Also, most researchers in robotic SLAM have been interested in methods

which can build in real-time, maps which are internally consistent. We will con-

sider the importance of this in the rest of the discussion, but note already that our

own aim is also real-time SLAM algorithms which build consistent, drift-free world

representations.

15

1. Introduction

For several years the main methodology for maintaining and extending a live map

and estimating the current pose of a robot was to use a sequential probabilistic filter

whose job was to refine a joint density over estimates of the live robot pose and the

positions of the scene landmarks it had observed. The key algorithm in the original

real-time SLAM systems (e.g. [96],[25],[16]) was the extended Kalman filter (EKF),

first proposed for this purpose by Smith et al. [117] and Moutarlier and Chatila

[91].

These systems implemented SLAM for mobile robots with various sensors, usu-

ally those which could measure both depth and bearing directly such as stereo vision

or sonar, but invariably also wheel odometry information and strong assumptions

about planar robot motion. Monocular SLAM, where we must achieve real-time

localisation and mapping from a single camera, perhaps hand-held, is more chal-

lenging. A breakthrough monocular SLAM system was Davison’s MonoSLAM [26],

which adapted the EKF approach successfully to the monocular domain. This work

built on earlier but more limited filtering-based sequential approaches to monocular

motion estimation and mapping such as the work of Chiuso et al. [18] and the much

older DROID system [47]; but also the wealth of work in off-line SFM where the

problem of estimating the locations of multiple single cameras from image corre-

spondences, or the historical trajectory of a moving video camera, had been studied

extensively under different computational constraints (e.g. [40], [104]). In these lat-

ter systems, multi-view feature matching and local geometry estimation is used as

a front-end to global bundle adjustment (BA) of the estimated camera and feature

positions, where reprojection error for all features observed in the sequence is jointly

minimised.

MonoSLAM was able to estimate the live camera pose and the locations of a sparse

set of feature points using an EKF, maintaining full covariance over the complete

state vector. However, the EKF scales badly with map size because computational

complexity is in general proportional to the cube of the state vector’s size (the state

vector being composed of stacked robot and feature position estimates). In visual

SLAM, this complexity is practically a little better — scaling with the square of

the number of features in the total map, since typically observations relate only

to a fraction of the vector’s state. This means that the size of map which can be

created in real-time with an EKF SLAM approach is strictly computation-bounded.

MonoSLAM was able to handle only around 50–100 features in the state vector

16

1.3. A Brief Review of Visual SLAM

at 30Hz operation. Over longer trajectories, the EKF is also susceptible to esca-

lating inconsistencies as compared to the optimal bundle adjusted solution, due to

propagated linearisation errors. Many authors investigated methods to mitigate

both problems, often making an approximation by splitting a large map into several

partitions or ‘sub-maps’ (e.g. [13], [21]).

For large maps, an approach gaining popularity over EKF formulations but dating

back to a similar period, was Lu and Milios’ method of ‘consistent poses’ [75]. They

were working with 2D laser range-scan data from a moving robot. With this powerful

data, it is possible to align two consecutive scans to get an accurate local estimate of

the robot’s movement from one timestep to the next. Lu and Milios’ key observation

was that having done so, the local range-scan measurements themselves could be

discarded for the purposes of localisation and instead what was stored was a pose-

to-pose constraint. As the robot continued to explore, a graph of these constraints

was built up. The structure of the map is therefore defined implicitly by just the

historical robot poses, rather than by an explicit feature map. The key thing is

what happens when the robot re-visits previously seen areas and closes loops in

the graph. Lu and Milios attempted loop closures by geometric interpretation of

the pose graph, aligning non-consecutive range-scans that overlapped based on their

current pose estimates. Once loop closures have been put into the graph, for the

poses to be consistent around the loop all of the edges within the loop must compose

to form the identity. This was enforced by distributing the error around the loop,

weighted by the edge constraint uncertainty.

This ‘pose-based SLAM’ approach gradually became very influential. The first

large scale use of a consistent pose method inspired by Lu and Milios was by Gut-

mann and Konolige, who looked more carefully at loop closure over longer trajec-

tories where correspondence cannot be estimated purely by geometric overlap [44].

Instead, they considered a topological graph of connectivity which they took to rep-

resent the metric world but not necessarily match it exactly. They ensured only

strong loop constraints were enforced and found loop constraints over larger areas.

Other excellent later work on this method and efficient strategies for optimising

large maps with many constraints was due to Olson et al. [99].

Progress continued in feature-based SLAM, and different sorts of filters were inves-

tigated. Montemerlo et al. demonstrated an alternative to submapping to improve

scalability with their FastSLAM algorithm [89]. They described a recursive Bayesian

17

1. Introduction

factorisation of the problem (‘Rao-Blackwellization’) with an efficient implementa-

tion where the posterior distribution was represented by a particle filter over the

robot’s trajectory, with independent Kalman filters for each landmark attached to

each particle. Eade and Drummond somewhat later used this algorithm for a monoc-

ular visual SLAM system which was more scalable than EKF-based systems [34],

handling hundreds of features in real-time. Previously, Pupilli and Calway had used

a more straightforward particle filter method for monocular SLAM, but this was

suitable only for very small maps [105].

It wasn’t until later that a number of authors showed how these different meth-

ods (filtering, bundle adjustment and maximising ‘pose consistency’) for SFM and

SLAM could be seen as different factorisations within the full SFM / SLAM graph-

ical model. Prominent here were Dellaert and Kaess [28], building on important

earlier insights by Thrun et al. [126] and Paskin [102]. They demonstrated that

many of the graphical methods employed for SLAM had direct equivalents in sparse

linear algebra and Bayesian inference, where factorisation can be equivalently seen

as marginalisation or variable elimination for instance. This view now supports a

unified approach to SLAM, enabling efficient estimation for large maps of both fea-

tures and robot poses, and supported in particular by efficient graph optimisation

libraries such as TORO [43] and g2o [67].

In monocular SLAM using features, state of the art approaches now commonly

use a graph inference approach, the first example of this being due to Eade and

Drummond [35]. There continued to be open issues on exactly the best way to

spend limited real-time processing resources however in this particularly challenging

SLAM domain; and particularly on how a ‘front-end’ image tracking system should

interface with a ‘back-end’ estimation engine.

In their important paper ‘Parallel Tracking and Mapping for Small AR Workspaces’,

Klein and Murray described their system PTAM, motivating an alternate view to

monocular SLAM, that only tracking needs to occur at frame-rate [62]. Rather than

integrating feature measurements at every frame to construct their sparse map, they

include only wide-baseline keyframes which are selected heuristically based on the

cameras motion from the set of all video frames observed. These keyframes are

globally bundle adjusted in a continuous batch SFM thread. In parallel, at frame

rate, the camera’s location is computed accurately by matching many hundred of

features in the current image to those in the closest keyframes. By bundle adjusting

18

1.3. A Brief Review of Visual SLAM

these key historic poses, they avoid the propagation of linearisation errors inherent

in sequential filters such as the EKF.

By avoiding the computational expense of providing an ‘optimal’ map at each

frame, PTAM is able to spend more time on robust tracking, locating to sub-pixel

accuracy hundreds of point features within each image. The sheer number of features

tracked provides significantly improved accuracy and stability compared to previ-

ous systems, supporting greater dynamic camera motions. Later enhancements to

PTAM added edge features and an initial, dense SE(2) based rotation estimation

step [63]. Although PTAM did not attack tracking in expansive exploratory se-

quences, the impact it has made within the research field of monocular SLAM is

large.

Taking the view of seeing keyframe based and sequential filtering based SLAM as

different factorisations within the graphical methods framework discussed by Del-

laert and Kaess, Strasdat et al. posed the question, ‘Why filter?’ [120]. They offered

a thorough analysis looking to address the question of how computation should be

allocated in a real-time monocular SLAM system so as to maximise tracking ac-

curacy. Is it better to incorporate more video frame measurements over time, or

to instead use these processing resources to track more features between sparser

video frame measurements? They concluded that it is computationally most ef-

ficient to use a minimal number of frames whilst tracking a maximal number of

correspondences, except in the case where computational resources are very heavily

constrained and only a few features can be tracked between frames at all. This

analysis very much confirms the design choices of PTAM. The latest developments

in point-based monocular SLAM [119] take this on board, and are now aiming at

systems which operate like PTAM locally but have a second level which is similar

to pose-graph optimisation to enable scaling to much larger workspaces.

Besides these developments in monocular SLAM which have essentially assumed

the same basic point feature matching process as the image processing end, there

have been a small number of methods where a different approach has been taken.

There have been some systems which have used line features (e.g. [116], [33]); and

others which have made initial investigations of planar patches as SLAM features

(e.g. [88], [115]). These latter methods, and particularly [115] where measurements

of planar warps are used directly to give information on camera pose relate most

closely to the work we will present later in this thesis and we will revisit them in

19

1. Introduction

context later.

1.4 Contributions

The work in this thesis had the original aim of augmenting point feature-based

monocular SLAM with additional representations which would permit dense scene

modelling in real-time (preliminary work on this idea is presented in Chapter 3);

but over the course of the research conducted has increasingly looked at building

SLAM methods which use dense, every-pixel methods throughout and investigates

the advantages of these.

Starting in Chapter 4 we look deeply into parametric ‘direct’ tracking methods,

where parts of images are aligned in the Lucas-Kanade [77] style of iterative optimi-

sation of photoconsistency. We apply the latest developments of this class of algo-

rithm such as ESM [78] together with efficient parallel implementation on GPGPU

processing hardware to produce a highly effective frame-rate image alignment solu-

tion where the parameterisation can be easily changed depending on the targeted

application. We demonstrate both a high performance visual gyroscope for a purely

rotating camera, and visual odometry for a road vehicle by tracking the road tex-

ture observed by a single downward-facing camera (in the latter case, the visual

information also being fused with GPS).

In Chapter 5, we move on into methods which are able to make use of this whole

image alignment approach within a whole SLAM framework capable of not just drift-

ing motion estimation but real-time consistent mapping. In this chapter, the scenes

considered are simplified from full 3D geometry, either to the spherical panorama

case or a large planar environment, but we show that there are important practical

uses of both of these models. The core architecture of the systems we develop is

similar to PTAM, with a backbone of keyframe locations; but now the tracking of

live camera pose is achieved with dense whole image alignment, and the optimisation

of the whole map via either full joint photoconsistency optimisation or a pose-graph

type approach. We demonstrate both real-time consistent spherical panorama gen-

eration, with high fidelity real-time rendering of various projections, and real-time

planar mapping from an arbitrarily moving camera. In the panorama case, we are

able to perform camera intrinsic calibration refinement within the main processing

20

1.5. Publications

loop. The planar mapping is demonstrated in various indoor and outdoor scenes,

and also in a document scanning application where we show that the quality of

tracking permits real-time super-resolution reconstruction.

Finally in Chapter 6, we present the DTAM: Dense Tracking and Mapping sys-

tem (developed in collaboration with Richard Newcombe) which is a full realisation

of a fully dense real-time monocular SLAM system capable of making accurate 3D

surface models of a complicated scene browsed only by a hand-held single camera.

The results of the previous chapters on alignment-based tracking are transferred to

this full 3D domain, where live camera tracking is now achieved by 6DOF align-

ment of current dense 3D model with the live camera view. We demonstrate the

great advantages this offers over point-based tracking, since occlusions can be fully

handled; high accuracy is achieved due to the large amount of data considered; and

in particular that very rapid camera motion can be tracked due to the multi-scale

alignment method which is robust to image blur.

1.5 Publications

The work described in this thesis resulted in the following publications:

DTAM: Dense Tracking and Mapping in Real-Time [95]

Richard Newcombe, Steven Lovegrove and Andrew Davison

Proceedings of the International Conference on Computer Vision (ICCV), 2011

Accurate Visual Odometry from a Rear Parking Camera [73]

Steven Lovegrove, Andrew Davison and Javier Ibañez-Guzmán

Proceedings of the IEEE Intelligent Vehicles Symposium (IV), 2011

Real-Time Spherical Mosaicing using Whole Image Alignment [72]

Steven Lovegrove and Andrew Davison

Proceedings of the European Conference on Computer Vision (ECCV), 2010

21

1. Introduction

1.6 Thesis Structure

The structure of the rest of this thesis is as follows. In Chapter 2 we introduce the

notation, geometrical models and other preliminaries that we will build the theory

of the rest of the thesis on. Chapter 3 presents some general discussion of dense

SLAM, and an initial method based on augmenting a standard feature-based SLAM

map with surface information. After this we move on to the core of the thesis in

Chapters 4 and 5, where we concentrate on real-time tracking using direct methods

and then using these methods to create full SLAM systems for reduced spherical and

planar domains respectively. In Chapter 6 we present the DTAM (Dense Tracking

and Mapping) system for full dense 3D SLAM, which was developed in collaboration

with Richard Newcombe and takes many of the ideas in this thesis to their logical

conclusion. Finally we conclude in Chapter 7 with some thoughts on potential future

work.

22

Chapter 2

Preliminaries

Within this chapter we will attempt to present the notational convention used

throughout this work, as well as outlining some of the important equations which

recur when considering multi-view stereo. Also, as graphics hardware has been opti-

mised so heavily over the years for 3D geometry, we will give a brief overview of how

to make the most of OpenGL as a vision researcher, describing some of the tools

used throughout this work for achieving real-time performance and visualisation.

2.1 Frames of Reference

When we talk about frames of reference, we are referring to local coordinate systems.

Making a distinction between one frame of reference and another is often convenient

when talking about interacting local systems. Within the field of multi-view stereo,

we are interested in the projection of objects into different cameras.

For a camera Ck, we refer to its local frame of reference as just k. In local camera

coordinates, camera Ck’s optic centre is located at (0, 0, 0)>. We use a right-handed

system in common with OpenGL’s convention, with the camera’s principal point

facing down the negative z-axis and the positive y-axis as the camera’s ‘up’ vector

(Figure 2.1). We will use the terms ‘camera’ and ‘frame of reference’ interchangeably.

When defining a position vector x rooted in camera frame k, we label it xk.

23

2. Preliminaries

Figure 2.1: Camera Coordinate Convention.

Typically, when no subscript is given, we are implicitly talking about the world

frame of reference w — an arbitrary frame of reference in which our cameras are

defined. Hence, xw = x.

We use homogeneous coordinates to express a greater range of transformations

using linear algebra. Using homogeneous vectors increases the size of the vector by

one. A vector x can be extended homogeneously using the dot notation such that

ẋ = (x
1). The reverse operation which we call homogeneous projection is depicted

by π and simply divides through by the last ordinate and truncates by one. This

implies that ẋ, 2ẋ, αẋ, . . . all represent the same vector x. For a three-vector:

π
(
x
y
z

)
=

(
x
z
y
z

)
. (2.1)

We represent transformations between cameras by the 4× 4 matrix representing

homogeneous point transfer between these frames. For example, Tba represents the

matrix which transforms homogeneous points defined in frame a, to the equivalent

24

2.2. Projection

points in frame b, such that ẋb ∝ Tbaẋa. We can decompose Tba as follows:

Tba =

(
Rba ab

0T 1

)
=

(
Rba −Rbaba
0T 1

)
. (2.2)

Where Rba is a 3×3 orthonormal rotation matrix representing rotation-only point

transfer between frames a and b. Here, ba represents the position of the origin of

frame b in the frame of reference a.

Our notation allows us to compose transformations very easily; observe how ad-

jacent super-scripted frames of reference match:

Tca = TcbTba . (2.3)

If we wish to compute the transformation Rab from Rba, or Tab from Tba, we can

avoid a general inversion by using our decomposition and the fact that Rba is or-

thonormal:

Rab = (Rba)−1 = (Rba)> , (2.4)

Tab = (Tba)−1 =

(
(Rba)> −(Rba)>(ab)

0T 1

)
. (2.5)

Sometimes it is convenient to transform a homogeneous point in one frame of

reference to an inhomogeneous point in another. Since the bottom row of our 4 ×
4 transform will always preserve the homogeneous ordinate of a right-multiplied

vector, we can equally use any 3D rigid body transformation matrix in its 3 × 4

form, and we often will;

Tba =
(
Rba ab

)
. (2.6)

2.2 Projection

If we know the internal and external parameters of a camera Ck we can project points

from the world into this camera to find their 2D image coordinates. In multi-view

25

2. Preliminaries

stereo, the projective action of the camera is normally considered in two stages: a

linear component which accurately models a pinhole camera (Figure 2.2) and a non-

linear ‘lens distortion’ component that applies in image space (Figures 2.3 and 2.4).

Within this thesis, we typically remove lens distortion to produce an equivalent

pinhole image at the start of the processing pipeline. Although it could be argued

that data is lost through resampling, this process saves repeated evaluation of the

distortion equations, and simplifies subsequent steps significantly.

Figure 2.2: Projection of a scene onto a camera’s image plane (left) to form a
projective image via a pinhole camera (right). Straight lines remain straight.

Figure 2.3: Action of Lens distortion on checkerboard pattern. Straight lines appear
curved.

26

2.2. Projection

Figure 2.4: Non-linear Lens distortion common to wide angle lenses. Straight lines
appear curved.

2.2.1 Pinhole Camera

A 3D scene point P = (X,Y, Z)> expressed in the camera’s local frame of reference

will project via a pinhole camera to image coordinates u = (u, v)>:

u = fu
X

Z
+ u0, v = fv

Y

Z
+ v0, (2.7)

where (u0, v0) are the ‘principal point’ coordinates of the camera in image space,

reflecting the centre of projection. fu, fv are horizontal and vertical scaling factors,

themselves functions of the focal length of the camera f and pixel size, pw × ph

(often pw ≈ ph):

fu =
f

pw
, fv =

f

ph
. (2.8)

The linear pinhole effect of a camera is often written in matrix form within a

single 3× 3 matrix K called the intrinsic / calibration matrix:

K =

fu α u0

0 fv v0

0 0 1

 . (2.9)

This matrix is parameterised by the camera’s horizontal and vertical scaling fac-

tors (fu, fv), principal point (u0, v0), and skew co-efficient α representing any pixel

27

2. Preliminaries

shear. For most cameras, α is very close to zero and ignored, as we will do for the

rest of this thesis. For a 3D point Pk defined in the frame of reference of camera Ck,

by left multiplication the intrinsic matrix takes the point into homogeneous image

space coordinates:

u̇k ∝ KPk . (2.10)

We can use our frame of reference transformations to project points specified in

another frame into our image:

u̇k ∝ KTkmPm . (2.11)

Although the operation of projection has no inverse, in homogeneous coordinates

the inverse calibration matrix is still useful for taking direction vectors described

by pixel coordinates and transforming them into the camera’s frame of reference.

Assuming the skew parameter to be equal to 0, the inverse calibration matrix can

be defined as:

K−1 =

1
fu

0 −u0
fu

0 1
fv
− v0
fv

0 0 1

 . (2.12)

2.2.2 Non-Linear Lens Distortion

The non-linear component of projection is often considered in image space as a

distortion or warp to the linear pinhole projection previously described. Whereas

perspective projection maintains straight lines, those lines which are straight in the

world may appear curved after non-linear lens distortion, often with the effect of

making the centre of the image appear bulbous (barrel distortion), or squashed

(pincushion distortion).

Non-linear distortion is scene independent, operating in image space and trans-

forming a standard pinhole projected image Ip into a distorted image Id. In com-

puter vision, we are typically interested in how to undo this deformation in order to

make use of the projective geometry of the image.

28

2.2. Projection

Image distortion is typically considered in two components relative to a centre of

distortion d = (du, dv)
>: radial distortion affecting a pixel’s distance from the centre

of distortion, and tangential distortion which applies perpendicular to this direction.

For computer vision problems, tangential distortion is frequently disregarded since

it is small for most cameras. The centre of distortion is often assumed to be equal to

the image’s principal point in order to reduce complexity, though this is not always

precisely correct.

Considering only radial distortion, we can write down how the coordinates of a

pixel in the distorted image ud = (ud, vd)
> are transformed into equivalent pinhole

image coordinates up = (up, vp)
> and vice-versa via a radial distortion function,

R : rp → rd, where rp = ‖up − d‖2 is the undistorted pinhole distance of a pixel

from the centre of distortion, and rd = ‖ud − d‖2 is the distorted distance:

ud =(up − d)
R(rp)

rp
+ d, (2.13)

up =(ud − d)
R−1(rd)

rd
+ d. (2.14)

Choosing an appropriate distortion model for the function R depends partly on the

type of camera being used. Camera and lens systems that exhibit little distortion

are often adequately modelled by a simple low-order polynomial such as a cubic.

For fish-eye lenses, or those with large fields of view, accurately approximating lens

distortion may require a higher order polynomial. For stable camera calibration we

ideally would like to estimate only a few parameters of a model which can accurately

reflect the true distortion. We will briefly describe two distortion models: firstly

the popular polynomial model and secondly the field of view model proposed by

Devernay and Faugeras which can accurately model wide angle lens distortion with

a few parameters [29].

Polynomial Power Series Model

The polynomial power series approximation remains a popular model for radial

distortion and is used within several calibration procedures, including the popular

method proposed by Zhang based on a planar checkerboard pattern [137]. It is

therefore common for vision systems which operate under the assumption of known

29

2. Preliminaries

intrinsics to use this model. Its polynomial radial distortion function can be written

as:

rp = R−1(rd) = rd(1 +K1r
2
d +K2r

4
d + . . .), (2.15)

where K1,K2, . . . are the parameters of distortion. We use the smallest order polyno-

mial that adequately reflects the camera’s distortion, normally using the first couple

of coefficients. For some camera systems, the first order distortion term is sufficient

for fractional pixel accuracy. In this case, the inverse distortion function (finding rd

from rp) can be found by solving a cubic. For higher orders, no closed form solution

exists, and instead an iterative method must be used.

FOV Model for Wide Angle Cameras

For very wide angle camera systems, such as those with fish-eye lenses, the ‘perfect’

projective lens which induces no distortion is actually quite limiting, as angle is

disproportionately represented across the image, making objects on the periphery

appear very large. For these systems, lenses are typically designed to represent angle

more uniformly across image space, and this is the motivation behind Devernay and

Faugeras’ model for lens distortion [29]. They model the projective geometry of a

‘perfect’ fish-eye lens:

rd = R(rp) =
1

ω
arctan

(
2rp tan

ω

2

)
, (2.16)

rp = R−1(rd) =
tan(rdω)

2 tan ω
2

, (2.17)

where ω is the single parameter of the model and reflects a physical property of

the camera, its field of view (FOV). A large advantage of this model is that it has

a simple analytical inverse. They comment that this formulation can be combined

with a polynomial correction to improve accuracy further whilst limiting the number

of parameters required. Devernay and Faugeras also present a calibration method for

radial distortion based on this model and compare it to the polynomial power series

formulation. They demonstrate that they can achieve decreased mean reprojection

error from their formulation over the power series formulation with the same number

of parameters.

30

2.3. Planes

2.3 Planes

In this thesis we consider planar regions at various times — whether for efficient

rendering or as a simplifying surface representation for reconstruction / tracking.

We choose to define a plane in the following way:

n̂ •P + d = 0, (2.18)

for a point P = (X,Y, Z)> on a plane where n̂ is the outward unit normal of the

plane and d is the distance of closest approach to the origin from the plane (strictly

positive). This can be written homogeneously as:

N =

(
n̂

d

)
, (2.19)

N • Ṗ = 0 . (2.20)

Following from the homogeneous definition of N, we can parameterise a plane

minimally by the scaled normal vector, which we can write using the projection

function:

n = π(N) =
n̂

d
. (2.21)

The parameterisation expressed in Equation 2.21 is degenerate for planes passing

through the centre of the coordinate system, but when considering camera-centric

frames of reference, planes passing through the optic centre of the camera needn’t

be considered since they cannot be imaged.

Note that the solution space of Equation 2.20 is satisfied regardless of the scaling

on N, so the following condition defines the same plane (though the homogenisation

is important):

ṅ • Ṗ = 0 . (2.22)

31

2. Preliminaries

2.3.1 Planes Between Frames

As with vectors, we use a subscript to denote the frame in which a plane is defined.

Na or na for example would depict the plane expressed in frame of reference a. We

can express a plane in a different frame of reference as follows:

Nb =
(
Tab
)>

Na, ṅb =
(
Tab
)>

ṅa. (2.23)

Notice that contrary to frame transformations between vectors, for planes we take

the transpose of the matrix Tab and not the inverse for Equation 2.23.

2.3.2 Pixel-Plane Intersection

The ray formed from a camera pixel can be expressed in the camera’s local frame

of reference as follows:

P = Z.K−1u̇, (2.24)

where Z, the depth along the z-axis, is a free parameter that also forms the last

ordinate of P = (X,Y, Z)>, a point along the ray.

For intersection with a plane N = (n̂, d)>, we need only equate P in Equations

2.18 and 2.24 and rearrange for Z:

Z =
−d

n̂ • (K−1u̇)
=

−1

n>K−1u̇
. (2.25)

Finally, we can substitute this back into Equation 2.24 equating Z to obtain the

intersection point, P:

P =
−K−1u̇

n>K−1u̇
. (2.26)

2.3.3 Plane-Induced Homographies

A plane-induced homography describes the transformation in image space between

pixels in two cameras observing a common plane. The plane-induced homography

is a projective transformation, in that straight lines remain straight. It can be

32

2.3. Planes

represented homogeneously as a 3 × 3 matrix Hba taking pixel coordinates ua from

image Ia into pixel coordinates ub in image Ib, such that u̇b ∝ Hbau̇a.

We can derive an expression for the homography induced by a plane by considering

the ray formed from a pixel in one camera, which we intersect with a scene plane

and project into our second camera after changing the frame of reference. We do

that by expressing the intersection of a pixel ray and a plane (Equation 2.26), and

taking the 3× 4 representation of our frame transform (Equation 2.6):

u̇b ∝ K
(
Rba ab

)(−K−1u̇a

n>a K
−1u̇a

)
. (2.27)

Tidying up, we can write:

Hba = K
(
Rba ab

)(
I −na

)>
K−1. (2.28)

Or, as is more commonly seen:

Hba = K
(
Rba − abn

>
a

)
K−1. (2.29)

In the literature, ab = −Rbaba is frequently referred to as t. Here we try to be more

explicit.

Pure Rotational Homographies

For two cameras which share the same optic centre — two cameras with no transla-

tion between them — the plane-induced homography is simplified. Since ab = ba =

0, the term abn
>
a = 0. In fact, the plane-induced homography becomes independent

of the plane altogether:

Hba = KRbaK−1. (2.30)

We note that for a purely rotating camera, no parallax is observed, and we can

describe the pixel transformation between frames by a homography regardless of

the scene being viewed.

33

2. Preliminaries

2.3.4 Homographic Image Warp

Considering an image I as a continuous function, we define I (u) as a mapping from

two-dimensional image coordinates u = (u, v)> to the corresponding pixel intensities

within the image I. Sub-pixel values can be taken implicitly using bilinear or bi-

cubic interpolation for example.

Given a reference image Ir, we can generate a new synthetic image Is by warping

Ir by a homography Hsr. We do so functionally by describing image Is through the

transfer of its pixels us ∈ Is:

Is (us) = Ir (π (Hrsu̇s)) , (2.31)

where π is the projection function which performs homogeneous division (Equa-

tion 2.1).

One scheme for actually building Is is to enumerate each pixel and pass it through

Equation 2.31 to find its value. This scheme can be described as backward warping

since we start with a pixel in the synthetic warped image and calculate the sub-pixel

coordinates of the corresponding pixel in the original image. Though inexpensive

to compute, this simple warping scheme can generate visual artefacts since data

is not necessarily re-sampled correctly. Consider the homography corresponding

to ‘zooming out’, Hrs =
(

10 0 0
0 10 0
0 0 1

)
; clearly, pixels in the synthetic image will be

generated by sampling the reference image sparsely. Treating pixels as rays in this

way does not accurately model the image formation process and can cause aliasing

in the output warped image, though it is acceptable for many uses.

One solution to improve the quality of the warped image is to apply an appropriate

filter to the source image Ir before use, such as a Gaussian convolution. Mipmapping

is an efficient way to select which pre-filtered image to use in a precomputed image

pyramid, and is often used in computer graphics [132].

2.4 Lie Groups and Their Algebra

So far we have introduced several transformations that allow us to refer to various

3D motions and 2D projections. We have largely expressed these transformations

34

2.4. Lie Groups and Their Algebra

using matrices manipulating homogeneous coordinates. Later on, when we come

to look at various minimisations which hope to refine these transformations, we

will be interested in incremental parameterisations which are both efficient and well

behaved in various ways.

Considering for example 3D rotation, the pose of a camera c which can only rotate

has three degrees of freedom (3 DOF), since a minimum of three parameters are

required to define a camera’s orientation. As we saw in Section 2.1, this orientation

can be expressed by a 3× 3 orthonormal rotation matrix Rwc with 9 elements. We

will frequently use this matrix parameterisation as it offers a simple, unified way of

considering different transformations, and allows us to use the standard and powerful

tools of linear algebra.

When optimising over the parameters of a 3D rotation, however — to compute

an angular velocity between video images for instance — the matrix form is not so

appropriate. The 9 parameters of the matrix are over-parameterised, in that a 3D

rotation only really has 3 DOF. Worse still, not all combinations of parameters will

create a valid rotation matrix.

Several different parameterisations for 3D rotation exist, such as Euler angles,

quaternions, normalised quaternions and axis-angle, and any of them can be con-

verted to and from rotation matrices. In this thesis however, we follow the trend

of an increasing number of authors (particularly since the work of Drummond and

Cipolla [31]) who make use of Lie groups and their algebras for incremental trans-

formations over several different spaces. In mathematics, a group consists of any set

G and operation • that satisfy some simple properties:

Closure for all a, b ∈ G, a • b ∈ G.

Associativity for all a, b, c ∈ G, (a • b) • c = a • (b • c).

Identity there exists an element a ∈ G, such that for all b ∈ G, a • b =

b • a = b. This element is written as 1G.

Inverse for every element a ∈ G, there exists an element b ∈ G such that

a • b = b • a = 1G.

A Lie group is any group which is also a finite dimensional smooth manifold,

where the group operations of multiplication and inversion are smooth maps. A

35

2. Preliminaries

number of transformation matrices that we have already seen form Lie groups under

multiplication. 3D rotation matrices belong to the special orthogonal Lie group

SO(3), 3D rigid body transformation matrices belong to the special Euclidean Lie

group SE(3), and the 3 × 3 homographic transform H belongs to the special linear

group SL(3).

Figure 2.5: Illustrative Tangent Space (plane) projected onto manifold (sphere)

What is interesting about Lie groups for us is that each is associated with a Lie

algebra, a tangential vector space around the group’s identity element. Any element

within the group can be lifted to a unique element within the algebra. Though not

technically representing the lifting of a real Lie algebra, Figure 2.5 illustrates the

projection of a tangent plane onto the manifold of a sphere. Similar to concepts in

cartography, the tangent space represents a locally Euclidean space on the surface

of the manifold, as illustrated by the approximate alignment of grid lines around

the identity element where the plane and manifold touch.

In optimisation, we can parameterise incremental transformations which belong to

a Lie group by their algebra, which represents a minimal and smooth differentiable

linear space about the group’s identity element. This parameterisation is ideal for

36

2.5. OpenGL for Vision

optimisations in which derivatives are considered, since the tangent space in which

the algebra resides reflects the derivative of the group’s manifold.

The transformations Rba ∈ SO(3), Tba ∈ SE(3), and Hba ∈ SL(3) can be parame-

terised by x ∈ R3 belonging to so3, x ∈ R6 belonging to se3, and x ∈ R8 belonging to

sl3 respectively. Elements of a Lie algebra are related to a Lie group via the matrix

exponential map:

R(x) = exp

(
3∑
i=1

xigeni
SO(3)

)
, x ∈ so3, (2.32)

T(x) = exp

(
6∑
i=1

xigeni
SE(3)

)
, x ∈ se3, (2.33)

H(x) = exp

(
8∑
i=1

xigeni
SL(3)

)
, x ∈ sl3, (2.34)

where geni
G
, i ∈ 1..N are the Lie group generators for group G.

The partial derivatives of a Lie group element with respect to its algebra about 0

are trivially formed from the group generators themselves:

∂R(x)

∂xi

∣∣∣
x=0

= geni
SO(3)

,
∂T(x)

∂xi

∣∣∣
x=0

= geni
SE(3)

,
∂H(x)

∂xi

∣∣∣
x=0

= geni
SL(3)

. (2.35)

For a list of Lie group generators commonly found in computer vision and used

within this thesis, please refer to Appendix A.

2.5 OpenGL for Vision

An under-appreciated complexity in computer vision research is in the visualisation

of multi-view stereo data. Increasingly, and certainly within this thesis, the power

of hardware designed to accelerate computer graphics is also directly used for com-

puter vision. Computation of generative photometric models, for example, can be

accelerated many-fold using commodity hardware found in nearly every PC. As the

sophistication of computer graphics has increased, so too has graphics hardware, of-

fering general purpose programmability that even enables data-parallel computation

37

2. Preliminaries

unrelated to graphics to be performed many times faster than on a modern desk-

top CPU. Equally, the performance of massively parallel architectures such as that

of graphics processors is increasing at a much faster rate than of serial processors.

It becomes clear that computation on massively parallel architectures is not a fad

and will only grow with time; in order to take advantage of advances in computer

hardware, computer scientists will increasingly need to exploit parallel algorithms.

Within this section we will outline some useful computer graphics topics and

describe how they relate to concepts in computer vision. Our aim is to unify notation

and terminology. We target OpenGL since it is a modern and certainly the most

prevalent graphics library available. If you are new to OpenGL, this section should

be read in conjunction with an OpenGL code tutorial.

2.5.1 The OpenGL Rendering Pipeline

OpenGL is a rasterisation engine. Instead of considering the path of photons be-

tween light sources and the camera as a ray tracer might, a rasteriser acts by pro-

cessing simple geometric primitives which make up the scene, such as points, lines,

triangles and polygons to determine how they would project in to the virtual camera

to form pixels. We call the image plane of the virtual camera into which we form

the rendered image the framebuffer. In addition to a colour image, we typically also

associate a depth buffer of equal size to the framebuffer to hold the z-depth at each

pixel. Surfaces can be rendered by rasterising a tessellation of small piecewise planar

elements, often triangles, which approximate the surface.

Geometric primitives in OpenGL are defined by their vertices. How a primitive

is rendered is decided by properties set at each vertex. Within the fixed OpenGL

pipeline, these properties are interpolated across fragments belonging to the prim-

itive to determine how they will be rendered. A fragment represents a would-be

pixel or pixel contribution belonging to a single primitive, a square element that

aligns exactly with a pixel in the final rendered image but may not fully describe

it. To understand this differentiation, we must consider what happens when more

than one geometric primitive projects to the same area in the framebuffer. Each

primitive is processed sequentially into a collection of fragments by the rasteriser.

A fragment contributes to a pixel only if it passes some tests. Typically, it will pass

if the depth of the fragment is closer to the camera than the value stored in the

38

2.5. OpenGL for Vision

depth buffer. When a fragment passes, not only will the pixel be updated with the

fragment’s colour (or potentially a blend of colour), but the depth buffer will also be

updated with the fragment’s z-depth. This process allows primitives to be processed

in any order and is called the z-buffer algorithm, ensuring that hidden surfaces do

not occlude those that should be visible. Alternative methods such as the painters

algorithm require that primitives are ordered from far to near, which is costly and

not always possible.

When rendering surfaces, three important properties that can be set at vertices

are the colour of the surface at the vertex, the normal of the surface at the vertex,

and the coordinates within a texture (an image stored on the graphics card) that

the vertex projects into. The latter two properties are optional. Within the fixed

OpenGL pipeline, these properties are interpolated across the fragments that make

up the primitive. A user may also specify active lighting and assign an active texture

whilst rendering a primitive. The combination of active lights, active textures,

fragment colour, fragment normal, and fragment texture coordinates determine the

final colour of a fragment. When texture mapping is enabled, the pixel within the

active texture described by a fragments texture coordinate is used to modulate the

colour of the fragment.

Object
Coordinates

Eye
Coordinates

Clip
Coordinates

Normalised
Device Coordinates

Window
Coordinates

Homogeneous
Division

2D Viewport
Transform

Multiplied by
ModelView Matrix

Multiplied by
Projection Matrix

Figure 2.6: Illustration of how OpenGL’s fixed vertex pipeline transforms vertices
for projection within an OpenGL window.

Figure 2.6 introduces the traditional, fixed vertex pipeline of OpenGL; we can see

it mirrors the basic principles of camera projection that we have already established.

OpenGL accepts from the user geometric primitives such as lines and triangles de-

fined by their vertices in object coordinates o, an arbitrary frame of reference relative

to the object being defined. The object coordinates are transformed into camera

coordinates c (Figure 2.1) via the ModelView matrix, a 4× 4 transformation matrix

Tco ∈ SL(3). The object coordinate system can be changed between vertices by

changing the ModelView matrix. It is convenient to consider the ModelView matrix

as a combination of a model matrix Two and view matrix Tcw such that Tco = TcwTwo.

39

2. Preliminaries

In this way we can render views of an object from different cameras situated in the

same global frame of reference by keeping vertex data the same but changing the

view matrix (and hence OpenGL’s ModelView matrix).

From the camera-centred coordinate system c (Eye Coordinates), primitives are

further transformed into Clip Coordinates via the Projection matrix, Kgl ∈ R4×4.

This matrix is similar in spirit to the calibration matrix from computer vision, but

where the depth of a projected vertex is additionally offset and scaled so that it

can be represented during rasterisation within the depth buffer. In this coordinate

system, vertices that fall outside of a unit cube are discarded (clipped), as they

represent unobservable geometry outside of the camera’s frustum, lie closer than a

near clipping plane, or lie further than a far clipping plane.

Defining n to be the z-axis value of the near clipping plane in camera coordinates,

and left (l), right (r), bottom (b) and top (t) to be its x and y extent, Kgl can be

specified in terms of these and the far clipping plane z-axis value (f) [3]:

Kgl =

2n
r−l 0 r+l

r−l 0

0 2n
t−b

t+b
t−b 0

0 0 −(f+n)
f−n

−2fn
f−n

0 0 −1 0

 . (2.36)

Within computer vision, we frequently want to relate the OpenGL camera to a

physical device with known intrinsics. Although non-linear lens effects cannot be

set up directly within the OpenGL fixed rendering pipeline, we can write down the

parameters of Kgl in terms of our regular linear camera’s intrinsic parameters:

l =u0
n

fu
, r =(u0 − w)

n

fu
, t =v0

n

fv
, b =(v0 − h)

n

fv
, (2.37)

where u0, v0, fu and fv are standard intrinsic parameters (Section 2.2.1) and w,

h represent the images width and height in pixels respectively. The near and far

clipping planes, n and f , do not directly alter the projection, only which vertices

get discarded and how depths are quantised within the depth buffer when primitives

are rasterised.

With this information, we are ready to render images that mimic a real calibrated

camera. Code listing 2.1 demonstrates the main steps in rendering a simple triangle

40

2.5. OpenGL for Vision

Listing 2.1: Using OpenGL to Display a 3D triangle patch

1 ...

2 // Specify column -major OpenGL projection matrix

3 float Kgl [16] = {...};

4
5 // Specify column -major world -to -camera transform

6 float T_cw [16] = {...};

7
8 // Load Projection and ModelView matrices

9 glMatrixMode(GL_PROJECTION);

10 glLoadMatrixf(Kgl);

11 glMatrixMode(GL_MODELVIEW);

12 glLoadMatrixf(T_cw);

13
14 // Clear Framebuffer ’s colour and depth values

15 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

16
17 // Draw triangle by specifying its vertices

18 // in world coordinates

19 glBegin(GL_TRIANGLES);

20 glVertex3f(0.0f, 1.0f, 0.0f);

21 glVertex3f (-1.0f,-1.0f, 0.0f);

22 glVertex3f(1.0f,-1.0f, 0.0f);

23 glEnd ();

24 ...

defined in world coordinates into a camera c. Kgl and T cw represent the 4 × 4

matrices Kgl and Tcw respectively, laid out in column-major order. Refer to an

OpenGL code tutorial for information on how to set up an OpenGL window and

viewport.

2.5.2 Projective Textures

Primitives such as triangles are texture mapped by defining texture coordinates at

each vertex. The process of defining these coordinates is sometimes referred to as

UV-mapping, relating as they do geometry to surface texture. As we discussed

briefly early, per-vertex properties including texture coordinates are interpolated

across fragments during rasterisation in order to determine contributions from tex-

ture images.

Given a photo of a simple structure such as a cuboid skyscraper and a 3D tri-

angular model of it, we might like to texture the sides of the model visible in the

41

2. Preliminaries

Figure 2.7: Projective texturing applied to a synthetic scene. Colour is given to a
colourless world via projection.

photo. The texture coordinates of the cuboid’s vertices can easily be established

by reading the UV coordinates of the projections of the building’s corners in the

photo. Unfortunately, this isn’t enough to correctly map the photo’s texture to the

cuboid. OpenGL operates by default under the assumption that textures represent

orthographic projections of the model’s surface. Although during rasterisation, in-

terpolation of texture coordinates is performed projectively relative to the virtual

camera, the projective action of the camera that made the texture must also be

considered. This subtlety is commonly overlooked.

Projective texturing is the term given to texturing a geometric model from an

image by considering the projective warp of coordinates in the texture map as it is

applied; this is incredibly useful for visualising computational vision. Its use within

OpenGL is enabled by specifying texture coordinates in a higher dimensional ho-

mogeneous space, allowing interpolation across fragments to be performed correctly.

Projective texturing is described in detail by Everitt who also demonstrates the

42

2.5. OpenGL for Vision

problems of incorrect texture mapping [36]. Figure 2.7 illustrates the power of pro-

jective texturing; geometry of an accurately aligned projector casting colour onto a

colourless world. It quite naturally has the same projective geometry as a camera

capturing the same image.

The simplest way to set up projective texturing for a projector p with intrinsics

Kgl is to tell OpenGL to automatically assign to each vertex texture coordinates that

equal the camera frame coordinates of that vertex. Parameters passed to glTexGen

can be used to define a matrix describing how these coordinates should be trans-

formed into the given texture. This matrix can be used much like a combination of

the ModelView and Projection matrices, and we place into it the object-to-texture

transformation Tto:

Tto =

1
2 0 0 1

2

0 1
2 0 1

2

0 0 1
2

1
2

0 0 0 1

 KglT
po (2.38)

where Tpo is the object-to-projector coordinate transformation. The constant matrix

at the front takes normalised device coordinates into standard texture coordinates.

One tricky point is that OpenGL will internally multiply this matrix by the inverse

ModelView matrix itself in order to compute the transform Ttc = Tto (Tco)−1. This is

needed given that camera frame coordinates will be assigned as texture coordinates;

it removes the need to invert the ModelView matrix.

Listing 2.2 illustrates how projective texturing with automatic texture coordinate

generation can be initialised, where T to represents the matrix Tto in row-major

ordering. First, automatic texture coordinate generation for the ordinates GL S,

GL T, GL R and GL Q are set to GL EYE LINEAR, telling OpenGL to apply texture

coordinates based on the camera frame position of a vertex. Since OpenGL texture

coordinate generation is quite flexible, setting the texture transformation is slightly

obfuscated, but essentially Tto is loaded row-by-row as vectors for each ordinates

GL EYE PLANE. Finally, texture generation is enabled before primitives are rendered

— it should be disabled again after we are done.

43

2. Preliminaries

Listing 2.2: Setting up Projective Texturing

1 ...

2
3 // Define camera -to-texture Transformation matrix

4 float T_to [16] = {...};

5
6 // Automatically generate texture coordinates that equal

7 // a vertices position in camera (eye) coordinates.

8 glTexGeni(GL_S , GL_TEXTURE_GEN_MODE , GL_EYE_LINEAR);

9 glTexGeni(GL_T , GL_TEXTURE_GEN_MODE , GL_EYE_LINEAR);

10 glTexGeni(GL_R , GL_TEXTURE_GEN_MODE , GL_EYE_LINEAR);

11 glTexGeni(GL_Q , GL_TEXTURE_GEN_MODE , GL_EYE_LINEAR);

12
13 // Set Texture Transformation matrix

14 glTexGenfv(GL_S , GL_EYE_PLANE , T_to);

15 glTexGenfv(GL_T , GL_EYE_PLANE , T_to + 4);

16 glTexGenfv(GL_R , GL_EYE_PLANE , T_to + 8);

17 glTexGenfv(GL_Q , GL_EYE_PLANE , T_to + 12);

18
19 // Enable texturing and automatic texture coordinates

20 glEnable(GL_TEXTURE_2D);

21 glEnable(GL_TEXTURE_GEN_S);

22 glEnable(GL_TEXTURE_GEN_T);

23 glEnable(GL_TEXTURE_GEN_R);

24 glEnable(GL_TEXTURE_GEN_Q);

25
26 // Render geometry

27 ...

2.5.3 Buffer Objects and Framebuffers

When rendering large quantities of primitives on the graphics card, significant gains

in throughput can be achieved by uploading vertex, pixel, normal and other data

as a contiguous block of memory, called buffer objects, rather than using the classic

API for drawing elements with glBegin and glEnd which might be too slow.

In Chapter 6 we use both vertex buffer objects (VBOs) and pixel buffer objects

(PBOs) in order to efficiently display large numbers of textured depth maps. Using

languages such as CUDA, buffer objects can be modified, manipulated and pro-

cessed, all whilst they are still in graphics memory, without ever having to transfer

them between the host and graphics card.

Figure 2.8 illustrates how we can represent a scene by storing a depth image within

a VBO, associated with an historic camera position. The stored structure resides in

44

2.5. OpenGL for Vision

memory on the graphics card and can be efficiently rendered without transferring

geometric data between host and device. Colour and normal data can also be stored

in buffer objects and associated with vertex data during rendering.

Figure 2.8: Vertex Buffer Objects can be used to efficiently store and render depth
maps to represent surface geometry. Left: a camera records the projective image of
a scene onto its image plane. Right: Depth data associated with each pixel can be
used to render visible portions of the same scene.

Whereas buffer objects represent source data used for rendering, in OpenGL the

framebuffer represents the target portions of memory to render in to. By default,

the framebuffer is set up to output to the screen, often on some kind of display

window. OpenGL also allows you to create your own off-screen framebuffers in

order to render graphics for purposes other than display, or perhaps to be used for

later rendering. We won’t detail how to set up buffer objects and framebuffers as

they are well documented elsewhere (see for example songho.ca [3]), but they are

both enabling technologies for systems described later in this thesis.

2.5.4 Shaders

Shaders offer a programmatic means of adjusting per-vertex and per-fragment prop-

erties within the graphics rendering pipeline. They were introduced to enhance the

previous fixed pipeline of vertex transformation followed by primitive rasterisation.

Shaders enable the graphics pipeline to be customised in order to perform advanced

rendering techniques or to produce special surface effects or interesting material

properties. We will use shaders later on in order to efficiently pass information

through the rendering pipeline.

45

2. Preliminaries

Shaders are written using a shader language and are generally compiled from

source at runtime to target the running graphics hardware. There are three types;

vertex shaders, fragment shaders and geometry shaders, though we will only discuss

the first two.

Vertex shaders can manipulate the attributes of vertices including position, nor-

mal, colour and texture coordinates through code by taking vertex attributes and

external parameters as input.

Pixel-wise fragment shaders can modify fragments. Fragments are the elements of

rasterisation which are accumulated to form pixels; they are composed with existing

image pixels based on depth and other tests such as stencils, and blended based

on OpenGL attributes. A fragment shader may modify the colour of a fragment,

including its transparency, by transforming properties that are inherited by the

fragment and by performing texture lookups. A fragment shader may even discard

the fragment all together, preventing the possibility that it will contribute to a pixel

value.

Vertex Map Example

In computer vision, if we have some model of the scene represented by primitives

within the OpenGL framework, we can very efficiently synthesise a novel view of

the scene by rendering it into a virtual camera with parameters mirroring that of

our real camera.

There may be times when it is useful to project not only colour information but

also geometric information per pixel, such as scene depth. An image comprised of 3D

scene points corresponding to the location that a pixel intersects a scene is termed

a vertex map. We gave an example of a vertex map stored inside of a VBO earlier

(Figure 2.8). Using shaders we can efficiently create a vertex map to represent a

scene that we render.

In order to render a vertex map and colour image simultaneously, we must define

a vertex shader and a fragment shader which operate on two colour attachments

within our framebuffer — in other words our framebuffer will contain two images

that we can render in just one pass using some shaders. We choose to generate a

vertex map this way rather than extracting the depth buffer data because it allows

46

2.5. OpenGL for Vision

Listing 2.3: Cg Vertex Map Shaders

1 // Vertex Map - Vertex Shader

2 void vVertexMap(

3 float4 in_color : COLOR ,

4 float4 in_pos : POSITION ,

5 out float4 out_color : COLOR ,

6 out float4 out_proj : POSITION ,

7 out float4 out_pos_cam : TEXCOORD0 ,

8 uniform float4x4 mvpm : state.matrix.mvp ,

9 uniform float4x4 mvm : state.matrix.modelview

10){

11 // Vertex Color

12 out_color = in_color;

13
14 // Vertex projection

15 out_proj = mul(mvpm ,in_pos);

16
17 // Vertex coordinates in camera frame

18 out_pos_cam = mul(mvm , in_pos);

19 }

20
21 // Vertex Map - Fragment Shader

22 void fVertexMap(

23 float4 in_color : COLOR ,

24 float4 in_pos_cam : TEXCOORD0 ,

25 out float4 out_color0 : COLOR0 ,

26 out float4 out_color1 : COLOR1

27){

28 // COLOR0 contains regular scene rendering

29 out_color0 = in_color;

30
31 // COLOR1 contains colour coded vertex positions

32 out_color1 = in_pos_cam;

33 }

us to have more control over how the data is processed, and makes it easier to work

with later.

Listing 2.3 gives an example of a vertex and fragment shader written using the

shader language Cg. When activated together, the two shaders will cause OpenGL

drawing operations to output an ordinary image and a vertex map simultaneously

within a framebuffer with two attached colour channels.

Cg is a C styled language with a few additions; the code listings demonstrate how

parameters are annotated with semantics, coloured red. These bind named input

and output variables to predefined quantities available to the shader at runtime,

47

2. Preliminaries

such as input colour and texture coordinates that have been applied. Parameters

labelled as out represent properties that the shader will set, whilst those labelled

uniform receive their value from the main CPU program.

In our example, the vertex shader outputs the vertex colour unchanged and trans-

forms the vertex position through the ModelView and Projection matrices (com-

bined within state.matrix.mvp) as the fixed pipeline would do. In addition, the

shader also assigns to the texture coordinate property the value for the vertex posi-

tion, transformed into the frame of reference of the camera. In the fragment shader,

the properties for a fragment (produced by interpolating vertex properties) are used

to set the colour for two colour attachments, COLOR0 and COLOR1. Without the

shaders, only the colour data would reach the default colour attachment COLOR0.

More sophisticated logic and filtering can be included within shaders — what makes

them useful is that they sit in the middle of he OpenGL pipeline and are massively

data parallelisable.

2.6 Software

This thesis details and develops a number of software systems, the requirements of

which have changed throughout the research. Starting in Chapter 3, a largely point-

feature centric approach motivated the use of Davison’s SceneLib for visual SLAM.

Foundation methods for video input and image processing have been largely enabled

by the high quality and open source library libCVD, supported by the maths library

TooN.

As we have moved toward dense approaches starting in Chapter 4, it has been

more important to utilise graphics hardware to achieve real-time performance. In

early work, this was enabled largely through the (mis)use of OpenGL shaders, but

the emergence of CUDA for general purpose programming on graphics hardware has

really opened the way to make best use of the cards that lie in many PC’s.

Data parallel programming in CUDA really is quite natural for many image pro-

cessing tasks, and we found it largely replaced the use of image processing libraries

such as libCVD. We found that it was desirable to avoid copying data between host

and device and that it was easier to keep and process all images entirely on graphics

hardware.

48

2.7. Summary

The only common software library used throughout has been OpenGL itself for

display. We have built on top of OpenGL to produce the MIT licensed open source

software library Pangolin. It is a light weight rapid prototyping utility library for vi-

sion researchers to help visualise data (through OpenGL) and receive input (through

keyboard / mouse / camera) easily and efficiently.

Finally, work in Chapter 6 would not have been possible without the open source

software PTAM described by Klein and Murray [62]. It was used not only in com-

parisons with our system, but helped a great deal in enabling us to develop it.

2.7 Summary

In this chapter we have presented the mathematical tools and geometrical models

behind the main methods explored in the thesis, and also given details on the im-

portant role that graphics processing hardware and the OpenGL API can provide

in real-time computer vision systems aiming at dense SLAM. We will start using all

of these methods in earnest in Chapter 4, but first in Chapter 3 present some pre-

liminary work on dense reconstruction in general and how the feature-based visual

SLAM systems available at the start of this project can be augmented to produce

surface meshes.

49

2. Preliminaries

50

Chapter 3

Augmenting Feature-Based

SLAM for Live Modelling

3.1 Introduction

By tracking the 2D locations of salient image patches across many frames of video,

both the 3D positions of these point features and the motion of the camera itself

can be estimated. For drift-free camera tracking, feature-based monocular SLAM

systems maintain the 3D locations of such a set of features as landmarks within a

map, maintained and updated as the camera moves.

Each consistent feature point within a visual SLAM map represents a 3D point on

the surface of an object. Since only salient image patches are tracked through video

in current visual SLAM systems, only a sparse set of 3D point features is maintained

in the map representing the world. Assuming that the point features which exist

in the map have been well estimated and are not erroneous, we know that the true

scene’s surface must pass through these points.

In this chapter, we will look at how real-time 3D modelling of static scenes might

be enabled by using a visual SLAM system’s map of sparse features as a skeleton for

estimating the dense surface geometry of the world. Pan et al.’s system ProFORMA

described in [100] has much in common with the methods described in this chapter

and was independently developed during the same period as our own work. Pro-

51

3. Augmenting Feature-Based SLAM for Live Modelling

FORMA is a more fully realised system than that which we present and validates

several of the concepts explored in this chapter, such as the use of tetrahedralisation.

Chapter 6 describes a different system with the same goals as this one, building

from developments that became available later on in the period of this thesis, such

as commodity programmable graphics hardware and the increased accessibility of

real-time dense multi-view stereo.

3.2 Background

In multi-view stereo (MVS), multiple images taken from cameras with known pose

and internal parameters are considered in order to generate a 3D model of an uncon-

strained scene. State of the art MVS methods such as that of Furukawa and Ponce

are able to produce highly detailed photo realistic reconstructions [41]. They ap-

proximate the surface of the scene by overlapping oriented planar patches within an

incremental method that expands currently reconstructed regions through photo-

consistent additions at the models boundary. Offline visual reconstruction tech-

niques such as this have been the focus of much research, but typically have taken

minutes if not hours to complete for modest numbers of images. Attempting to

construct such models in real-time has yet to receive much attention.

In order to compute the pose of cameras used as input to multi-view reconstruction

systems, sparse features are typically extracted from images, matched and then

bundle adjusted as a batch process in order to reduce the reprojection error of 3D

features into observed images. In order to perform real-time 3D reconstruction, an

obvious starting position is to replace offline bundle adjustment with a real-time

visual SLAM system that operates on sparse point features, which is the route that

we will take within this chapter.

It is challenging to move from a map of sparse point features towards a mesh or

other representation which densely represents geometry. For estimating the live pose

of the camera, we used Davison’s sequential probabilistic sparse feature visual SLAM

system, MonoSLAM [26]. It is quite conservative when choosing which features it

should use to track, which can make the map very sparse. A further difficulty in

constructing a surface from such a probabilistic SLAM map is that it can change over

time as observations of points are made, each correlated to the cameras uncertain

52

3.2. Background

location.

Although methods such as Kazhdan et al.’s popular Poisson Surface Reconstruc-

tion can generate surfaces through dense 3D point features [58], there remain sig-

nificant and unresolved challenges when the density of features is too low, as in

a sparse map. Whereas on the very local scale we might expect surfaces to obey

notions of smoothness related to curvature, this doesn’t hold on the coarser scale.

Neighbouring sparse features within a map may be meters apart, and the resulting

topology of the implied surface may be highly ambiguous.

For maps whose real surface topology is very constrained, a simple approach can

be to carefully choose a lower two-dimensional space upon which we can project our

3D point features. We can then triangulate features in 2D within this space (using

a Delaunay triangulation for example) to obtain connectivity information for our

final mesh back in 3D. This will generate meshes who’s topology is correct only if

we can find a 2D space on to which the projection of all real-world surfaces have no

overlap.

For scenes in which all features remain unoccluded from a single known location P,

features can be projected onto a unit sphere centred at P and triangulated in 2D by

simply consider their 2D spherical coordinates. Even for such constrained surfaces,

the generated mesh loses its desirable Delaunay property — adequate weighting is

not given in the direction of the projection which can result in skinny triangles. For

simple scenes and by choosing an appropriate space in which to project, acceptable

results can be obtained.

A straight-forward example of this is the work of Beardsley et al. who choose to

triangulate in the lower dimensional space of the image itself (a projection on to the

image plane) [9]. They ensure topology is maintained correctly by including only

point features which are currently observed within the live image.

For scenes belonging loosely to a plane, such as one consisting of a single side of

a corridor, there may not be a single finite point from which all features are visible,

but instead one set at infinity in some direction. In this case we can project points

orthographicaly onto the plane for triangulation. This formulation is common to

many aerial ground mosaicing systems such as that of Jung and Lacroix [57].

The more common and general case is that not all features in a scene are visible

53

3. Augmenting Feature-Based SLAM for Live Modelling

from a single point, and that we are unable to simplify the problem so straightfor-

wardly. Additionally, we would like to avoid committing to finding such a point or

to placing one that may later be invalidated by an addition to our model. The main

part of this chapter will therefore be concerned with visibility reasoning for general

3D scenes and the development of a tetrahedral meshing approach which can auto-

matically infer the locations of surfaces in the world as the interface between solid

and empty regions.

3.3 Minimum Energy Surfaces

Given a sparse set of 3D features lying on the surface of unknown scene geometry, can

we generate an approximate model of the surface from the sparse features alone?

To answer this question, let us first consider a lower-dimensional version of the

problem: that of fitting a boundary over sparse points to form a two-dimensional

plan consistent with the world. Figure 3.1 illustrates a minimum energy (shortest

length through all features) approach to fitting an approximate surface through

sparse features which lie on the true boundary. We can see that the boundary

misrepresents the true surface of the real-world in a catastrophic way, placing the

doorway in the wrong place. The result is a model that is not a useful approximation

of the world.

In this simple example, the minimum energy formulation breaks down because

over sparse features there exists no real notion of smoothness. It is not the case

that nearby sparse point features necessarily lie on the same surface. Moreover,

a minimal energy formulation as suggested can only represent a single continuous

surface. To separate distinct objects we must first cluster points into separate sets

which contain them. However, there are further cues available than we have used

here, since a visual SLAM system produces not just a raw point cloud but also

visibility evidence which can help to improve reconstruction.

3.4 Visibility

In the interpretation of surfaces, boundaries are important and are frequently de-

tectable based on what they occlude rather than by their texture. One way in

54

3.4. Visibility

Figure 3.1: An overhead plan of a simple room and corridor connected by an open
doorway. A minimum energy boundary (red dotted) is estimated through detected
feature points (blue circles).

which we reason about the structure of the world is by considering what we can and

cannot see as we move through it. We can do something analogous by placing the

sparse features in context, recording from what position they have been observed in

addition to where we estimate them to be.

In the context of a real-time SLAM system, these observations of features are

readily available. The camera’s pose when observing a feature provides context

which can help to disambiguate potential surface structure. Specifically, we do not

expect a feature that we are observing to be occluded by another surface. Figure 3.2

applies context to our two-dimensional boundary generation example. Here, the two

features observed by our system in the corridor are grounded in the context of the

current camera location. We can reason that since the features are in view, there

cannot be a surface in front of them.

Using this simple notion of context, as the camera navigates the room the model’s

surface can be pushed in and out as features are observed. Continuing with our two-

dimensional analogy from Figure 3.2, imagine that the camera were to travel through

the doorway and into the corridor (Figure 3.3). If we continue to use contextual

55

3. Augmenting Feature-Based SLAM for Live Modelling

Figure 3.2: Using Context to Infer Correct Surface Topology

Figure 3.3: Using Context to Explore Complex Geometry

56

3.5. Using Visibility to Define Volumes

visibility to make surface updates, a much better result is obtained. Changes to

map topology occur locally within the space that is currently in view.

3.5 Using Visibility to Define Volumes

3.5.1 Visibility Constraints

As a camera moves through a scene, each feature that is observed places a constraint

on free space; we can say explicitly that the line segment between the camera and

the feature is not occluded and passes through no surfaces. Free space constraints

have been used before in robotics where range sensor measurements are integrated

into evidence grids, a regular metric grid covering the area in which the robot moves

and whose elements maintain the likelihood of them being free space based on obser-

vations [80]. In multi-view stereo, voxel-based volumetric reconstructions have been

used for fusing multiple depth maps by equivalent free space reasoning [103]. In these

cases however, the measurements have been dense — carving out volumes of space

with each one. For our sparse constraints, it would be hard to pick an appropri-

ate regular grid in which to accumulate constraint statistics. Moreover, grid-based

methods are inherently inflexible and cannot be easily updated as corrections are

made within a sparse feature-based map.

Figure 3.4 takes us again to two dimensions, where a single camera observes

features whilst travelling through a room. The visibility constraints represent lines

which we know to be free space.

In a dynamic system where features’ position estimates may update and improve,

such constraints are still valid, since the meaning assigned to the constraint still

holds, i.e. that a feature was visible from a certain camera location. We should

note that as estimates of the locations of features improve, the main component of

change will be along the visibility constraint line itself.

Although we gather more visibility constraints every frame, the information that

we gain from including them depends on a number of factors. We will discuss

pruning of these constraints later (Section 3.5.5).

57

3. Augmenting Feature-Based SLAM for Live Modelling

Figure 3.4: A camera moves through a scene observing point features (blue circles)
which reside on surfaces within the world. For each feature observed from a camera,
the line segment between the feature and camera marks free space (dotted blue line).

3.5.2 Visibility Volumes

Looking at Figure 3.4, we can see that the hard constraints introduced by this

concept create a cross-shaded region, which reflects an estimate of free-space in

the world (Figure 3.5). The boundary of this free-space region is contained within

the set of possible surfaces defined by the triangulation of the feature points and

cameras’ centres. Notice that those triangles shaded as free space correspond to

those intersected by visibility constraints.

Given a monocular SLAM system’s sparse feature map, we can partition space into

a parameterised tetrahedralisation by taking the features and a set of saved camera

locations as vertices within a three-dimensional Delaunay tetrahedralisation. We

label each of the component tetrahedra as solid or free space based on whether

one or more visibility constraints intersect its volume. In three dimensions, the

various visibility constraints will not necessarily touch, but the set of constraints is

dense enough to eliminate those tetrahedra which belong to free space in the world

(Figure 3.6). The estimated surface runs along faces which lie between free and

58

3.5. Using Visibility to Define Volumes

Figure 3.5: The red shaded region described by the crossing visibility constraints
(blue dotted lines) forms a coarse approximation to free space within the scene.

occupied tetrahedra.

Figure 3.6: Left: sample frame from video. Right: visibility constraints (blue) for a
real scene.

We include historic camera locations as vertices within the tetrahedralisation since

we are modelling the volume representing free space, not directly that of the object.

We pose the problem this way to enable us to model any scene directly, including

planar expanses which will cause problems for tetrahedralisation based only on the

point features themselves. This is in contrast to ProFORMA [100] which is only

59

3. Augmenting Feature-Based SLAM for Live Modelling

demonstrated on closed objects. For thin volumes, the Delauney property of the

tetrahedralisation is meaningless, generating poorly formed primitives.

3.5.3 Occupancy Cost

The hard visibility constraints so far described are binary criteria, but the tetrahe-

dral regions we are reasoning about are potentially quite large and our constraints

are only represented by rays. Moreover, the locations of the rays contain uncertainty

and they may only narrowly intersects a tetrahedron within the volume.

Figure 3.7: By recording the length and number of rays that pass through the vol-
ume, we can assign a cost of occupancy to a cell which increases as more constraints
intersect it. Deeper red reflects higher cost, and thus a cell which is more likely to
represent free space.

Given a tetrahedron in our space and a visibility constraint that passes through

it, we can assign an occupancy cost (in principle related directly to occupancy

probability) based on a number of potential metrics. Some important factors are

the number of visibility constraints that violate the volume, their certainty, and the

length of the intersecting segment, as well as the size of the volume itself (Figure 3.7).

We choose to construct a simple occupancy cost based on the total length of

60

3.5. Using Visibility to Define Volumes

visibility constraints that pass through a tetrahedra normalised by its volume. We

define a line segment l as a tuple described by its endpoints; l = (P1, P2), P1, P2 ∈
R3. A tetrahedron is defined by a set of four vertices, ABCD where A,B,C,D ∈ R3.

We define ABCD ∩ l to denote the intersection of tetrahedra ABCD with line

segment l, resulting in a new shorter line segment or ∅, the empty set. ABCD ∩ l
can be computed by successively chopping the interval defined by the segment with

four half spaces corresponding to the tetrahedron faces. We define the norm of a

line segment to be equal to its length, |l| = |A−B|, l = (A,B). We define V to be

the the set of all visibility constraints, as defined by their respective line segments.

Finally, we can define the occupancy cost O for tetrahedron ABCD as:

O(ABCD) =
∑
l∈V

|ABCD ∩ l|
TV (ABCD)

, (3.1)

where TV
(
ABCD

)
is the signed volume of a tetrahedron, as defined by the scalar

triple product:

TV
(
ABCD

)
=
(

(B −A)× (C −A)
)
• (D −A) (3.2)

From this definition, each tetrahedron can be assigned an occupancy cost — those

which have been intersected by zero constraints will have zero cost and represent

solid space. A free/empty labelling can be assigned to each tetrahedron based on

a threshold of this value, or as a ratio of the highest cost tetrahedron within the

volume.

3.5.4 Updating Geometry and Occupancy Scores

Since the vertices of the tetrahedralisation are formed from probabilistic point fea-

tures, it is quite possible that they will move or get deleted, and new points will

be added. Although tetrahedralising under a 100 sparse feature points will be quite

fast, we do not want surface structure to have the appearance that it is always

changing. Additionally, by keeping at least some tetrahedra which do not change,

we can use them to accumulate information for that space. Specifically, we store the

cost of occupancy.

For each new visibility constraint which is added to the system, we update the

cost of occupancy for those tetrahedra which it intersects. We do this efficiently

61

3. Augmenting Feature-Based SLAM for Live Modelling

by tetrahedra space skipping, moving from the start of the segment to the end by

travelling through tetrahedra. From the surface of a face of one tetrahedron, we

know that the next face encountered will belong to the adjacent tetrahedron. This

means that when transitioning along the ray, only three planes need to be considered.

In order to make sure that a tetrahedron hasn’t been caused to turn in on itself as

features are moved by MonoSLAM, we monitor the sign of the signed volume for each

tetrahedron, TV
(
ABCD

)
; if it changes, we delete the tetrahedra and retriangulate

that space. The cost of occupancy can be recalculated directly from Equation 3.1.

3.5.5 Controlling Complexity

As our camera navigates the world, observing features, a naive implementation of

our visible volumes mechanism would result in the number of visibility constraints

growing very rapidly with the number of frames processed and thus growing with

time. This would have very negative effects on both tetrahedralisation, which in-

cludes camera poses as vertices, and on intersection calculations. Since our goal is

to define an approximate volume by these constraints, it is clear that some will be

more important that others. When exploring new space, the camera end-points of

these constraints may be important but when roaming inside our existing volume

they are less important.

While a more sophisticated strategy might be possible to reduce the rate of growth

in the number of constraints, here we use some heuristics to significantly reduce the

number of visibility constraints stored in our representation. Firstly, it is important

to add constraints that include a newly added feature in order to include these

features within the context of the visibility volume. We can also join very close

camera end-nodes which helps to reduce stored camera history states and factor

out common observations with cameras. Further, we can add constraints at regular

intervals in unexplored space. Via these measures, the number of constraints will

grow in space and not in time.

The complexity of performing a Delaunay tetrahedralising of N points from

scratch using the convex hull method in four-dimensions is O(N2) [32]. Inserting a

vertex into a tetrahedralisation can be performed by local flips at O(1) complexity

provided the containing tetrahedron is known. Since updates to the tetrahedralisa-

62

3.6. Results

tion occur largely when visibility constraints are added, containing tetrahedra can

be efficiently computed by space skipping where rays are traversed through faces.

The number of faces within a tetrahedralisation grows linearly with the number of

points, meaning a worst case face-traversal complexity of O(N), but having a much

lower expected complexity for general tetrahedralisations. For a probabilistic map

where vertices are subject to move, checking tetrahedralisation consistency requires

that we monitor each tetrahedra — a maximum of N2 may exist. As more space is

explored, it is this consistency check which dominates in computational cost, though

it doesn’t necessarily have to proceed at frame-rate.

3.6 Results

We present some examples of the method in operation in a cluttered indoor scene

(Figure 3.8). The MonoSLAM system [27] was run in standard configuration on

30Hz video from a hand-held web-cam in order to generate point feature maps

containing on the order of 50–100 features in a desktop area or the corner of a room.

3.7 Evaluation

The method is promising, but the reconstructions are currently of very rough quality

due to the sparsity of the point cloud framework. It would be interesting to try it

on much more dense point clouds; ProFORMA gives some evidence that it would be

effective for highly-textured objects. However, what really became clear was that a

feature-based map is not necessarily a good starting point for dense scene modelling,

and that we should go back and consider methods which aim to use information from

every image pixel.

3.8 Summary

In this chapter we have presented a preliminary investigation of how dense 3D SLAM

might be achieved by reasoning about occupancy in a tetrahedralised volume with

vertices at the estimated locations of point landmarks and historic camera poses

in feature-based SLAM. Visibility reasoning based on the recorded successful mea-

63

3. Augmenting Feature-Based SLAM for Live Modelling

Figure 3.8: Novel snapshots of a live reconstruction as the camera browses the
scene. Uncertainty ellipses for for sparse point features are shown in yellow, those
still being initialised are in red. Bottom Right: the mesh of visibility constraints are
overlaid with the scene and depicted as as blue lines

surements of features as the camera moves, and a straightforward occupancy cost

measure, are shown together to be effective in determining the occupancy of tetra-

hedra and in defining reconstructed surfaces of arbitrary topology.

The reconstructions achieved, however, are notably blocky and it is clear that the

sparsity of the point cloud used as a framework is a major limiting factor in the

quality of models that can be achieved in real-world scenes. This insight prompted

a change in direction and the start of a serious investigation of direct registration

methods which have the potential to enable tracking and mapping using information

from every pixel in a video stream rather than abstracted features. In the next

chapter we study tracking methods, before moving on to the ways in which such

techniques can be used for real-time SLAM in Chapters 5 and 6.

64

Chapter 4

Direct Parametric Visual

Tracking

4.1 Introduction

Given a sequence of images from a video camera observing data represented by some

model, visual tracking is concerned with determining the parameters of the model as

it evolves over time, via analysis of the images alone. We are particularly motivated

by visual ego-motion where we track an entire scene and wish to infer the motion of

the camera from the perceived motion of the scene’s structure.

Within this chapter we will look at direct methods for visual tracking based on

the minimisation of a dense every-pixel cost function. The term ‘direct’ refers to

how the parameters of the model are calculated directly from the way in which they

relate to observed pixel intensities between video frames. The key component behind

direct methods is a generative model which lets us predict how the live frame should

look from previous ones, given the true values of the model parameters. Given that

these actual values are unknown in advance, we estimate them by finding those

which, when passed through our generative model, predict an image that most

closely corresponds to live video frame. The photometric cost function which we

minimise then, is simply the sum of squared difference between the live image and

the predicted.

65

4. Direct Parametric Visual Tracking

An efficient and effective approach for estimating the true model parameters for a

visual tracking problem is to consider the gradient of the photometric cost function

relating predicted and real views with respect to changing parameters. Within an

iterative framework, the residual between each pixel in the video image and the

prediction directly forms a linear constraint on a refined estimate to the model

parameters. To find the true parameters, we must have a good estimate from which

to start; this is often the case over video where parameters typically vary smoothly

over time. As a guess for the current frame we can use our previous parameters or

those based on some motion model. Attempting to estimate model parameters via

gradient methods when our initial guess is too far from the true solution can lead us

to a local minimum, and potentially catastrophic tracking failure. This hinders the

straightforward applicability of direct methods for unordered images and for wide

baseline matching without inter-frames. Direct methods, however, when combined

with an accurate model can offer unrivalled visual tracking quality through video

by considering data from all of the pixels.

Making use of every pixel maximises the information that can be extracted from

image data and can lead to very high precision visual tracking. Clearly, some pixels

are not as informative as others — those with small gradient magnitude in textureless

regions for instance do not help constrain parameters within the cost-space as well

as pixels with interesting gradients in one or more directions, like edges and corners.

Nonetheless, each pixel is still informative and requires no effort to classify or select,

as opposed to abstractions such as point and edge features.

A major argument against direct methods for real-time tracking is that they are

expensive or not as robust as feature-based methods. The reality is that the robust-

ness of a direct method will depend on how well the model can describe the image

data and for gradient methods whether or not an initialisation within the convex

basin of the true solution can be reliably made. Typically, since the parameters of

the model are highly over-parameterised with respect to pixel observations, direct

methods degrade gracefully with deteriorating image quality and can operate at low

image resolutions. Estimation of parameters at low resolutions can frequently pro-

vide accurate results with improved convergence properties. These estimates can

be further used to initialise estimates at higher resolutions within a coarse-to-fine

strategy, helping to improve convergence properties and computational efficiency.

66

4.2. Background

4.2 Background

In 1981, Lucas and Kanade proposed an efficient method for image registration

using the spatial intensity gradient to accelerate search [77]. Assuming brightness

constancy — that pixels in correspondence hold the same value — they observed that

error in alignment as a function of alignment parameters, formed a smooth cost-space

with meaningful gradients which could guide iterative estimates for registration.

They showed that the location of the minimum within this cost space could be found

by linearising and taking first-order steps ‘downhill’ which amount to a Newton-

Raphson iteration.

In their original paper, Lucas and Kanade motivated their approach to 2D patch

matching for different domains such as solving dense stereo correspondence. The

parameter space for this problem was just one-dimensional in pixel disparity, with

each patch around a pixel minimised independently. They also considered higher

dimensional problems such as dense optic flow where each patch is optimised with

respect to u− v displacement.

Unlike their counterparts Horn and Schunck, who were also working on dense

optic flow [49], Lucas and Kanade considered no explicit regularisation between

neighbouring pixels. Horn and Schunck’s work led to a whole literature of variational

methods which balance noisy observed data with a regularisation which reflects some

prior. In his thesis, Lucas contrasts his work with that of Horn and Schunck noting

that whereas their early variational approach contained explicit regularisation, the

image patch size in Lucas’ work was a form of implicit regularisation [76]. He also

demonstrated how general two-dimensional linear transforms such as rotation and

shearing could be modelled.

Later, Tomasi and Kanade proposed an algorithm for sparse feature tracking

through video; this was based on this same method for pixel correspondence but

seeded at sparse salient image locations [127]. This came to be known as the KLT-

tracker, which is prevalent still as a means for obtaining sub-pixel accurate sparse

correspondence over video frames.

In the years that followed, direct methods were applied to different problems

with more complex models. Irani and Anandan explored frame to frame alignment

of video from a rotating camera and of a camera observing planar structure for

67

4. Direct Parametric Visual Tracking

different mosaicing applications [54]. Related work looked at augmenting parametric

structure with depth [55] and using pixel cost measures based on cross correlation

and mutual information as opposed to absolute difference [52].

A thorough review was undertaken by Baker et al. which attempted to unify

and categorise modifications to the original Lucas Kanade method [7]. A number of

uses reversed the meaning of the image and template and so were dubbed inverse,

allowing certain derivatives to be pre-computed for the template image which in

many applications is fixed constant.

In 1999, Torr and Zisserman wrote a technical overview of feature-based methods

for structure and motion, pushing for their use over direct methods [128]. They

argued that the abstraction of features offered many advantages, including superior

photometric invariance, such as changes to illumination and projective viewpoint

changes. A companion paper by Irani and Anandan released simultaneously pro-

vided an overview of direct methods offering their alternate opinion [53]. They

detailed methods to robustify the cost measure frequently found in direct meth-

ods in order to offer some of the illumination invariance enjoyed by feature-based

techniques. An alternative to introducing an invariant cost metric is to model the

changes directly and estimate these parameters jointly, such as in work by Silveira

and Malis [114].

As far as viewpoint invariance is concerned, we must differentiate live tracking

from generic wide baseline matching when contrasting feature-based and direct

methods. Across consecutive frames of video, viewpoint typically changes little

and quite predictably. Image patches which do not trivially match over these differ-

ent views are a strong argument for direct methods, since it goes to show that it is

the geometric information present in these regions which will constrain the solution.

Generally, feature abstractions discard this information.

Up to the present, feature-based methods (mostly point feature-based) have dom-

inated in practical structure from motion applications and have been the de-facto

approach for real-time monocular SLAM [26, 34, 64]. As the robustness of monocular

SLAM systems has increased, so too have the number of features that are tracked.

Tracking more features offers resilience to mismatches which might represent a size-

able quantity of correspondences. Accurately tracking greater numbers of features

also improves localisation accuracy, albeit with diminishing returns [120]. More ac-

68

4.2. Background

curate localisation can also lead to better pose prediction via a motion model, which

in turn can simplify and improve data association / initialisation for the next video

image. In the limit, to achieve the highest tracking accuracy obtainable, we will be

looking to consider contributions from every image pixel, and we must return once

again to direct methods.

In [11], Benhimane and Malis demonstrated a real-time direct procedure for

accurately tracking planar regions up to 150 × 150 pixels in size by estimating the

homography which relates them. They posed the problem of alignment in terms of

a Lucas-Kanade style approach named efficient second-order minimisation (ESM),

first described by Malis for vision-based control [78]. Although their implementation

was not able to consider every pixel of the image, their method was implemented

for a standard desktop processor in 2004.

Comport et al. describe a system which uses every pixel within an image for highly

accurate 6 DOF stereo odometry [22]. Dense stereo methods allow approximate

structure to be associated with each pixel in the stereo pairs. ESM is again used

within a direct method to align the projection of the previous textured depth map,

parameterised by motion, to the current live stereo pair. Considering every pixel of

each 759× 280 resolution video frame, their method proceeds at 10s/image-pair in

Matlab. Their stated accuracy of 0.004% positional drift over 360m through a car

mounted sequence in moving traffic represents a staggering increase in accuracy over

previous visual odometry methods such as that of Nistér [98] based on stereo feature

matching. The recent odometry system described by Konolige et al. operates from

feature matching and a sliding window bundle adjustment in hard real-time, but

it is hard to compare to the system of Comport et al. as it is designed for rough

environments [66].

Lucas Kanade formulations such as ESM are inherently and trivially parallelisable

and are ideally suited for implementation on data parallel architectures such as

commodity graphics processors; this means that there is plenty of opportunity to

achieve real-time every-pixel results with these methods. In [69], the performance of

ESM is compared to other feature-based tracking methods, yielding greater accuracy

when it is able to converge.

Given the potential benefits of real-time direct tracking methods, we will con-

tinue by describing them in more detail and relating them to real-time tracking

69

4. Direct Parametric Visual Tracking

applications.

4.3 Methodology

The general approach that we will take for direct visual tracking, is to define a

parametric generative model for how we expect the appearance of our tracked image

data to change over time. Then, given an estimate of the current model parameters,

we define a photometric cost function relating to how well our model matches ob-

served data. From here, we will attempt to refine the model parameters to reduce

the photometric cost associated with the current estimate — we can do this in an

efficient way without cause for an exhaustive search of the parameter space.

4.3.1 Generative Model

The key to the Lucas-Kanade approach is to consider tracking as image alignment

over some continuous space of possible transformations. In the case of tracking an

image patch over a video sequence, we might choose to define the parameter space

as rotation θ and displacement x, y horizontally and vertically. For a particular

patch within a video frame, the values for x, y and θ describe the space of possible

transformations into the next frame. These transformations offer a generative model

for how the patch might look in a space of possible appearances.

Figure 4.1: Original image I∗ and four synthetic images (Ig0 to Ig3) formed by
transforming the target patch with specific parameters of the generative model.

70

4.3. Methodology

Figure 4.1 illustrates four samples (Ig0 through Ig3) from the continuous three-

dimensional parameter space for how every pixel of the square patch might look

after some motion has occurred. We would like to choose a parameterisation which

supports all the patch appearances we might expect to observe, whilst finding a form

which is not over-parameterised. Our (x, y, θ) model supports two-dimensional rigid

body transformation in the image, but we can imagine different transformations

such as affine or planar projective. We will look at some more interesting models

later.

Treating our images as continuous functions, we define I (u) as a mapping from

two-dimensional image coordinates u = (u, v)> to the corresponding pixel intensities

within the image I. From a reference image, I∗, we can formalise our generative

model by defining a parametric, generative image: Ig.

From our two-dimensional rigid body tracking example, we define the value at a

pixel u = (u, v)> in the generated image Ig by:

Ig

(
u

v

)
= I∗

(
u cos(θ)− v sin(θ) + x

u sin(θ) + v cos(θ) + y

)
(4.1)

Or in matrix form we can define a homography H(x) parameterised by x =

(x, y, θ)> which reflects the same set of transformations:

Ig
(
u
v

)
= I∗

(
π
(
H(x) (u, v, 1)>

))
. (4.2)

H(x) =

cos(θ) − sin(θ) x

sin(θ) cos(θ) y

0 0 1

 , (4.3)

where π : R3 → R2 is the lowering function which performs homogeneous division

(Equation 2.1).

This functional description of pixels in the generated image can be used to compose

the image, as described in Section 2.3.4. In the following two chapters, we will

generally be looking at homographic warps as above. In Chapter 6 however, we will

71

4. Direct Parametric Visual Tracking

consider a more general function taking the form of a parametric warp W , which

describes a parametric warp field:

Ig
(
u
v

)
= I∗

(
W
(
x; (u, v)>

))
, (4.4)

4.3.2 Photometric Cost Function

Given a generative model that can predict the appearance of a portion of an image

from a source image and a set of transformation parameters, we define a photometric

cost function which represents how well the predicted image matches some observed

image. In the context of tracking, we might want to match between consecutive

video frames, choosing the set of motion parameters which minimises the match

score.

For a generative model parameterised by the vector x ∈ RN , we will define the

match cost between a reference image Ir and a transformed live image Il to be F (x):

F (x) =
1

2

∑
ur∈Ωr

(
Il
(
W (x; ur)

)
− Ir (ur)

)2

. (4.5)

For each pixel ur = (u, v)> in the reference image, point transfer through the

warp function W (x) forms a global data association estimate, placing Ir (ur) and

Il (W (x; ur)) in correspondence. Wishing to penalise intensity differences between

these pixels, we choose an L2
2 cost metric, evaluating the sum of squared differences

between pixels. This sum is taken for every pixel ur in image Ir, belonging to the

region Ωr ⊆ Ir ⊂ R2. For greyscale images, the difference Ir (ur) − Il (W (x; ur))

will be scalar. For colour images, this difference is a vector, but the square can

be taken just the same to yield a scalar. This is equal to the sum of the squared

difference between each of the channels.

Having defined a cost function relating match quality to model parameters, we

wish to find the set of parameters which minimise this cost, thus establishing the

highest quality alignment. Of course, this may not reflect the true motion parameters

— image noise and outliers or perceptual ambiguity such as the aperture problem

may lead to an incorrect minimum, or a set of equally valid minima. These effects

72

4.3. Methodology

vary by scene and can be avoided in many situations. We label the true minimiser

of F (x), x◦:

x◦ = arg min
x∈RN

F (x) (4.6)

One simple scheme to find x̂ ≈ x◦ is to discretise a likely interval within the space

of possible model parameters and search this space exhaustively to find the small-

est F (x). With N parameters and q quantisations per parameter, computational

complexity grows quickly, O
(
qN
)
. Choosing a suitable discretisation is difficult as

we would like to balance computational cost with precision. With too coarse a

discretisation, the basin of the true minimum may be missed altogether.

Consecutive Image Pair x,y +/- 0.75m x,y +/- 0.05m

Te
xt

ur
ed

 T
ar

na
c

Pl
ai

n
Ta

rm
ac

Figure 4.2: Sample image pairs (left) with associated parameter space cost plot
(middle) and enlargement (right), centred around minimum cost parameterisation.
A pixel in a cost plot represents the cost associated with the given sideways (x), and
forward-backward (y) parameters. Cost plots have been normalised such that black
represents lowest observed cost and white represents highest observed cost.

Figure 4.2 visualises the cost of alignment, F (x), between two consecutive video

frames for a car-mounted, downward facing parking camera. For illustration, the

model is parameterised by motion over a plane in two variables, left-right (x) and

forward-backward (y). This scenario is discussed later in Section 4.7. Within a

large neighbourhood, you can see that there is a clear global minimum in these

two examples, though the size of the basin varies. For the plain tarmac with high

frequency texture, the basin is small and steep, with a relatively flat surrounding

area. The textured tarmac with large varying regions demonstrates structure in the

73

4. Direct Parametric Visual Tracking

cost space, with clearer localisation in x than in y due to the forward-backward

oriented road markings.

4.3.3 Incremental Minimisation

For a given cost function F (x), we have already described a scheme that could ap-

proximate the minimiser x◦ of the function F (x) via discretisation and exhaustive

search; this method however is costly. Lucas and Kanade noted that for many prob-

lems the cost function F (x) is quite smooth and they suggested an iterative scheme,

computing the derivatives of this function with respect to the model parameters at a

current estimate, and taking linear steps ‘downhill’ towards a minimum via gradient

decent to refine the estimate. Provided the starting estimate is within the convex

basin of the global minimum, it will be found — otherwise we may get stuck in a

local minimum.

Figure 4.3 illustrates the cost landscapes from Figure 4.2, this time as a height

field. Starting from an initial guess (white and red boxes), steps are taken ‘down-

hill’ along the dashed line by iteratively approximating the location of a downhill

stationary point. This is typically achieved by linearising the function — calculating

the derivative of F (x) at the current estimate with respect to the parameters x =

(x, y)>. The global minimum in the centre of the plot may (white) or may not (red)

be reached with this method. For the plain tarmac, we can see that the very sharp

basin itself resides on a hill, showing that our initial estimate must be contained

within this region to guarantee convergence to the global minimum. Although the

textured tarmac landscape looks complicated in the large scale, we can see its global

minimum actually has a very wide and smooth basin, as can be observed from the

enlargement.

One factor that can influence the performance of the minimisation is the iterative

linear approximation of F (x) about the current estimate. How smooth this function

is will affect how far from the current estimate the linear approximation is valid.

The choice of parameterisations x of F (x) can play a large role in making this space

more linear. This is particularly true of three-dimensional transforms where many

common parameterisations are highly non-linear and may even contain singularities.

Euler angles for example can enter a state of gimbal lock which reduces the effective

dimensionality of the space in certain regions.

74

4.3. Methodology
Te

xt
ur

ed
 T

ar
na

c
Pl

ai
n

Ta
rm

ac

Figure 4.3: Height map cost landscape plots (centre) over the x, y parameter space
for the two image pairs shown in Figure 4.2. Textured tarmac (top), plain tarmac
(bottom), enlargements (right). Gradient methods initialised at different locations
(squares) iterate taking steps ‘downhill’ toward local minimum. Those initialised
within the true convex basin (white) will achieve the true solution, others (red)
will not. The textured tarmac cost landscape is highly structured with a very clear
minimum, and its enlarged central region is wide and smooth. The plain tarmac
cost function is quite flat, with a minimum which is hard to see in the larger scale.
An enlargement around the true minimum of this cost function shows that a clear
basin exists, but it is comparatively narrow.

In line with a growing body of literature [31, 78, 82], where possible we will use the

Lie algebra discussed in Section 2.4 to parameterise incremental transformations.

The matrices used to express rotation and general rigid-body transformations in

two or more dimensions belong to their own Lie groups. The matrix group of rigid-

body transforms in three-dimensions for instance is named special Euclidean, SE(3).

These groups represent smooth differentiable manifolds, each with an associated

algebra representing a tangent space to the manifold around the identity element.

This tangent space reflects the degrees of freedom of the transformation, and can

be mapped back onto the Lie group via the matrix exponential map (Section 2.4).

For illustration then, consider the 3× 3 matrix H representing a homography be-

longing to the special linear Lie group SL(3). Given an estimate Ĥ of H, we can

75

4. Direct Parametric Visual Tracking

parameterise an incremental update H(x) to Ĥ by its corresponding algebra, x ∈ sl3,

where sl3 is an eight-dimensional space. The matrix H(x) can be calculated as

a function of x through the generators for SL(3) and the exponential map (Sec-

tion 2.4). We can now write a photometric cost function using this pixel relation,

parameterised by the vector x:

F (x) =
1

2

∑
ur∈Ωr

(
Il
(
π
(
Ĥ
lr
H(x)u̇r

))
− Ir (ur)

)2

. (4.7)

Iteratively then, we are interested in finding an estimate x̂ of the minimiser x◦ =

arg minx F (x). Since we will find the approximate minimiser through linearisation,

and because when using the Lie algebra, linearisations to H(x) are more accurate at

x = ~0, estimates x̂ are incorporated into the current estimate Ĥ
lr

via the update:

Ĥ
lr ← Ĥ

lr
H(x̂). (4.8)

We can formulate different cost functions similarly, choosing suitable update rules.

There are different ways to obtain x̂ at each iteration, and we will proceed by

describing some common methods, a detailed discussion of which can be found in

the review of Lucas-Kanade methods and applications by Baker and Matthews [7].

4.3.4 Forward-Compositional Alignment

The cost function F (x) parameterised by x ∈ RN is formed from the sum of squared

differences between pixels in correspondence given the current estimate. We define

the individual difference for a reference pixel ur and its associated pixel in the live

image to be fur(x). For greyscale images, fur(x) corresponds to a scalar, whereas

for colour images, it is a vector. We can stack these per-pixel differences into a

big column vector f(x) — for colour images, each pixel contributes three elements,

one for each colour channel. Writing P = (num pixels) × (num colour channels),

f(x) ∈ RP . We can now rewrite F (x) as the L2 norm of a vector of differences,

squared:

F (x) =
1

2

∑
ur∈Ωr

(
fur (x)

)2
=

1

2
‖f(x)‖22, (4.9)

76

4.3. Methodology

fur (x) = Il
(
π
(
Ĥ
lr
H(x)u̇r

))
− Ir (ur) . (4.10)

Defining ∇f(y) ∈ RP×N to be the row vector of partial derivatives of f(x)

evaluated at y, we start by defining a first order approximation f̂(x) ≈ f(x) and

F̂ (x) ≈ F (x) about 0 using a first order Taylor series expansion:

f̂(x) = f(0) + ∇f(0)x, (4.11)

F̂ (x) =
1

2
‖f̂(x)‖2 =

1

2
f̂(x)>f̂(x). (4.12)

A simple application of the product rule allows us to approximate ∇F (x) from

Equation 4.12:

∇F (x) ≈∇f̂(x)>f̂(x). (4.13)

By definition, the local minimum x◦ of F (x) represents a stationary point of that

function, and we make the assumption that such a minimum exists:

∇F (x◦) = 0. (4.14)

It follows from Equations 4.11, 4.13 and 4.14 that we can find the approximate

local minimiser x̂ ≈ x◦ of F (x) by solving:

∇f̂(x̂)> (f(0) + ∇f(0)x̂) = 0. (4.15)

Writing the Jacobian J = ∇f(0), J ∈ RP×N , solving Equation 4.15 is equivalent

to solving Equation 4.16.

Jx̂ = −f(0). (4.16)

77

4. Direct Parametric Visual Tracking

We can instead solve this overdetermined system in the linear least squares sense

by considering its normal equations:

J>Jx̂ = −J>f(0). (4.17)

Which we can rearrange to yield x̂:

x̂ = −
(
J>J

)−1
J>f(0). (4.18)

J>J is the Gauss-Newton approximation to the Hessian, and Equation 4.18 can be

seen as a single iterative non-linear least squares Gauss-Newton step. Practically, we

would never construct J explicitly, instead building J>J and J>f(0), an N ×N and

N×1 matrix respectively, by summing contributions from each pixel. Remembering

that J = ∇f(0), we can write:

J>J =
∑
ur∈Ω

(
∇fur(0)> ∇fur(0)

)
(4.19)

J>f(0) =
∑
ur∈Ω

(
∇fur(0)> fur(0)

)
, (4.20)

where:

∇fur(a) =

(
∂fur(x)

∂x1

∣∣∣
x=a

, . . . ,
∂fur(x)

∂xN

∣∣∣
x=a

)
. (4.21)

The partial derivatives ∇fur(0) are of size R1×N for greyscale images, R3×N for

colour images. Using index notation we can write them down directly:

∂fur(x)

∂xi

∣∣∣
x=0

=
∂Il(a)

∂a

∣∣∣
a=π

(
Ĥ
lr
u̇r

)∂π(b)

∂b

∣∣∣
b=Ĥ

lr
u̇r
Ĥ
lr ∂H(x)

∂xi

∣∣∣
x=0

u̇r . (4.22)

If H(x) is parameterised by the Lie algebra x ∈ sl3, then the partial derivatives

of H(x) ∈ SL(3) with respect to the parameters x about 0 are simply equal to the

group generators for SL(3) (Section 2.4). We typically compute image derivatives
∂I(a)
∂a ∈ R1×2 (R3×2 for colour image) by central difference, making sure pixels at

78

4.3. Methodology

the boundary where this derivative is undefined are excluded in the sum. These

derivatives and those of the homogeneous projection function ∂π(b)
∂b ∈ R2×3 are

defined as follows:

∂I(uv)

∂u
=

I(u+1
v)− I(u−1

v)

2
,

∂I(uv)

∂v
=

I(u
v+1)− I(u

v−1)

2
,

∂π(b)

∂b
=

 1
b2

0 −b0
b22

0 1
b2

−b1
b22

 .

4.3.5 Inverse-Compositional Alignment

The forward-compositional approach requires that the Gauss-Newton approxima-

tion to the Hessian J>J be recomputed at each iteration since it is a function of

the current estimated transformation, Ĥ
lr

. The inverse-compositional formulation

reverses the role of the images to keep the term containing the update parameter x

constant when taking the derivative at 0. The updated per-pixel cost becomes:

fur (x) = Il
(
π
(
Ĥ
lr

u̇r

))
− Ir

(
π (H(x)u̇r)

)
. (4.23)

All other steps remain the same, except that we now use the inverse of the update

transform during the update step, Ĥ
lr ← Ĥ

lr
H(x)−1. J>J is now constant through

iterations whilst the reference image remains unchanged:

∂fur(x)

∂xi

∣∣∣
x=0

=
∂Ir(a)

∂a

∣∣∣
a=ur

∂π(b)

∂b

∣∣∣
b=u̇r

∂H(x)

∂xi

∣∣∣
x=0

u̇r . (4.24)

4.3.6 Efficient Second-Order Minimisation

The method of efficient second-order minimisation (ESM) can be seen as a combi-

nation of both forward and inverse compositional methods [14]. Where the forward-

compositional formulation takes image derivatives in the live image for its linear

system and the inverse-compositional method takes image derivatives in the refer-

ence image, ESM forms a system from the average of both. We start by expressing

79

4. Direct Parametric Visual Tracking

our original pixel-wise cost f(x) (Equation 4.10) by its Taylor series expansion, and

doing the same for ∇f(x):

f(x) = f(0) + ∇f(0)x +
1

2
x>∇∇f(0)x + . . . (4.25)

∇f(x) = ∇f(0) + x>∇∇f(0) + . . . (4.26)

Equating x>∇∇f(0) in Equations 4.25 and 4.26, ESM applies a novel second

order approximation f̂(x) of f(x) from only first order terms:

f̂(x) = f(0) +
1

2
(∇f(0) + ∇f(x)) x (4.27)

It follows from Equations 4.27, 4.13 and 4.14 that we can find the approximate

local minimiser x̂ ≈ x◦ of F (x) by solving:

∇f̂(x̂)>
(
f(0) +

1

2
(∇f(0) + ∇f(x̂)) x̂

)
= 0 (4.28)

Writing J = 1
2 (∇f(0) + ∇f(x̂)), Equation 4.28 can be solved once again through

the following expression:

x̂ = −
(
J>J

)−1
J>f(0) (4.29)

In order to find the solution x̂ in Equation 4.29, we are required to evaluate

the partial derivatives of the cost function at 0 and at the solution x̂. We have

already seen these derivatives taken around 0 for the forward-compositional case

(Equation 4.22). Taken around x̂ we get:

∂fur(x)

∂xi

∣∣∣
x=x̂

=
∂Il(a)

∂a

∣∣∣
a=π(ĤlrH(x̂)u̇r)

∂π(b)

∂b

∣∣∣
b=ĤlrH(x̂)u̇r

Ĥ
lr ∂Hlr(x)

∂xi
u̇r (4.30)

Evaluating this cost directly is not possible since x̂ is unknown in advance. The

method of ESM, however, observes that at the true solution, x̂ = x◦, the warped

live image should in principle exactly equal the reference image. We can therefore

80

4.4. Coarse-to-Fine Warping

express the live image derivatives in terms of the reference image derivatives, taking

care to adjust the basis:

Il (ul) = Ir (ur) , ul = π
(
Ĥ
lr
H (x◦) u̇r

)
(4.31)

∂Il(ul)

∂ul

∣∣∣
ul=π(Ĥ

lrH(x◦)u̇r)

=
∂Ir(a)

∂a

∣∣∣
a=ur

∂π (b)

∂b

∣∣∣
b=u̇r

H(−x◦)Ĥ
rl
. (4.32)

Although Equation 4.32 is still a function of x◦, it depends on it in a less significant

way. Since the method is iterative, we assume x◦ is small and evaluate it as 0 in

the remainder of Equations 4.30 and 4.32.

The second-order approximation within the formulation can help to improve the

speed of convergence, so although we cannot precompute the same Jacobian terms

as for the inverse-compositional formulation, we are likely to reach the solution

sooner [78].

4.4 Coarse-to-Fine Warping

As we saw in Section 4.3.3, the ability of a gradient-based method to find the true

global minimum of a cost function relies on having a good initial estimate which

lies within the convex basin of the true solution. One way in which we can poten-

tially widen this basin is to define a related but smoother cost function to minimise.

A common approach is to modify the input images by applying a Gaussian blur,

removing higher frequencies and hence simplifying the cost landscape. Having con-

verged to a minimum within this smoother function, we can return to the original

image starting with our estimate from the smoother function. This can be repeated

several times in a pyramid of blurring known as coarse-to-fine refinement [12]. By

blurring the images, we can also sub-sample them when considering the cost function

without loosing information, meaning that we save computation time too.

Figure 4.4 illustrates a typical Gaussian power of two image pyramid for a simple

scene. As resolution is decreased, we notice that objects remain discernible over

many reductions. Fine details such as the lines along the floor become less visible,

and boundaries are blurred.

81

4. Direct Parametric Visual Tracking

Figure 4.4: Gaussian Power of Two Image Pyramid: in which the original image (top
left) is iteratively blurred and downsampled to create progressively lower resolution
images.

For simple parameterisations, the cost of solving registration via the methods

described in the previous section is dominated by the number of pixels considered.

If we define the original image to form the 0th level of the pyramid, an image at the

nth level has 1
22n

the number of pixels. Iterations performed over the lowest resolution

image of Figure 4.4 for example will take around 1000 times more operations than

at the highest. On parallel architectures, where contributions from pixels can be

computed in parallel, some of this cost can be hidden, though summation of per-

pixel contributions must be partly serialised in a log reduction.

In order to compute the Gaussian blurred image I∗ from the original I, we convolve

I with a Gaussian kernel. Gaussian kernels are separable, and we are able to apply

the equivalent of a 2D convolution kernel to the image by instead performing two

separate 1D convolutions. First, either a vertical or horizontal 1D kernel is applied

to create an intermediate image, and then the transposed kernel is applied to yield

the final blurred result. For a simple and fast 3 × 3 Gaussian convolution kernel,

we can use the following coefficients, taking care to correctly reweight at image

82

4.5. Iteratively Reweighted Least Squares

boundaries:

1
16

2
16

1
16

2
16

4
16

2
16

1
16

2
16

1
16

 =

1
4
2
4
1
4

× (1
4

2
4

1
4

)
. (4.33)

When working with images of reduced dimensions, care must be taken to ap-

propriately adjust the intrinsic parameters used, especially if we are working with

image coordinates that start in the center of the first pixel. For this reason it can be

convenient to use a coordinate system which starts at the corner of the first pixel, or

even to work in normalised coordinates which are scale independent. An example of

such a system can be found in OpenGL texture coordinates and normalised device

coordinates.

4.5 Iteratively Reweighted Least Squares

Earlier in this chapter, we introduced several related methods for dense tracking,

where motion parameters were estimated by minimising a per-pixel photometric cost

function F (x) with respect to the parameters x:

F (x) =
1

2

∑
u∈Ω

(
fu(x)

)2

, (4.34)

where fu(x) is the residual for pixel u induced by parameters x.

Finding the minimum x◦ = arg min
x

F (x) represents the least squares solution and

the most likely estimator or M-estimator of F (x) assuming that the observed pixel

differences fu(x) are normally distributed about zero [136]. This will not be the case

for pixels which do not belong to our model, or where the implicit brightness con-

stancy assumption that we make has been broken by changes in illumination. These

outliers can corrupt the data and have a disproportionate effect on the solutions

result [48].

We can instead reformulate Equation 4.34 in terms of a different norm ρ(r) over

83

4. Direct Parametric Visual Tracking

the residual error r. For least squares, ρ(r) = 1
2r

2:

F (x) =
∑
u∈Ω

ρ

(
fu(x)

)
. (4.35)

The minimiser of this expression forms the M-estimator for our choice of ρ(r).

Instead of minimising this new function directly, we can instead solve an itera-

tively reweighted least squares problem, which takes the form of our original least

squares formulation (Equation 4.34), but where the contributions from each pixel

are reweighted [136, 118]:

F (x) =
1

2

∑
u∈Ω

ω

(
fu(x)

)2

, (4.36)

where the pixel-wise weight function ω and influence function ψ are defined to be:

ω(r) =
ψ(r)

r
, ψ(r) =

∂ρ(r)

∂r
. (4.37)

For least squares, the influence function ψ = r, which tells us that the influence

of a measurement on the solution increases linearly with the size of its residual.

This implies that ω = 1, and we can see that Equation 4.36 becomes equivalent

to Equation 4.34. For other M-estimators where the weight is not equal to 1, we

can simply scale each pixels corresponding contributions to the normal equations

(Ju)> (Ju) and (Ju)> fu(0) by ω, and solve as we would ordinarily.

Type ρ(r) ψ(r) ω(x)

L2
r2

2 r 1

L1 |r| sign(r) 1
|r|

Huber

{
|r| ≤ c
else

{
r2

2
c
(
|r| − c

2

) {
r
c sign(r)

{
1
c
|r|

Tukey

{
|r| ≤ c
else

{
c2

6

(
1−

(
1− (r

c)2
)3)

c2

6

{
r
(

1−
(
r
c

)2)2
0

{ (
1−

(
r
c

)2)2
0

Table 4.1: Influence functions that give rise to useful M-Estimators within iteratively
reweighted least squares [136].

84

4.6. Visual Gyroscope, Rotational Odometry

So which influence function should we choose? Table 4.5 summarises some of the

most common influence functions used in computer vision, as described by Huber [50]

and Zhang [136]. The L1 norm is a popular choice for having constant influence

irrespective of the residual error size. The Huber norm is a combination of the L2

norm for residuals below the constant c and the L1 norm those above it. This

smooth basin can lead to a nicer cost landscape whilst still being quite robust and

convex.

In this thesis, we often use the non-convex Tukey influence function to find a very

robust M-estimator for given data. It corresponds to a Gaussian inlier model and

uniform outlier model, giving no influence to outliers above the tuning parameter.

Although very robust norms can lead to more accurate results in the presence of out-

liers, they can also effect the rate of convergence toward the solution and introduce

local minima into the cost landscape. One solution proposed by Huber is to start

with a convex norm and then apply a few iterations of a super-robust non-convex

norm after, mitigating the effect of large errors [50]. Our very similar solution is

to vary the Tukey tuning parameter c as we converge on the solution in order to

achieve a balance between convergence and robustness.

4.6 Visual Gyroscope, Rotational Odometry

Odometry is the term given to the estimated position formed from the integration of

velocity measurements over time. Since each measure of velocity has some associated

error, the sum of these measurements has an increasing absolute error which we call

drift. Through a video sequence, if we are able to measure incremental motion

between frames, we can integrate these estimates to produce visual odometry. The

first kind of odometry we will consider is the special case of a camera which can

only rotate.

Several offline direct video mosaicing papers such as [54, 107] relate pairwise

consecutive images to one another or to a reference image using Lucas-Kanade style

methods as we have introduced earlier and will use here. An alternative is to track

salient features between images and estimate some transformation between them by

minimising the transfer error induced by the correspondences between frames, as

can be found in feature-based mosaicing literature [124].

85

4. Direct Parametric Visual Tracking

Whereas it is common in both direct and feature-based literature to track between

frames by parameterising pixel motion in terms of a general projective transform,

we assume camera intrinsics are known in advance and parameterise pixel motion

by the motion of the camera itself. This is in common with the EKF feature-based

mosaicing system of Civera et al. described in [20]. This leads to a direct estimate of

angular velocity and reduces the degrees of freedom of the optimisation from eight

to just three.

Where previously it might have been seen as prohibitively expensive to use direct

methods for real-time estimation of motion from every pixel, work such as that of

Benhimane and Malis have shown that reasonable numbers of pixels can be con-

sidered at frame rate on desktop machines for tracking homographies [11]. They

suggest ESM is an enabling technology for accelerating direct methods. In Klein

and Murray’s PTAM, a direct whole image based approach is used on small images in

order to estimate rotational velocity at each frame to help locate point features [64].

Klein and Drummond showed that the rotational axis and magnitude of rotational

velocity could be estimated in real-time from just a single frame by considering only

the observed image’s motion blur [61]. Unfortunately, a sign ambiguity exists which

makes it impossible to establish which direction around the axis of rotation the

camera is moving without some prior.

In what follows, we will take an ESM approach (Section 4.3.6), as inspired by

work such as [11].

4.6.1 Formulation

In Section 2.3.3 we saw how the motion of pixels between frames for such a video

sequence can be described by a rotational homography. We can represent the motion

of the camera from the previous frame p to the live one l by a rotation matrix

Rlp ∈ SO(3). Following from the previous section, we can define a photometric cost

function parameterised by ω ∈ so3 as follows:

F (ω) =
1

2

∑
up∈Ωp

(
Il
(
π
(
KR̂

lp
R(ω)K−1u̇p

))
− Ip (up)

)2

. (4.38)

86

4.6. Visual Gyroscope, Rotational Odometry

We solve this cost iteratively using ESM (Section 4.3.6) enabling us to estimate

rotational velocity very accurately and in real-time; we have a visual gyroscope.

Through coarse-to-fine warping, we can cope with large rotational velocities and

high rotational accelerations. Through the use of direct methods, our estimate is

remarkably robust to image degradation such as motion blur and camera defocus.

Figure 4.5: Iterative Rotation Estimation.

Figure 4.5 shows the main steps in calculating the accurate inter-frame rotation

estimate of the camera. Live 30Hz operation is enabled through the inherent par-

allelisability of the method and the power and general programmability of modern

graphics cards. Given a current estimate of the rotation, R̂
lp

(which at first may

be the identity or calculated from the previous known velocity), CUDA threads

operate massively in parallel per pixel to compute J>uJu and J>u fu(0), storing the

results in fast memory shared between blocks of threads. These are summed effi-

87

4. Direct Parametric Visual Tracking

ciently in a parallel reduction within this memory to create a much smaller array

of systems. These are finally summed to form J>J and J>f(0) on the CPU where

the parallel advantage stops becoming so great. Finding ω̂ = −
(
J>J

)−1
J>f(0) by

inverting J>J with an efficient Cholesky decomposition, we apply the update rule

R̂
lp

= R̂
lp
R(ω̂) and repeat until the update ω̂ is small.

4.6.2 Comparison to Gyroscope

To test the ability of our method to track dynamic local motion, we have com-

pared the angular velocity output of our method against a solid state Xsens MTi

gyroscope (rated up to 300◦/s) fixed rigidly to the rear of the camera. The cam-

era and gyroscope were mounted on a tripod and oscillated to produce increasingly

rapid motion (up to around 5 oscillations per second) about each of its axes in turn.

We compare the live camera image to a single reference image taken before motion

started (rather than using the previous frame). This helps us to evaluate potential

performance within a keyframe type system as we will explore later in Chapter 5.

In this way, a potentially motion-blurred live image is being compared with a clean

reference image. Alignment of the camera and gyroscope frames of reference have

been performed physically, and are potentially subject to small error.

Figure 4.6 illustrates sample plots of angular velocity plotted against time for both

our visual gyroscope and the physical gyroscope, including a sample failure where

alignment to the reference image is lost. We limited per frame ESM iterations

to 48 at the 5th level of the pyramid, 16 at the 4th, 8 at the 3rd, 4 at the 2nd,

and 2 at the 1st and using any remaining time to perform iterations at the 0th level

corresponding to the original image. The characteristics of estimation are somewhat

different depending on the axis of rotation, though in each case our visual gyroscope

follows the physical gyroscope quite closely. The small systematic errors on the axis

are likely due to a combination of camera miss-calibration and slight misalignment

between camera and gyroscope frames of reference.

We found that angular velocity about the z-axis (cyclotorsion) is estimated most

consistently; in the sample plot notice that the truncated peaks of the gyroscope

data show that the tracking limits of the device were exceeded while visual tracking

still continued — our system was able to maintain fidelity about this axis in excess

of 7 rads−1. This performance might be explained by the pixel flow induced by such

88

4.6. Visual Gyroscope, Rotational Odometry

-8

-6

-4

-2

0

2

4

6

8

0 1082 4 6 971 3 5 11

-8

-6

-4

-2

0

2

4

6

8

0 1082 4 6 971 3 5

-8

-6

-4

-2

0

2

4

6

8

0 82 4 6 971 3 5

Figure 4.6: Sample output from runs of our visual gyroscope illustrating high dy-
namic tracking performance; the plots show angular velocity estimates from our
vision system compared with the output from a gyroscope as the camera was vigor-
ously oscillated about each of the three camera-oriented axes (y axis pan; x elevation,
z cyclotorsion).

motion, with flow vectors ranging from quite small (about the centre of rotation)

to very large at the outside. Smaller image displacements between predicted and

measured pixels in correspondence make for a more meaningful linearisation, and

we could argue that some pixels with good approximate association can guide larger

errors at the image edges. With this motion, the number of pixels that remain

common to both the live and reference image also remain high.

Through experimentation, we find that it is easier to brake live tracking against

a reference keyframe by rotations around the x or y axes, though it is still relatively

hard. The second plot in Figure 4.6 shows an example of such a failure; the tracking

under-shoots, and by-chance re-acquires correspondence with the reference image

against which it is tracking a few oscillations later. We find the system to be least

stable about the x-axis, though only by a minor factor. We suggest that this is due

89

4. Direct Parametric Visual Tracking

to the narrower vertical field of view.

Such high angular velocities can introduce significant motion blur within an im-

age; its extent will depend on the duration during which the camera holds open its

shutter. Matching a blurred live image against a non-blurred reference image can

give rise to an ambiguous and wide minima during minimisation and therefore con-

strains estimated motion less strongly. By reducing the shutter time of the camera

to reduce motion blur, images instead appear darker and are subject to increased

pixel noise which can also harm estimation. To increase resilience to motion blur,

Park et al. include blurring within their generative model by considering the im-

age formation process [101]. Since consecutive frames will be similarly blurred, we

could instead estimate inter-frame rotation directly as described earlier (like a true

gyroscope), but this has the disadvantage of being subject to drift.

4.7 Visual Odometry From a Parking Camera

This research was supported by Renault, leading to the publication: ‘Accurate

Visual Odometry from a Rear Parking Camera’ by Steven Lovegrove, Andrew

Davison and Javier Ibañez-Guzmán [73]

Figure 4.7: A rear parking camera, as fitted to many current vehicles, views the
road surface directly behind the car during normal driving.

Through analysis of the video stream from a rear parking camera, we show that

it is possible to estimate the motion of a vehicle travelling along the ground in

real-time. This camera, a standard feature of many current models, views the road

surface directly behind the vehicle during normal driving (Figure 4.7). The road

surface consists of mostly high frequency, self-similar, speckly texture (Figure 4.8).

90

4.7. Visual Odometry From a Parking Camera

Although many point features can be detected in these images, they are individually

highly ambiguous. Matching each part of the image successfully requires the support

of the whole frame.

Figure 4.8: Four video frame samples taken from a parking camera in our test
sequence.

In large scale urban driving experiments with a full ground-truth comparison,

we show that our trajectory estimates from pure visual odometry are locally very

accurate and smooth, though subject to inevitable drift over the long distances

travelled in our full experiment. We go on to perform a live filtered fusion between

our parking camera visual odometry estimates and an automotive GPS signal, and

show that this combination of commodity level sensing available on many standard

vehicles gives a quality of trajectory estimate comparable to an expensive PHINS

system in robustness and accuracy.

Processing VGA images, we have a CPU-only implementation that operates at

30 fps on an Intel i7 920 and a GPU accelerated implementation that achieves in

excess of 300 fps with a single NVidia GTX 480 GPU.

4.7.1 Related Work

In the motor industry, there has been much interest in using cameras to add functions

related to safety and autonomous driving, with a particular emphasis on forward-

looking stereo camera rigs to detect and estimate the locations of pedestrians or other

vehicles. There have recently been attempts to use these cameras for estimation of

the ego-motion of the vehicle itself. These approaches (e.g. [59, 6]) have mainly

followed the methods for visual odometry developed in the computer vision and

robotics literature over recent years, based on point feature matching and geometry

estimation over a sliding window. The first convincing stereo visual odometry system

of this type was due to Nistér et al. [97], and state of the art performance is well

91

4. Direct Parametric Visual Tracking

represented by the recent work of Mei et al. [84]. Comport et al. describe a direct

stereo odometry system which makes use of every pixel within the image in an

approach which has similarities with out own [22]. They demonstrate highly accurate

3D odometry without extracting point features. Napier et al. tackled drift in their

forward-looking stereo system by aligning frames to overhead satellite images [92].

General monocular visual odometry systems still lag somewhat in performance

behind stereo systems, particularly due to the extra difficultly in reliably tracking

enough high quality features to constrain motion, but good results can be achieved

from video streams with high texture levels (e.g. [121]). In general, monocular

odometry systems suffer not only from increasing absolute pose uncertainties just

as stereo systems do, but also of drifting scale, since an objects absolute size cannot

be determined from monocular vision alone. Scaramuzza et al. describe how on

many moving vehicles, the nonholonomic constraint can be used to break indefinite

scale drift [110]. Assuming that the camera is fixed rigidly to the vehicle and not

directly over its non-steering axle, whilst the vehicle turns, the scale of the scene

can be related to the distance from this fixed axle, which we know does not change.

In this work, we use a much simpler constraint — that the camera’s height from the

ground is approximately fixed.

The video stream available from a commodity vehicle parking camera is clearly not

amenable to a general feature-based approach due to the lack of distinctive texture

in most frames. However, here we have the strong advantage of the assumptions

that can be made about the constrained planar scene shape and vehicle motion, and

this motivates our choice of a whole image alignment method.

To our knowledge, we present the first convincing results for trajectory estimation

based on a parking camera which views only the road surface. Azuma et al. [5]

recently presented a method for estimating the motion of a car using a single forward-

looking camera, which combined a standard feature-based approach in the top half

of the image viewing street-side objects with an approach in principle similar to

our own using homography estimation for the lower part of the image observing the

road. However, many parts of their method were ad hoc, and the results ultimately

presented were limited (only one corner of real road). This was presumably because

the robustness of the method was low. Our large scale results demonstrating both

high accuracy and robustness go much further in proving the validity of estimating

vehicle motion from road texture alignment and have particular value due to the

92

4.7. Visual Odometry From a Parking Camera

low-cost, software-only solution permitted by the use of an existing parking camera.

4.7.2 Method

The dense, direct methods introduced earlier in this chapter enforce global align-

ment which can overcome the difficulties in local matching. We again use an ESM

formulation, explicitly taking advantage of the locally planar road surface. Thereby,

we are able to make use of all of the texture present to robustly measure the image

warp from one video frame to the next. This in turn leads to an accurate estimate

of the vehicle’s motion over the ground plane.

For two consecutive video frames, the image warp that transforms the visible

portion of one frame to the other is uniquely described by the video camera’s motion

and the structure of the scene being observed. For a rear-mounted parking camera,

video frames recorded whilst driving will largely image the ground upon which the

vehicle is moving. We treat the ground as a smooth, locally planar manifold, and

produce odometry relative to that manifold.

Our simple model assumes that the car moves perfectly parallel to the ground and

inter-frame vehicle motion can be parameterised by the vector (∆x,∆y,∆θ)> . The

constrained dynamics of a vehicle allow us to model motion with a constant velocity

prior. This helps us in our optimisation to find the true minima over other local

minima which may exist, even though pixels travel very quickly across the frame.

4.7.3 Parameterisation

The camera’s motion is a function of the vehicle’s motion and thus we consider two

important frames of reference, that of the camera and that of the car (Figure 4.9).

We describe the two-dimensional location of the vehicle with respect to the world

whilst taking image Ii by Twvi , a homogeneous point transfer matrix belonging

to the Lie group of rigid body transforms in two-dimensions, SE(2). For a live

image, Il and the previous one, Ip with associated positions Twvl and Twvp , we can

calculate the vehicle transformation between them by matrix composition, Tvlvp =

(Twvl)−1 Twvp = TvlwTwvp .

Since the parking camera captures images of the world projectively in three-

93

4. Direct Parametric Visual Tracking

y

z

Camera frame

y

x

Vehicle frame

Figure 4.9: Car centric and camera centric frames of reference, calibrated to allow
for simple parameterisation.

dimensions, we also describe the pose of the camera whilst taking image frame Ii, by

Twci , a homogeneous point transfer matrix belonging to the Lie group of rigid body

transforms in three-dimensions, SE(3). Although Twvi is a two-dimensional trans-

form, we can arbitrarily refer to it in three-dimensions by ‘raising’ it into SE(3) by

enforcing that the vehicle lives on the X-Y plane. We do so implicitly for notational

convenience.

As the camera is fixed rigidly to the vehicle, there is a constant transform Tvc =

(Twvi)−1 Twci which relates the vehicle frame of reference to that of the camera, for

all i. This allows us to write the three-dimensional transformation of the camera

between images Ip and Il as a function of the vehicle motion.

Tclcp = (Tvc)−1 TvlvpTvc (4.39)

94

4.7. Visual Odometry From a Parking Camera

4.7.4 Formulation

Observations of a plane via a projective camera are related to one another via a

plane-induced homography, as discussed in Section 2.3.3:

Hlp = KTclcp (I| − ndc)
> K−1. (4.40)

Here, Hlp ∈ R3×3 describes the homogeneous transformation that takes pixels in

the ‘previous’ camera image, Ip, to those in the ‘live’ image, Il. K ∈ R3×3 is referred

to as the intrinsics matrix which projects points in three-dimensions into the camera.

ndc = n̂c
dc

describes the pose and height of the camera relative to the ground, where

n̂c is the unit normal of the plane in the camera frame of reference c and dc is the

distance of closest approach to the plane.

Figure 4.10: A co-visible region (shaded red) exists between consecutive camera
images. A linear mapping described by a plane-induced homography lets us transfer
pixels from one image to another as the vehicle moves.

Between two consecutive image frames Il and Ip (Figure 4.10), if we were to know

the parameters of K, Tvc, Tvlvp and ndc , we could synthesize one frame from the other

by transferring the pixels via Hlp (Equation 4.40). For any given synthesis, we can

compare how similar it is to the true image by comparing how similar their pixels

are. Given that the parking camera is fixed rigidly to the vehicle, and following from

the assumption that it is travelling along a locally planar surface, none of K, Tvc,

or ndc will change; therefore, they can be easily estimated via off the shelf camera

calibration packages. This leaves the motion of the vehicle Tvlvp unknown and is, in

fact, the quantity we wish to estimate.

95

4. Direct Parametric Visual Tracking

We rewrite Equation 4.40 using Equation 4.39 and define a parametric cost func-

tion:

Hlp = KTcvTvlvpTvc (I| − ndc)
> K−1. (4.41)

F (x) =
1

2

∑
up∈Ωp

(
Il
(
π
(
KTcvT̂

vlvpT(x)Tvcup
))
− Ip

(
π (up)

))2

. (4.42)

T(x) represents a small change to the estimate T̂
vlvp . We choose to parameterise

our update matrix T(x) by x ∈ R3 belonging to se2, the Lie algebra of the Lie

group SE(2). This parameterisation is equivalent to the vector (∆x,∆y,∆θ)>. For

many vehicles, the nonholonomic motion constraint could allow us to reduce the

dimension of our parameterisation even further if we were to assume no slippage

occurs between the road surface and vehicle tyres. We did not test if this was the

case. The Lie algebra se2 is related to the Lie group SE(2) by:

T(x) = exp

(
3∑
i=1

xiAi

)
, (4.43)

where A0,1,2 ∈ R3×3 are the group generators for SE(2) [60], listed for convenience

in Appendix A.

As we have seen previously, we are interested in finding x◦ = arg minx F (x) which

we do iteratively via ESM, computing x̂ ≈ x◦ and applying the update:

T̂
vlvr ← T̂

vlvrT(x̂). (4.44)

This process is repeated until convergence, which may be detected based on a

threshold on the magnitude of the update x̂.

96

4.7. Visual Odometry From a Parking Camera

4.7.5 Results

Experimental Setup

Our evaluation is against data obtained during an extended experiment where a

multi-purpose Renault Espace passenger vehicle conducted a 2.5km run through

an urban setting, capturing images continuously at 30fps while travelling at speeds

of up to 45km/h. The rear view camera is a Fire-i digital camera having VGA

resolution.

On board was also a ground truth system capable of estimating with high accuracy

the vehicle’s position and orientation. This PHotonic Inertial Navigation System

(PHINS) consists of a tactical level ‘inertial measurement unit’ made of 3 fibre optic

gyroscopes and 3 pendulum-type accelerometers, a bi-frequency GPS receiver and

the vehicle wheel odometry [56]. Despite occlusion of GPS signals or multi-paths,

the ground truth estimations remain precise with positioning error below half a

meter.

The intrinsic parameters K of the parking camera used were calibrated using a

standard calibration grid technique. The camera’s extrinsic location relative to the

vehicle frame Tcv was initially hand-measured, but this estimate was then refined by

visual means in a process similar to that developed by Miksch et al. [87].

Drifting Odometry

Our visual odometry system estimates inter-frame motion at frame rate (30Hz). This

measurement is most useful to determine the velocity of the vehicle. Figure 4.11

shows the linear and angular velocity as measured by our system compared to that of

the ground truth PHINS system on a five and a half minute road sequence. Visual

odometry is plotted at 30Hz whereas the PHINS system is plotted at 1Hz. The

bottom plot shows the system’s confidence as measured by the sum of squared pixel

error between aligned frames. We can see that the visual odometry measurement

follows the ground truth system closely. There are four short sections in the sequence

where tracking could not provide an estimate and here constant velocity is assumed

(Annotation 2).

We can integrate our measured velocity over time to produce a trajectory in some

97

4. Direct Parametric Visual Tracking

0

2

4

6

8

10

12

14

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

L
in

ea
r V

el
oc

ity
 (m

s-1
)

Time (s)

Phins (GPS+INS)
Visual Odometry

-50
-40
-30
-20
-10

0
10
20
30

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

A
ng

ul
ar

 V
el

oc
ity

 (D
eg

re
e

s-1
)

Time (s)

Phins (GPS+INS)
Visual Odometry

0

0.05

0.1

0.15

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320

Pi
xe

l R
M

SE

Time (s)1 2 3Speed bump Extreme shadow Road obscured

Figure 4.11: Linear and angular velocity of visual odometry compared with ground
truth over time for 2.5km sample sequence.

common frame of reference. This, like any form of motion estimation based only

on relative local sensing such as vision, will of course drift away from the frame of

reference over time. Figure 4.12 shows stretches of trajectory estimate, each one

minute long, aligned in each case to ground truth at the first frame. This helps us

to visualise the rate at which the odometry drifts from an absolute map.

Figure 4.13 shows four ten second stretches of trajectory, again each aligned on

the first frame to ground truth. We additionally show standard automotive GPS

overlaid for comparison. We can see that our visual odometry system is much

smoother locally than the GPS measurements and is sampled at a higher frequency.

98

4.8. Localisation From a Parking Camera and GPS

Figure 4.12: Four one-minute-long sequences of integrated visual odometry (blue)
against ground truth (green).

4.8 Localisation From a Parking Camera and GPS

The benefits of visual odometry and GPS are complimentary. Visual odometry

offers a robust, accurate and smooth local estimate of motion whereas GPS provides

coarse measurements fixed to a global map. Although it is common to fuse multiple

measurements such as these within a probabilistic filter such as an EKF, we chose

to perform a real-time sliding window optimisation.

We used g2o [67], a general framework for graph optimisation, in order to fuse

absolute GPS measurements and relative visual odometry measurements into a com-

bined real-time accurate estimation of pose relative to a non-drifting reference frame.

99

4. Direct Parametric Visual Tracking

Figure 4.13: Four 10 second sequences of integrated visual odometry (blue) against
GPS (red) and ground truth (green).

Within this pose graph (figure 4.14), vertices correspond to the poses of the car at

the moment in time when each video frame was taken. Edges connecting consecutive

video frames represent relative pose measurements from visual odometry. GPS mea-

surements are represented as unary edges reflecting absolute constraints, occurring

approximately once in every thirty frames of video.

Vehicle Pose

Unary Edge

Binary Edge

Figure 4.14: The absolute pose of the vehicle with respect to a static world reference
frame is established via a sliding window pose graph formulation. It consists of
relative binary edges from visual odometry, and unary edges reflecting absolute
constraints from GPS measurements.

Within this pose graph formulation, since non-consecutive poses are never related

to one another, the influence of new measurements on existing ones will diminish

100

4.8. Localisation From a Parking Camera and GPS

quickly with pose age. This is particularly true since the absolute GPS measurements

constrain the overall shape of the car trajectory. Practically speaking, poses over the

age of around 10 seconds receive next to no contributions from new measurements,

and can be considered fixed. By fixing the oldest vertex in the graph each time the

total number of unfixed vertices reaches above a threshold, we can maintain constant

time operation with a fixed-sliding window estimation. In a graph consisting of

such simple structure and of relatively small size, g2o is able to incorporate new

measurements very quickly, and well within real-time constraints.

Figure 4.15: Fused visual odometry and GPS (blue) against ground truth (green).
The right hand image is an enlargement of the roundabout from the left hand image,
additionally displaying the GPS trajectory (red). Notice that the combination of
visual odometry and GPS more accurately reflects the ground truth trajectory than
GPS alone.

Figure 4.15 shows the resulting trajectory after sensor fusion. We can see that

the resulting system deviates only a small amount from the ground truth system

and it is hard at the scale of the image on the left to differentiate them. In the

enlargement which includes also the automotive GPS trajectory, we can see that

compared to GPS, the combination of GPS and visual odometry is much smoother,

whilst accurately capturing the path of the vehicle through the roundabout.

101

4. Direct Parametric Visual Tracking

4.8.1 Failure Modes and Future Work

There are two main failure modes in our system (Figure 4.16). The first comes from

lighting which exceeds the dynamic range of the camera; there are four short sections

in the sequence which are also identifiable in Figure 4.11 where the video frames are

completely saturated black. Clearly, no software solution could do any better than

relying on motion priors or extra sensors such as wheel odometry. Such a situation

is clearly detectable by measuring the image variance. We assume constant velocity

motion when image variance passes below a set-once threshold.

Using a light to illuminate the area directly behind the vehicle remains a potential

solution in dark areas, but care must be taken to consider the non-uniform effect it

will have on the image. Since the illumination source would be fixed to the vehicle,

any pattern in the lights projection onto the road will appear static in the video,

thus breaking the critical brightness constancy assumption, as road travelling under

the pattern will change in brightness over time.

a) b)

Figure 4.16: a) The vehicle passes under heavy shadow causing the image frame
to become completely saturated by pure black. b) Another vehicle obscures a large
amount of the road, and induces incorrect motion.

The second failure mode comes when our basic scene assumption is violated.

Annotation 1 in Figure 4.11 shows the velocity measurement error induced by a

non-planar speed bump and the associated increase in mean squared pixel error.

Annotation 3 highlights this assumption being broken again when the road is part

obscured by a turning vehicle (Figure 4.16b). These situations can be considered

during sensor fusion by making use of the visual odometry’s confidence output,

mitigating their overall influence.

102

4.9. Summary

In order to establish the true validity of visual odometry from a rear parking

sensor, further evaluation is required on new datasets — specifically, the robustness

of the method with respect to different environmental conditions such as weather,

illumination and road surfaces remains an open question. Matching as we do only

over consecutive video frames, we expect the effect of global changing illumination

to be negligible, though reflective road surfaces in wet conditions, and lighting from

moving targets may cause some problems.

4.9 Summary

In this chapter, we have motivated the use of direct methods for real-time frame to

frame video tracking problems, and shown that they can be implemented efficiently

on graphics hardware to process each pixel of every image at frame-rate to achieve

accurate alignment.

For rotational odometry, this every pixel formulation offers significant resilience to

motion blur, allowing high rotational velocity frames to be tracked accurately. The

coarse-to-fine refinement strategy makes it simple to track densely whilst avoiding

non global solutions and has the effect of reducing computation time. With such

a wide basin of convergence, highly dynamic camera motions which exhibit large

rotational accelerations can be tracked reliably. In comparisons against an industrial

gyroscope, fidelity in certain axis were shown to exceed the maximum rate of the

device, and at other times followed the gyroscope data closely.

Our system for visual odometry based only on video frames from a rear parking

camera was shown to generate smooth and accurate motion estimates. The road

texture recorded by the parking camera would pose significant problems for systems

based on feature matching techniques. However, by considering pixels jointly across

the entire image, local correspondence is achieved through global support. In this

way, the problems of incorrect data association and diminishing support are avoided.

Although we have provided evaluation on a 2.5km sequence, more thorough evalu-

ation of this method across varying road surfaces, environmental conditions, times

of day and road speeds remains future work. We suspect the method will perform

badly at night, and it is an open question as to whether a wet surface for exam-

ple remains approximately diffuse to fit with the underlying brightness constancy

103

4. Direct Parametric Visual Tracking

assumption.

104

Chapter 5

Direct Parametric SLAM

5.1 Introduction

Whilst tracking camera motion through a video sequence, we typically make the

assumption that individual frames are captured instantaneously, giving us image

measurements at discrete instances in time which correspond to evolving camera

poses. Making the rigid world assumption, we expect these measurements to be

consistent with one another within the bounds of our sensor’s accuracy.

Chapter 4 introduced the Lucas-Kanade method and showed how a pair of images

from video can be aligned to one another through minimisation of a photometric

cost function, defined via an appropriate generative model. Often though, we are

interested in more than odometry, and wish to localise ourselves without drift within

a fixed frame of reference. We may also be interested in the structure of the world

in which the camera exists, abstracted in some form by a map, or perhaps we are

only interested in this map.

Drift-free localisation requires either that we can in some way directly measure

our absolute position, or that we can summarise and store where we have been

and recognise when we revisit a place from our past. For general outdoors motion,

sensors such as GPS can sometimes help in the former case by providing coarse

but absolute measurements (as we saw in Section 4.8). For rotational estimation, a

compass and inertial sensors can offer this absolute measurement. If we are without

105

5. Direct Parametric SLAM

any of these things, we must build a map of the world as we go and simultaneously

use it to locate where we are; a process referred to as simultaneous localisation and

mapping (SLAM). For a short review of SLAM, please refer to Section 1.3.

Taking the video sequence in its entirety, off-line methods that estimate the poses

of the camera and the scene jointly are dubbed structure from motion (SFM). Typ-

ically, an SFM pipeline will start by extracting features and attempting data asso-

ciation between detected features in different video frames — finding out which 2D

image measurements refer to the same physical 3D landmark. Given this fixed data

association which we assume is correct, the optimal configuration of cameras and

3D points is defined to be that which minimises the sum of squared error between

the projection of these points into each video image and their measured locations.

This measure is minimised in a process called bundle adjustment which requires that

we solve a large non-linear system of equations. This stage can be computationally

expensive, scaling poorly with the number of camera poses and landmarks consid-

ered. It has itself been the focus of much research to improve performance with

those most successful taking advantage of the system’s sparsity (e.g. [71, 65]).

In the live setting, things can be a little more difficult. Bounded by finite resources

between incoming video frames, our aim is typically similar to SFM, except we would

like the most accurate pose and map incrementally at each time instance. The

differentiation between SLAM and odometry is that in SLAM we wish to reduce

the rate at which error is accumulated in our pose to be approximately constant

for trajectories which revisit previous areas often. In both SFM and SLAM, we

prevent endlessly accumulating error by relating non-consecutive elements in our

map together, a process we call loop-closure.

Whilst processing video, we receive megabytes of data every second — 1582 MB

per minute for a standard 24 bit colour VGA stream. In chapter 4, we motivated

every-pixel approaches to aligning video frames for greater accuracy and robustness;

of course, we would ideally also like to apply this philosophy to use all of the data

from each of our video frames in order to construct the best map possible. In

practice however, we face hard time constraints; we are left with the decision of how

best to sparsify the largely redundant data whilst maximising our goals — perhaps

maximising tracking or mapping accuracy within bounded time constraints.

106

5.2. Real-Time Direct Spherical Mosaicing / SLAM

5.2 Real-Time Direct Spherical Mosaicing / SLAM

The simplest SLAM problem that we will consider is that of real-time spherical

mosaicing from a rotating camera with fixed intrinsics. A spherical mosaic is created

by stitching multiple images together taken from cameras with a common optic

centre in order to form a new image with increased field of view, potentially covering

an entire sphere. Not only does such a mosaicing system contend with only three

degrees of freedom compared to six for general motion in three-dimensions, but the

space of exploration is limited to that of a simple view-sphere, meaning the size of

our complete map is bounded.

5.2.1 Background

There is a great deal of literature concerned with building mosaics from images

and video; a tutorial by Szeliski provides a good description of the different com-

ponents which are often required and includes an overview of modern methods for

implementing them [124]. He points out that generally two types of alignment are

important: some local frame to frame / mosaic alignment, and global alignment to

ensure all images of the mosaic are globally consistent. Szeliski’s tutorial pays little

attention to the matter of computation time though, and this reflects a broader

pattern throughout the mosaicing literature.

It is clear that feature-based methods have enabled real-time frame to frame

tracking for a while (e.g. [90]), and increasingly, direct methods are also able to

densely track planar regions over increasing numbers of pixels at frame-rate (e.g.

[11]). Building globally consistent mosaics interactively, however, requires that we

can integrate frames into a mosaic non-destructively and close loops at moderate

speeds; this gives feedback for a user to decide when they can stop collecting images

or if they need to sample from an unexplored area.

Early results in video mosaicing came largely from direct methods, aligning con-

secutive frames locally and then integrating into a common coordinate system via

composition [123, 54]. The first system to consider globally consistent registration

was due to Sawhney et al. [108]. They first estimate global alignment by chaining

local direct frame to frame alignment, and then find local registration between over-

lapping neighbours. Finally, they minimise a global error formed from the transfer

107

5. Direct Parametric SLAM

of image corners based on the locally computed frame alignments.

As methods associated with feature tracking and matching matured, they offered

some advantages for mosaicing over direct methods. Work by Lowe on scale invariant

feature transform (SIFT) made it possible to match features robustly over a wide

range of transformations without any initial guess [74]. Finding the alignment of

out of order still images become more reliable through the use of these methods, and

a shift can be seen toward these ‘more efficient’ feature centric approaches where

computation time is spent in areas of high image texture; the typical pipeline of

which starts by matching sparse correspondences between frames by either tracking

through video (using for example the KLT tracker [127]) or using some descriptor,

such as SIFT, to find close image patches in the feature space. From this approximate

data association, inliers and outliers are typically separated via a technique such as

RANdom SAmple Consensus (RANSAC) [39] , and finally all camera poses and

features are bundle adjusted [81] to minimise the transfer error between determined

and measured feature locations. A modern example of such a system is described

by Brown and Lowe [15].

In attempting to register a series of images over 360◦ loops, misestimation of

camera intrinsic parameters can make it hard to align the first and last overlap-

ping frames by predicted position alone. Once they have been matched, the local

orientations may not sum to 360◦, and this difference forms an error which must

be propagated globally throughout the trajectory. With an estimated focal length

which is too long or too short, this redistribution of error will make local registration

worse and can cause images to bunch up or be spread out. One thing that we can do

is allow camera intrinsics to change within the global alignment process to absorb

error.

Estimating camera parameters from unknown structure is referred to as self cal-

ibration, as described in the general 3D setting by work such as [37]. Civera et al.

incorporated self calibration into their real-time EKF SLAM system by including

them in the state vector as static variables with uncertainty [19]. In the case of a

camera which can only rotate, self calibration is particularly well posed, and it is

possible to very accurately estimate internal camera parameters without any knowl-

edge of the scene [1]. In self calibration, lens distortion is frequently ignored and

assumed known, though it too can greatly affect mosaic quality. One of the few

works to consider the estimation of lens distortion from a rotating camera is that of

108

5.2. Real-Time Direct Spherical Mosaicing / SLAM

Sawhney and Kumar [109].

In our system, the expected performance of calibration refinement is further en-

hanced by our ability to match images automatically around full 360◦ panoramas,

giving the potential for accurate calibration even for cameras with a narrow field

of view. Including camera intrinsics in our optimisation enables us to achieve large

loop closures over 360◦ without explicit loop closure detection. By refining camera

intrinsics quickly before large loop closures are made, we can be more confident that

alignment error with respect to the fixed mosaic frame of reference is small and

within the basin of convergence of the true global solution. Unlike general SLAM

problems, a camera moving within a spherical mosaic can only move so far before

observing again a previously mapped area of the scene, so the maximum expected

drift is bounded.

The first and only known globally consistent mosaicing system able to track mo-

tion at frame-rate was described by Civera et al.— a SLAM system based on point

feature matching and sequential filtering using an EKF [20]. As discussed previously,

the computational complexity of the EKF means that it scales badly with the num-

ber of features tracked. For their mosaicing system, Civera et al. used only around

10-20 features (matched using 11× 11 pixel patches) per frame; all but around 3%

of every image was ignored for the purposes of image alignment. Of course, some

pixels are more informative for alignment than others, but it is hard to argue that

considering so few will set limits on the mosaicing quality which can be achieved.

5.2.2 Overview

Inspired by Klein and Murray’s PTAM [62] and the analysis of Strasdat et al. [120],

for our rotational SLAM problem, we will consider a keyframe-oriented factorisation

where tracking and map maintenance are decoupled into interleaved / parallel tasks.

Our algorithm is split into two tasks which can either run as parallel threads on a

multi-core PC or be interleaved on a GPU by: a) tracking from a known map, and

b) global map maintenance and optimisation (see Figure 5.1). For local tracking,

we use the direct, whole image second order minimisation method ESM, described

in Section 4.6, which allows us to align the live frame relative to stored historic

keyframes. We implement this alignment on graphics hardware for high-quality

109

5. Direct Parametric SLAM

Figure 5.1: Parallel Tracking and Mosaic Optimisation. Local alignment relative to
the mosaic is performed in hard real-time, whilst accurate global map adjustment
is performed at interactive speeds slower than frame-rate.

real-time tracking relative to our map. In order to maintain our map, we formulate

a dense every-pixel cost function which refines not only the poses of each constituent

keyframe, but also the global intrinsic parameters which help enable accurate loop

closure and global registration. Despite the large amount of data such a global joint

optimisation must process, we show it can converge at interactive rates on modern

hardware to produce high quality, globally consistent mosaics live, such as the office

panorama shown in Figure 5.2.

We remove radial distortion from all live frames as they enter our system and deal

only with perspective images from then onwards. Distortion parameters are esti-

mated once per camera and lens; we use PTAM’s calibration tool [62]. Additionally,

we describe an automatic method for relocalisation if tracking should fail, allowing

the current mosaic to be re-joined without corruption.

Keyframe Map

Our mosaic map is formed from a collection of keyframes — key historic camera

poses with associated image data and a power of two image pyramid. Keyframes

within our map are related to one another by a 3 DOF rotation. We store the

current estimate of a keyframe’s pose as a rotation matrix Rwk relating the camera’s

local frame of reference, k, to that of an arbitrary world frame of reference, w.

110

5.2. Real-Time Direct Spherical Mosaicing / SLAM

Figure 5.2: Full hemisphere mosaic shown spherically projected about two different
frames of reference.

Tracking

When tracking commences, we set the first live image to be our first keyframe, k0

with pose Rwk0 set to the identity matrix. For each subsequent live frame, we use

the previous live pose to select the closest keyframe from our map (Figure 5.3). We

estimate the current pose by considering the image warp between this keyframe and

the current image, which in turn allows us to estimate the relative motion.

Exploration

As tracking continues, we create new keyframes and add them to the map if the

overlap between our current image and closest keyframe becomes too small and falls

below a threshold. Keyframes which we add inherit the pose of the live camera at

that time (Figure 5.4).

111

5. Direct Parametric SLAM

Figure 5.3: A keyframe is selected from the mosaic map based on proximity to our
estimated location. Local alignment is performed between the keyframe and the live
camera image in order to estimate the live camera pose.

5.2.3 Direct Joint Global Optimisation

Joint global optimisation of all keyframes of the map and camera intrinsics occurs

either interleaved with tracking on the graphics card after tracking is complete, or

in parallel in a second thread on the CPU. We approach global optimisation within

the same framework as tracking: first defining an objective function which relates

our complete state vector directly to the error induced by each overlapping pair of

image pixels We then take an ESM formulation to iteratively reduce the error within

a Gauss-Newton minimisation.

We parameterise updates to keyframe poses Rwi ∈ SO(3) through the Lie algebra

so3 as we do for local frame to frame rotation tracking. Assuming that our camera

has square pixels, fu = fv, we write the intrinsics matrix K as a function of a

three vector (f, u0, v0)>. If we wish to allow the aspect ratio of pixels to vary, or to

112

5.2. Real-Time Direct Spherical Mosaicing / SLAM

Figure 5.4: A mosaic is constructed incrementally, estimating camera pose live but
saving sparse historic video frames when the overlap with the current mosaic drops
below a threshold. Keyframes are shown outlined in red. Loop closure can be seen
to tighten the map after a full 360 degree trajectory has been closed.

113

5. Direct Parametric SLAM

estimate pixel skew, we may write K as a function of a four or five vector instead. We

will progress with the three vector parameterisation and formulate updates to the

camera’s intrinsic parameters by k ∈ R3, through exponentiation. This formulation

allows us to work within the forward-compositional Lucas-Kanade framework by

defining a compositional update K(k) on K̂, shown in Equations 5.1 and 5.2. Notice

k = 0 represents no change to the intrinsics.

K(k) =

ek0 0 ek1

0 ek0 ek2

0 0 1

 , (5.1)

K̂← K̂ ◦ K(k), (5.2)

where A ◦ B represents the entry-wise scalar product (Hadamard product) between

matrices A and B of equal dimension.

For N keyframes, our update vector x can be decomposed into rotation pa-

rameters, ri ∈ so3, i ∈ {1..(N − 1)}, and intrinsic parameters k, such that x =

(k, r1, r2, ...r(N−1)). Notice that for N keyframes we have N − 1 poses to optimise,

with the first fixed to prevent parameter drift. The objective function which we now

wish to minimise considers all pixels between all pairs of overlapping keyframes,

where Ωi
j is the set of all pixels in image Ij which are currently predicted to reside

within image Ii:

F (x) =
1

2

N−1∑
j=0

N−1∑
i=j+1

∑
pj∈Ωij

[
Ii
(
Hij(x)pj

)
− Ij (pj)

]2

, (5.3)

Hij(x) = K̂ ◦ K(k)Rij(ri, rj)(K̂ ◦ K(k))−1, (5.4)

Rij(ri, rj) = (R̂
wi
Rwi(ri))

>R̂
wj
Rwj(rj). (5.5)

Notice how the relative position of two keyframes depends on the update param-

eters of both the keyframes. The induced homography is a function of these and the

update to the camera intrinsics.

114

5.2. Real-Time Direct Spherical Mosaicing / SLAM

We calculate the incremental minimiser x◦ = arg minx F (x) of Equation 5.3 us-

ing the ESM machinery from Section 4.3.6. We have two implementations of this

minimisation, one which runs on the CPU and another which uses the GPU. The

CPU version is able to run continuously in a parallel thread to maintain the map

with iterations which can take a significant period of time. The most costly aspect

of estimating x◦ is in constructing the normal equations which must be solved. On

machines with more that two cores, this system can be trivially parallelised further,

computing the contributions from each keyframe pair in separate threads.

Unique elements of Jacobian and residual
packed for dense summation accross each
image pair:

Figure 5.5: Joint global optimisation of the entire map requires that we calcu-
late the matrix J>J, of size (4 + (N − 1) ∗ 3)2, for a mosaic of N keyframes. For
efficient computation, we must consider the sparsity pattern when evaluating the
contribution for a pair of keyframes; non-zero elements are shown in red.

Due to the cost of context switching on current graphics hardware, our GPU

implementation must be interleaved with tracking, which also runs on the GPU, for

machines with a single graphics card. Since tracking must complete at frame-rate,

a single iteration of the global optimisation must be fast in order to be interleaved

in this way, running as many iterations as time permits before the next video frame

arrives. In order to permit efficient computation on the graphics card, we must

consider the sparsity of contributions to the normal equations per image pair. Taking

115

5. Direct Parametric SLAM

a single overlapping pair of images at a time, we compute the contributions per pixel

to J>J and J>f(0) as a compacted 9×9 and 9×1 block respectively corresponding to

the update parameters for camera intrinsics (which are common across all keyframes)

and the update parameters for the pose of the two keyframes (Figure 5.5). For our

GPU implementation, taking the linear system’s sparsity into consideration lets

us place the per-pixel contributions into extremely fast GPU shared memory —

these can be summed very quickly within a parallel reduction since the size of the

compacted system is small and the memory fast.

5.2.4 Recovery from Tracking Loss

Regardless of how well a tracking system performs, there are frequently times when

assumptions are badly violated and tracking cannot continue. Detecting when track-

ing has failed can be tricky, but it is important in order to prevent corruption of the

map and to inform the user that action needs to be taken in order to continue.

Examples of where tracking might fail include fast motion which may degrade the

image through motion blur so severely that images cannot be matched accurately to

one another. Rapid camera acceleration can also break smooth motion assumptions,

perhaps preventing keyframes from being added before the current mapping area is

left or such that localisation falls into a local minima. The kidnapped robot problem

may also be an issue — for mosaicing, the camera may be covered temporarily before

again observing the scene.

For detecting when we are lost, we record image pixel variance for each keyframe

which we use to normalise the mean absolute photometric error when tracking with

respect to this keyframe. Two thresholds with respect to this metric determine when

tracking is poor, and no new keyframes should be added if it can be avoided, and

when tracking is lost.

The feature-based relocalisation method of Williams et al. [131] takes each observ-

able salient image patch in the current lost frame, and generates a set of potential

corresponding features from the map using randomised trees [68]. As new features

are added to the map, a set of warped patches reflecting possible homographic

viewpoint changes are generated, associated with the original map feature and then

integrated into the randomised trees as training data. This quite expensive training

116

5.2. Real-Time Direct Spherical Mosaicing / SLAM

stage enables fast lookup times per feature when lost. From the match hypotheses

generated from the randomised trees, RANSAC is used to look for a geometrically

consistent set.

In the related SLAM problem of loop closure detection, Angeli et al. [4] describe a

fast method instead based on bags of visual words, summarising groups of observable

features which are stored as the system explores. New frames generate new bags of

words, which can be efficiently compared to previous frames using a reverse index.

The probability distributions over occurrences of visual words are stored in order to

accurately reflect the probability that two frames are actually the same. Cummins

and Newman describe a similar scheme in their paper, FABMAP [23], generalising

match likelihood to probabilities of co-occurrence.

We have provided our SLAM system with a straightforward relocalisation capa-

bility similar in spirit to the ‘small blurry image’ method of PTAM [62] but which

directly takes advantage of the main ESM pose estimate algorithm. If the camera

becomes lost then we aim to recover a pose estimate simply by attempting ESM pose

estimation from a number of seed locations visible in our current mosaic, starting

at the smallest image size in an image pyramid (Figure 5.6). Of the estimated warp

parameters obtained, we refine the most photo-consistent estimate by performing

more ESM iterations at higher resolutions in the pyramid. We use the poses of our

keyframes as seed locations, but indeed any regular sample would be equally valid.

Figure 5.6: ‘Small blurry image’ relocalisation. Small images can be used to quickly
test hypothesised locations given a generative model.

Computation time for relocalisation is proportional to the number of seed loca-

tions. For spherical mosaics, relocalisation need not be costly. When we determine

117

5. Direct Parametric SLAM

that we’re lost, we run the relocalisation procedure on one in ten frames. This

method operates well in environments with low perceptual aliasing.

5.2.5 Visualisation

We will describe some of the common approaches for visualising rotational mosaics,

including projective, spherical, cylindrical, polar and cube projections. These dif-

ferent methods describe various surfaces with which to consider intersecting pixel

rays originating from the optic centre of the camera. Given a projection surface, we

must also specify how this is unwrapped into a two-dimensional image via a second

(not necessarily perspective) projection.

Certain projection surfaces, such as planes and cylinders can be trivially unrolled

into image space. Perhaps the most intuitive projective surface, the sphere, is quite

difficult to unroll, since it is not possible to do so without introducing distortions,

such as spatially varying scales of size or varying absolute directions. In the mosaic-

ing literature, a spherical mosaic typically refers to the projection of the scene onto

a sphere and the unrolling of this sphere by latitude and longitude. In cartography,

map makers have long studied many such projections from sphere to plane in order

to visualise the surface of the earth on paper.

Since we aim to create mosaics interactively at frame-rate, it is also important to

render them at frame-rate. We make use of Cg shaders (Section 2.5.4) to enable us

to visualise the full quality, blended mosaic live, and for correctly sampling from the

constituent keyframes.

Interactive Perspective Panorama

For rendering an interactive perspective panorama, where a user is free to navigate

a scene by rotating in a fixed position, we treat our virtual (OpenGL) camera much

like a keyframe, positioned at the origin and parameterised by the camera to world

transform Rwc. We can map image space coordinates from our OpenGL viewport to

a keyframe k by composing the homography Hkc = KRwk
>
RwcK−1.

We use a shader which we invoke once for each keyframe within the field of view

of the virtual camera, passing in as a parameter the homography Hkc which enables

118

5.2. Real-Time Direct Spherical Mosaicing / SLAM

us to place the keyframe within the viewport. This shader, operating per pixel in

the output image, simply adds the keyframe’s colour value to the colour already in

the framebuffer associated with the viewport. Additionally, it adds 1.0 to the alpha

channel for the pixel which serves as a counter.

Finally, we invoke another normalisation shader, which simply divides the Red,

Green and Blue channels by the alpha channel. The result is a panorama where

each keyframe is displayed blended with equal weight. One of the nice aspects of

this method is that image fusion occurs in the space of the viewport. This means

that each keyframe, whose pixel data is not sampled to the same ‘grid’ in viewport

space, gets mixed and can form an image of higher resolution than the constituent

images, with less pixel noise and reduced aliasing artefacts.

Cylindrical Panorama

Cylindrical panoramas are formed by intersecting the keyframe image pixels with

the surface of a cylinder centred at the capturing camera’s optic centre (Figure 5.7).

We again employ vertex shaders to render the cylindrical panorama live, letting the

user adjust the view and explore interactively.

Within the shader, the u and v viewport coordinates are interpreted as yaw (ψ ∈
[−π,+π]) and height (h ∈ R, adjustable range), defining a unique point on the

surface of a cylinder.

For each keyframe, we invoke the shader, where, for each pixel in the destination

panorama we compute the desired image ray described by the unit vector r̂cyl,

r̂cyl(ψ, h) = (cosψ, h, sinψ)> . (5.6)

This ray is transferred into the frame of reference of the keyframe using the vir-

tual camera to keyframe rotation matrix, Rkc, which is uploaded as a parameter

to the shader. Finally, the camera intrinsic matrix can be used to map this to

keyframe image-space coordinates. Given this correspondence, we proceed as with

119

5. Direct Parametric SLAM

Figure 5.7: Virtual camera in centre of cylindrical mosaic.

Figure 5.8: Virtual camera in centre of spherical mosaic.

120

5.2. Real-Time Direct Spherical Mosaicing / SLAM

the interactive projective panorama:

Icyl(ψ, h) =
1

N

1..N∑
k

Ik
(
π
(
KRkcr̂cyl(ψ, h)

))
. (5.7)

Although simple, a disadvantage of this projection is that the area directly above

and directly below the cylinder cannot be represented, and those parts of the world

around these points occupy a disproportionate amount of space within the final mo-

saic. We must also decide on an appropriate value for h. For this reason, cylindrical

projections are typically only appropriate for panoramas generated from rotations

about a single axis.

Spherical Panorama

To create spherical panoramas, we intersect the keyframe image pixels with the

surface of a sphere using similar machinery as for cylindrical panoramas (Figure 5.8).

Within the shader, the u and v viewport coordinates are interpreted as yaw (ψ ∈
[−π,+π]) and pitch (θ ∈ [−π

2 ,+
π
2]) respectively.

For each keyframe, we invoke the shader, where, for each pixel we then compute

the desired image ray described by the unit vector r̂sph,

r̂sph = (cos θ cosψ, sin θ, cos θ sinψ)> . (5.8)

Once again, this ray allows us to transfer spherical coordinates to keyframe image

coordinates. We sum the contributions per pixel from each keyframe and normalise

by the alpha component as before:

Isph(ψ, θ) =
1

N

1..N∑
k

Ik
(
π
(
KRksr̂sph(ψ, h)

))
. (5.9)

Using the spherical projection enables full hemisphere and complete sphere mo-

saics to be generated and visualised with finite image size (e.g. Figure 5.2). This is

in contrast to cylindrical projections which require infinite height to represent north

and south poles. Spherical projections contain no singularities, though image data

121

5. Direct Parametric SLAM

at the poles is still given a disproportional area due to the parameterisation which

corresponds to the unravelling and flattening of the shell of a sphere.

Polar Panorama

Polar image coordinates can be combined with a spherical mapping to produce

interesting panoramas (Figure 5.9). Taking the output mosaic of size w × h pixels,

the (u, v)> coordinates of a pixel can instead be represented in polar form with

origin in the image centre by (ϕ, r)>:

(
ϕ

r

)
=

(
atan2 (uc, vc)√

u2c + v2c

)
,

(
uc

vc

)
=

(
u

v

)
−

(
w
2
h
2

)
(5.10)

After scaling to fit the appropriate interval, we can interpret ϕ as longitude and r

as latitude; ψ = ϕ, θ = πr− π
2 . Finally, we continue as with the spherical projection

using Equations 5.8 and 5.9. Notice that a straight line from the mosaic image centre

represents a vertical sweep from south to north pole, such that equal inclinations

form concentric circles in the image — in outdoor sequences the horizon is often the

most noticeable and creates quite distinct ‘tiny planet’ effect images.

Cube Mapping

In computer graphics, a cube map is a popular way to represent full panoramas as

they can be efficiently rendered live using the existing fixed graphics pipeline. A

cube map consists of six different square perspective images taken orthogonally to

one another capturing the projection of the world onto the size faces of a cube. With

each image having a 90◦ field of view, the relative size of pixels in terms of the solid

angle they represent remains fairly uniform, with those at the edges representing

around 1.4 times the solid angle as those in the centre. This is fairer than any of

the previous mappings described for full sphere coverage.

If each square face has dimension S × S pixels, the camera intrinsics matrix for

122

5.2. Real-Time Direct Spherical Mosaicing / SLAM

Figure 5.9: Applying a spherical projection in polar image coordinates produces an
interesting effect.

the synthetic views can be written:

Kcube =

S
2 0 S

2

0 S
2

S
2

0 0 1

 . (5.11)

As for the interactive projective projection, we can write down the homography

relating pixels in each face of the cube to those in each keyframe:

Hkf = KRwk
>
RwfK−1

cube. (5.12)

These homographies relating keyframe images to a cube face allow us to generate

a component of the cube map through blending as described previously.

Cube maps can be trivially used in OpenGL as environment maps for special

lighting effects. Figure 5.10 shows the OpenGL teapot rendered with a reflective

123

5. Direct Parametric SLAM

metallic surface from within an office environment.

Figure 5.10: Environment Mapped Teapot rendered by supplying a cube map to
OpenGL.

5.2.6 Global Consistency and Intrinsics Refinement

For evaluation of global registration, we present several spherically projected 360◦

panoramas (Figures 5.11, 5.12, 5.15) captured with two different cameras, and

with two different lenses for each camera. They are constructed by blending ev-

ery keyframe of the map with equal weight, as described in Section 5.2.5, enabling

us to easily visualise the quality of their alignment.

For areas of the mosaic formed from multiple images, pixel noise is significantly

reduced, and the mosaic appears smoother. The different sampling pattern of

keyframes and sub-pixel accuracy we achieve in alignment combine to create a super-

sampling, efficiently rendered in real-time on the graphics card.

Figures 5.13 and 5.14 demonstrates the importance of our joint estimation of cam-

era intrinsic parameters, even for pre-calibrated cameras. Starting with intrinsics

124

5.2. Real-Time Direct Spherical Mosaicing / SLAM

Figure 5.11: Outdoor spherical mosaics.

125

5. Direct Parametric SLAM

Figure 5.12: 360◦ spherically-projected panoramas for three indoor sequences, taken
with different lenses. Point Grey Flea2, 70◦ FOV wide angle (top, close to full
sphere including full hemispherical upward coverage, 27 keyframes), 50◦ FOV TV
Lens (middle, single horizontal loop trajectory, 17 keyframes), and Unibrain 45◦

FOV Standard lens (bottom, single horizontal loop trajectory, 19 keyframes).

estimated from a third party camera calibration tool, and continuing with no intrin-

sics optimisation, the first mosaic in this figure appears fuzzy. Upon inspection we

can see that the estimated loop length is longer than the actual length (in pixels),

causing the images to bunch up (the enlargement of the whiteboard helps to convey

this point). This is caused by intrinsic parameters which are wider than the actual

camera. The second mosaic in this figure is the result of allowing our algorithm to

optimise intrinsics as well as pose parameters (from the starting point of the first

mosaic).

The mosaics in Figure 5.12 were generated from three different lenses, all at

640 × 480 resolution, and initialised with generic intrinsic calibration (nearest 10◦

FOV and central principal point). Table 5.2.6 shows the initial horizontal field of

view, which was based on our knowledge of the lens, and the converged field of view

estimate after a full loop was completed for these sequences.

126

5.2. Real-Time Direct Spherical Mosaicing / SLAM

Figure 5.13: Mosaicing with fixed intrinsics estimated from a third party calibra-
tion tool (top), compared against enabling live intrinsics estimation (middle). An
enlargement of the whiteboard from the two mosaics, emphasising improvement in
alignment, is shown at the bottom. The whiteboard is representative of several areas
of the mosaic.

Camera Lens Lens Quality Stated FOV Refined FOV

PtGrey Flea2 Wide Good 70◦ 69.42◦

PtGrey Flea2 TV Lens Fair 50◦ 51.43◦

Unibrain Fire-i Standard Poor 50◦ 45.56◦

Table 5.1: Calibration Refinement results for Different Cameras and Lenses. Cal-
ibration initialised from Quoted Horizontal Field of View (FOV), and refined by
mosaicing cylindrical loops from 640× 480 indoor sequences.

5.2.7 Convergence to Global Minimum

The results from mosaicing based on poor initial intrinsics (Figure 5.12) help to

motivate that our system has useful convergence properties. By including intrinsics

in our optimisation, we help to enable loop closure by increasing the accuracy of our

pose estimate when we come to complete a loop. By completing a loop too soon,

or too early, we are more likely to fall into local minima — especially if perceptual

aliasing in this area is high.

Figure 5.15 shows an outdoor mosaic generated from rapid hand-held motion of

a Unibrain webcam with a wide angle lens. Note that in this experiment the pure

127

5. Direct Parametric SLAM

Figure 5.14: Mosaicing with (middle) and without (top) live intrinsic refinement.
Enlargements of these mosaics are shown (bottom) highlighting the improved regis-
tration as error is propagated more accurately throughout the 360 degree trajectory.

128

5.2. Real-Time Direct Spherical Mosaicing / SLAM

rotation assumption was approximately satisfied without a tripod due to the large

distance to the scene. This scene contains high perceptual aliasing in the windows

and building pillars, making loop closure difficult. For this sequence, we were unable

to converge to a globally consistent mosaic from our generic 80◦ FOV calibration

parameters. Instead, we started from the parameters estimated from a third party

calibration tool.

Figure 5.15: 360◦ Tower panorama from 21 keyframes (live hand held Unibrain we-
bcam, 320×240 resolution), shown in horizontally and vertically-oriented cylindrical
projection. Note the vertical hole due to poor texture and cloud movement in the
sky.

Time to convergence is another important evaluation criterion. Each iteration

in our global minimisation is costly — forming the linear system from image data

dominates computational time. Actually solving this system is cheap since spher-

ical mosaics require only a relatively small number of keyframes. For this reason,

computation time scales linearly with the number of pairs of overlapping pixels. For

N keyframes, depending on keyframe alignment, this has a worst case complexity

of O
(
N2
)
. In practice, our system achieves convergence within time on the order of

seconds after completing a loop; often less than one second when a wide angle lens

means that the number of keyframes to span a loop is low.

Figure 5.16 shows some stills from the construction of the outdoor ‘Tower’ mosaic

during loop closure, visualised with a perspective camera rendering. This sequence

demonstrates the quality of local image alignment, loop closing, and global relax-

ation. The left image of the three shows the final moment before the 360◦ path of

the camera was completed, and the first and last keyframes were bridged by another

keyframe (middle image). The loop is not closed immediately; this only happens

when the system is confident (last image). Prior to loop closure, we can see the im-

age misalignment by examining the building pillars. Measuring the distance between

one pillar in the constituent keyframes demonstrates that rotational drift prior to

129

5. Direct Parametric SLAM

Figure 5.16: Frames immediately before (left, middle) and after closure (right) from
a 360◦ sequence containing high perceptual aliasing. Prior to loop closure, the first
and last keyframes were misaligned by 10 pixels (just under 3◦).

loop closure is just 10 pixels (< 3◦) for this sequence.

5.3 Real-time Planar Mosaicing / SLAM

Within this section, we will look at real-time pose estimation and globally consistent

dense mosaicing from a single plane with infinite extent. We will consider a camera

that can move freely in three dimensions with six degrees of freedom whilst observing

the plane, and we will allow the video sequence to begin from any orientation.

In this setting, as with rotational mosaicing, each frame from the video is related to

another via a plane-induced homography. For rotational mosaicing, this homography

is a function of rotation and camera intrinsics; the scene is simply a ‘plane at infinity’

with no parameters. For planar mosaicing, the frames are additionally related via

the global plane parameters.

5.3.1 Background

One of the simplest methods for creating planar mosaics from video is to estimate a

planar homography between consecutive video frames and then warp each image into

a common local image coordinate system. As discussed previously when considering

spherical mosaicing, Irani et al. described a system which did just this, estimating

130

5.3. Real-time Planar Mosaicing / SLAM

inter-frame homography parameters via a direct, every-pixel method [54]. This

composition of image transformations however will be subject to accumulating image

space transfer error. One simple method to reduce this error is to always register

the current video frame with respect to an accumulated model, consisting of some

combination of all previous video frames. Following registration, the frame is also

included in the model, and tracking continues. If the global model consists purely

of a composited image, taking contributions from each frame sequentially, we are

not guaranteed a globally optimal mosaic since the positions of constituent images

can only be aligned with respect to previous frames and not future ones. Since this

model is inherently rigid, it also means that local corrections cannot be made during

loop closure, though global image space transformations such as scaling or sheering

can.

In his thesis concerned with visual SLAM through planar tracking, Unnikrishnan

described a pose graph formulation to globally optimise planar observations [130].

He assumes however that the angle of the camera relative to the plane and the

distance from the plane is known a-priori, parameterising motion in the plane’s

coordinate system with three degrees of freedom. This is a significant simplifica-

tion since the removal of any common global plane parameter means video images

are related via just a simple rigid body transformation, and standard pose-graph

optimisations such as those based on [75] can be employed.

Sawhney et al. described a method for planar mosaicing which is able to generate

globally consistent mosaics within a framework which is in principle quite similar to

our own [108]. Relating image pairs locally via homographies which they estimate

using a direct approach, they define a separate global point wise transfer minimisa-

tion of image corners and mid-points to refine the local inter-image homographies.

This optimisation does not require feature data-association and correspondence, but

rather takes the sum of transfer error induced by transforming fixed image points

through different but similar homographies.

We will describe a system for determining the 6 DOF pose of a camera relative

to a planar surface live, whilst constructing a textured mosaic of this surface. This

is in contrast to existing systems which either do not create self-consistent mosaics,

or produce a globally consistent mosaic as a batch process.

The method of Sawhney [108] could be posed incrementally, splitting live frame

131

5. Direct Parametric SLAM

registration and global optimisation, but the cost of estimating full homographies

at frame-rate is higher than our approach, and live camera motion cannot be ob-

tained directly. Their global optimisation is also over parameterised and does not

enable trivial planar orthographic projections of the planar surface, since the plane

parameters remain unknown.

Perhaps the most relevant work is that of Silveira et al., who describe a real-time

system for 3D visual SLAM which uses the direct image-based method of ESM to

jointly estimate the live drifting camera pose and the parameters of small planar

regions within the scene to obtain visual odometry [115]. Although their aim is

clearly to use a large percentage of the image, real-time constraints only let them

use around half of the pixels. We take large influence from their work, and in

particular use their planar parameterisation.

5.3.2 Overview

As for rotational mosaicing, we will decouple tracking and map maintenance into

parallel tasks which can be executed simultaneously on multiple processing cores. We

will parameterise our map by the poses of distinct keyframes and by the parameters

of a single plane of infinite extent.

By maintaining the global map promptly and offering a best estimate at any time,

we can actually simplify camera tracking by considering the global plane parameters

and reference keyframe fixed, minimising only the error with respect to the param-

eters of motion from one frame to the next. This is in contrast to previous methods

which require the estimation of a full homography between frames, and an increase

from six parameters to eight. This live map with globally adjusted plane param-

eters also allows us to provide globally adjusted camera poses live, with real-time

rendering of the mosaic in the true planar orthographic frame of reference.

5.3.3 Optimising Pose

Given a nearby keyframe which we will call the reference keyframe, r, with plane

parameters nr defined in that frame of reference, we can compute our current live

pose Twl by finding a the relative transform Tlr.

132

5.3. Real-time Planar Mosaicing / SLAM

Using a now very familiar methodology, we wish to minimise the photometric error

induced by our current estimated motion parameters T̂
lr

by iteratively considering

an incremental update T(ψ), as is done in [10]. We define the following cost function

describing the error we wish to minimise.

F (ψ) =
1

2

∑
ur∈Ωr

(
Il
(
π
(
Hlr(ψ)u̇r

))
− Ir (ur)

)2

, (5.13)

where:

Hlr(ψ) = KT̂
lr
T(ψ) (I| − nr) K

−1. (5.14)

We solve this system using ESM as detailed in Section 4.3.6. The partial deriva-

tives specific to this cost function are shown below.

∂Hlr(ψ)

∂ψi
= KT̂

lr ∂T(ψ)

∂ψi
(I| − nr) K

−1. (5.15)

∂T(ψ)

∂ψi

∣∣∣
ψ=0

= geni
SE(3)

. (5.16)

5.3.4 Optimising Pose and Plane

Estimating the pose of the camera directly is possible when the structure of the

planar scene is known, as we just described. When the system is first started however

and we have no data, the scene structure is unknown. In practice, it is often possible

to start by optimising only pose assuming fronto-parallel structure, adding keyframes

as with a fully bootstrapped system. Global optimisation of these frames can then

proceed to correct this poor initialisation. Provided this correction takes place

promptly, the tracking system can continue before the baseline is large, where the

error induced by the incorrect model is magnified.

In cases where we require more accurate pose estimation right from the start, or

where the plane is viewed from such an oblique angle that fronto-parallel initialisa-

tion causes tracking to fail immediately, we can optimise the pose and plane jointly

to correctly model the observed image warping between frames.

133

5. Direct Parametric SLAM

Between two projective images of a plane, a general homography, H ∈ SL(3) can

describe the pixel mapping from one image to the other as we have seen before. This

homography can be parameterised minimally by its Lie algebra sl3 ∈ R8, but for our

planar SLAM setting, we are also interested in the live pose of the camera, which

is difficult to extract from the homography itself. Extracting camera pose can be

achieved by decomposition of H, but results suffer in accuracy [38][138][79].

We use the minimal plane parameterisation suggested by Silveira et al. [115] which

can implicitly enforce cheirality and allows us to use a compositional cost function as

we have presented previously, and solve it using ESM. Alternative parameterisations

such as that used by Habbecke and Kobbelt require a forward-compositional formu-

lation [45][46]. We therefore iteratively solve for incremental updates to x = (ψ,y)>,

consisting of both pose (ψ) and plane (y) parameters, with the following cost func-

tion:

F (x) =
1

2

∑
ur∈Ωr

(
Il
(
π
(
Hlr(x)u̇r

))
− Ir (ur)

)2

, (5.17)

where:

Hlr(x) = K
(
R̂
lr

r̂l

)
T(ψ)

(
I −nr(y)

)>
K−1. (5.18)

Considering a pixel u intersecting a plane n = n̂
d at point P = (X,Y, Z)>, the

z-axis depth of pixel u is Z, as defined earlier in Equation 2.25.

Instead of parameterising a plane in terms of N or n, Silveira et al. propose

to parameterise the plane in terms of the inverse depth value (1
Z) at three fixed

non-collinear image locations.

1

Z
= −n>K−1u̇. (5.19)

We write the vector of inverse depths for each image location as z, and define our

homogeneous set of non-collinear points u̇0, u̇1, u̇2, based on image corners, within

a matrix U ∈ R3×3:

z =

(
1

Z0
,

1

Z1
,

1

Z2

)>
, (5.20)

134

5.3. Real-time Planar Mosaicing / SLAM

U = (u̇0, u̇1, u̇2) =

w, 0, w

0, h, h

1, 1, 1

 . (5.21)

We can therefore express the vector of inverse depths (z) and the scaled normal

(n) parameterisations in terms of one another and a fixed, pre-computable matrix

Q. From Equations 5.19, 5.20 and 5.21, we can write:

z = (−n>K−1U)>. (5.22)

Writing the constant part as:

Q = −
(
K−1U

)>
, (5.23)

allows us define:

z = Qn, n = Q−1z (5.24)

In order to enable compositional updates on this parameterisation, and enforcing

cheirality, an increment z(y) to our current estimate of the plane parameters ẑ, is

parameterised further by y ∈ R3 through exponentiation:

z(y) = (ey0 , ey1 , ey2)> (5.25)

This allows us to write the incremental version of our plane parameterisation

(Equation 5.26) with the appropriate update rule (Equation 5.27).

n(y) = Q−1ẑ ◦ z(y), (5.26)

ẑ← ẑ ◦ z(y), (5.27)

135

5. Direct Parametric SLAM

where A ◦ B represents the entry-wise scalar product (Hadamard product) between

matrices A and B of equal dimension. This allows us to expand Equation 5.18 and

write it more explicitly in terms of our parameterisation:

Hlr(x) = K
(
R̂
lr

r̂l

)
T(ψ)

(
I −Q−1ẑ ◦ z(y)

)>
K−1. (5.28)

Minimising Equation 5.17 using ESM given this parameterised homography re-

quires the following partial derivatives:

∂Hlr(x)

∂ψi
= K

(
R̂
lr

r̂l

) ∂T(x)

∂ψi

(
I −Q−1ẑ

)>
K−1, (5.29)

∂Hlr(x)

∂yi
= K

(
R̂
lr

r̂l

)(
0 −Q−1ẑ∂z(y)

yi

)>
K−1, (5.30)

∂z(y)

y0

= (1, 0, 0)>,
∂z(y)

y1

= (0, 1, 0)>,
∂z(y)

y1

= (0, 0, 1)>. (5.31)

5.3.5 Efficient Keyframes and Plane Joint Optimisation

In Section 5.2.3 we described a photometric full joint optimisation for spherical

mosaicing. This consisted of minimising a cost function over the sum of every

pixel-wise difference between overlapping images, parameterised by the pose of each

constituent keyframe and by the global camera intrinsics. We showed that this

optimisation could be performed fast enough to help close loops metrically and

offer interactive mosaic building. We attempted a similar formulation for planar

mosaicing, but found real-time constraints a problem — the global estimation of the

common plane parameters occurs too slowly at the start, leading to poor tracking

performance and potential tracking failures.

For planar SLAM, estimating only pose for the live camera, drifting measurements

are amplified over time since inaccurate pose induces incorrect plane parameters in

that frame of reference, leading to even worse pose estimation in the subsequent

frame. For stability, global correction needs to occur very quickly. This is in con-

trast to rotational mosaicing, where local alignment depends only on local motion

136

5.3. Real-time Planar Mosaicing / SLAM

estimation and camera intrinsics (which are not themselves a function of pose).

This leads to a relatively constant level of drift when integrating measurements.

For offline planar mosaicing methods which are not interested in the actual pose

of the camera, it is enough to relate frames locally by a homography which can

reflect the true pixel transformation regardless of any global parameters. Minimis-

ing a global error parameterised by unrestricted homographies however leads to an

over-parameterisation which does not strictly enforce a single plane across the entire

mosaic and perspective distortions may occur.

Deviating from the approach we proposed for spherical mosaicing, we detail a new

global minimisation which is based on minimising a transfer error between stored

keyframes given a poses and plane parameterisation. This method could equally be

adapted for spherical mosaicing to improve the speed performance of that system.

Homographic Transfer Error

In our planar mosaicing scenario, considering that two overlapping video frames are

related locally by a homography, the composition of homographies over a chain of

images leading back to the original would form the identity matrix if these could

be computed accurately enough. Taking estimated homographies between video

images as measurements, we can write down an image space transfer error Ecr

between a reference image r and comparison image c based on the integral of pixel

displacements between this measured homography, Hcr, and the homography induced

by plane and camera parameters, Ĥ
rc

(Equation 5.32). Figure 5.17 illustrates the

image space transfer error for a single coordinate ur in image Ir.

Ecr =

∫∫
ur=(uv)∈Ωr

∥∥π (Hcru̇r)− π
(
Ĥ
cr

u̇r
)∥∥2

2
du dv. (5.32)

Global Transfer Error Cost Function

Even over a rectangular interval, Equation 5.32’s integral is quite complicated to

compute analytically, with multiple cases for evaluation. To ease computation, we

instead approximate the integral with point-wise samples and formulate with re-

spect to an incremental update on the parameters of motion ψi ∈ se3, i ∈ [1 . . . N]

137

5. Direct Parametric SLAM

Figure 5.17: Illustration of measured and induced homographies Hcr and Ĥ
cr

respec-
tively, taking an image point from ur in Ir to their corresponding locations in Ic.
The image space distance (transfer error) induced in Ic by the two homographies is
labelled.

and those of the plane y ∈ R3. The cost function F (x) is written in terms of a

concatenated vector x =
(
ψ>1 , . . . ,ψ

>
N ,y

>)>:

F (x) =
1

2

∑
j

∑
i

∑
uj∈Ωj

[
π
(
Hiju̇j

)
− π

(
Ĥ
ij

(x)u̇j

)]2

, (5.33)

Ĥ
ij

(x) = KTij
3×4

(ψi,ψj)
(
I −nj(ψj ,y)

)>
K−1, (5.34)

Tij(ψi,ψj) =
(
TwiT(ψi)

)−1
TwjT(ψj), (5.35)

nj(ψj ,y) = π

((
T̂
wj
T(ψj)

)−>(Q−1ẑ ◦ z(y)

1

))
, (5.36)

where the first keyframe Tw0 = I is fixed equal to the world coordinates, and the

plane parameters y are defined in this frame of reference. To fix the system’s scale

and prevent parameter drift, we additionally keep fixed one of the plane parame-

ters, y0. Fixing scale in this way is less simple with the homogeneous vector plane

parameterisation, where scale is associated with the norm. Our approach is also sig-

nificantly simpler than fixing the plane and attempting to hold the relevant degrees

138

5.3. Real-time Planar Mosaicing / SLAM

of freedom of the first camera, which also cannot be isolated to a single Lie algebra

parameter.

Minimisation of this cost function is performed within a simple Iterative Reweighted

Least Squares scheme using the Tukey influence function for robust and stable op-

timisation. This way, poor edges in the graph (formed for example when matching

in ambiguous regions of texture) do not destroy the map.

5.3.6 Maintaining a Keyframe Map

Our map is composed of keyframes which form vertices within a graph. Each

keyframe stores its associated video image and colour derivative image data, along

with its estimated pose.

Live video tracking proceeds by selecting a keyframe from which to track by choos-

ing that which has the greatest symmetric overlap with its own live image, based on

the last estimated camera pose and current plane and keyframe pose estimates. We

define overlap to be the image-space area visible when transforming the contents

of one image to another via a homography parameterised by the images relative

motion and plane. We define symmetric overlap to be the average of this area going

forward and backward, helping to reflect the number of pixels jointly considered.

Measured homographies between keyframes which we determine overlap (based

on their estimated pose and plane parameters) form edges between keyframes in this

graph. As the live pose of the camera is tracked relative to its reference keyframe, a

new keyframe is added when the percentage of symmetric overlap with this reference

keyframe falls below some threshold. This new keyframe inherits the pose of the

live camera and automatically becomes the new reference keyframe for tracking.

A new edge is added to the graph between this keyframe and the last reference

keyframe, initialised with the homography induced by the current plane parameters

and estimated pose. The live camera pose Twl is never explicitly stored, but instead

computed through composition as a relative measure from the reference keyframe.

This allows tracking to continue smoothly throughout global adjustments.

After each video frame arrives, Tlr is refined to update the live camera pose.

Once complete, the remaining time is spent increasing the accuracy of measured

homographies by refining them without imposing any constraints. A few iterations of

139

5. Direct Parametric SLAM

this 8 DOF estimation occur within each cycle on the GPU interleaved with tracking.

Given the keyframe graph, the next edge selected for refinement is the one which has

received the least number of iterations, excluding those which have fully converged

(with an update vector size below some epsilon). This naturally prioritises the

most recently added edges, corresponding to those areas which have most recently

been explored and to new loop closures. Estimating these homographies accurately

enables the global optimisation to maintain accurate poses of those keyframes near

to the current live camera, helping live pose estimation to continue accurately and

minimising drift.

5.3.7 Results

Consistent maps

Figure 5.18 demonstrates the incremental live tracking and floor reconstruction from

a camera moving generally over a planar surface. Local homographic measurements

estimated between keyframes are shown as blue edges. When there exists overlap

between non-consecutive keyframes, new relations are added to the graph. These

iterations are refined iteratively, and only included in the global estimation if they

have an acceptable normalised error. As these edges are included, they introduce

loop closures which pull the mosaic into global agreement.

Estimation of Plane Parameters

Given our efficient parameterisation based on keyframe poses and plane parameters,

we can use use this information at any time without further computation for render-

ing or other analysis. We can render the planar mosaic from any point of view and

in particular, we are also able to create a mosaic in planar coordinates, equivalent

to an orthographic projection from a camera positioned fronto-parallel to the plane.

This would not be be so trivial if each frame were only related via a homography.

Following a similar approach to that described in Section 5.2.5, we can employ Cg

shaders to ‘backward warp’ pixels from the final mosaic into constituent keyframes

in order to find their contributions and blend pixels. We define a planar frame-of-

reference Twp which is oriented such that Z = 0 lies along the surface, and whose

140

5.3. Real-time Planar Mosaicing / SLAM

Figure 5.18: Incremental construction of a planar keyframe map. Current live
pose shown as a green frustum, historic keyframes as blue frustums. Measured
homographies relating historic keyframes are displayed as blue edges within the
graph. Notice that the map is brought into global agreement (bottom) as edges are
added between non-consecutive poses.

141

5. Direct Parametric SLAM

centre of coordinates is at the intersection of the plane with the central pixel of

the first keyframe. We additionally take positive Y to corresponds with up in this

keyframe. Taking the pose of the first keyframe, Tw0 = I to be aligned with the

world frame of reference, and taking the plane parameters n = n̂
d to be defined in

this frame of reference, we can write down the mapping Mi(u) from u = (u, v)> in

plane coordinates to a particular keyframe i’s image by considering a plane oriented

basis and Z offset:

r = n̂×
(

0
1
0

)
, (5.37)

up = r× n̂ , (5.38)

Zw =
−1

n • (0, 0, 1)>
, (5.39)

which can be composed into:

Twp =

r up n̂
0
0
Zw

0 0 0 1

 , (5.40)

Mi(u) = π
(
KTiwTwp

(
u
0
1

))
. (5.41)

Figure 5.19 shows several keyframes from a planar mosaic created by moving a

camera interactively over an arm-span baseline to fill in the ceiling. The image is

rendered in planar coordinates where pixels have been blended with equal weight.

Figure 5.20 contains an enlargement overlaid with a square grid to demonstrate that

perspective distortions are small and that planar parameters have been accurately

estimated.

Non-Planarities

Within our method, we strictly assume that all video pixels are observing the same

plane of infinite extent. In practice, this is generally not precisely true, and large

deviations from this assumption might exist.

Figure 5.21 illustrates an example of a planar mosaic of the ceiling where a pro-

jector post protrudes from the surface. Despite violating our assumption, employing

142

5.3. Real-time Planar Mosaicing / SLAM

Figure 5.19: Office ceiling fronto-parallel orthographic projection of a planar mosaic
consisting of 31 keyframes blended with equal weight. The mosaic was constructed
from a stationary vantage point with hand-waved camera motion. Images taken by
a VGA PointGrey Flea2 with 70◦ field of view representing approximately 5×4 tiles
at any time.

143

5. Direct Parametric SLAM

Figure 5.20: Office ceiling fronto-parallel orthographic projection enlargement over-
laid with square grid to demonstrate projective distortion free rendering.

Figure 5.21: Planar Mosaic (right) generated from multiple keyframes (e.g. left,
middle) where planar assumption is not strictly true. Mosaic generated by blending
constituent keyframes with equal weight.

144

5.3. Real-time Planar Mosaicing / SLAM

robust estimators in both the local and global optimisations means that it has little

influence in the mosaic.

Despite the rest of the plane being registered correctly, objects which violate our

planar assumption will cause our final mosaic to be smeared where parallax ren-

ders the homographies invalid. We do not attempt to address this issue, but it

has been considered extensively in the literature. Instead of blending pixels from

all keyframes, we could select pixels from individual keyframes (e.g. [24][2]). For

small deviations, we could additionally employ optic flow to calculate how to dis-

place pixels between frames before blending [113]. Further still, we could explicitly

attempt to estimate depth across the planar surface, modelling observed parallax

directly [107]. All of these methods require added computation and it is not clear

that they can be achieved at interactive rates. In any case, we believe that averag-

ing creates mosaics of high enough quality for interactive use — other compositing

techniques might be applied as a post step depending on the application.

A more extreme example of a scene which is largely planar but with many off-

plane areas is shown in Figure 5.22. Here, the plane orthographic projections show

the differing quality of plane parameter estimation with standard least squares, and

with iteratively reweighted least squares using the Tukey influence function (Sec-

tion 4.5). With robust estimation the partition forming the dominant plane remains

sharp, whereas in the least squares solution it is blurred and skewed reflecting the

misestimation of image registration and plane parameters.

Document Scanning

Given that we can estimate plane and pose parameters accurately, a simple ap-

plication of our method is for interactively scanning documents without projective

distortions. The only previous real-time document scanning work to our knowledge

is that of Akihiko et al. who use a point-feature based visual SLAM system to inter-

actively create a sparse feature map, which is then used in an offline stage to process

the final document scan [51]. Without considering euclidean geometry, other planar

mosaicing systems operating in image space are prone to projective distortion since

plane parameters are not estimated.

Figure 5.23 shows the graph of a complete mosaic consisting of a number of

145

5. Direct Parametric SLAM

Figure 5.22: Planar mosaicing from 8 keyframes without (top) and with (middle)
robust estimation (Tukey M-Estimator c = 255→ 2.5). Sample keyframes (bottom)
demonstrate observed disparity. Using robust estimation, plane parameters are suf-
ficiently estimated, as demonstrated by the right angles seen in the partition from
this orthographic projection.

146

5.3. Real-time Planar Mosaicing / SLAM

keyframes with dense connectivity representing large overlap between a number of

the images. You can see that the camera was moved at different distances from the

plane to capture different details of the document.

Figure 5.24 shows the orthographic, fronto-parallel projection of the same mosaic.

Whereas Figure 5.23 is rendered using projective texturing without keyframe blend-

ing where we can clearly see shadows cast by the user holding the moving camera,

these view dependant shadows average out in Figure 5.24.

Figure 5.23: Planar mosaic of a text document consisting of several keyframes,
rendered by overlaying each keyframe consecutively (without blending). Notice that
the camera’s shadow appears in the individual keyframes.

Live, Super Resolved Images

Making use of all image data and using robust estimators, overlapping keyframes

within the mosaic can be registered with high precision within a fraction of a pixel.

Global adjustment can increase this accuracy further provided camera intrinsic pa-

rameters are well estimated and hold over extended regions where we assume them

147

5. Direct Parametric SLAM

Figure 5.24: Several keyframes are transformed into the planar coordinate system
(top row) and blended with equal weight to form the final mosaic (bottom). Low
frequency lighting variations caused by shadowing average out.

148

5.3. Real-time Planar Mosaicing / SLAM

to be constant.

Each keyframe’s image samples the scene in a regular grid, the combination of

all keyframes forming a super-sampling much finer than a single image. Whilst

rendering the full mosaic we are free to choose a new grid in which to resample our

data. Through backward warping, each pixel (grid element) in the output image

will receive contributions from all keyframes sampling this piece of surface. Multiple

observations of a textured region reduce noise over a single measurement and so our

final mosaic can have a much improved signal to noise ratio. Figure 5.25 considers

a small area of Figure 5.19 displayed using a surface plot to demonstrate how image

noise is reduced by combining multiple registered images through averaging.

Figure 5.25: Taking a small section from a planar mosaic of some ceiling tiles,
we show surface plots for the pixel intensities of a a single raw keyframe from the
mosaic (left), verses the average in that area of all aligned keyframes. Notice how
pixel noise can be reduced whilst maintaining sharp image features.

Since individual CCD sensor elements on the focal plane of a digital camera are

not packed tightly against one another, images captured often contain some degree

of aliasing if the optical path itself is not completely limiting the resolution of the

camera. Aliasing can be seen in the form of ‘jaggies’ where neighbouring pixels do not

vary smoothly in intensity. Aliasing can also introduce interesting Moiré patterns

— the interference introduced by sampling a regular texture by a misaligned or

differing size grid.

Assuming a Gaussian distribution on pixel intensities, multiple samples accurately

registered can be averaged within a sub-pixel interval to improve spatial resolution to

149

5. Direct Parametric SLAM

small degrees. More sophisticated multi-image super-resolution techniques consider

the effects of different imaging stages such as lens blur to obtain significantly higher

quality super-resolved images at additional computational cost (e.g. [129]).

Figure 5.26 illustrates the modest gains in resolution that can be achieved by

using our system to mosaic a text document over a narrow baseline from several

constituent keyframes. Rendered interactively, the user receives feedback as to the

quality of the final mosaic. In contrast to our earlier document mosaicing, we do

not zoom in or change viewpoint heavily, so the sample image keyframe crops are

representative of the input resolution and aliasing present.

5.4 Summary

Within this chapter, we have demonstrated that high quality, globally consistent

spherical mosaics can be generated in real-time by combining the precise and very

robust tracking methods that were described in Chapter 4, with simple global opti-

misations also inspired by these approaches, and based on the sampling of keyframes.

Through the very accurate estimation of local motion, global adjustment is made

much simpler, and we do not explicitly consider loop closure, rather, geometric loop

closures are estimated well enough that they can proceed automatically.

In order to mosaic a plane in real-time as we move generally over it, we were

required to refine the brute force approach which we had shown worked well for

rotational mosaicing. Instead, we formulated an efficient global cost which approxi-

mates the integral of model transfer error given the precisely measured homographies

between pairs of keyframes.

Unlike most of the mosaicing literature, our model is parameterised by keyframe

poses and plane parameters, rather than by the homographies which relate frames

themselves. This formulation is more efficient, and enables us to track in real-time

camera pose by placing structure estimation in a lower priority procedure.

For planar mosaicing, since 3D keyframe poses and plane parameters are esti-

mated live, we can also apply texture directly on to the plane in planar coordinates,

allowing us to avoid projective distortions common to other techniques. Finally, we

demonstrate the accuracy of our planar mosaicing system by blending all keyframes

150

5.4. Summary

Figure 5.26: Multiple keyframes are composited by simple averaging into a higher
resolution image (bottom), producing fine details not visible in constituent images
(top, middle).

151

5. Direct Parametric SLAM

with equal weight into a fine grid which demonstrates the improvements increased

sampling can have on reconstruction quality.

The systems presented in this chapter have focussed on alignment accuracy and

live estimation. We have demonstrated largely qualitative results upon which to

judge our methods, though a more in depth analysis using synthetic data for example

might be possible. To our knowledge, no mosaicing datasets for benchmarking

are available. Further, we have neglected how we can increase perceived quality

through more sophisticated blending schemes; by taking more robust pixel means

for instance, or by intelligently selecting pixels through segmentation when objects

appear and disappear. These issues have been well studied already and we refer to

Szeliski’s thorough review for details [124].

152

Chapter 6

DTAM: Dense Tracking and

Mapping in Real-Time

Work within this chapter describes the system DTAM and was conducted in

close collaboration with Richard Newcombe, leading to the publication: ‘DTAM:

Dense Tracking and Mapping in Real-Time’ by Richard Newcombe, Steven Love-

grove and Andrew Davison [95].

6.1 Introduction

Within the last few chapters we have looked at real-time direct parametric track-

ing and mapping in the context of spherical and planar mosaicing. We have seen

how through the very simple application of coarse-to-fine refinement and iteratively

reweighted least squares, we have been able to track through highly dynamic camera

motions experiencing significant motion blur and heavy accelerations (Section 4.6),

whilst maintaining accurate tracking when image quality is good (Section 5.3.7).

Although state of the art methods for live 3D monocular SLAM have matured,

perhaps at last offering a degree of robustness suitable for non-expert use, their util-

ity is at present limited by the quality of their maps. The sparse features underlying

typical systems exist as a basic necessity for keeping a drift free reference frame;

153

6. DTAM: Dense Tracking and Mapping in Real-Time

features themselves are only landmarks for pose estimation. For many applications

such as robotics and augmented reality, the live pose of the camera and the locations

of sparse landmarks are not enough — a robot needs object geometry in order to

avoid hitting things in the world and perhaps to interact with them; augmented

reality also requires surface geometry in order for virtual objects and characters to

be fused with the physical.

Within this chapter, we will look at how direct parametric tracking methods can

be combined with fast, dense multi-view stereo to produce a fully dense monocu-

lar SLAM system for arbitrary 3D environments, whose map consists not of sparse

point features, but a dense and accurate surface model. We will continue by demon-

strating the benefits of such a representation and of using all pixels for tracking

and mapping; namely robust and precise pose estimation and straightforward oc-

clusion and occupancy data for target application areas such as augmented reality

and robotics.

6.2 Background: Towards Dense 3D SLAM

6.2.1 Piecewise Planar Models

We might attempt to draw inspiration from the graphics community, where a number

of representations of geometry have been proposed, many for real-time and inter-

active purposes. Rasterisation of polygonal primitives has been popular in gaming

and interactive graphics to achieve increasingly detailed live 3D renderings, with

current graphics hardware highly accelerated for this purpose. Looking at some of

the top performers in the offline multi-view stereo (MVS) literature [112], we notice

that a number compute surfaces by infinitesimal piecewise planar estimation (e.g.

Habbecke and Kobbelt [46], Furukawa and Ponce [41]). Earlier work by Habbecke

and Kobbelt [45] demonstrated much coarser reconstructions based on larger planar

regions but using very similar machinery.

An avenue of work that is enticing is to construct a coarse-to-fine piece-wise planar

world, starting perhaps from where our last chapter finished, refining a piece-wise

planar model which, given time, could take us right up to state of the art MVS

reconstructions of the world. This idea of coarse-to-fine geometry sounds appealing

154

6.2. Background: Towards Dense 3D SLAM

— make coarse strokes with little computation to enable robust tracking, refining

areas suffering from the poorest predictive quality, staying within real-time bounds.

In this chapter we instead take an approach which builds reconstructions from depth

map units, but it would be interesting to return to multi-planar modelling in the

future; or perhaps to even more restrictive models like a ‘Manhattan World’ where

all planes are orthogonal.

6.2.2 Depth Maps and Multi-View Stereo

From two views of a textured scene where the relationship between the cameras is

known, dense structure can be estimated in a process known as dense stereo. Each

pixel in an image corresponds to a ray in space, along which the scene it has imaged

with the given colour must lie — the projection of this ray into the image of a second

known camera is a line which is known as the epipolar line. If the relative pose of

the camera has been estimated accurately, then the corresponding projection of this

scene point into the second camera must lie along this epipolar line [48].

Epipolar geometry gives rise to strong matching constraints that make it feasible

to approximate dense surface geometry for every pixel in a stereo pair; though, for

areas of low texture where matching is ill posed or where there is little baseline

between the images, we are likely to see very noisy measurements. From two views,

only the geometry of structure observed in both views can be reconstructed. For this

reason, geometry is typically represented as a per-pixel depth in one of the views

to form an image which we refer to as a depth map, as demonstrated in Figure 6.1.

For calibrated cameras, it is possible to pre-warp the images to form a rectified

stereo pair such that the epipolar line of each pixel in one image corresponds to a

pixel aligned row in the other [30]. In this case, the pixel displacement between

image pairs is termed disparity. Disparity is proportional to inverse depth and can

equivalently be stored per pixel as a disparity image.

The difficulty in dense stereo is in attempting to accurately find pixel correspon-

dences. A single pixel from one image lacks discrimination when matching along

epipolar geometry in another, so using this method to establish depth can be very

noisy. It is common to use a small patch around a pixel as support when determining

match score along the epipolar line to increase discrimination and thus reduce noise.

The original application of the Lucas-Kanade method that we have used through-

155

6. DTAM: Dense Tracking and Mapping in Real-Time

Figure 6.1: Illustration of a simple 3D scene with projective camera image (left), and
associated depth map (right). In the depth map, each pixel has a depth value which
corresponds to the scene z ordinate captured at that point in the projective colour
image. Depth values are show here represented by intensity; black pixels represents
those that are nearest the camera and white pixels represent those furthest away.

out this thesis was in this domain, matching small patches in one image along the

one-dimensional epipolar line in another [77]. Patch matching can however lead to

over smoothing where we miss fine structure, since the patch must match well in

its entirety. It is also quite expensive, especially for large patches. The size of the

patch will affect the scale at which it can reduce noise but also the size of structure

which it can no longer resolve.

The very simplest dense stereo methods take patches around each pixel in one

image and search along the epipolar line at whole pixel intervals in the second,

recording the whole pixel disparity which best minimises a sum of square differ-

ence patch score. Over the years, many methods have been proposed for increasing

the quality of dense stereo results. Some authors have suggested different match

scores or different methods for sampling along the epipolar line. Another option is

to regularise the depth-map by incorporating smoothness priors; that neighbouring

pixels are likely to share similar depth values for example. Scharstein and Szeliski

offer a thorough review of classic literature and place them in a taxonomy of algo-

rithms [111].

Yoon and Kweon demonstrate that through an adaptive filtering of depth maps us-

ing associated colour image gradient data, depth map quality can be improved [133].

They note that discontinuities in depth images frequently occur where the corre-

156

6.2. Background: Towards Dense 3D SLAM

sponding image data has high image gradients — filtering is therefore weighted by

gradient intensity to smooth depth data mostly in areas of homogeneous colour,

preserving occlusion boundaries lying along image edges.

Building a 3D model from more than two images is termed multiple-view stereo

(MVS). Pollefeys et al. [103] demonstrated that by ‘chaining’ several dense stereo

depth maps into the frame of reference of one, increased quality can be obtained.

They also show how multiple depth maps can be fused within a volumetric approach

to obtain models of arbitrary topology. A triangular surface mesh can be obtained

from implicit surface representations using marching cubes [70].

High quality multiple-view stereo can be computationally expensive. Methods

that consider global regularisation are generally more costly than those which rely

on purely local methods. In recent years however, high quality multiple view stereo

methods have started to become real-time capable [42, 134]. This is largely thanks

to highly parralelisable algorithms which permit implementation on increasingly

performant programmable graphics hardware.

Beginning with the work of Newcombe and Davison [93], however, it was shown

that dense, fine and accurate structure could be extracted interactively within a

monocular SLAM system using commodity hardware. Their system comprised of

a point-based map of features used for camera tracking from which a smooth base

mesh was formed. The dense mesh was refined by warping to accurately reflect the

true structure by considering epipolar constrained optic flow between a bundle of

camera frames and the view prediction from the current geometry. As the quality

of the model improves, so too do the view predictions into the live camera, where

consistency induces no surface warping. Another quite similar system was developed

in parallel by Stuehmer et al. [122].

From the perspective of dense tracking, the most similar work to our own is

that of Comport et al. who demonstrate that every pixel from a stereo sequence

can be used to estimate accurate drifting visual odometry in a sequential but non

real-time process [22]. From their stereo video sequence, dense stereo is used to

estimate a depth map in the frame of reference of one of the views. An ESM

(Section 4.3.6) based minimisation is formulated to minimise a photometric cost

function with respect to the 6 DOF quadrifocal arrangement of stereo pairs through

time. Meilland et al. presented work conducted in parallel but independently from

157

6. DTAM: Dense Tracking and Mapping in Real-Time

our own based on localisation from spherical depth maps which also bears many

similarities with the work in this chapter [85]

6.3 Method

6.3.1 Overview

The structure of DTAM draws on the separation of tracking and mapping as decou-

pled but dependent processes, inspired by the state of the art in monocular feature-

based SLAM, PTAM [62]. Like PTAM, DTAM also stores a collection of historic

images sampled from the video stream as keyframes with known pose. However,

rather than using a sparse feature-based representation of the world from which to

track, each keyframe within DTAM also has associated with it a dense depth map,

and so records not only the projected colour of the scene but also its dense surface

structure for every pixel in the sampled image. Each of these depth maps is effi-

ciently generated using a dense stereo technique from potentially hundreds of video

images from nearby positions of the live tracked camera (Section 6.3.2). This part

of the system is an improvement on the dense depth map creation element of [93]

which does not require warping of an approximate base surface but solves directly

for a depth at each pixel (in this sense being more similar to [122], though with

further improvements in the details).

The union of the overlapping textured depth maps forms a model of the surface

of the world (Figure 6.2). Capturing fine details and arbitrary topology, this model

can be rendered from a new view for a realistic, photometric prediction of what the

real camera will observe from that location.

DTAM departs most from previous dense visual SLAM systems in the way that

the live pose of the camera is estimated. Rather than relying on a background

structure of point features for tracking, a pose estimate is established by whole

image alignment of the current image against a projection of the entire dense model

(Section 6.3.3). Through an efficient direct method with coarse-to-fine warping,

taking full advantage of the restricted motion between video frames, camera tracking

can proceed at frame-rate over varied and highly dynamic motions.

The tight coupling of timely multi-view stereo and whole-image tracking from

158

6.3. Method

Figure 6.2: Overlapping depth maps recreate the geometry of our familiar block
scene. Surface connectivity within a depth map must be established based on some
smoothness prior. Here we ‘cut’ the surface at depth discontinuities which will lead
to holes in occluded regions. Multiple depth maps can fill in missing areas, as seen
above.

a known model leads to a real-time algorithm capable of incrementally building

accurate dense models of a desktop scale scene. By using each narrow baseline

video frame within an incremental reconstruction procedure, tracking can proceed

in new areas quickly from the best data that is currently available.

A large advantage of the methods used in DTAM for tracking and mapping is

that they are inherently and trivially parallelisable. This is a major enabling factor

for their real-time use, implemented as they are on commodity graphics hardware,

scaling naturally in processing cost with different image resolutions.

6.3.2 Dense Depth Maps from Video

In order to generate a new depth map, an image from the video stream is first chosen

as the depth map’s reference frame and saved. The pose of the camera when taking

this image is also stored, and these together form an uninitialised keyframe. For each

new keyframe we create, we also initialise a three-dimensional projective voxel data

structure in which we will incrementally accumulate data, called a projective cost

volume. For every pixel in the reference image, and for every depth in a discrete

159

6. DTAM: Dense Tracking and Mapping in Real-Time

range, the cost volume records the cost associated with assigning to this pixel a

particular depth value.

Depth map construction proceeds by computing these per-pixel, per-depth costs

from consideration of many comparison images. At any time, we can take the min-

imum cost depth per pixel to form our depth image. This measurement however

is noisy, and we choose instead to regularise this depth map within a variational

procedure before it is used for tracking. Regularisation can be performed incremen-

tally, allowing us to include the depth map in our model for tracking whilst also

integrating new data to make the depth map better. Once the depth map has fully

converged and we are happy not to include more data, we can destroy the associated

cost volume, allowing its memory to be used for a different keyframe.

Projective Cost Volume

Figure 6.3 illustrates the items associated with a dense keyframe r, including the

image Ir, pose Trw and cost volume Cr. For video images of size M × N , the

associated cost volume is a three-dimensional array of size M ×N × S, where S is

the number of inverse depth bins sampling the range ξmin to ξmax. A row Cr(u) in

the projective cost volume (called a disparity space image in stereo matching [125],

and generalised more recently in [106] for any discrete per-pixel labelling) stores the

accumulated average photometric error as a function of inverse depth d.

For every pixel u, each inverse depth sample d within the cost volume represents a

hypothetical surface point X = π−1 (u, d). The average photometric error Cr(u, d)

at this point is computed by projecting it into each of the overlapping comparison

images Im ∈ I(r), taking the average of the absolute photometric errors for all

projections that fall in valid image bounds. Let I(r,u, d) ⊆ I(r) be the set of

images that π−1 (u, d) projects into, then:

Cr(u, d) =
1

|I(r,u, d)|
∑

Im∈I(r,u,d)

‖ρr (Im,u, d) ‖1 , (6.1)

where the photometric error for each overlapping image is:

ρr (Im,u, d) = Ir (u)− Im
(
π
(
KTmrπ−1 (u, d)

))
. (6.2)

160

6.3. Method

Figure 6.3: A keyframe r consists of a reference image Ir with pose Trw and cost
volume Cr (visualised here as a cut away 3D grid). Each pixel of the reference frame
ur has an associated row of entries Cr(ur) (shown in red) that store the average
photometric error computed for each inverse depth d ∈ D in the inverse depth range
D = [ξmin, ξmax]. We use tens to hundreds of video frames indexed as m ∈ I(r),
where I(r) is the set of frames nearby and overlapping r, to compute the values
stored in the cost volume.

Naturally, this simple sum can be computed incrementally as new images Im ∈
I(r) are observed by the live camera — we can simply record a running average

and counter per element within the volume. Critically, the set of comparison im-

ages I(r) need not be stored after integration, and so the memory requirement for

incorporating any number of images is constant. Integration of a new comparison

image is simple and highly parallelisable, allowing us to incorporate each and every

video frame into a single cost volume live alongside camera pose estimation.

Having integrated a number of comparison images into a reference cost volume,

we can extract the most photo-consistent depth map from the volume by finding

per pixel the depth with lowest cost. Despite such a simple pixel-wise photometric

cost metric, the average of many individually indiscriminate costs will frequently

161

6. DTAM: Dense Tracking and Mapping in Real-Time

Figure 6.4: Plots for the single pixel photometric functions ρ(u) and the resulting
total data cost row C(u) are shown for three example pixels in the reference frame,
chosen in regions of differing discernibility. Pixel (a) is in a textureless region and
not well localisable; (b,d) are within strongly textured regions where a point feature
might be detected; and (c) is in a region of linear repeating texture. While the
individual costs exhibit many local minima, the total cost shows a clear minimum
in all except nearly homogeneous regions.

tend toward the correct surface depth. Figure 6.4 demonstrates the sum of absolute

costs for illustrative pixels over the cost volumes depth range — although individ-

ual comparison image pixel error plots are highly multi-modal, their sum is much

smoother, removing ambiguities that it might not be possible to resolve in a single

stereo pair.

Cost Volume Regularisation

Through the construction of the photometric cost volume from many comparison

images, the per-pixel minimum cost depths can be taken to construct the most photo-

consistent depth map; but sometimes the per-pixel cost over depth does not contain

a clear minimum or it is multi-modal. There is nothing that stops neighbouring

pixels from this raw depth map from taking on wildly different depth values.

In order to improve the reconstruction beyond a purely photometric cost function,

we must include prior information. For our problem of depth map construction, we

assume that the inverse depth solution consists of regions that vary smoothly across

162

6.3. Method

the image and discontinuities that occur due to occluding boundaries. Observing

that occluding boundaries frequently project onto strong edges within the image,

we use an edge weighted regulariser that penalises deviations from a smooth surface

based on the norm over the gradient of the inverse depth map. For reference image Ir

and corresponding depth image ξ, the regulariser term for pixel u is g(u)‖∇ξ (u) ‖ε,
where:

g(u) = e−α‖∇Ir(u)‖β2 , (6.3)

forms the edge weighting based on image gradient magnitude and

‖x‖ε =

{ ‖x‖22
2ε if ‖x‖2 ≤ ε

‖x‖1 − ε
2 otherwise

(6.4)

defines the Huber norm, which is an L2
2 norm within ‖∇ξr‖2 ≤ ε, and L1 otherwise.

The resulting energy functional therefore contains a non-convex photometric error

data term and a convex regulariser whose strength is controlled by the constant λ:

Eξ =

∫
Ω

{
g(u)‖∇ξ(u)‖ε + λC (u, ξ(u))

}
du. (6.5)

This energy is minimised to yield the regularised depth map through an efficient

primal-dual variational approach. We refer to the original paper [95] for details of

this energy including how to efficiently solve it, as this work represents the sole effort

of Richard Newcombe.

Although the photometric costs associated with depth reside within the discretised

cost volume, the regularised depth solution per pixel can take any continuous values.

To achieve high quality reconstructions, sub-sample minimum are sought within the

iterative minimisation of the local energy. Figure 6.5 illustrates the incremental

construction of the cost volume and regularised solution. Figure 6.6 illustrates the

quality of map which can be produced live, versus the sparse feature map maintained

by PTAM.

6.3.3 Tracking From a Dense Model

Given a dense model consisting of one or more keyframes with depth maps, we can

synthesise realistic novel views over wide baselines by projecting the entire model

163

6. DTAM: Dense Tracking and Mapping in Real-Time

Figure 6.5: Incremental cost volume construction; we show the current inverse
depth map extracted as the current minimum cost for each pixel row dminu =
arg mind C(u, d) as 2, 10 and 30 overlapping images are used in the data term
(left). Also shown is the regularised solution that we solve to provide each keyframe
inverse depth map (bottom-right).

Figure 6.6: DTAM’s dense surface map, Phong shaded (left), compared to a snap-
shot of the PTAM system with its sparse feature map visible as coloured points
(right).

164

6.3. Method

into a virtual camera. Since such a model is maintained live, we benefit from a fully

predictive surface representation, handling occluded regions and back faces naturally.

We estimate the pose of a live camera by finding the parameters of motion which

generate a synthetic view which best matches the live video image.

We refine the live camera pose in two stages; first with a constrained inter-frame

rotation estimation, and second with an accurate 6 DOF full pose refinement against

the model. Both are formulated as iterative Lucas-Kanade style non-linear least-

squares problems as we have seen before, iteratively minimising an every-pixel pho-

tometric cost function.

To ensure that we converge to the global minimum whilst registering each new

video frame to our model, we must initialise the system within the convex basin of

the true solution. We use a coarse-to-fine strategy over a Gaussian power of two

image pyramid (Section 4.4) for efficiency and to increase our range of convergence.

Inter-frame Rotation Estimation

Noticing that gross image motion for a fast hand-held moving camera is typically

dominated by rotation, the pose of the live frame is first refined by considering

only rotational motion that may have occurred since the previous video image.

Making the simplifying assumption that no translation has taken place, we are able

to disregard the scene and align only the previous and live images, Ip and Il, by

a homography parameterised by the rotation Rpl. This optimisation is more stable

than 6 DOF estimation when the number of pixels considered is low, helping to

converge for large pixel motions at lower resolutions in the pyramid, even when

the true rotation is not strictly rotational. Figure 6.7 illustrates the photometric

cost function being minimised for different pyramid strategies where inter-frame

rotation estimation and full pose refinement occur at different levels within the image

pyramid. We can see that inter-frame estimation can help avoid local minima.

By estimating inter-frame rotation first we also gain increased robustness to mo-

tion blur since consecutive images are taken at similar velocities and are hence

similarly blurred. PTAM’s tracker performs a similar but less direct step to in-

form feature matching, computing first the 2D rigid body pixel transform between

consecutive images and then computing the 3D rotational motion which best fits

165

6. DTAM: Dense Tracking and Mapping in Real-Time

Figure 6.7: MSE convergence plots over time for an illustrative tracking step esti-
mating rapid motion using different combinations of rotation and full pose iterations.
Estimating rotation first can help to avoid local minima.

this image transform [63]. This coarse motion estimation can lead to more accurate

feature location predictions when attempting to establish data association.

In order to achieve robustness to motion blur relative to the fixed, unblurred

model, we would need either to attempt to deblur the live video image before match-

ing, or incorporate a model of exposure within the cost function, effectively blurring

the model within each iteration, as described by Mei and Reid [83]. These meth-

ods significantly increase the processing cost of alignment, making prior inter-frame

estimation appealing to reduce total iterations for model-based blurring methods.

We proceed using the machinery from Section 4.6 to estimate Rpl. Our current

best live camera pose, T̂
wl

can be computed via composition and refined by a full

pose minimisation against the model.

View Prediction

Given our best estimate of the live camera pose, T̂
wl

, we project the dense model

into a virtual camera v at location Twv = T̂
wl

, with colour image Iv and inverse

depth image ξv. These can be rendered efficiently on the graphics card by setting

up an OpenGL camera that matches the intrinsics of the real camera, situated in the

desired location. Using an off-screen framebuffer, we render each keyframe’s depth

map with texture using Vertex Buffer Objects to store the depth data, and Pixel

Buffer Objects to store the texture (Section 2.5.3). Vertex and Fragment Shaders

(Section 2.5.4) allow for the colour image Iv, and depth image, ξv to be generated

quickly within the same rendering process.

166

6.3. Method

Figure 6.8: The dense textured surface model enables view prediction over wide
baselines.

By rendering each keyframe into the virtual camera in this way to create a new

predicted coloured depth map, occluded surfaces are naturally hidden provided the

occluding surface has been modelled. Since we have a continuous surface representa-

tion, we can additionally invalidate back faces — keeping them as occluding surfaces,

but excluding per-pixel costs that include them for tracking. One disadvantage of

this scheme is that overlapping surface data is not merged into a consistent surface.

As such, noisy depth data cannot be naturally improved. This is an area of future

work.

During view prediction, we also record the minimum and maximum observed

depths within the scene which helps to set up a more appropriate interval ξmin to

ξmax for future cost volumes.

Full Pose Refinement

Performing a full view prediction from the complete model into a virtual camera v

with pose Twv = T̂
wl

, we assume that v is close to the true pose of the live camera,

and perform a 2.5D alignment between Iv and the live image Il to estimate Tlv,

and hence the true pose Twl = TwvTvl. We parameterise an update to our current

estimate T̂
lv

by ψ ∈ R6 belonging to the Lie algebra se3, and define a forward-

167

6. DTAM: Dense Tracking and Mapping in Real-Time

compositional cost function relating photometric error to changing parameters:

F (ψ) =
1

2

∑
u∈Ω

(
fu (ψ)

)2
=

1

2
‖f(ψ)‖22, (6.6)

fu(ψ) = Il
(
π
(
KT̂

lv
Tlv(ψ)π−1 (u, ξv (u))

))
− Iv (u) (6.7)

Tlv(ψ) = exp

(
6∑
i=1

ψigeni
SE(3)

)
. (6.8)

This cost function does not take into account occluded surfaces directly; it will

allow the live image to be warped such that pixels overlap with no consideration in

the cost function for if they are visible. Instead, we assume that the optimisation

operates over only a narrow baseline from the original model prediction. We could

perform a full prediction setting Twv = T̂
wl

at every iteration but find it is not

required.

We attempted to apply an ESM formulation for the 6 DOF pose refinement, but

found experimentally that the simple forward-compositional approach was more

stable with increase convergence. Baker et al. discuss 2.5D Image alignment in the

context of medical datasets where they state that inverse compositional approaches

are not appropriate in this setting [8]. Since ESM can be seen as both forward and

inverse compositional, we believe their argument applies to ESM too.

We iteratively find the minimiser ψ◦ = arg minψ F (ψ) and apply the update

T̂
lv ← T̂

lv
T(ψ̂) until ψ̂ ≈ 0 marking convergence, or until we run out of time. For

details of the method, refer to Section 4.3.4.

Robustified Tracking

Feature-based trackers typically perform individual hard data-association when match-

ing stored map elements in the live image. Mismatches are dealt with after-the-fact

by establishing a consistent set of features where outliers have been discarded based

on methods such as RANSAC. RANSAC relies on generating hypotheses by sam-

pling from random minimal sets of features and testing their support. At any time,

the set with the greatest support can be taken as a basis upon which to establish

168

6.3. Method

inliers and outliers. Subsequently, the inlier set can be used to obtain a least squares

fit which we now assume has not been corrupted by non-Gaussian outliers.

Under the sum of squared error cost function previously described for tracking, any

observed pixels which do not belong to our static scene model or whose colour has

dramatically changed due to lighting, may have a large negative influence within

the solution. Minimisation of this cost function amounts to estimating the most

likely pose given that all observed differences in live versus projected model pixels

are Normally distributed about zero, which is not the case. Not only do unmodelled

objects induce gross pixel-changes, but the brightness-constancy assumption — that

observed scene colour does not change between frames — is violated by even simple

Lambertian surfaces, where brightness is view-point dependent.

Figure 6.9: Augmented reality car appears fixed rigidly to the world as an unmod-
elled hand is waved in front of the camera. Pixels in green are used for tracking
whilst blue do not exist in the original prediction and yellow are rejected (hand /
monitor / shadow).

Analogously to RANSAC for feature-based pose estimation, we might think about

a minimal set of pixels and testing support from the remainder of the image, but

this represents too great of a cost for real-time application, with very many pixels

each having little discrimination.

As discussed earlier in Section 4.5, non-linear least-squares problems such as ours

can be robustified by changing the weight of pixels based on their error in a pro-

cess called iteratively reweighted non-linear least-squares. This weight allows us to

effectively change the error norm, minimising a different cost function to yield a

more robust solution. In this way, all data is considered whilst the global model is

169

6. DTAM: Dense Tracking and Mapping in Real-Time

explicitly enforced, preventing the one-time hard data association of feature-based

methods.

We choose the Tukey influence function which allows us to find the most-likely

solution given assuming inlier pixel differences are Normally distributed and outliers

follow a uniform distribution [48]. By changing a tuning parameter, the variance of

the inlier distribution can be modified. The net result is that pixels whose photo-

metric error falls above some threshold are disregarded completely.

One problem with this scheme is that the cost landscape can be made more com-

plicated, particularly for non-convex penalisation terms such as that associated with

the Tukey M-estimator. This can adversely affect performance where minimisation

‘locks into’ local modes, and where convergence is slowed by disregarding outliers

which only appear that way when we are far from the solution.

Within DTAM, we dynamically change the Tukey tuning parameter within each

least squares iteration. It is ramped down within the coarse-to-fine scheme as we

converge to consider fewer outliers whilst maintaining a fast and wide basin of con-

vergence. This makes it practical to track densely whilst observing unmodelled

objects (Figure 6.9).

6.3.4 Initialisation

Since pose and dense structure are estimated in alternation and require one another

to progress, we cannot use either of these when the system is first started. Instead,

we bootstrap DTAM with a sparse feature-based tracking method to estimate cam-

era pose before we have generated a model. Sparse feature-based pose estimation

continues until the first keyframe with depth map has been constructed, when dense

tracking can commence.

Finding a method for real-time dense initialisation of pose and structure remains

an open topic. One approach may be to jointly estimate pose and coarse dense

structure from some parametric representation, such as a regular grid of independent

planes.

170

6.3. Method

6.3.5 Keyframe Management

Refining a depth map requires that we have kept its associated cost volume — we

typically keep only a few at a time on the GPU and must swap them in and out

from main memory if we wish to work with more. A static, finalised depth map does

not require a cost volume and uses little memory. We can keep many on the GPU

for tracking purposes, taking just fractions of a second to render each during view

predictions. For the small desktop environment that we target, we do not need to

consider removing keyframes or selecting which of those that are visible we should

use from tracking; we can efficiently use upwards of 20 at any time.

Given a current model and the live tracked pose of the camera, the biggest ques-

tions in maintaining the map are when should new keyframes be added, and which

keyframes should comparison video images be integrated into. Since processing time

is a premium for every video frame, the number of keyframes a comparison image

can be incorporated into at one time is limited. Additionally, the memory required

to store a cost volume is large relative to that which is available on current graphics

hardware.

DTAM can operate in a number of modes which suit differing applications. The

simplest policy is to add a keyframe when the user requests it, and to keep a single

keyframe ‘active’ receiving comparison images at any one time. In this setting,

each live video image is integrated into the cost volume of the active keyframe to

continually improve its quality. When the user selects to add a new keyframe, the

cost volume is detached from the current keyframe, cleared, and reattached to a new

one whose reference image and pose becomes the current live frame and pose. This

keyframe is included in the map and used for tracking once it has integrated enough

data, typically just ten frames or so, and has sufficiently converged. Incremental

regularisation of this depth map can be performed at frame-rate meaning that a

keyframe can be used for tracking and also refined simultaneously. The previously

active keyframe is now fixed and cannot be refined.

By integrating hundreds of narrow baseline video images into new depth maps,

keyframe quality converges quickly. Handily, the required quality of a depth map

for accurate tracking increases with baseline just as the accuracy of the depth map

itself does. Since the view predictive quality of a single dense keyframe is so high,

tracking can be sustained quite adequately from just one keyframe over a range of

171

6. DTAM: Dense Tracking and Mapping in Real-Time

poses and across large baselines, both from near and far away (see Figure 6.13 for

example).

Operating in a fully automatic mode, DTAM is also able to determine when new

keyframes are required. Since the system operates from a dense predictive model,

each time a view prediction is made we can count the number of pixels in the virtual

image that observe a portion of the model. When this threshold falls below a user-

set threshold, a new keyframe can be added and we can progress as per the manual

interactive mode. One problem with this method is that fast exploration can lead

to depth maps of deteriorating quality.

The final keyframe policy that we have looked at is to switch the keyframe that

is considered as active and will receive comparison images for refinement. All cost

volumes are kept until we are sure that their depth maps are stable and they have

received enough data. We select which keyframe is active by finding the keyframe

whose average scene point is closest to the forward ray of the camera. If this

keyframes cost volume is not in graphics memory, it is switched in from main mem-

ory; space is made by swapping out the cost volume currently on the GPU seen least

recently.

The current nature of our system is that the pose of each keyframe remains fixed

after it has been added. Although this representation is rather inflexible since struc-

tural adjustments cannot be made when closing large loops for example, in practice,

it works very well in the small desktop scenarios for which it is designed. With dense

structure estimated so accurately, and tracking occurring against the entire visible

model, drift is very low. Extending DTAM to scale beyond the desktop remains

future work.

6.4 Evaluation and Results

We have evaluated DTAM in the same desktop setting where PTAM has been suc-

cessful. In all experiments, we have used a Point Grey Flea2 camera, operating at

30Hz with 640×480 resolution and 24bit RGB colour. The camera has pre-calibrated

intrinsics. We run on a commodity system consisting of an NVIDIA GTX 480 GPU

hosted by an i7 quad-core CPU. We present a qualitative comparison of the live run-

ning system including extensive tracking comparisons with PTAM and augmented

172

6.4. Evaluation and Results

reality demonstrations in an accompanying video (see Appendix B).

6.4.1 Tracking Robustness

We have evaluated the tracking performance of our system against the openly avail-

able PTAM system, which includes many state of the art point feature tracking

methods (Figure 6.10). Our results highlight both DTAM’s local accuracy and ex-

treme resilience to degraded images and rapid motion.

Figure 6.10: Linear velocities for DTAM (blue) and PTAM (red) over a challenging
high acceleration back-and-forth trajectory close to a cup. Areas where PTAM lost
tracking and resorted to relocalisation are shown in green. In comparison, DTAM’s
relocaliser was disabled. Notice that DTAM’s linear velocity plot reflects smoother
motion estimation.

Figure 6.11: DTAM tracking stably throughout camera defocus.

173

6. DTAM: Dense Tracking and Mapping in Real-Time

6.4.2 Augmented Reality

In augmented reality (AR), we are interested in seeing virtual entities interacting

live with real ones. Real-time localisation systems based on fiducial markers and

real-time SLAM systems that operate in unconstrained environments have enabled

virtual coordinate frames to be aligned to fixed real frames of reference. These can

allow virtual objects to appear fixed rigidly to the real world by compositing live

and real video.

For true immersion however, establishing a common frame-of-reference is not usu-

ally enough. In order for a virtual character to feel as though they inhabit a space,

they must interact with it — this requires knowledge of the scenes structure. If scene

geometry is known a-priori, model-based tracking methods such as those based on

edges have enabled virtual characters to be appropriately occluded by real-world

surfaces [60].

In the absence of known geometry, previous systems have shown that extracting

even simple structure in constrained environments can offer interesting AR. For

sparse feature-based methods, dominant planes can be extracted by best fit, enabling

virtual objects to walk along flat surfaces [62]. Coarse multi-planar fits to sparse

data have also seen Ninjas jump between simple planar objects [17]. In contrast with

sparse feature-based SLAM systems, DTAM’s dense model additionally enables high

quality occlusion and occupancy reasoning for truly interactive AR.

Figure 6.12: The dense surface model can be used for augmented reality, offering
a depth map for the live camera view and a rigid mesh with which physical models
can interact.

174

6.4. Evaluation and Results

With very accurate and smooth tracking, DTAM offers greater immersion for

augmented reality applications, where it becomes easier to believe that virtual char-

acters truly exist in the same coordinate system as the real world, and are not just

mimicking it. Accurate occlusion geometry and free-space reasoning come for free

from the map representation, enabling interactive physical characters, such as the

toy car demonstrated in Figure 6.12. Making the most of the available pixels for

both tracking and mapping enable high quality maps to be reconstructed, which

allow for wide-baseline view prediction and stable tracking through varied motion

and close to far camera pose (Figure 6.13).

Figure 6.13: The dense model enables view predictions to be made over extreme
viewpoint changes, allowing tracking to remain accurate even over obscure angles.

6.4.3 Failure Modes and Possible Solutions

There are several limitations within the current system leading to many ways in

which it can fail. These issues can be broadly classified into map corruption, limited

rate of exploration and limited illumination robustness. These are not inherent

shortcomings of a dense approach, but rather outstanding areas for research and

engineering.

Starting on the subject of map corruption, it is worth emphasising that keyframes

within our model are not adjusted in pose with respect to one another, in spite of the

potentially large overlap between keyframes. This means that DTAM cannot make

corrections after having explored a large loop for instance. Since DTAM tracks from

the complete collection of all keyframes simultaneously, using all pixels, drift from

175

6. DTAM: Dense Tracking and Mapping in Real-Time

composing keyframes is low. Nevertheless, DTAM is unable to correct drift within

its model when closing a loop around a room for instance.

DTAM’s lack of global adjustment also means that poor quality keyframes can

have a lasting negative effect on the map. Work within Chapter 5 is relevant here,

where a pose graph structure is employed to achieve global consistency. Whereas in

previous chapters we have looked at planar alignment, for DTAM a 6 DOF coloured

depth-map alignment would form edges within the graph. For this, the photometric

alignment already described is valid but does not make use of all the data — it

ignores the fact that both keyframes have associated depth maps. Instead, a cost

metric based on both forward and backward warping might be appropriate, or per-

haps integration of a structure alignment metric, such as iterative closest point in

addition to colour.

The uncertainty that arises from overlapping keyframes having slightly differing

surfaces is not rigorously handled within tracking either. For efficiency, we use

the surface that is closest (which occludes other surfaces) and make no effort to

fuse the alternate hypotheses or weight their contribution. This can lead to poor

model quality in regions of low texture and in turn compounding drift. One of the

surprising features of DTAM is just how well individual depth maps line up without

explicit fusion, and this helps to illustrate the accuracy of the dense approach.

Merrell et al. detail a method for fusing depth images by reasoning about vis-

ibility and occlusion, presenting results for building reconstructions from ground

vehicles [86]. A different route forward is to take the approach of Newcombe et al.’s

KinectFusion system, where depth maps are fused into a volumetric signed distance

function which can adequately represent surface uncertainty [94]. This would en-

able the model to improve over time — the result becoming better than any of the

individual depth maps. The difficulty here would be in allowing such a volumetric

method to scale.

The second broad class of failure is in the limited rate of exploration supported by

the system. This is due in part to the mechanisms by which we handle keyframes,

usually choosing to finish a depth map before moving on to another. Since we

do not adjust keyframes, moving on too quickly can lead to depth maps of poor

quality. Although DTAM is competitive with other systems in terms of supported

motions and explorations, it performs best when the user is in the loop and performs

176

6.4. Evaluation and Results

motions that maximise information gain. The so called ‘SLAM wiggle’ is visible in

our supporting video. Once an area has been mapped however, tracking is incredibly

robust, so the user can then proceed within this space without too much care.

The third broad cause of failure for DTAM is in one of our primary assumptions:

brightness constancy. We assume brightness constancy in all stages of reconstruction

and tracking. Changing camera parameters can easily be handled by considering

the camera-response function as a function of these parameters. In this way, pixel

values can be normalised with respect to changing exposure. Although Section 6.3.3

describes how we can handle local illumination changes whilst tracking, we are not

robust to real-world global illumination changes that can occur.

Irani and Anandan [52] showed how a normalised cross correlation measure can

be integrated into the objective function for more robustness to local and global

lighting changes. Instead of treating reflective changes in illumination as outliers, in

future work, we are interested in joint modelling of the dense lighting and reflectance

properties of the scene to enable more accurate photometric cost functions to be

used. We see this as a route forward in attempting to recover a more complete

physically predictive description of a scene.

177

6. DTAM: Dense Tracking and Mapping in Real-Time

178

Chapter 7

Conclusions

7.1 Contributions

We have presented a number of novel contributions to the problem of monocular

SLAM centred around the belief that a dense, every-pixel approach at all stages has

advantages over sparse feature-based methods both in the final quality of the map

or model generated, and in actually improving the quality of SLAM operation itself,

via for instance more accurate or more robust tracking.

The preliminary work in Chapter 3 showed a tetrahedralisation and visibility rea-

soning method for dense surface reconstruction from a feature-based map, but this

path was quickly abandoned for the use of parametric direct image alignment meth-

ods. In Chapter 4 we showed that with modern adaptations and parallel GPGPU

implementation we could use variants of the Lucas-Kanade method to create a high

performance visual gyroscope. In addition, we demonstrated accurate on-board vi-

sual odometry for a normal road-going vehicle travelling at standard city speeds

using a camera only observing road texture. This signal is suitable for real-time

fusion with consumer GPS for practical low-cost motion estimation.

Chapter 5 presented full SLAM methods building on this alignment approach

able to build consistent scene maps in real-time for either purely rotating cameras or

those moving generally in 3D above a plane — both cases with practical applications.

We also looked in depth at real-time visualisation of the reconstructions achieved.

179

7. Conclusions

Our systems included interleaved optimisation components to ensure global map

consistency during live operation, and in the case of pure rotation we were also

able to estimate camera intrinsic parameters during SLAM. The planar mapping

was demonstrated both indoors and outdoors, and also in a document scanning

application able to produce distortion free, super-resolved reconstructions live.

Chapter 6 presented the last main contribution, the DTAM system capable of fully

dense real-time monocular SLAM from a hand-held single camera and a potential

fully dense replacement for PTAM [62]. Our methods for alignment-based tracking

are used here for live camera tracking by 6DOF model alignment against the dense

3D model. This approach improves significantly on point feature tracking due to

factors such as true occlusion handling. Our tracking framework has robustness to

extreme image blur and can handle rapid motion or even camera defocus.

7.2 Discussion and Future Research

The work presented within this thesis has built on literature from several domains,

including SLAM, structure from motion, image registration and multiple view stereo.

We have benefited from the massive increase in computational resources made avail-

able in commodity programmable graphics hardware to sit at the intersection of

these research fields by considering parallelisable algorithms. More work is still re-

quired before we can state that we have solved any of the application areas listed in

Section 1.2, but the research community as a whole has made significant progress

over the past few years.

One of the clearest and most important areas for future work is in enabling a

dense surface representation that can support uncertainty in order to improve the

map as it is reobserved. We discussed this briefly in the previous chapter and pointed

toward work such as that of Newcombe et al. who fuse depth map measurements

from a Kinect sensor into a volumetric signed distance function [94].

With the right representation we might ask, can we make an even better model?

The likely answer to this question is yes — photometric stereo is a field unto itself

which has demonstrated that controlled light can allow us to reconstruct fine surface

details by directly calculating surface normals. By forming an approximate dense

model, we can start to look at how the appearance of the surface changes with

180

7.2. Discussion and Future Research

viewpoint. From here, we are in a good position to reason about environment

lighting and perhaps other objects that have not been directly observed. With

approximately known lighting, the photometric stereo literature becomes accessible

and we might imagine putting this in the loop to really extract the most from the

video images, helping to improve tracking quality further through more accurate

view prediction.

Another important area for future work is to explore how we can make dense

approaches scale to larger areas. Although storing dense models of the world sounds

significantly more memory hungry than a sparse point-based map of the world, there

is only a factor between them — both representations are sampling from the two-

dimensional world surface. The current state of the art in scalable constant-time

visual SLAM is well represented by the work of Strasdat et al. where the map is

only locally metric and overall topological, following a recent trend of relative bundle

adjustment approaches [119]. It is easy to imagine how dense systems like DTAM

might be extended to make use of these approaches to scalable SLAM, relating local

metric areas to one another via a 6 or 7 DOF transform.

Throughout this thesis, we have considered only rigid, immovable worlds. As a

small concession to reality, we have attempted to develop robust systems that will

continue to function when our core premise of rigidity is partly broken. To really find

exciting and general use in robotics and augmented reality, visual SLAM systems

must overcome this limitation. The first step might be simply to realise when the

world has changed — from one static world to another, without worrying so much

about the thing that moved. Forming these life-long maps are important for systems

that will operate in uncontrolled spaces, such as road networks, over long periods.

A simple progression from the rigid world might be a world formed from multiple

rigid bodies. In the tracking approaches presented in previous chapters, we use

robust estimation to eliminate contributions from outlying pixels when determining

camera pose. These outlying pixels can be segmented, and it might be interesting

to recursively initialise a new tracker limited to this region in order to estimate an

independent rigid body transform for each successive clutter of rejected pixels.

Humans of course are capable of perceiving and reasoning not only about rigid

bodies, but deformable soft bodies, liquids, vapours, transparency and more. With

future work in visual SLAM, perhaps one day, robots will too.

181

7. Conclusions

182

Appendix A

Lie Group Generators

Special Euclidean, SE(2)

gen0
SE(2)

=

0 0 1

0 0 0

0 0 0

 , gen1
SE(2)

=

0 0 0

0 0 1

0 0 0

 , gen2
SE(2)

=

0 −1 0

1 0 0

0 0 0

 .

Special Linear, SL(3)

gen0
SL(3)

=

0 0 1

0 0 0

0 0 0

 , gen1
SL(3)

=

0 0 0

0 0 1

0 0 0

 , gen2
SL(3)

=

0 1 0

0 0 0

0 0 0

 ,

gen3
SL(3)

=

0 0 0

1 0 0

0 0 0

 , gen4
SL(3)

=

1 0 0

0 −1 0

0 0 0

 , gen5
SL(3)

=

0 0 0

0 −1 0

0 0 1

 ,

gen6
SL(3)

=

0 0 0

0 0 0

1 0 0

 , gen7
SL(3)

=

0 0 0

0 0 0

0 1 0

 .

183

A. Lie Group Generators

Special Orthogonal, SO(3)

gen0
SO(3)

=

0 0 0

0 0 1

0 −1 0

 , gen1
SO(3)

=

0 0 −1

0 0 0

1 0 0

 , gen2
SO(3)

=

0 1 0

−1 0 0

0 0 0

 .

Special Euclidean, SE(3)

gen0
SE(3)

=

0 0 0 1

0 0 0 0

0 0 0 0

0 0 0 0

 , gen1
SE(3)

=

0 0 0 0

0 0 0 1

0 0 0 0

0 0 0 0

 , gen2
SE(3)

=

0 0 0 0

0 0 0 0

0 0 0 1

0 0 0 0

 ,

gen3
SE(3)

=

0 0 0 0

0 0 1 0

0 −1 0 0

0 0 0 0

 , gen4
SE(3)

=

0 0 −1 0

0 0 0 0

1 0 0 0

0 0 0 0

 , gen5
SE(3)

=

0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 .

184

Appendix B

Video Material

DTAM: Dense Tracking and Mapping

in Real-time, ICCV 2011

R. A. Newcombe, S. J. Lovegrove and

A. J. Davison.

http://youtu.be/Df9WhgibCQA

Real-time 6 DOF Planar Mosaicing

http://youtu.be/J-MCURRdJEs

185

http://youtu.be/Df9WhgibCQA
http://youtu.be/J-MCURRdJEs

B. Video Material

Accurate Visual Odometry from a

Rear Parking Camera, IV 2011

S. J. Lovegrove, A. J. Davison and J.

Ibanez-Guzmán

http://youtu.be/l4P61eD0Fsc

Real-time Spherical Mosaicing using

Whole Image Alignment, ECCV 2010

S. J. Lovegrove and A. J. Davison

http://youtu.be/9cY7ahgtZdI

Real-time Modelling from Sparse

Point Features

http://youtu.be/olyHVM9zvjM

186

http://youtu.be/l4P61eD0Fsc
http://youtu.be/9cY7ahgtZdI
http://youtu.be/olyHVM9zvjM

List of Figures

List of Figures

2.1 Camera Coordinate Convention. 24

2.2 Pinhole Camera Projection . 26

2.3 Lens Distortion for Checkerboard Pattern 26

2.4 Lens Distortion for Synthetic Scene . 27

2.5 Illustrating the Lie Algebra Tangent Space 36

2.6 OpenGL’s Vertex Pipeline . 39

2.7 Projective Texturing . 42

2.8 Vertex Buffer Objects . 45

3.1 Minimum Energy Boundary . 55

3.2 Using Context to Infer Correct Surface Topology 56

3.3 Using Context to Explore Complex Geometry 56

3.4 Visibility Constraints . 58

3.5 Volumes from Visibility Constraints . 59

3.6 Visibility Constraints in 3D . 59

3.7 Occupancy Cost . 60

3.8 Incremental Reconstruction Using Visibility Volumes 64

4.1 Parametric Image Warp . 70

4.2 Sample Cost-Space Plots for Motion Over a Plane 73

4.3 Cost Landscape . 75

4.4 Gaussian Power of Two Image Pyramid 82

4.5 Iterative Rotation Estimation. 87

4.6 Comparison of Visual Angular Velocity Against Gyroscope 89

4.7 Rear Parking Camera Field of View . 90

4.8 Sample Parking Camera Frames . 91

4.9 Car and Camera Centric Frames of Reference 94

4.10 Plane-Induced Homography Formed From Vehicle Motion 95

4.11 Velocity of Visual Odometry Compared with Ground Truth 98

4.12 Integrated Vehicle Visual Odometry - Minute Long 99

4.13 Integrated Vehicle Visual Odometry - 10 Second long 100

4.14 Pose Graph from Visual Odometry and GPS 100

4.15 Fused Visual Odometry and GPS . 101

4.16 Visual Odometry Failure Modes . 102

187

List of Figures

5.1 Parallel Tracking and Mosaic Optimisation 110

5.2 Full Hemisphere Mosaic . 111

5.3 Tracking from the Keyframe Map . 112

5.4 Incremental Mosaic Construction . 113

5.5 Jacobian Structure for Spherical Global Joint Optimisation 115

5.6 Small Images for Relocalisation . 117

5.7 Cylindrical Mosaic . 120

5.8 Spherical Mosaic . 120

5.9 Polar Mosaic . 123

5.10 Environment Mapped Teapot . 124

5.11 Outdoor Spherical Mosaics . 125

5.12 360◦ Spherically-Projected Panoramas 126

5.13 Improvements When Including Intrinsics in Optimisation 127

5.14 Mosaicing With and Without Live Intrinsic Refinement 128

5.15 360◦ Queens Lawn Panorama . 129

5.16 360◦ Panorama Before and After Loop Closure 130

5.17 Homographic Transfer Error . 138

5.18 Building a Planar Keyframe Map . 141

5.19 Office Ceiling Orthographic Planar Mosaic 143

5.20 Office Ceiling Mosaic Enlargement . 144

5.21 Planar Mosaicing Robustness . 144

5.22 Planar Mosaicing With and Without Robust Estimation 146

5.23 Document Scanning Keyframe Graph 147

5.24 Document Scanning Orthographic Projection 148

5.25 Noise Reduction by Averaging Registered Images 149

5.26 Super Resolved Mosaicing . 151

6.1 Depth Maps . 156

6.2 Depth Map Patchwork Surface . 159

6.3 Projective Cost Volume . 161

6.4 Per-Pixel Photometric Cost . 162

6.5 Integration of Comparison Frames into Cost Volume 164

6.6 Dense Model Compared to Sparse Feature Map 164

6.7 Pose Refinement Over Different Pyramid Levels 166

6.8 View Prediction . 167

6.9 DTAM Robust Tracking . 169

188

List of Figures

6.10 Comparing PTAM and DTAM Velocities 173

6.11 DTAM Tracking through Camera Defocus 173

6.12 Dense Model for Augmented Reality . 174

6.13 Extreme Viewpoint for Augmented Reality 175

189

List of Figures

190

Bibliography

Bibliography

[1] L. Agapito, E. Hayman, and I. Reid. Self-calibration of rotating and zooming

cameras. International Journal of Computer Vision (IJCV), 45(2):107–127,

2001. 108

[2] A. Agarwala, M. Dontcheva, M. Agrawala, S. Drucker, A. Colburn, B. Cur-

less, D. Salesin, and M. Cohen. Interactive digital photomontage. In ACM

Transactions on Graphics (SIGGRAPH), 2004. 145

[3] S. H. Ahn. Song Ho Ahn’s information and tutorials on OpenGL. URL

http://www.songho.ca/opengl. 40, 45

[4] A. Angeli, D. Filliat, S. Doncieux, and J.-A. Meyer. Fast and incremental

method for loop-closure detection using bags of visual words. IEEE Transac-

tions on Robotics (T-RO), 24(5):1027–1037, 2008. 117

[5] T. Azuma, S. Sugimoto, and M. Okutomi. Egomotion estimation using planar

and non-planar constraints. In Proceedings of the IEEE Intelligent Vehicles

Symposium (IV), 2010. 92

[6] A. Bak, S. Bouchafa, and D. Aubert. Detection of independently moving

objects through stereo vision and ego-motion estimation. In Proceedings of

the IEEE Intelligent Vehicles Symposium (IV), 2010. 91

[7] S. Baker and I. Matthews. Lucas-Kanade 20 years on: A unifying framework:

Part 1. International Journal of Computer Vision (IJCV), 56(3):221–255,

2004. 11, 68, 76

[8] S. Baker, R. Patil, K. M. Cheung, and I. Matthews. Lucas-Kanade 20 years

on: Part 5. Technical report, Robotics Institute, Carnegie Mellon University,

2004. Technical Report CMU-RI-TR-04-64. 168

[9] P.A. Beardsley, A. Zisserman, and D.W. Murray. Sequential updating of pro-

jective and affine structure from motion. International Journal of Computer

Vision (IJCV), 23(3):235–259, 1997. 53

[10] S. Benhimane and E. Malis. Integration of euclidean constraints in template

based visual tracking of piecewise-planar scenes. Proceedings of the IEEE/RSJ

Conference on Intelligent Robots and Systems (IROS). 133

191

Bibliography

[11] S. Benhimane and E. Malis. Real-time image-based tracking of planes using

efficient second-order minimization. In Proceedings of the IEEE/RSJ Confer-

ence on Intelligent Robots and Systems (IROS), 2004. 69, 86, 107

[12] J. R. Bergen, P. Anandan, K. J. Hanna, and R. Hingorani. Hierarchical model-

based motion estimation. In Proceedings of the European Conference on Com-

puter Vision (ECCV), 1992. 81

[13] M. Bosse, P. Newman, J. J. Leonard, M. Soika, W. Feiten, and S. Teller. An at-

las framework for scalable mapping. In Proceedings of the IEEE International

Conference on Robotics and Automation (ICRA), 2003. 17

[14] R. A. Brooks and T. Arbel. Generalizing inverse compositional and esm image

alignment. International Journal of Computer Vision (IJCV), 87(3):191–212,

2010. 79

[15] M. Brown and D. G. Lowe. Automatic panoramic image stitching using in-

variant features. International Journal of Computer Vision (IJCV), 74:59–73,

2007. 108

[16] J. A. Castellanos. Mobile Robot Localization and Map Building: A Multisensor

Fusion Approach. PhD thesis, Universidad de Zaragoza, Spain, 1998. 16

[17] D. Chekhlov, A.P. Gee, A. Calway, and W. Mayol-Cuevas. Ninja on a plane:

Automatic discovery of physical planes for augmented reality using visual

SLAM. In Proceedings of the International Symposium on Mixed and Aug-

mented Reality (ISMAR), 2007. 174

[18] A. Chiuso, P. Favaro, H. Jin, and S. Soatto. Structure from motion causally

integrated over time. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 24(4):523–535, 2002. 16

[19] J. Civera, D. R. Bueno, A. J. Davison, and J. M. M. Montiel. Camera self-

calibration for sequential bayesian structure from motion. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA), 2009.

108

[20] J. Civera, A. J. Davison, J. A. Magallón, and J. M. M. Montiel. Drift-free real-

time sequential mosaicing. International Journal of Computer Vision (IJCV),

81(2):128–137, 2009. 86, 109

192

Bibliography

[21] L. A. Clemente, A. J. Davison, I. Reid, J. Neira, and J. D. Tardós. Mapping

large loops with a single hand-held camera. In Proceedings of Robotics: Science

and Systems (RSS), 2007. 17

[22] A. I. Comport, E. Malis, and P. Rives. Accurate quadri-focal tracking for ro-

bust 3D visual odometry. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA), 2007. 69, 92, 157

[23] M. Cummins and P. Newman. FAB-MAP: Probabilistic localization and map-

ping in the space of appearance. International Journal of Robotics Research

(IJRR), 27(6):647–665, 2008. 117

[24] J. Davis. Mosaics of scenes with moving objects. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), 1998. 145

[25] A. J. Davison. Mobile Robot Navigation Using Active Vision. PhD thesis,

University of Oxford, 1998. 16

[26] A. J. Davison. Real-time simultaneous localisation and mapping with a single

camera. In Proceedings of the International Conference on Computer Vision

(ICCV), 2003. 16, 52, 68

[27] A. J. Davison, N. D. Molton, I. Reid, and O. Stasse. MonoSLAM: Real-time

single camera SLAM. IEEE Transactions on Pattern Analysis and Machine

Intelligence (PAMI), 29(6):1052–1067, 2007. 11, 63

[28] F. Dellaert and M. Kaess. Square root SAM: Simultaneous localization and

mapping via square root information smoothing. International Journal of

Robotics Research (IJRR), 25:1181–1203, 2006. 18

[29] F. Devernay and O. Faugeras. Straight lines have to be straight. Machine

Vision and Applications, 13:14–24, 2001. 29, 30

[30] U.R. Dhond and J.K Aggarwal. Structure from stereo - a review. Proceedings

of the International Conference on Systems, Man and Cybernetics, (SMC),

19(6):1489 –1510, 1989. 155

[31] T. Drummond and R. Cipolla. Visual tracking and control using Lie alge-

bras. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 1999. 35, 75

193

Bibliography

[32] D.-Z. Du and F. Hwang. Computing in Euclidean geometry. World Scientific

Publishing Co., Inc., 1992. 62

[33] E. Eade and T. Drummond. Edge landmarks in monocular SLAM. In Pro-

ceedings of the British Machine Vision Conference (BMVC), 2006. 19

[34] E. Eade and T. Drummond. Scalable monocular SLAM. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2006. 18, 68

[35] E. Eade and T. Drummond. Monocular SLAM as a graph of coalesced obser-

vations. In Proceedings of the International Conference on Computer Vision

(ICCV), 2007. 18

[36] C. Everitt. Projective texture mapping. Technical report, NVIDIA, 2001.

White Paper. 43

[37] O. Faugeras, QT Luong, and S. Maybank. Camera self-calibration: Theory

and experiments. In Proceedings of the European Conference on Computer

Vision (ECCV), 1992. 108

[38] O. D. Faugeras and F. Lustman. Motion and structure from motion in a

piecewise planar environment. International Journal of Pattern Recognition

in Artificial Intelligence, 2(3):485–508, 1988. 134

[39] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for

model fitting with applications to image analysis and automated cartography.

Communications of the ACM, 24(6):381–395, 1981. 108

[40] A. W. Fitzgibbon and A. Zisserman. Automatic camera recovery for closed or

open image sequences. In Proceedings of the European Conference on Com-

puter Vision (ECCV), pages 311–326. Springer-Verlag, June 1998. 16

[41] Y. Furukawa and J. Ponce. Accurate, dense, and robust multi-view stereop-

sis. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 2007. 11, 52, 154

[42] David Gallup, Marc Pollefeys, and J. M. Frahm. 3D reconstruction using

an n-layer heightmap. In Proceedings of the DAGM Symposium on Pattern

Recognition, 2010. 157

194

Bibliography

[43] G. Grisetti, C. Stachniss, S. Grzonka, and W. Burgard. A tree parameteri-

zation for efficiently computing maximum likelihood maps using gradient de-

scent. In Proceedings of Robotics: Science and Systems (RSS), 2007. 18

[44] J.-S. Gutmann and K. Konolige. Incremental mapping of large cyclic environ-

ments. In International Symposium on Computational Intelligence in Robotics

and Automation (CIRA), 1999. 17

[45] M. Habbecke and L. Kobbelt. Iterative multi-view plane fitting. In Proceedings

of the International Workshop on Vision, Modelling and Visualization (VMV),

pages 73–80, 2006. 134, 154

[46] M. Habbecke and L. Kobbelt. A surface-growing approach to multi-view stereo

reconstruction. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2007. 11, 134, 154

[47] C. G. Harris and J. M. Pike. 3D positional integration from image sequences.

In Proceedings of the Alvey Vision Conference, pages 233–236, 1987. 16

[48] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision.

Cambridge University Press, second edition, 2004. 83, 155, 170

[49] B. Horn and B. Schunck. Determining optical flow. Artificial Intelligence,

17:185–203, 1981. 67

[50] P. J. Huber. Robust estimation of a location parameter. The Annals of

Mathematical Statistics, 35(1):pp. 73–101, 1964. 85

[51] A. Iketani, T. Sato, S. Ikeda, M. Kanbara, N. Nakajima, and N. Yokoya.

Video mosaicing based on structure from motion for distortion-free document

digitization. In Proceedings of the Asian Conference on Computer Vision

(ACCV), 2007. 145

[52] M. Irani and P. Anandan. Robust multi-sensor image alignment. In Proceed-

ings of the International Conference on Computer Vision (ICCV), 1998. 68,

177

[53] M. Irani and P. Anandan. All about direct methods. In Proceedings of the In-

ternational Workshop on Vision Algorithms, in association with ICCV, 1999.

68

195

Bibliography

[54] M. Irani, P. Anandan, J. Bergen, R. Kumar, and S. Hsu. Efficient represen-

tations of video sequences and their applications. In Proceedings of Signal

Processing: Image Communication (SPIC), pages 327–351, 1996. 68, 85, 107,

131

[55] M. Irani, P. Anandan, and M. Cohen. Direct recovery of planar-parallax

from multiple frames. In Proceedings of the International Workshop on Vision

Algorithms, in association with ICCV, pages 1528–1534, 1999. 68

[56] IXSEA, Landins: Georeferencing and positioning system. URL

http://www.ixsea.com/en/products/10/landins.html, 2010. 97

[57] I.K. Jung and S. Lacroix. High resolution terrain mapping using low alti-

tude aerial stereo imagery. In Proceedings of the International Conference on

Computer Vision (ICCV), 2003. 53

[58] M. Kazhdan, M. Bolitho, and H. Hoppe. Poisson surface reconstruction. In

Proceedings of the Eurographics Symposium on Geometry Processing, 2006. 53

[59] B. Kitt, A. Geiger, and H. Lategahn. Visual odometry based on stereo image

sequences with RANSAC-based outlier rejection scheme. In Proceedings of the

IEEE Intelligent Vehicles Symposium (IV), 2010. 91

[60] G. Klein. Visual Tracking for Augmented Reality. PhD thesis, University of

Cambridge, 2006. 96, 174

[61] G. Klein and T. Drummond. A single-frame visual gyroscope. In Proceedings

of the British Machine Vision Conference (BMVC), 2005. 86

[62] G. Klein and D. W. Murray. Parallel tracking and mapping for small AR

workspaces. In Proceedings of the International Symposium on Mixed and

Augmented Reality (ISMAR), 2007. 11, 18, 49, 109, 110, 117, 158, 174, 180

[63] G. Klein and D. W. Murray. Improving the agility of keyframe-based SLAM. In

Proceedings of the European Conference on Computer Vision (ECCV), 2008.

19, 166

[64] G. Klein and D. W. Murray. Parallel tracking and mapping on a camera phone.

In Proceedings of the International Symposium on Mixed and Augmented Re-

ality (ISMAR), 2009. 68, 86

196

Bibliography

[65] K. Konolige. Sparse sparse bundle adjustment. In Proceedings of the British

Machine Vision Conference (BMVC), 2010. 106

[66] K. Konolige, M. Agrawal, and J. Solà. Large-scale visual odometry for rough

terrain. In Robotics Research, volume 66 of Springer Tracts in Advanced

Robotics, pages 201–212. Springer Berlin / Heidelberg, 2011. 69

[67] R. Kummerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard. g2o:

A general framework for graph optimization. In Proceedings of the IEEE

International Conference on Robotics and Automation (ICRA), 2011. 18, 99

[68] V. Lepetit and P. Fua. Keypoint recognition using randomized trees. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 28:1465—-1479,

2006. 116

[69] S. Lieberknecht, S. Benhimane, P. Meier, and N. Navab. A dataset and eval-

uation methodology for template-based tracking algorithms. In Proceedings

of the International Symposium on Mixed and Augmented Reality (ISMAR),

2009. 69

[70] W. E. Lorensen and H. E. Cline. Marching cubes: A high resolution 3D surface

construction algorithm. In ACM Transactions on Graphics (SIGGRAPH),

1987. 157

[71] M.I.A. Lourakis and A.A. Argyros. The design and implementation of a generic

sparse bundle adjustment software package based on the levenberg-marquardt

algorithm. Technical report, Institute of Computer Science (ICS), Foundation

for Research and Technology — Hellas (FORTH), 2004. 106

[72] S. J. Lovegrove and A. J. Davison. Real-time spherical mosaicing using whole

image alignment. In Proceedings of the European Conference on Computer

Vision (ECCV), 2010. 21

[73] S. J. Lovegrove, A. J. Davison, and J. Ibanez-Guzmán. Accurate visual odome-

try from a rear parking camera. In Proceedings of the IEEE Intelligent Vehicles

Symposium (IV), 2011. 21, 90

[74] D. G. Lowe. Object recognition from local scale-invariant features. In Pro-

ceedings of the International Conference on Computer Vision (ICCV), 1999.

108

197

Bibliography

[75] F. Lu and E. Milios. Globally consistent range scan alignment for environment

mapping. Autonomous Robots, 4(4):333–349, 1997. 17, 131

[76] B. D. Lucas. Generalized Image Matching by the Method of Differences. PhD

thesis, Robotics Institute, Carnegie Mellon University, 1984. 67

[77] B. D. Lucas and T. Kanade. An iterative image registration technique with

an application to stereo vision. In Proceedings of the International Joint Con-

ference on Artificial Intelligence (IJCAI), 1981. 11, 20, 67, 156

[78] E. Malis. Improving vision-based control using efficient second-order mini-

mization techniques. In Proceedings of the IEEE International Conference on

Robotics and Automation (ICRA), 2004. 11, 20, 69, 75, 81

[79] E. Malis and M. Vargas. Deeper understanding of the homography decom-

position for vision-based control. Research Report RR-6303, INRIA, 2007.

134

[80] C. Martin and Hans Moravec. Robot evidence grids. Technical Report CMU-

RI-TR-96-06, Robotics Institute, Pittsburgh, PA, March 1996. 57

[81] P. F. McLauchlan and A. Jaenicke. Image mosaicing using sequential bundle

adjustment. Image and Vision Computing (IVC), 20(9–10):751–759, 2002. 108

[82] C. Mei, S. Benhimane, E. Malis, and P. Rives. Efficient homography-based

tracking and 3-D reconstruction for single-viewpoint sensors. IEEE Transac-

tions on Robotics (T-RO), 24(6):1352–1364, 2008. 75

[83] C. Mei and I. Reid. Modeling and generating complex motion blur for real-

time tracking. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2008. 166

[84] C. Mei, G. Sibley, M. Cummins, P. Newman, and I. Reid. A constant time

efficient stereo SLAM system. In Proceedings of the British Machine Vision

Conference (BMVC), 2009. 92

[85] M. Meilland, A. I. Comport, and P. Rives. Dense visual mapping of large

scale environments for real-time localisation. In Proceedings of the IEEE/RSJ

Conference on Intelligent Robots and Systems (IROS), 2011. 158

198

Bibliography

[86] P. Merrell, A. Akbarzadeh, L. Wang, P. Mordohai, J.-M. Frahm, R. Yang,

D. Nistér, and M. Pollefeys. Real-time visibility-based fusion of depth maps.

In Proceedings of the International Conference on Computer Vision (ICCV),

2007. 176

[87] M. Miksch, B. Yang, and K. Zimmerman. Automatic extrinsic camera self-

calibration based on homography and epipolar geometry. In Proceedings of

the IEEE Intelligent Vehicles Symposium (IV), 2010. 97

[88] N. D. Molton, A. J. Davison, and I. Reid. Locally planar patch features for

real-time structure from motion. In Proceedings of the British Machine Vision

Conference (BMVC), 2004. 19

[89] M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored

solution to the simultaneous localization and mapping problem. In Proceedings

of the AAAI National Conference on Artificial Intelligence, 2002. 17

[90] C. Morimoto and R. Chellappa. Fast 3D stabilization and mosaic construc-

tion. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), 1997. 107

[91] P. Moutarlier and R. Chatila. Stochastic multisensory data fusion for mobile

robot location and environement modelling. In Proceedings of the International

Symposium on Robotics Research (ISRR), 1989. 16

[92] A. Napier, G. Sibley, and P. Newman. Real-time bounded-error pose estima-

tion for road vehicles using vision. In Proceedings of the International IEEE

Conference on Intelligent Transportation Systems (ITSC), 2010. 92

[93] R. A. Newcombe and A. J. Davison. Live dense reconstruction with a single

moving camera. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2010. 11, 157, 158

[94] R. A. Newcombe, S. Izadi, O. Hilliges, D. Molyneaux, D. Kim, A. J. Davison,

P. Kohli, J. Shotton, S. Hodges, and A. Fitzgibbon. KinectFusion: Real-

time dense surface mapping and tracking. In Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR), 2011. 176, 180

[95] R. A. Newcombe, S. Lovegrove, and A. J. Davison. DTAM: Dense tracking

and mapping in real-time. In Proceedings of the International Conference on

Computer Vision (ICCV), 2011. 21, 153, 163

199

Bibliography

[96] P. Newman. On the Structure and Solution of the Simultaneous Localization

and Map Building Problem. PhD thesis, University of Sydney, 1999. 16

[97] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

2004. 11, 91

[98] D. Nistér, O. Naroditsky, and J. Bergen. Visual odometry for ground vehicle

applications. Journal of Field Robotics, 23(1):–, 2006. 69

[99] E. Olson, J. J. Leonard, and S. Teller. Fast iterative alignment of pose graphs

with poor initial estimates. In Proceedings of the IEEE International Confer-

ence on Robotics and Automation (ICRA), 2006. 17

[100] Q. Pan, G. Reitmayr, and T. Drummond. ProFORMA: Probabilistic feature-

based on-line rapid model acquisition. In Proceedings of the British Machine

Vision Conference (BMVC), 2009. 51, 59

[101] Y. Park, V. Lepetit, and W. Woo. ESM-Blur: Handling & rendering blur in

3D tracking and augmentation. In Proceedings of the International Symposium

on Mixed and Augmented Reality (ISMAR), 2009. 90

[102] M. A. Paskin. Thin junction tree filters for simultaneous localization and

mapping. In Proceedings of the International Joint Conference on Artificial

Intelligence (IJCAI), 2003. 18

[103] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis, J. Tops,

and R. Koch. Visual modeling with a hand-held camera. International Journal

of Computer Vision (IJCV), 59:207–232, 2004. 57, 157

[104] M. Pollefeys, R. Koch, and L. Van Gool. Self-calibration and metric recon-

struction in spite of varying and unknown internal camera parameters. In Pro-

ceedings of the International Conference on Computer Vision (ICCV), 1998.

16

[105] M. Pupilli and A. Calway. Real-time visual SLAM with resilience to erratic

motion. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2006. 18

[106] Christoph Rhemann, Asmaa Hosni, Michael Bleyer, Carsten Rother, and

Margrit Gelautz. Fast cost-volume filtering for visual correspondence and

200

Bibliography

beyond. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2011. 160

[107] H. S. Sawhney and S. Ayer. Compact representations of videos through domi-

nant and multiple motion estimation. IEEE Transactions on Pattern Analysis

and Machine Intelligence (PAMI), 18:814–830, 1996. 85, 145

[108] H. S. Sawhney, S. Hsu, and R. Kumar. Robust video mosaicing through topol-

ogy inference and local to global alignment. In Proceedings of the European

Conference on Computer Vision (ECCV), pages 103–119, 1998. 107, 131

[109] H. S. Sawhney and R. Kumar. True multi-image alignment and its application

to mosaicing and lens distortion correction. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 21:235–243, March 1999. 109

[110] D. Scaramuzza, F. Fraundorfer, M. Pollefeys, and R. Siegwart. Absolute scale

in structure from motion from a single vehicle mounted camera by exploiting

nonholonomic constraints. In Proceedings of the International Conference on

Computer Vision (ICCV), 2009. 92

[111] D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame

stereo correspondence algorithms. International Journal of Computer Vision

(IJCV), 47:7–42, 2001. 156

[112] S. M. Seitz, B. Curless, J. Diebel, D. Scharstein, and R. Szeliski. A compari-

son and evaluation of multi-view stereo reconstruction algorithms. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR), 2006. 154

[113] H.-Y. Shum and R. Szeliski. Construction and refinement of panoramic mo-

saics with global and local alignment. In Proceedings of the International

Conference on Computer Vision (ICCV), 1998. 145

[114] G. Silveira and E. Malis. Real-time visual tracking under arbitrary illumina-

tion changes. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), 2007. 11, 68

[115] G. Silveira, E. Malis, and P. Rives. An efficient direct approach to visual

SLAM. IEEE Transactions on Robotics (T-RO), 24(5):969–979, 2008. 19,

132, 134

201

Bibliography

[116] P. Smith, I. Reid, and A. J. Davison. Real-time single-camera SLAM with

straight lines. In Proceedings of the British Machine Vision Conference

(BMVC), 2006. 19

[117] R. Smith, M. Self, and P. Cheeseman. Estimating uncertain spatial relation-

ships in robotics. In Uncertainty in Artificial Intelligence, pages 435–461.

Elsevier, 1988. 16

[118] C. V. Stewart. Robust parameter estimation in computer vision. SIAM Re-

views, 41:513–537, 1999. 84

[119] H. Strasdat, A. J. Davison, J. M. M. Montiel, and K. Konolige. Double

window optimisation for constant time visual SLAM. In Proceedings of the

International Conference on Computer Vision (ICCV), 2011. 19, 181

[120] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Real-time monocular SLAM:

Why filter? In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA), 2010. 19, 68, 109

[121] H. Strasdat, J. M. M. Montiel, and A. J. Davison. Scale drift-aware large scale

monocular SLAM. In Proceedings of Robotics: Science and Systems (RSS),

2010. 92

[122] J. Stuehmer, S. Gumhold, and D. Cremers. Real-time dense geometry from

a handheld camera. In Proceedings of the DAGM Symposium on Pattern

Recognition, 2010. 11, 157, 158

[123] R. Szeliski. Image mosaicing for tele-reality applications. In Proceedings of the

IEEE Workshop on Applications of Computer Vision (WACV), pages 44–53,

1994. 107

[124] R. Szeliski. Image alignment and stitching: A tutorial. Foundations and

Trends in Computer Graphics and Vision, 2(1):1–104, 2006. 85, 107, 152

[125] R. Szeliski and D. Scharstein. Sampling the disparity space image. IEEE

Transactions on Pattern Analysis and Machine Intelligence (PAMI), 26:419–

425, 2004. 160

[126] S. Thrun, D. Koller, Z. Ghahramani, H. Durrant-Whyte, and A. Y. Ng. Simul-

taneous mapping and localization with sparse extended information filters. In

202

Bibliography

Proceedings of the Fifth International Workshop on Algorithmic Foundations

of Robotics, 2002. 18

[127] C. Tomasi and T. Kanade. Detection and tracking of point features. Technical

report, Technical Report CMU-CS-91-132, Carnegie Mellon University, 1991.

67, 108

[128] P. H. S. Torr and A. Zisserman. Feature based methods for structure and

motion estimation. In Proceedings of the International Workshop on Vision

Algorithms, in association with ICCV, 1999. 68

[129] M. Unger, T. Pock, M. Werlberger, and H. Bischof. A convex approach for

variational super-resolution. In Proceedings of the DAGM Symposium on Pat-

tern Recognition, 2010. 150

[130] R. Unnikrishnan. Globally Consistent Mosaicking for Autonomous Visual Nav-

igation. PhD thesis, Carnegie Mellon University, 2002. 131

[131] B. Williams, G. Klein, and I. Reid. Real-time SLAM relocalisation. In Pro-

ceedings of the International Conference on Computer Vision (ICCV), 2007.

116

[132] L. Williams. Pyramidal parametrics. In ACM Transactions on Graphics (SIG-

GRAPH), 1983. 34

[133] K.-J. Yoon and I.S. Kweon. Adaptive support-weight approach for correspon-

dence search. IEEE Transactions on Pattern Analysis and Machine Intelli-

gence (PAMI), 2006. 156

[134] C. Zach. Fast and high quality fusion of depth maps. In Proceedings of the

International Symposium on 3D Data Processing, Visualization and Trans-

mission (3DPVT), 2008. 157

[135] C. Zach, T. Pock, and H. Bischof. A duality based approach for realtime TV-L1

optical flow. In Proceedings of the DAGM Symposium on Pattern Recognition,

2007. 11

[136] Z. Zhang. Parameter estimation techniques: A tutorial with application to

conic fitting. Image and Vision Computing (IVC), 15:59–76, 1997. 83, 84, 85

203

Bibliography

[137] Z. Zhang. A flexible new technique for camera calibration. IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 22:1330–1334, 2000.

29

[138] Z. Zhang and A. R. Hanson. 3D reconstruction based on homography mapping.

In Proceedings of the ARPA Image Understanding Workshop, 1996. 134

204

	Introduction
	Motivating Technologies
	Potential Applications
	A Brief Review of Visual SLAM
	Contributions
	Publications
	Thesis Structure

	Preliminaries
	Frames of Reference
	Projection
	Planes
	Lie Groups and Their Algebra
	OpenGL for Vision
	Software
	Summary

	Augmenting Feature-Based SLAM for Live Modelling
	Introduction
	Background
	Minimum Energy Surfaces
	Visibility
	Using Visibility to Define Volumes
	Results
	Evaluation
	Summary

	Direct Parametric Visual Tracking
	Introduction
	Background
	Methodology
	Coarse-to-Fine Warping
	Iteratively Reweighted Least Squares
	Visual Gyroscope, Rotational Odometry
	Visual Odometry From a Parking Camera
	Localisation From a Parking Camera and GPS
	Summary

	Direct Parametric SLAM
	Introduction
	Real-Time Direct Spherical Mosaicing / SLAM
	Real-time Planar Mosaicing / SLAM
	Summary

	DTAM: Dense Tracking and Mapping in Real-Time
	Introduction
	Background: Towards Dense 3D SLAM
	Method
	Evaluation and Results

	Conclusions
	Contributions
	Discussion and Future Research

	Lie Group Generators
	Video Material
	List of Figures
	Bibliography

