
Imperial College London

Department of Computing

SLAM and Deep Learning for 3D

Indoor Scene Understanding

John B. McCormac

December 2018

Supervised by Professor Andrew Davison

Co-supervised by Dr Stefan Leutenegger

Submitted in part fulfilment of the requirements for the degree of PhD in

Computing and the Diploma of Imperial College London. This thesis is entirely

my own work, and, except where otherwise indicated, describes my own research.

Copyright Declaration

The copyright of this thesis rests with the author and is made available un-

der a Creative Commons Attribution Non-Commercial No Derivatives licence.

Researchers are free to copy, distribute or transmit the thesis on the condition

that they attribute it, that they do not use it for commercial purposes and that

they do not alter, transform or build upon it. For any reuse or redistribution,

researchers must make clear to others the licence terms of this work.

Abstract

We build upon research in the fields of Simultaneous Localisation and Map-

ping (SLAM) and Deep Learning to develop 3D maps of indoor scenes that not

only describe where things are but what they are. We focus on real-time on-

line methods suitable for applications such as domestic robotics and augmented

reality. While early approaches to SLAM used sparse feature maps for local-

isation, recent years have seen the advent of real-time dense SLAM systems

which enabled applications not possible with only sparse feature maps. Fur-

ther augmenting dense maps with semantic information will in future enable

more intelligent domestic robots and more intuitive human-map interactions

not possible with map geometry alone.

Early work presented here sought to combine recent advances in semantic

segmentation using Convolutional Neural Networks (CNNs) with dense SLAM

approaches to produce a semantically annotated dense 3D map. Although we

found this combination improved segmentation performance, its inherent lim-

itations subsequently led to a paradigm shift away from semantic annotation

towards instance detection and 3D object-level mapping. We propose a new

type of SLAM system consisting of discovered object instances that are recon-

structed online in individual volumes. We develop a new approach to robustly

combine multiple associated 2D instance mask detections into a fused 3D fore-

ground segmentation for each object. The use of individual volumes allows the

relative poses of objects to be optimised in a pose-graph, producing a consistent

global map that allows objects to be reused on loopy trajectories, and which

can improve reconstruction quality.

A notable feature of CNNs is their ability to make use of large annotated

datasets, and so we also explore methods to reduce the cost of indoor semantic

dataset production. We explore SLAM as a means of mitigating labour intensive

annotation of video data, but found that producing a large-scale dataset with

such an approach would still require significant resources. We therefore explore

automated methods to produce a large-scale photorealistic synthetic dataset

of indoor trajectories at low cost, and we verify the benefits of the dataset

on the task of semantic segmentation. To automate trajectory generation we

present a novel two-body random trajectory method that mitigates issues of a

completely random approach, and which has subsequently been used in other

synthetic indoor datasets.

Acknowledgements

This work would not have been possible without the support and encour-

agement of many people who have helped to shape both me and my research.

First, I cannot thank my supervisors enough. Professor Andrew Davison

and Dr Stefan Leutenegger have both been enormously generous with their

time and expertise. They have taught me a great deal and trusted me when

I wanted to explore this new ‘deep learning thing.’ Andy’s steady hand of

vision and insightful wisdom has shaped the entire trajectory of my research.

Stefan’s guidance has been no less instrumental, and I particularly appreciate

his patience during the long hours at the whiteboard together.

I have had the good fortune to work with and beside many extremely tal-

ented researchers. I thank Ankur Handa and Ronnie Clark for all of their help

and enjoyable company during late nights and through paper deadlines. Patrick

Bardow for his companionship and mathematical and programming knowledge

as we worked through the challenges of a PhD together. Michael Bloesch who

also spent hours teaching me at the whiteboard. Robert Lukierski who could fix

almost anything and did so frequently. Jacek Zienkiewicz for his great advice

and constant confidence. Wenbin Li and Sajad Saeedi for pushing forward when

I could not. Iosifina Pournara who helped to organise everything and keep me

right. Tom Whelan and Renato Salas-Moreno for help at the very start of my

PhD. I have received helpful advice from and had fruitful discussions with many

other lab members including Ed Johns, Hanme Kim, Jan Czarnowski, Tristan

Laidlow, Andrea Nicastro, Dimos Tzoumanikas, Jan Jachnik, Lukas Platinsky

and everyone else in the lab as well.

I am grateful to Archeeta for her patience, support, and kindness through

the trials and tribulations of PhD life. Our travels have been a source of joy

even in the most stressful times. Thank you.

I thank my family. Their unconditional confidence and support has provided

me with a foundation that very few are blessed with, and I am so grateful to

be one of them.

I also thank Dyson Technology Ltd. for funding this research.

CONTENTS

Contents

1 Introduction 1

1.1 SLAM from Sparse to Dense . 8

1.2 Semantic SLAM . 13

1.3 A Very Brief History of Deep Learning 17

1.4 Publications . 20

1.5 Thesis Structure . 22

2 Preliminaries 23

2.1 Notation . 24

2.2 Transformations . 24

2.3 Cameras . 28

2.4 Non-Linear Least Squares Optimisation 31

2.5 Convolutional Neural Networks . 36

2.6 General-Purpose Graphics Processing Units 55

3 Object Tagger 61

3.1 Introduction . 61

3.2 Related Work . 64

3.3 Method . 68

3.4 Results . 75

3.5 Conclusion . 77

4 SemanticFusion 79

4.1 Introduction . 79

4.2 Related Work . 82

4.3 Method . 84

4.4 Experiments . 94

vi

4.5 Limitations . 102

4.6 Conclusion . 104

5 SceneNet RGB-D 107

5.1 Introduction . 108

5.2 Related Work . 110

5.3 Dataset Overview . 112

5.4 Scene Generation . 115

5.5 Random Trajectory Generation . 118

5.6 Rendering RGB Frames . 121

5.7 Experiments . 127

5.8 Limitations . 131

5.9 Conclusion . 133

6 Fusion++ 135

6.1 Introduction . 135

6.2 Related work . 140

6.3 Object Detection . 143

6.4 Method . 150

6.5 Experiments . 161

6.6 Conclusion . 166

7 Conclusions 169

7.1 Contributions . 169

7.2 Discussion and Future Research . 173

Bibliography 177

viii

Chapter 1

Introduction

Contents

1.1 SLAM from Sparse to Dense . 8

1.1.1 Feature-based SLAM . 10

1.1.2 Dense SLAM . 11

1.2 Semantic SLAM . 13

1.2.1 Semantic Scene Annotation 14

1.2.2 Object-Level Mapping 15

1.3 A Very Brief History of Deep Learning 17

1.3.1 ImageNet 2012 Onwards 19

1.4 Publications . 20

1.5 Thesis Structure . 22

A single glance around a room is enough for a person to achieve an incredible

level of understanding of their environment. They know where they are in relation

to the doorway and walls, they can see the free path through obstacles on the floor,

and they know what the objects on the table are and where to tidy them. We

understand the visual environment so well and intuitively that it is easy to forget

just how complicated a process it truly is. Famously, computer vision began as

an MIT summer project in 19661 during which time they aimed to construct a

significant part of a visual system by performing figure-ground segmentation and

object identification.

1
The original memo is still available: http://hdl.handle.net/1721.1/6125.

1

http://hdl.handle.net/1721.1/6125

1. Introduction

Over 50 years of research has passed and it has led to huge improvements in

computer vision algorithms and the capabilities of the computers that run them.

The application of Deep Learning to some of these problems has allowed machines

to reach or even exceed human-level performance in certain specific visual tasks such

as fine-grained classification [He et al., 2015, Russakovsky et al., 2015] (although

‘human-level’ may of course vary from person to person). Similar approaches to

pattern recognition form part of the system which allowed computers to beat expert

humans at the historically insurmountable game of Go [Silver et al., 2016]. These

results are impressive, but replicating the robustness and generality of human vision

is a challenge that has not yet been achieved, and much more research is still needed

before computers will finally glance around a scene and properly understand it.

To know your place in an environment requires knowledge of your location as

well as some form of understanding or map of the scene itself. Maps serve a dual

purpose, they allow more accurate localisation than dead-reckoning (which quickly

accumulates drift) and they assist in the operation of tasks within the map such

as path planning. Methods developed for this problem domain, known as Simul-

taneous Localisation And Mapping (SLAM), are used heavily in this thesis. The

focus will be on processing input from a camera and so to be precise our problem

domain is known as Visual SLAM. Visual SLAM is commonly associated with a

passive monocular camera, but here we make use of readily available commodity

depth (RGB-D) cameras which can provide a video stream of dense range measure-

ments registered to normal RGB frames. In practical applications additional input

modalities such as Inertial Measurement Units (IMUs) can also be incorporated to

improve the robustness and accuracy of the system [Laidlow et al., 2017], however

that has not been explored in this work.

The research in this thesis aims to explore some of the ways in which the recent

advances in Deep Learning, and more specifically Convolutional Neural Networks

(CNNs), can be combined with SLAM to automatically produce 3D maps of indoor

scenes that include both geometric and semantic elements. Including semantic in-

formation in a map is a necessity for enabling domestic robotic agents to advance

beyond obstacle avoidance and it can also enable more intuitive human-map interac-

tions. Sharing a common spatial and semantic map allows intricate commands such

as ‘Fetch that coffee mug from the table beside you’ to be properly interpreted. Sim-

ilarly, the ability to query semantic information within a map is useful for humans

2

directly, providing a convenient database for storing and answering queries about

a previously mapped environment; ‘How many chairs do we have in the conference

room?’ In short we are concerned with knowing where things are and what they are.

In this thesis we begin with research into semantic annotation of dense 3D in-

door scenes. Following the ‘map everything’ mantra of dense reconstruction we aim

to annotate everything in a manner not unlike painting a texture on the geometry

itself. Research in this area led to the development of a system called ‘SemanticFu-

sion’ [McCormac et al., 2017a] shown on the left of Figure 1.1. We used the dense

SLAM system ElasticFusion [Whelan et al., 2015b] to provide a 3D map into which

we could fuse 2D semantic predictions from a CNN. We found ElasticFusion to be a

particularly suitable foundation for producing a real-time dense 3D semantic map.

Its surfel-based map representation could conveniently store semantic probabilities

and its map deformation approach to loop closure provided a consistent global map

which allowed semantic information to be efficiently fused using a Bayesian update

scheme.

In SemanticFusion our experiments showed that a straightforward combination

of a dense SLAM system with a CNN could lead to improvements in semantic

segmentation accuracy as well as produce an annotated 3D map. However we also

found the limits of what could be achieved with the representation. Interpreting and

using a dense map with millions of independent semantic probability distributions

does not allow task-relevant queries such as ‘How many chairs do we have in the

conference room?’ to be directly answered. The independence of surface patches

also allows semantic inconsistencies, such as two halves of the same object being

assigned different semantic labels.

To overcome these limitations we explore the new paradigm of object-level map-

ping; an intuitive map representation which is composed of discovered and recon-

structed object instances. This work called Fusion++ [McCormac et al., 2018] was

inspired by the SLAM++ system of [Salas-Moreno et al., 2013]. It takes advantage

of modern advances in Deep Learning and instance segmentation to mitigate the

past limitations of SLAM++ that necessitated a predefined database of reconstruc-

ted objects. Instead, in Fusion++, object instances are detected and segmented with

a CNN and reconstructed online in individual Truncated Signed Distance Func-

tion (TSDF) [Curless and Levoy, 1996] volumes to create an object-level pose-graph

(visualised on the right of Figure 1.1). Splitting the map into separate objects and

3

1. Introduction

Figure 1.1: Left: SemanticFusion [McCormac et al., 2017a] produces a semantically
annotated 3D reconstruction of an indoor scene. Right: Fusion++ [McCormac et al.,
2018] makes a map of individual objects discovered using Deep Learned instance
segmentation and volumetrically reconstructed as landmarks in a pose graph.

using a pose-graph not only produces semantically meaningful map entities, but can

also improve reconstruction quality by updating the relative poses of objects rather

than by eroding and rebuilding their surface geometry on loop-closures.

Our initial approach to reconstructing objects in a volume was to only fuse depth

measurements from the foreground of the segmented object instance. Unfortunately

this approach was not ideally suited to the variability in instance mask predictions. It

discards useful measurements about surface geometry near to the object, which may

be needed should the predicted segmentation mask increase in size. It also causes

problems when the segmentation mask decreases in size, as previously reconstructed

surface geometry persists and would require some other mechanism for removal.

Instead we reconstruct all of the geometry within the 3D volume, regardless of

the instance mask, and use a fused 3D foreground probability mask to denote the

surfaces that belong to the object. We found that fusing the 2D instance masks

using a multiplicative Bayesian update scheme, such as that of SemanticFusion, was

unstable. A single mask prediction with a very low foreground probability would

occasionally delete the fused foreground mask that had been refined over many

previous frames. To mitigate this, we propose a more robust alternative which views

the binarised mask as the result of a binomial trial, and uses a Beta distribution

conjugate prior to calculate the expectation a given voxel corresponds to the object’s

foreground.

4

In SLAM++, Iterative Closest Point (ICP) was used to track individual objects in

order to produce the edge measurements necessary for an object-level pose-graph.

We found that the greater variety of object geometries discovered in Fusion++, as

well as the inherent noise from the input depth map during the initial stages of

online reconstruction, led ICP to frequently fail to properly converge for individual

objects. In order to calculate edge constraints for each object, we therefore developed

a modified approach which performed ICP on the combined scene geometry and then

optimised the partitioned residual errors for each object instance to calculate the

final edge measurement.

Both SLAM and Deep Learning have benefited greatly from ever improving com-

putational hardware. In particular, the advent of readily accessible high perform-

ance massively parallel Graphics Processing Units (GPUs) has allowed researchers

to exploit the parallel nature of certain problems in both dense SLAM and semantic

prediction using CNNs. For many applications from robotics to augmented reality

the capacity to operate in real-time is a practical necessity, and in this thesis we

make use of GPU hardware to assist in the quest for performance. Although not

all of the systems presented here manage to attain true real-time performance, it

remains an important focus throughout. The algorithms are designed for online

operation and selected for computational efficiency with the potential for real-time

use at the very least.

The approach taken here of combining SLAM with Deep Learning is quite modu-

lar in nature, using systems and structures that have been studied independently in

SLAM and including within them learned methods for semantic and instance pre-

dictions from CNNs. This approach is by no means the only approach that can be

adopted, and it remains an open question whether the robustness of a fully learned

end-to-end SLAM system will eventually prove superior. There has been a recent

trend of these two approaches meeting in the middle. As the limits of straightfor-

ward CNNs have become clear, a number of recent works have attempted to merge

both approaches at a deeper level using domain specific knowledge from both dis-

ciplines [Bloesch et al., 2018, Zhou et al., 2018]. The goal is to achieve the best

of both worlds, with classically understood SLAM methods being embedded within

and between learned units which can improve the robustness where past systems

have been particularly fragile.

The importance of large well-annotated domain specific datasets for training and

5

1. Introduction

validating CNNs is hard to overestimate. CNNs are able to make good use of very

large datasets and it was their performance after being trained on large datasets in

a supervised manner that led to the recent surge in their popularity. This thesis

also explores the problem of data production for indoor scene understanding. In

this context the symbiosis of SLAM and Deep Learning takes on a different form,

with SLAM acting as a tool to provide training examples for Deep Learning. The

burden of frame-by-frame labelling of video datasets for semantic segmentation can

be reduced using a dense 3D reconstruction and the estimated camera trajectory

thus assisting in the generation of domain specific training data. The result of this

work was the Object Tagger software described in Chapter 3.

Tools such as the Object Tagger cannot entirely mitigate the substantial cost

and difficulty of generating real-world datasets. One potential alternative is to

use synthetic computer generated datasets which can easily provide a plethora of

ground-truth labels. This approach has become quite common in many areas of Deep

Learning, with much research on Deep Reinforcement Learning notably focused on

playing simple 2D Atari games [Mnih et al., 2015] and more recently moving towards

suites of 3D simulated artificial tasks [Brockman et al., 2016]. Synthetic data has

also been applied to the problem of SLAM in order to evaluate the trajectory and

reconstruction performance of certain methods under varying conditions [Handa

et al., 2012, Handa et al., 2014]. Here we apply this approach to our problem domain

in order to automate large-scale dataset generation for indoor scene understanding

from a moving camera.

To produce such a large-scale dataset with a wide variety of training examples

we relied heavily on random sampling. For the scene configuration we sampled

objects that were then randomly positioned within the scene and a physics engine

was used to produce a physically realistic final configuration. Previous approaches

to trajectory generation, such as transplanting hand-captured trajectories into the

scene [Handa et al., 2014], would not respect the often complex scene geometry, and

also could not produce the variety of trajectories desired. We therefore explored

automated methods to produce random indoor trajectories. We found the naive

approach of random collision-aware translations and rotations to produce unrealistic

trajectories and degenerate training examples such as prolonged panning along plain

walls. To alleviate these issues we propose a novel two-body random trajectory

method, consisting of a camera position and a look-at point which operates as a

6

Figure 1.2: Left: Photorealistic rendering of indoor scenes with ground truth labels
available in the SceneNet RGB-D dataset [McCormac et al., 2017b]. Right: A
visualisation of the random camera trajectory generated for a synthetic scene.

proxy for a point of focus. This approach has been used as a comparison method

in later research on data-driven view point selection [Genova et al., 2017] and has

since been refined in a subsequent large-scale synthetic dataset called InteriorNet

produced by [Li et al., 2018] on which we collaborated.

The result of the above research was the SceneNet RGB-D dataset [McCormac

et al., 2017b] which consists of 5M synthetic images of trajectories in indoor scenes

(See Figure 1.2). To verify its usefulness we compared the semantic segmentation

performance of network weights produced from pre-training on SceneNet RGB-D

with generic ImageNet weights (which lack a task-specific decoder) and found that

after fine-tuning, the synthetically pre-trained network outperformed on real-world

datasets. The necessity of fine-tuning in order to transfer to real-world data is an

important reminder that issues regarding the ‘reality-gap’ persist, and that the data-

set’s approximation to the real-world is by no means perfect. However the dataset

has continued to be of use to researchers on a variety of related problems [Shamwell

et al., 2017, Balloch and Chernova, 2017, Chen and Deng, 2018, Bloesch et al., 2018].

Concurrent and subsequent research has continued to produce work on synthetic

indoor environments. The parallel work of [Song et al., 2017] produced the SUN-CG

dataset of synthetic scene layouts and the follow-up work of [Zhang et al., 2017] used

those layouts to generate physically-based RGB renderings of a still camera within

the scenes. This approach differs from our fully-automated random approach by

using hand-designed layouts, which has the benefit of contextual information missing

7

1. Introduction

from our randomly simulated scene generation pipeline.

A combination of the two approaches, with reasonable manually designed scene

layouts or semantic constraints alongside physically simulated randomness, may

provide the best of both worlds. This combined approach has started to be explored

in the already mentioned InteriorNet dataset [Li et al., 2018]. They use millions of

production-level 3D assets and professionally designed indoor layouts to produce a

photorealistic dataset at an even larger scale than SceneNet RGB-D. They use the

mass and surface material properties of objects in those scenes, as well as a physics

engine, to simulate traces of daily life. We believe that in future, as the ability to

simulate reality improves and becomes a better approximation of the real-world, so

the step from operating in synthetic environments to operating in the real-world will

become ever smaller.

As this thesis is concerned with both SLAM and Deep Learning, a brief historical

review of both of these strands of research is given below. References to more

thorough historical surveys will be given for further reading, as only a general outline

of key milestones is given along with more specific discussions on work closely related

to the research presented in this thesis.

1.1 SLAM from Sparse to Dense

The work of [Moravec, 1977] on autonomous robotic navigation using Visual Odo-

metry (VO) was one of the earliest predecessors to visual SLAM. In that work the

Stanford ‘cart’ had a single camera mounted on a 50cm rail in order to capture

stereo images. These images were used to estimate the 3D location of obstacles

using matched features. After the cart moved this process would be repeated and

the feature matches used to estimate the current location of the cart. This system

was impressively used to automatically navigate a 20m long course while avoiding

various obstacles, although it took the robot approximately five hours to do so. This

achievement represented a significant advancement towards real-world autonomous

navigation and mapping beyond previous work that relied on simple line following

[Moravec, 1980]. The envisioned application at that time was a Mars Rover which

would require autonomous navigation given the radio transmission delay between

the Earth and Mars.

Unlike VO, in Visual SLAMmap elements are incrementally refined using repeated

8

1.1. SLAM from Sparse to Dense

measurements from different viewpoints. Revisiting a previously mapped area allows

‘loop closures’ to remove accumulated drift from the map and enables the agent to

self-localise against a global map. As noted by [Matthies et al., 2007], in the context

of typical rover navigation SLAM does actually not add a great deal to VO, as

rovers tend to travel in one direction rather than revisiting previous landmarks

repeatedly. In fact VO continues to be successfully applied to Martian navigation

to the present day on the rover Curiosity [Cheng et al., 2005]. The purview of this

thesis is the more terrestrial challenges associated with indoor domestic scenes where

loopy trajectories dominate and visual SLAM becomes the essential tool to build

and maintain an increasingly accurate map.

According to the historical survey of SLAM by [Durrant-Whyte and Bailey, 2006,

Bailey and Durrant-Whyte, 2006] the formulation of the modern probabilistic SLAM

problem occurred at the 1986 IEEE International Conference on Robotics and

Automation. Following work produced the statistical framework to jointly estim-

ate the map landmarks and camera pose from noisy measurements in a probab-

ilistic fashion [Smith and Cheeseman, 1986, Durrant-Whyte, 1988, Smith et al.,

1988, Moutarlier and Chatila, 1989]. One of the key observations of this work

was that the different landmark measurements were correlated as a result of the

uncertainty in the pose of the observer, and by jointly considering all the inform-

ation all of these parameters could be more accurately estimated. The suggested

approach to this problem was an Extended Kalman Filter (EKF). Built upon the

Kalman Filter [Kalman, 1960], the EKF is able to work with non-linear transition

and measurement functions. In the work of [Leonard and Whyte, 1991] which is

widely regarded as the first implementation of a complete SLAM system, an EKF

was used to build and refine a map while localising using sonar sensors.

EKFs became a mainstay of SLAM systems in the 1990s [Castellanos, 1998, Dav-

ison, 1998, Newman, 1999]. In the recent work of [Cadena et al., 2016] which

describes the current state of SLAM research, the EKF has been described as one of

the key algorithms in the classical age of SLAM, together with Rao-Blackwellized

Particle Filters [Montemerlo et al., 2002] and Maximum a Posteriori (MAP) meth-

ods. These methods and their history are well covered in the Probabilistic Robotics

textbook by [Thrun et al., 2005]. In the late 1990s MAP graph-based approaches to

SLAM arrived with the work of [Lu and Milios, 1997] and [Gutmann and Konolige,

1999]. These methods are closely related to the field of Structure from Motion (SfM)

9

1. Introduction

and the approach called Bundle Adjustment which aims to minimise the reprojection

error of 3D points in an image. The difference between SfM and SLAM is that SLAM

must be online and incremental [Cadena et al., 2016] and its factors can include a

wide range of modalities rather than being limited to projective geometry. Later

research by [Strasdat et al., 2012] showed the superiority of graph based approaches

over filtering in terms of accuracy and efficiency with modern computational capa-

city. Pose-graphs have become widely adopted in modern SLAM systems and are

indeed used here in Chapter 6.

1.1.1 Feature-based SLAM

The first demonstrated real-time monocular SLAM system called MonoSLAM was

presented by [Davison, 2003]. It used an EKF and [Shi and Tomasi, 1994] keypoint

features as landmarks. Although impressive, MonoSLAM was limited to 100 features

to maintain real-time operation given the computational budget at the time which

limited the scale of the areas that could be mapped. The same sparse feature-based

approach to image processing has since been adopted in many of the monocular

SLAM successes, although some of the most common approaches have moved to

bundle adjustment and graph SLAM approaches.

A notable later monocular SLAM advancement was Parallel Tracking and Map-

ping (PTAM) [Klein and Murray, 2007] so called because the tracking and mapping

tasks were separated into two parallel threads. As tracking was relatively inexpens-

ive it could be performed in real-time on each frame whereas the more expensive

joint optimisation using bundle adjustment occurred at a slower frequency in a par-

allel background thread. The area that PTAM could operate in was also relatively

limited. In recent years one of the most popular descendents of these monocular

SLAM methods is called ORB SLAM [Mur-Artal and Tardós, 2014] which overcame

some of the past limitations and is used in many applications due to its robustness

and ease of use. Although this thesis focuses on dense semantic methods, the ro-

bustness of feature-based matching across wide viewpoint changes led to its use in

the relocalisation approach described in Chapter 6.

Keypoint features themselves aim to be repeatedly detected and maintain stable

descriptors in the presence of image transformations. Research on keypoint features

has led to a proliferation of options which can be selected from based on their

performance in the task domain and the available computational budget. Some

10

1.1. SLAM from Sparse to Dense

notable examples include SIFT [Lowe, 1999], SURF [Bay et al., 2006], ORB [Rublee

et al., 2011] (a combination of the FAST keypoint detector [Rosten and Drummond,

2006] and BRIEF descriptor [Calonder et al., 2010]), and BRISK [Leutenegger et al.,

2011]. The impact of Deep Learning on every area of computer vision in recent years

is evident even here with research being conducted into learned keypoint features

such as the Learned Invariant Feature Transform (LIFT) [Yi et al., 2016].

1.1.2 Dense SLAM

Sparse feature-based methods are robust methods for localisation that are heavily

used to the present day but the sparsity of the map means they cannot directly map

free space or produce reconstructions which are useful for obstacle avoidance and

path planning. Research continues on sparse methods but there has been a shift

in more recent years to exploring dense methods which reconstruct the entirety of

the scene geometry. Some early research sought a middle ground by augmenting

feature-based monocular SLAM with dense structure but the sparsity of the points

resulted in rough reconstructions [Lovegrove, 2011]. Research has since moved to

fully dense approaches which form the SLAM backbone to much of the research in

this thesis.

Unlike the previously described ‘indirect’ feature-based tracking approaches com-

monly used in sparse SLAM, ‘direct’ methods aim to minimise the error of directly

measurable quantities [Irani and Anandan, 1999], such as the total distance between

points in two misaligned point clouds. While most dense systems use direct meth-

ods and most sparse systems use indirect methods there are exceptions, such as the

Direct Sparse Odometry (DSO) system produced by [Engel et al., 2017]. An early

and illustrative example of a dense direct approach can be seen in the [Lucas and

Kanade, 1981] method for image alignment in which gradient methods ‘slide’ images

over each other to minimise the total intensity difference.

[Newcombe et al., 2011b]’s Dense Tracking and Mapping (DTAM) system takes

an incoming RGB video feed and uses it to estimate dense textured depth maps

of the scene using a regularised photometric cost volume. This volume forms a

dense model of the scene which can be rendered and used in a dense tracking step to

estimate the camera pose in an iterative [Lucas and Kanade, 1981] fashion. To allow

this approach to operate in real-time the availability of high performance consumer

GPUs was essential. Calculating per-pixel costs, rendering reference images, and

11

1. Introduction

performing Jacobian reductions are all operations which can readily take advantage

of the massively parallel nature of GPUs and they feature heavily in most dense

SLAM systems to the present day.

Interestingly, GPUs are not the only technology developed for video-games that

has been usefully appropriated by SLAM and robotics researchers. Dense methods

have also been fuelled by the rise of commodity RGB-D cameras beginning with

the Microsoft Kinect [Microsoft Corp, 2010] for the Xbox 360 games console. The

widespread availability of commodity depth cameras was very rapidly applied to

dense SLAM systems, beginning with the impressive system of [Henry et al., 2010]

which used Iterative Closest Point (ICP) alignment for tracking and a surfel map

representation in a large-scale loop closure capable SLAM system. A surfel is a small

surface patch represented by a disc and it is a representation that has continued to

be popular in dense SLAM systems [Keller et al., 2013, Whelan et al., 2015b].

More recently the ElasticFusion [Whelan et al., 2015b] system, which also used a

surfel map representation, attempted to tackle some of the inherent difficulties posed

by loop closure in dense SLAM systems by using a deformation graph to deform

the map using methods borrowed from animation skeletons in computer graphics.

ElasticFusion forms the foundation for the SLAM assisted data collection system

presented in Chapter 3 and the CNN-based semantic annotation system Semantic-

Fusion presented in Chapter 4. The challenge loop closure poses to dense systems is

one of the driving forces behind the ‘sparse’ object-level map representation chosen

for Fusion++ in Chapter 6.

Soon after the release of the Kinect, the very influential KinectFusion [Newcombe

et al., 2011a] system was also developed. It used an implicit volumetric surface

representation for reconstruction in the form of a TSDF [Curless and Levoy, 1996].

Depth measurements are fused into the voxels of the volume using a weighted average

scheme and ICP is used for dense tracking. The spatial extent of the volume was

quite limited due to the cubic scaling memory requirements, but the fusion approach

very successfully mitigated the inherently noisy depth measurements from the Kinect

and produced accurate and smooth reconstructions. For this reason it became a

favoured method of choice for 3D reconstruction systems. Subsequent pieces of

work based on KinectFusion have used or registered multiple shifted subvolumes to

produce high-quality reconstructions over larger areas [Zhou et al., 2013, Whelan

et al., 2012] and other work has further engineered the system [Prisacariu et al.,

12

1.2. Semantic SLAM

2014] and reduced the memory requirements directly with schemes such as Voxel

Hashing [Nießner et al., 2013]. Our object reconstruction methodology in Chapter 6

closely follows the KinectFusion approach.

The many years of research into dense reconstruction and SLAM have provided

off-the-shelf tools that, although certainly not perfect, in some ways commoditise

SLAM. They form the springboard for much of the research in this thesis, and in

the earlier chapters relatively straightforward additions to pre-existing dense SLAM

systems are made in order to move beyond geometry to include semantic information.

1.2 Semantic SLAM

The dense geometry of 3D scene reconstructions allow for robotic obstacle avoidance,

path planning, and also enables occlusion aware augmented reality applications.

The advance beyond geometry to semantically aware maps greatly increases the

range of tasks which can be approached by robotic agents, and at the same time

provides higher level concepts to a map that can assist in providing an intuitive user

interface for human-map interaction; it is much easier to talk about ‘the kitchen’

than to specify a location in terms of cartesian coordinates. The inclusion of semantic

and task-specific information in a map is described by [Cadena et al., 2016] as a

requirement of the current robust-perception age of SLAM and a more thorough

survey of semantic SLAM is presented by [Kostavelis and Gasteratos, 2015].

The useful properties of task specific semantics in maps have long been recognised

[Chatila and Laumond, 1985, Kuipers and Byun, 1991] with topological maps with

semantically relevant nodes. Many of the initial approaches manually encoded the

required task specific information into the maps. For example in [Thrun et al., 1999]

an interactive robotic tour-guide called ‘Minerva’ was installed in a Smithsonian mu-

seum and navigated between 23 different exhibits explaining them to visitors. Even

in a simple system such as this, geometry alone is not sufficient and certain task

specific information was required. The two research threads that have predominated

semantic maps can be roughly divided into those which focus on semantic segmenta-

tion for scene annotation and those which use object detection for object-level maps

(there are of course also methods which straddle this boundary). The initial work

of this thesis, described in Chapter 4, followed the dense semantic annotation ap-

proach, but as the limitations of what could be achieved with such a representation

13

1. Introduction

became clear our research focus shifted to the new paradigm of object-level and

instance mapping which is covered in Chapter 6.

1.2.1 Semantic Scene Annotation

The early 2000s saw some of the earliest work to automatically label dense 3D

semantic maps using a laser range finder [Nüchter et al., 2003]. The labelling was

not performed during the mapping itself, instead the complete indoor 3D scene

was mapped and then planar regions were extracted from the point cloud using

Random Sample Consensus (RANSAC). The planar regions were then labelled using

a manually designed constraint network based on relative orientations and positions

of the planes into the four categories of wall, floor, ceiling, and door. [Limketkai

et al., 2005] used a Relational Markov network and learned feature weights from

a small annotated dataset to produce a semantically annotated map of a corridor

from 2D line segment primitives. Later work by [Mozos et al., 2007] produced

a semantically annotated 2D occupancy map from laser scans using an Adaboost

classifier.

In dense 3D indoor scene segmentation much of the work continued to focus

on map post-processing of semantics, rather than including them in a live SLAM

system. [Rusu et al., 2008] registered dense point clouds from a laser scan into a

stitched scene and then used region segmentation to group planar areas into cuboid

objects such as cupboards. Unassigned regions close to the planar surface were

extracted and their projection onto the plane was assigned to either a ‘handle’ or

‘knob’ based on their elongation.

Early work by [Brostow et al., 2008] avoided the requirement of a laser scan by us-

ing Structure from Motion (SfM) from multiple RGB images to produce point clouds

of scenes. These point clouds provided geometric cues that were projected into the

image plane and used as features in a random forest for 2D semantic segmentation.

They also showed that combining these geometric cues with 2D appearance-based

cues improved the resulting segmentation. Subsequent work by [Bao et al., 2012]

combined scene annotation and object detection for batch semantic SfM mapping.

They used a parts-based object detector [Felzenszwalb et al., 2010] and graph cut

region classifier [Ladicky et al., 2010] to jointly solve labelling and reconstruction

of semantic maps separated into regions of annotated surface or objects. [Koppula

et al., 2011] produced one of the earliest dense semantic annotation systems using

14

1.2. Semantic SLAM

commodity RGB-D cameras that annotated both structural and object elements

of a scene. They form segments of the map into nodes of a graphical model and

used hand-crafted geometric and visual features as edge potentials to infer the final

semantic labelling.

Dense near real-time semantically annotated scenes using commodity sensors ap-

peared with the work of [Stückler et al., 2015] and [Hermans et al., 2014]. They

both obtain per-pixel label predictions for incoming frames using Random Decision

Forests and fused predictions from different viewpoints in a classic Bayesian frame-

work. [Stückler et al., 2015] used a Multi-Resolution Surfel Map SLAM system

capable of operating at 12Hz while [Hermans et al., 2014] did not use a full SLAM

system with explicit loop closure and instead used camera tracking with a run-time

performance of 5Hz. [Cavallari and Di Stefano, 2016c] approached the problem of

dense annotation using a KinectFusion map and a CNN to provide the semantic

predictions for annotating a 3D map with each voxel storing a single category and

a score. The multi-GPU version of their system operates at 17Hz and the single

GPU version operates at 5Hz. These approaches bring us to the work described in

Chapter 4 which combines ElasticFusion and CNN predictions alongside a Bayesian

update scheme for real-time (25Hz) dense semantic mapping.

1.2.2 Object-Level Mapping

For object-detection based semantic SLAM research, some of the earliest work was

by [Galindo et al., 2005]. They used a laser range finder alongside sonar sensors to

build an occupancy map and link objects to a conceptual semantic hierarchy to infer

the room category. The objects themselves were known beforehand and detected

via simple colour and shape cues. The earliest example of vision-based semantic

SLAM was by [Castle et al., 2007] who built a 3D map of planar objects during live

operation of a SLAM system using only a monocular camera. The SLAM system

was based on MonoSLAM, but on top of this planar objects were recognised from

a pre-generated database of SIFT descriptors and added to the 3D map. Later the

same year [Ranganathan and Dellaert, 2007] used learned models of known objects

as an object-level approach to place recognition.

A subsequent monocular SLAM system by [Civera et al., 2011] also used a data-

base of known objects which could be inserted into the map, but they removed

the planar constraint and modelled objects using SURF descriptors with a known

15

1. Introduction

spatial arrangement. In a work that used RGB-D data but was not designed for

live SLAM operation, [Lai et al., 2012] used a view-based Support Vector Machine

(SVM) object detector to reconstruct and label objects of interest by integrating

predictions into a voxel representation. [Kim et al., 2012] produced another system

not designed for in-the-loop live use but which contained many of the elements of

dense indoor object-level maps. Dense 3D models are first captured into a database

and later, within a scan of a room, these object instances are recognised and their

pose estimated in order to construct a map of the known objects.

The progenitor and inspiration for much of the work in this thesis was the SLAM++

system developed by [Salas-Moreno et al., 2013]. It uses a database of dense recon-

structions of objects and real-time recognition using Point-Pair Features. After

estimating the object’s pose using a Hough forest, it includes the detected object

reconstructions within the loop of a dense SLAM system. These objects provide

constraints for an object-level pose graph and they are used for loop closure and

relocalisation. This is closely related to our approach in Chapter 6. Subsequent

work on object discovery by [Choudhary et al., 2014] also localised the camera in

an online manner with discovered objects that are used as centroidal landmarks

in a pose graph. An example of a more recent object-oriented mapping approach

is the Meaningful Maps approach of [Sünderhauf et al., 2017] where instances are

discovered using bounding box detections from a CNN and an unsupervised geo-

metric segmentation algorithm. They use a separate RGB-D SLAM system, ORB-

SLAM2 [Mur-Artal and Tardós, 2015], for localisation and to produce point clouds

of the discovered instances.

This section has made apparent the wide variety of approaches available for se-

mantic segmentation and object detection, ranging from manual heuristics to ran-

dom forests. In recent years Deep Learning and CNNs have become the dominant

approach to semantic visual processing. Their dominance results from the significant

performance improvements they have been empirically shown to offer along with the

exciting promise of a flexible and general method of automated machine learning.

In this thesis Deep Learning has been selected as the method to provide semantic

understanding, and in the next section we will provide a brief historical background

to these methods as well as an introduction to the current wave of research following

the 2012 ImageNet competition.

16

1.3. A Very Brief History of Deep Learning

1.3 A Very Brief History of Deep Learning

Deep Learning is the currently favoured term describing an area of research with

a long history that has previously been known as cybernetics and connection-

ism [Goodfellow et al., 2016]. The approach is biologically inspired making use

of Artificial Neural Networks (ANNs) which have their basis in early models of bio-

logical neurons. A helpful analogy of the link between modern Deep Learning and

biological neurons may be seen between birds and planes; they both have wings but

few practical planes flap and birds don’t use jet engines for thrust. In the same way,

artificial neurons mimic some of the basic characteristics of neurons such as multiple

‘dentrite’ inputs with an ‘axon’ output, but are a far cry from the complex biological

models of neurons produced over 50 years ago [Hodgkin and Huxley, 1952].

Modern ANNs are composed of neurons that are almost identical to one of the

earliest2 artificial neuronal models called the ‘perceptron’ [Rosenblatt, 1958]. The

perceptron performs a weighted summation of raw inputs in order to produce an

internal ‘activation.’ In the perceptron model this activation goes through the heav-

iside step function to produce an output but modern artificial neurons (shown in

Figure 1.3) now use a variety of non-linear activation functions.

x2 w2 Σ σ

Activation
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

Figure 1.3: A diagram of a single artificial neuron. Modified from https:

//tex.stackexchange.com/questions/132444, original author https://tex.

stackexchange.com/users/3954/gonzalo-medina. License: CC BY-SA 3.0.

The Multilayer Perceptron (MLP) is one of the simplest feed-forward deep learning

network architectures. The term ‘Multilayer Perceptron’ is something of a misnomer;

the network is composed of modern artificial neurons rather than being restricted

2
The first artificial neuronal model was proposed by [McCulloch and Pitts, 1943]. It used binary

activations but fixed identical weights and lacked a learning mechanism.

17

https://tex.stackexchange.com/questions/132444
https://tex.stackexchange.com/questions/132444
https://tex.stackexchange.com/users/3954/gonzalo-medina
https://tex.stackexchange.com/users/3954/gonzalo-medina

1. Introduction

to perceptrons, and it consists of many neurons organised into layers rather than

being a single ‘multilayered’ neuron. The neurons in each layer are connected to all

of the neurons in the layer below but to none in its own layer. This configuration of

connections is called ‘fully-connected’ and is shown in Figure 1.4.

Figure 1.4: Diagram of a Multilayer Perceptron with three layers.

A specific type of Neural Network called a Convolutional Neural Network (CNN)

has resulted in a dramatic leap forward in the performance of state-of-the-art al-

gorithms in visual processing. Convolutional layers are also biologically inspired, this

time from early research into the visual cortex of cats [Hubel and Wiesel, 1962]. This

neurophysiology research provided the inspiration for the Neocognitron [Fukushima

and Miyake, 1982] which has a similar tiled and layered architecture to modern

CNNs but was not trained in a supervised manner using backpropagation, a tech-

nique which was only developed later [Rumelhart et al., 1986]. Convolutional layers

stride the same learned image filter across an entire image to produce feature activ-

ations for the next layer; sharing the weights in this way both reduces the number of

parameters and allows the same basic features such as edges and blobs to be shared

across an image.

Modern Deep Learning has been described as ‘representation learning’ [LeCun

et al., 2015]. Instead of hand-crafted feature extractors and careful engineering, the

features in Deep Learning are learned directly from the raw data in a hierarchy of

increasingly abstract layers. As will be discussed in Chapter 2 this hierarchy of com-

posed features can be visualised in the layers of modern CNNs which first appeared

with the LeNet-5 architecture of [LeCun et al., 1998] for document recognition. The

current surge of interest in CNNs occurred much more recently, with their notable

success in the ImageNet 2012 competition.

18

1.3. A Very Brief History of Deep Learning

1.3.1 ImageNet 2012 Onwards

In the now seminal work by [Krizhevsky et al., 2012], a CNN was used to dramat-

ically improve upon the state of the art in the 2012 ImageNet Large Scale Visual

Recognition Competition (ILSVRC) [Russakovsky et al., 2015] with a top-5 error

rate of 15% vs 26% for the next best entry. The CNN which became known as

‘AlexNet’ was remarkably similar to the LeNet-5 architecture. One of the key dif-

ferences between these CNNs was scale; AlexNet had more convolutional layers (5

vs. 3) and parameters (60M vs 60k) and it was trained on 1.2M images.

The increase in scale of AlexNet was enabled by high performance General Pur-

pose GPUs as well as the improved accessibility to GPUs via APIs such as CUDA

(in fact the original implementation of AlexNet was in a framework called ‘CUDA-

ConvNet’3). This astounding empirical leap spurred others to adopt the same ap-

proach and since then the ILSVRC competition has been dominated by ever im-

proving CNN entries [Szegedy et al., 2015, Simonyan and Zisserman, 2015, He et al.,

2016].

CNNs’ dominance has not been limited to image classification; it was also quickly

applied to object detection. Some of the first examples such as Regions with

CNN (R-CNN) [Girshick et al., 2014] simply leveraged image classification CNNs

to classify and filter bounding boxes proposed by other methods. Soon after,

CNNs were also used to propose the bounding boxes themselves in a system called

‘Multibox’ [Erhan et al., 2014]. Fully end-to-end learned object detectors then

emerged which combined these approaches in Faster R-CNN [Ren et al., 2015].

Faster R-CNN was used as the basis for modern instance segmentation methods

such as Mask R-CNN [He et al., 2017] (used in Chapter 6 of this thesis) which pro-

duces an additional binary instance mask output for each of the detected objects.

CNNs have also been applied to pixel-wise semantic image segmentation through a

relatively simple modification to the classification network architecture [Long et al.,

2015, Sermanet et al., 2014]. [Long et al., 2015] proposed converting the fixed

size fully-connected layers at the top of a network into convolutional layers, with

a classification kernel that could slide over the input. This process allows a ‘heat-

map’ of per-pixel semantic predictions to be produced. They also proposed learned

‘transpose convolutional’ layers which allow spatially smaller feature maps to be

3
Available at https://code.google.com/archive/p/cuda-convnet/.

19

https://code.google.com/archive/p/cuda-convnet/

1. Introduction

upsampled to higher resolutions with learned filters. The coarse spatial information

in the bottleneck motivated the use of ‘skip’ connections to supply fine-grained

spatial information from lower layers to higher ones. CNNs of this variety will also

be used frequently throughout this thesis.

In computer vision CNNs have been successfully applied to a plethora of problems

such as optical flow estimation [Fischer et al., 2015], super-resolution [Kim et al.,

2016], style transfer [Isola et al., 2017], and image restoration [Ulyanov et al., 2016a]

to name but a few. The sphere of influence of CNNs extends beyond computer vision.

At the beginning of this chapter we highlighted the achievement of AlphaGo [Silver

et al., 2016], in which the vast search space of Go was reduced using predictions from

trained CNNs with a 19 × 19 ‘image’ based on the current board state. Perhaps

of more real-world importance to future work on this thesis is the potential direct

application of CNNs for learned robotic manipulation policies [Levine et al., 2016].

The applicability of Deep Learning methods to different problem domains and the

flexibility with which different elements can be combined into optimisable structures

is one of the reasons for the current excitement in the field, and its impact on the

problem of Semantic SLAM is only just beginning.

1.4 Publications

The work described in this thesis has resulted in the following publications:

• SemanticFusion: Dense 3D Semantic Mapping with Convolutional Neural Net-

works [McCormac et al., 2017a] (presented at ICRA 2017, patented).

• SceneNet RGB-D: Can 5M Synthetic Images Beat Generic ImageNet Pre-

training on Indoor Segmentation? [McCormac et al., 2017b] (presented at

ICCV 2017, featured in RSIP Computer Vision News4).

• Fusion++: Volumetric Object-Level SLAM [McCormac et al., 2018] (presented

at 3DV 2018, patent pending).

4
https://www.rsipvision.com/ICCV2017-Wednesday/https://www.rsipvision.com/

ComputerVisionNews-2017November/#20

20

https://www.rsipvision.com/ICCV2017-Wednesday/
https://www.rsipvision.com/ComputerVisionNews-2017November/#20
https://www.rsipvision.com/ComputerVisionNews-2017November/#20

1.4. Publications

The following video material visualises and demonstrates the operation of some of

the described methods:

SemanticFusion,

https://youtu.be/cGuoyNY54kU

ICRA 2017, Singapore.

Fusion++,

https://youtu.be/2luKNC03x4k

3DV 2018, Verona, Italy.

The following open-source code repositories and datasets have also been released for

the research community:

• SemanticFusion: https://bitbucket.org/dysonroboticslab/semanticfusion

• SceneNet RGB-D:

– The dataset: https://robotvault.bitbucket.io/scenenet-rgbd.html

– Dataset tools: https://github.com/jmccormac/pySceneNetRGBD

– Dataset generation: https://bitbucket.org/dysonroboticslab/scenenetrgb-d

– CNNmodels: https://github.com/ankurhanda/pytorch-SceneNetRGBD

21

https://youtu.be/cGuoyNY54kU
https://youtu.be/2luKNC03x4k
https://bitbucket.org/dysonroboticslab/semanticfusion
https://robotvault.bitbucket.io/scenenet-rgbd.html
https://github.com/jmccormac/pySceneNetRGBD
https://bitbucket.org/dysonroboticslab/scenenetrgb-d
https://github.com/ankurhanda/pytorch-SceneNetRGBD

1. Introduction

1.5 Thesis Structure

The rest of this thesis is structured as follows:

Chapter 2 introduces basic notation and the concepts used in dense SLAM and

provides a primer on Convolutional Neural Networks (CNNs).

Chapter 3 describes the tool developed to annotate dense SLAM maps generated

from RGB-D videos with semantic and instance labels to create training and

validation datasets for video classification. It allows annotations in 3D to be

reprojected to produce many annotated 2D frames.

Chapter 4 discusses SemanticFusion which produces a semantically labelled 3D

map using a semantic segmentation probability map from a CNN and a dense

surfel-based SLAM system called ElasticFusion. The performance of the fusion

approach is validated on both the NYUv2 dataset and a small reconstruction

dataset annotated with the software described in the previous chapter.

Chapter 5 describes the generation of an extremely large (5M image) synthetic

dataset of video trajectories in indoor scenes. It provides pixel-accurate ground

truth instance annotations, as well as the camera trajectory, depth map, and

realistic ray-traced RGB images. We evaluate its potential to improve CNN

performance by enabling domain specific pretraining.

Chapter 6 tackles the limitations found in previous chapters by using object de-

tection and instance segmentation to build a map composed of discovered

object instances. The objects are reconstructed in variable resolution TSDF

volumes and are used as landmarks in a pose graph. Multiple 2D instance

segmentations are fused into the volume to segment the objects.

Chapter 7 concludes with a discussion of the research performed so far and high-

lights areas for future research.

22

Chapter 2

Preliminaries

Contents

2.1 Notation . 24

2.2 Transformations . 24

2.2.1 Minimal Parametrisations and Lie Algebra 25

2.3 Cameras . 28

2.3.1 Pinhole Camera Model 28

2.3.2 Back-projection . 30

2.4 Non-Linear Least Squares Optimisation 31

2.4.1 Iterative Closest Point 34

2.5 Convolutional Neural Networks 36

2.5.1 Semantic Segmentation 39

2.5.2 Discrete Convolutions 42

2.5.3 Max Pooling . 45

2.5.4 Batch Normalisation . 46

2.5.5 Upsampling . 48

2.5.6 Optimisation and Cross-Entropy Loss 49

2.5.7 Evaluation . 53

2.6 General-Purpose Graphics Processing Units 55

This section introduces the notational standard and preliminary background con-

cepts that are used throughout this thesis.

23

2. Preliminaries

2.1 Notation

Lower case bold letters represent N dimensional column vectors and upper case bold

letters represent N ×M dimensional matrices:

x =

⎡⎢⎢⎢⎢⎢⎣
x1

x2
...

xN

⎤⎥⎥⎥⎥⎥⎦ , x⊺ = [x1, x2 . . . xN], X =

⎡⎢⎢⎢⎢⎢⎣
x11 x12 . . . x1M

x21 x22 . . . x2M
...

...
. . .

...

xN1 xN2 . . . xNM

⎤⎥⎥⎥⎥⎥⎦ . (2.1)

In projective geometry it is useful to operate on vectors in homogeneous coordin-

ates, where an additional final element is appended to the vector and operates to

normalise the remaining elements, which are invariant when scaled by a common

factor. A normalised homogeneous vector simply has an appended “1” element.

Bold italic lower case is used to signify the homogeneous coordinates of a vector:

x =

[
x

1

]
. (2.2)

2.2 Transformations

In this work, rigid transformations between coordinate frames are used to describe

the pose of the camera as well as objects in a scene. Coordinate frames are denoted

by F−→ with an appropriate subscript describing the particular frame, e.g. the camera

frame F−→C or world frame F−→W . Points in 3D are described with reference to a

particular coordinate frame; a point described in F−→C is denoted with a left-subscript

Cp.

Rigid transformations allow a point described in one coordinate frame to be de-

scribed in a different coordinate frame. In 3D space a rigid body transformation has

6 degrees of freedom (DoF) consisting of a translation (3 DoF) and rotation (3 DoF).

A common and useful, yet over-parametrised, representation for this transformation

is a 4× 4 homogeneous matrix,

T =

[
R t

0 1

]
, (2.3)

consisting of a 3×3 rotation matrix, R, and a translation vector t ∈ R3. As rotation

has 3 DoF, only a subset of the 9-element R produces a valid rotation. It must be

24

2.2. Transformations

within the Special Orthogonal group R ∈ SO(3), such that R⊺R = RR⊺ = I (where

I is the identity matrix), with det(R) = 1. A 6 DoF transformation combining both

R ∈ SO(3) and t ∈ R3 forms a member of the Special Euclidean group, SE(3). A

group here is a mathematical group which comprises a set, G, such as the set of all

SO(3) matrices, and an operator • which in the SO(3) case is matrix multiplication.

Groups must also satisfy the four requirements of:

Closure: if a, b ∈ G then a • b ∈ G.
Associativity: if a, b, c ∈ G then (a • b) • c = a • (b • c).
Identity: I ∈ G exists such that for any a ∈ G, a • I = I • a = a.

Inverse: a−1 ∈ G exists for any a ∈ G such that a • a−1 = a−1 • a = I.

The major benefit of the homogeneous matrix form is that transformations can be

applied with simple matrix multiplication. Here we denote a transformation matrix

mapping a point Ap to Bp as TBA, such that,

Bp = TBA Ap. (2.4)

Note that in this case the R4 homogeneous coordinates of the points are used,

as denoted by italics, as is required to multiply by a 4 × 4 transformation matrix.

However this homogeneous form is often assumed for notational convenience in which

case the italics are omitted:

Bp = TBA Ap. (2.5)

A visualisation of a point expressed in two coordinate frames, and with the trans-

formation between them is shown in Figure 2.1. Transformations themselves can

also be easily composed and are invertible:

TCA = TCBTBA, TAB = T−1
BA =

[
R⊺

BA −R⊺
BAtBA

0 1

]
. (2.6)

In this work the standard format for camera poses will be the transformation from

camera to world TWC (and similarly for objects TWO). In SLAM for convenience

F−→W is often defined to coincide with the pose of the camera in the first frame of a

sequence, however any arbitrary frame of reference can be chosen.

2.2.1 Minimal Parametrisations and Lie Algebra

There exist numerous parametrisations of transformations which require fewer para-

meters than the homogeneous transform. These forms are also used within this

25

2. Preliminaries

Figure 2.1: A depiction of a point p expressed in two coordinate frames, F−→W and
F−→C , with the transformation between the two, TCW .

thesis, most notably when pose optimisation is required. As discussed above, the

homogeneous form for rotations is highly over-parametrised with 9 parameters and

3 DoF. Only a small subspace within the 9-dimensional parameter-space produces

a valid rotation matrix. In optimisation, when rotations are iteratively updated, it

is simpler to optimise in a space that naturally constrains the solution to always

produce a valid rotation, rather than attempting the more complicated approach of

adhering to or verifying multiple non-linear constraints to keep the matrix within

the SO(3) group.

Some examples of minimal parametrisations of 3D rotations are Euler angles,

angle-axis, and quaternions. Each of these parameterisations can be useful and

particularly suited to a given task. As our aim is to perform optimisation within the

SO(3) group we require derivatives with respect to the transformation parameters

in order to use gradient methods. It is therefore useful to understand that the SO(3)

group is in fact a Lie group with an accompanying Lie algebra which is the local

derivative of the SO(3) group manifold. A number of useful resources are available

which provide more detailed motivation and mathematical underpinnings to the

practical use of Lie groups in computer vision [Eade, 2014, Drummond, 2014, Bloesch

et al., 2016]. Here we provide just a brief high-level summary for completeness.

A Lie group is a mathematical group, as described above, that also forms a smooth

differentiable manifold. As a smooth manifold, the Lie group has an associated

Lie algebra, so(3) ∈ R3, which is the local tangent space around the identity of

26

2.2. Transformations

the group. The Lie algebra of the group is a particularly natural space in which

to perform iterative updates on the group element. It forms a vector space with

the same dimensionality as the number of DoF of the group, so(3) ∈ R3, and so

each step can freely move within the entire vector space. There also exists an

exponential map that allows any point in the vector space, here denoted ζ ∈ R3, to

be mapped back exactly into a group transform, exp : g→ G. For the SO(3) group

the exponential map has a closed form called the Rodriguez formula which can in

practice be efficiently calculated. The exponential map can also be inverted using

the logarithm to map a group member to the tangent vector space, log : G→ g.

A final important property is that a local tangent space exists around every group

member and it is possible to transform a vector in the tangent space (such as that

around the identity) to the tangent space around any other member, R, through

the Adjoint operator:

exp(AdjRζ) = Rexp(ζ)R−1. (2.7)

A nice property of the Adjoint transformation is that it is linear. In the SO(3) case

the Adjoint is the same as the applied rotation matrix AdjR = R. In Chapter 6

this identity will be of use when transforming an ICP system defined with left-

perturbations as shown in Equation 2.8 to a pose graph system which uses right-

perturbations [Kümmerle et al., 2011].

To apply local perturbations to a member of the group T, the⊞ (boxplus) operator

is used. It is a generalisation of vector addition to non-Euclidean spaces:

T⊞ ζ ≜ exp(ζ)T. (2.8)

In the case of the translation group T(3) which is already a simple vector space this

operator simplifies to standard vector addition. In more complex spaces such as

for the SO(3) group and its Lie algebra this operator requires exponentiation to a

3×3 rotation matrix using the Rodriguez formula followed by matrix multiplication.

Analogously to the addition operator, generalised subtraction is performed with the

⊟ (boxminus) operator such that:

T1 ⊟T2 ≜ log(T1T
−1
2). (2.9)

27

2. Preliminaries

These operations work together as one may intuitively expect:

(T⊞ 0) = T, (2.10)

(T⊞ ζ)⊟T = ζ, (2.11)

T1 ⊞ (T2 ⊟T1) = T2. (2.12)

For optimisation of general rigid body transformations the SE(3) group is used.

The derivative of a transformed point with respect to the Lie algebra parameters

which transform it is of particular importance for SLAM and dense tracking:

Bp = (TBA ⊞ ζ)Ap. (2.13)

The 3× 6 Jacobian of Bp with respect to ζ is:

∂Bp

∂ζ
|ζ=0 = (I| −B p×), (2.14)

where p× is the skew-symmetric cross product matrix of p:

p× =

⎡⎢⎢⎣
0 −p3 p2

p3 0 −p1
−p2 p1 0

⎤⎥⎥⎦ . (2.15)

2.3 Cameras

The systems developed in this thesis are based on commodity RGB-D sensors such

as the Microsoft Kinect and Asus Xtion Pro Live. These sensors can provide a

30Hz VGA (640 × 480) video stream of dense depth readings which are registered

on-board the device to the associated RGB frames. The underlying technology of

both of these sensors was developed by PrimeSense [Garcia and Zalevsky, 2007]. It

relies on an infrared speckle pattern projected from the device and captured by an

Infrared sensor offset along the sensor x-axis. The captured pattern is compared

against reference patterns from surfaces captured at known distances to compute

the depth. Figure 2.2 shows the Asus Xtion Pro Live camera in an example scene.

The captured RGB image and Infrared image of the projected speckle pattern can

be seen alongside the final depth map.

2.3.1 Pinhole Camera Model

The standard pinhole camera model (Figure 2.3) is used to model this RGB-D

camera in the SLAM systems developed in this thesis. It is also used when generating

28

2.3. Cameras

Figure 2.2: The Asus Xtion Pro Live capturing a scene in RGB-D.

the synthetically rendered dataset described in Chapter 5. The pinhole camera

model describes the projection of 3D points, Cp, into 2D pixel coordinates denoted

as u. The perspective projection function, denoted π, projects a 3D point in camera

coordinates Cp = [x, y, z]⊺ to homogeneous coordinates on the unit plane Cp
′ =

[x′, y′, 1]⊺:

Cp
′ = π

⎛⎜⎜⎝
⎡⎢⎢⎣
x

y

z

⎤⎥⎥⎦
⎞⎟⎟⎠ =

⎡⎢⎢⎣
x
z
y
z

1

⎤⎥⎥⎦ =

⎡⎢⎢⎣
x′

y′

1

⎤⎥⎥⎦ . (2.16)

These coordinates are then mapped to pixel coordinates using the 3 × 3 intrinsic

matrix denoted K, which in this case is of the form:

K =

⎡⎢⎢⎣
fx 0 cx

0 fy cy

0 0 1

⎤⎥⎥⎦ . (2.17)

The focal lengths fx and fy are measured in pixels and can therefore be different

for each axis as the physical width and height of a pixel are not always equal. The

offsets cx and cy account for the top left corner of the image being (0,0) in pixel

coordinates, rather than having an origin at the principal point. Combining these

operations the homogeneous pixel coordinates of a projected point becomes,

u = Kπ(Cp) =

⎡⎢⎢⎣
fxx
z + cx

fyy

z + cy

1

⎤⎥⎥⎦ . (2.18)

29

2. Preliminaries

xC

yC

zC
F−→C

Cp = [x, y, z]
⊺

u1

u2

z =
f

x
′

y
′

u

principal
point

principal
axis

Figure 2.3: An illustration of the geometry of perspective projection. Modified
from https://tex.stackexchange.com/questions/96074, original author https:
//tex.stackexchange.com/users/22653/perr0. License: CC BY-SA 3.0.

Upper case letters denote image intensity as a function of pixel coordinates, such

that I(u) refers to the intensity of image I at pixel coordinates u. As u is continuous

but I is discrete, bilinear interpolation or nearest neighbour sampling may be used

to evaluate the final intensity value of the function.

2.3.2 Back-projection

Perspective projection as defined in Eq. 2.18 is not an invertible function as the

depth dimension has been collapsed rendering all of the points along a ray path in-

distinguishable. However, given a dense depth map from an RGB-D sensor, denoted

D, and assuming a pinhole camera model, we can recover the collapsed z-dimension

to invert the projection equation and estimate the original 3D point in F−→C :

Cp = π−1(K−1u, D(u)), (2.19)

where,

K−1 =

⎡⎢⎢⎣
1
fx

0 − cx
fx

0 1
fy
− cy

fy

0 0 1

⎤⎥⎥⎦ , π−1(u, D(u)) =

⎡⎢⎢⎣
D(u)u1

D(u)u2

D(u)

⎤⎥⎥⎦ . (2.20)

30

https://tex.stackexchange.com/questions/96074
https://tex.stackexchange.com/users/22653/perr0
https://tex.stackexchange.com/users/22653/perr0

2.4. Non-Linear Least Squares Optimisation

This simplifies to,

Cp =

⎡⎢⎢⎣
D(u)u1−cx

fx

D(u)
u2−cy

fy

D(u)

⎤⎥⎥⎦ . (2.21)

This operation can be performed for each pixel within a valid depth image to pro-

duce a point cloud or ‘vertex map’, as visualised in Figure 2.4. The depth map is

registered to the RGB image on the device, and the association of pixel locations is

used to colour the points in the point cloud. We use the default camera intrinsics

provided by the public ElasticFusion implementation in the experiments presented

in Chapters 3 & 4. In the evaluation presented in Chapter 6 we use the ROS de-

fault camera intrinsic parameters as recommended in the RGB-D SLAM Benchmark

documentation [Sturm et al., 2012].1

Figure 2.4: The back-projected point cloud from the scene in Figure 2.2.

2.4 Non-Linear Least Squares Optimisation

Non-Linear Least Squares (NLLS) optimisation is frequently used in SLAM to es-

timate the pose of a camera from a series of measurements and also to optimise the

map elements. For a given set of state parameters, x ∈ Rp, such as the state of the

current camera pose or map elements, the aim of NLLS is to find the parameters,

x̂, which minimise the squared residuals r(z,x) between the model’s N predicted

1
For details see https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats.

31

https://vision.in.tum.de/data/datasets/rgbd-dataset/file_formats

2. Preliminaries

observations, h(x), and the actual measurements observed, denoted by z:

E(x) = r(z,x)⊺Wr(z,x), (2.22)

x̂ = argmin
x

E(x), (2.23)

where W is a symmetric weighting matrix specifying the relative importance of

different residuals which can be left as the identity I in the absence of explicit

weights. The residual function can be calculated via simple subtraction:

r(z,x) = z− h(x), (2.24)

or through a more advanced error term such as the point-to-plane error function

described below in Section 2.4.1.

If Equation 2.24 is a linear function of x such as r(z,x) = z−Ax then a closed-

form solution of x̂ can be calculated using the normal equation. This can be derived

by finding the point where ∂E
∂x = 0:

x̂ = (A⊺WA)−1A⊺Wz. (2.25)

Unfortunately for most SLAM problems the measurement function is non-linear and

so an iterative optimisation scheme such as Gauss-Newton or Levenberg-Marquardt

must be employed to solve the least squares problem. The convergence of these

approaches is not guaranteed and it may converge to a local minimum [Eade, 2009].

The Gauss-Newton system begins with an initial guess of the parameters, x0.

It then operates by iteratively linearising r(z,x) about the current guess using a

first-order Taylor approximation and the N × p Jacobian J = ∂r(z,x)
∂x :

r(z,x⊞ δ) ≈ r(z,x0) + Jδ. (2.26)

Substituting this linearised form into the error function given in Equation 2.22 and

setting the derivative to equal zero allows us to solve the system in the same manner

as for linear least squares using the normal equation:

E(x⊞ δ) = (r+ Jδ)⊺W(r+ Jδ), (2.27)

∂E

∂δ
= 2(r+ Jδ)⊺WJ, (2.28)

0 = r⊺WJ+ δ⊺J⊺WJ, (2.29)

δ = −(J⊺WJ)−1J⊺Wr. (2.30)

32

2.4. Non-Linear Least Squares Optimisation

After calculating the update it is applied to the state estimate x1 = x0 ⊞ δ and the

process is iterated usually until the updates becomes sufficiently small, or a certain

number of iterations is reached. Here (J⊺WJ) is an approximation to the Hessian

of Equation 2.22 with respect to the parameters x. It is an approximation which

only relies on the Jacobian of r(z,x) as higher-order terms have been dropped by

the first-order Taylor approximation in Equation 2.26.

The use of least squares can also be motivated by a probabilistic formulation of

the problem. Under the common assumption of K independent measurements with

additive zero-mean normally distributed noise:

zk = hk(x) + ϵk, (2.31)

where ϵk ∼ N (0,Σk). The maximisation of the likelihood function L(x) = p(z|x)
(which will also be Gaussian) can be formulated as a least squares problem:

x̂ = argmax
x

L(x), (2.32)

x̂ = argmax
x

K∏
k=1

p(zk|x), (2.33)

x̂ = argmax
x

K∏
k=1

exp(−(zk − hk(x))
⊺Σ−1

k (zk − hk(x))). (2.34)

As the logarithm is monotonic we can use it to change the multiplicative terms into

additive ones without changing the argmax. Finally converting from an argmaxx to

an argminx by negating the equation forms the system into a weighted least squares

problem. We can also see that in this setting the W matrix above is specified by

the inverse covariance matrix of the likelihood function, Σ−1:

x̂ = argmin
x

K∑
k=1

(zk − hk(x))
⊺Σ−1

k (zk − hk(x)). (2.35)

In practice outlier measurements that are not distributed according to the as-

sumed Gaussian noise model occur. The squared residual of these outliers can have

particularly large and detrimental effects on the optimised parameters. Therefore

some form of additional robustness measures are often also employed, such as outlier

rejection or robust loss functions like the Huber loss, which mitigate large squared

error terms. In other cases more extreme forms of robust regression can be used

instead of least squares to fit model parameters, such as Random Sample Consensus

(RANSAC). These methods will be highlighted when they are used in later chapters.

33

2. Preliminaries

2.4.1 Iterative Closest Point

A common approach in real-time dense SLAM systems is to alternate between track-

ing and mapping. Assuming a reconstructed dense reference map r, Iterative Closest

Point (ICP) [Besl and McKay, 1992] is a NLLS method which can be used to register

it to an incoming live frame l by estimating the transform between the two [New-

combe et al., 2011b]. In this case that transform describes the estimated camera

pose, T̃CrCl
.

As a brief overview, the classic ICP algorithm begins by associating the closest

points in the source point cloud Vl (in our case constructed from a live frame in F−→Cl
)

and the reference (map) point cloud Vr, here with vertices defined in F−→W . NLLS

is used to find the rigid body transform which minimizes the sum of the squared

distances between these corresponding points. After optimisation the estimated

transform is applied to the source point cloud, a new set of associations are calculated

based on the closest points and the procedure is repeated.

The ICP algorithm explained here is modified from the above in a number of

ways as depicted in Figure 2.5 in a 2D cross-section. The modified version is called

Fast ICP [Rusinkiewicz and Levoy, 2001]. For performance, projective data associ-

ation [Blais and Levine, 1995] is used to calculate dense correspondences between

the two images rather than searching for the closest two points in terms of Euclidean

distance. Each pixel in the live depth image is first back-projected to a 3D point

in the live camera frame, F−→Cl
, using Equation 2.21. This produces a vertex map,

Vl(ul), of 3D points for each pixel location, ul. The current estimate of the camera

pose, T̃WCl
, is then used to transform these points into the reference frame, F−→Cr

.

Correspondences to reference image pixels, ur, can then be calculated by projecting

the live points into the reference image plane:

ur = Kπ(T−1
WCr

T̃WCl
Vl(ul)). (2.36)

The error metric is also modified to be the point-to-plane error [Chen and Medioni,

1992] using the reference surface normal. It has been found to work well in practice

with projective data association, as it allows the surfaces to ‘slide’ over each other.

The surface normal may be estimated from an implicit surface representation such

as a TSDF or can be calculated from a dense depth image by using the cross-product

34

2.4. Non-Linear Least Squares Optimisation

Figure 2.5: A visualisation of projective data association and the point-plane residual
error used in Fast ICP [Rusinkiewicz and Levoy, 2001].

of neighbouring pixels’ 3D points:

Nr(u) = (Vr([u1 + 1 u2])− Vr([u1 u2]))× (Vr([u1 u2 + 1])− Vr([u1 u2])). (2.37)

The residual is calculated by projecting the distance between two corresponding

vertices onto the surface normal vector of the reference image:

ricp(T̃WCl
,ul) = Nr(ur) · (Vr(ur)− T̃WCl

Vl(ul)). (2.38)

As already mentioned NLLS methods are quite sensitive to outliers and so only

a subset Vvalid ⊆ Vl of valid vertices are used in the final error function. Filtering

criteria may place hard limits on the difference in distances ∥Vr(ur)− T̃WCl
Vl(ul)∥2

or the normal divergence Nr(ur) · Nl(ul) between two corresponding points. The

final ICP error function becomes:

Eicp(T̃WCl
) =

∑
ul∈Vvalid

ricp(T̃WCl
,ul)

2. (2.39)

This NLLS problem can then be solved using the Gauss-Newton algorithm. Using

t to denote the Gauss-Newton iteration index we linearise about the previous estim-

ate, T̄t
WCl

, and optimise for the update perturbation, ζt, where Tt+1
WC = T̄t

WC ⊞ ζt.

Each row of the |Vvalid| × 6 Jacobian, Jicp, corresponds to the residual of a given

ul ∈ Vvalid. It can be calculated from Equations 2.14 & 2.38 using the chain rule:

Jicp =
∂ricp(ζ,ul)

∂ζ
|ζ=0 = −[N⊺

r (ur), (Vl(ul)×Nr(ur))
⊺], (2.40)

35

2. Preliminaries

with iterative normal equation updates of:

ζt = −(J⊺
icpJicp)

−1J⊺
icpricp. (2.41)

The number of measurements in dense ICP is approximately the number of pixels

in the image. However while the Jacobian is large (|Vvalid| × 6), the final system of

equations which must be solved is only 6× 6 as shown in Equation 2.41. Section 2.6

of this chapter will introduce GPU programming which provides the capability to

efficiently perform the calculations to reduce the error functions Hessian approx-

imation J⊺
icpJicp and the Jacobian J⊺

icpricp into sizes 6 × 6 and 6 respectively. It is

then possible to efficiently copy this small amount of data to the CPU where it can

be solved using a variety of approaches such as Cholesky Decomposition (CD) or

Singular Value Decomposition (SVD) which are well supported in libraries such as

Eigen [Guennebaud et al., 2010]. After solving for the update it is applied to the

current estimate:

T̃t+1
WCl

= T̃t
WCl

⊞ ζt. (2.42)

Instead of simply repeating this process at the same resolution, a coarse-to-fine

approach is generally adopted [Bergen et al., 1992]. This improves the speed of

convergence and also makes the optimisation itself more robust by providing a wider

basin of convergence. As a specific example, in a three-level coarse-to-fine pyramid,

a 640 × 480 reference and source image may be half-sampled to 320 × 240 and

160×120. ICP is first performed on the coarsest 160×120 resolution to produce an

initial estimate the transform which is used as the initial guess for the finer 320×240
resolution.

2.5 Convolutional Neural Networks

Dense SLAM provides the first key component for automatic 3D scene understand-

ing, namely a map reconstruction and camera localisation. The second required

component is automated semantic understanding of the reconstructed map itself.

In this thesis the semantic understanding component is provided by recent advance-

ments in Deep Learning and Convolutional Neural Networks (CNNs). As discussed

in Chapter 1 CNNs are a biologically inspired hierarchical approach to visual pro-

cessing that have become the dominant method in Computer Vision for Image Clas-

sification, Semantic Segmentation, and Object Detection. Although only a subset

of the wider area of study of Deep Learning and Artificial Neural Networks, a huge

36

2.5. Convolutional Neural Networks

range of CNNs have been developed, each with different architectures and custom

layers all of which can be composed in myriad ways.

In its simplest form a feedforward CNN is composed of sequential layers of convo-

lutional filters followed by non-linearities. Figure 2.6 illustrates this layered structure

of CNNs and groups convolutions together with the subsequent non-linearity (here

a ReLU which is described later in this chapter). As will shortly be discussed, con-

volutions are used to process smaller receptive field ‘patches’ of an image with the

same filter in a tiled fashion. In this way the parameters of the filter are ‘shared’

across the whole image. This is a useful trait because it not only reduces the number

of parameters thus reducing overfitting but it also naturally provides translational

‘equivariance’ between the input image and the output feature map; if the image is

shifted to the left the same features will be computed but they will equally be shifted

to the left. The final result in classification tasks will also hopefully be translation

invariant by producing an identical (non-shifted) classification for the translated

input.

Figure 2.6: An example CNN architecture for image classification. In this case the
image is classified into 10 classes as can be seen from the number of channels in the
final layer. In this diagram the vertical arrangement groups layers by their spatial
resolution which is a convenient standard when illustrating semantic segmentation
CNNs later.

Convolutional filters in a CNN are stacked or ‘layered’ on top of each other. A

common architectural choice is to increase the number of convolutional feature maps

in later layers. Intuitively the idea behind this is that more numerous complex global

image features in higher layers are composed from a hierarchy of less numerous lower-

level features such as edges and blobs. Figure 2.7 visualises this hierarchy using the

37

2. Preliminaries

approach developed by [Yosinski et al., 2015]. It operates by optimising image

features (subject to certain regularisation constraints) to maximise the activation

for a given output feature pixel. Simple edges and colour features can be seen in the

bottom layer which are composed in later layers to larger and more complex features.

The final layer exhibits recognisable characteristics of the associated object.

Figure 2.7: A visualisation of the hierarchy of features at different layers of an
‘AlexNet’-type CNN trained on ImageNet (ILSVRC 2012). The size of the images
above indicate the receptive field of the filter, and for each filter the output of 9
different gradient descent runs are visualised. Created using optimised images and
source code from https://github.com/yosinski/deep-visualization-toolbox.

The trainable parameters within these convolutional filters are known as the

38

https://github.com/yosinski/deep-visualization-toolbox

2.5. Convolutional Neural Networks

CNN’s ‘weights.’ Supervised training proceeds by updating the weights using gradi-

ent descent methods in all of the layers of the CNN via backpropagation, discussed

in Section 2.5.6. The supervisory signal to compute the gradient is provided by

training examples with accompanying ground truth labels. The first example of this

style of modern CNN architecture and training method was proposed by [LeCun

et al., 1998] and was called ‘LeNet-5’ which was used for character recognition on

the MNIST dataset of handwritten digits. A useful resource for further reading on

Deep Learning in general is the textbook [Goodfellow et al., 2016].

2.5.1 Semantic Segmentation

In later chapters CNNs are used for both object detection and instance segmenta-

tion, however the most common task CNNs are used for in this thesis is semantic

segmentation. This can be thought of as a simple generalisation of the classical

image classification task. In image classification the CNN produces a probability

distribution describing the probability that a given input image is labelled as be-

longing to one of a set of n predefined classes, C = {class1, class2, ...classn}. The

probability distribution over all n classes is denoted as p(c | I). A final layer called

a ‘fully connected’ layer is often used for this purpose, which performs a linear map-

ping on the entire feature map of the layer below it with n equally sized sets of

weights via dense matrix multiplication.

The output vector, denoted z ∈ Rn, of the fully connected layer is not a valid

probability distribution. A special non-linearity called a ‘Softmax’ can be used to

map the vector of arbitrary real numbers (positive, negative, or zero) to a vector of

scalars in the range (0,1) which sum to 1:

softmax(z)i =
ezi

n∑
j=1

ezj
. (2.43)

The softmax function has the advantage of providing smooth gradients everywhere

which is useful for training and is directly motivated by the maximum likelihood

estimation of −log(p(c|I)) and the cross-entropy loss discussed in Section 2.5.6

(see [Goodfellow et al., 2016] for a more in-depth discussion). The outputs of the

CNN can be seen as predicting the probabilities in log space and are termed ‘logits’.

Logits can then be mapped via the softmax back to a valid probability distribution.

Architecturally, a classification output can be achieved by designing the final layer

39

2. Preliminaries

of the CNN to output a tensor of ‘logits’ of size n×1×1 where each channel represents

a given class and only a single pixel is output to represent a label for the whole image.

Although conventionally this dense multiplication is called a fully connected layer, it

is convenient here to understand it as a special case of a convolutional layer, where

the kernel size exactly matches the input size. In this arrangement each of the n

output channels take as input the complete set of feature maps of the layer below,

and multiplies each pixel of the input feature map with a learned weight to produce

a single activation, the classification logit. This n × 1 × 1 output for classification

has already been illustrated for the 10-class case in the CNN diagram shown in

Figure 2.6.

Ensuring every element in the CNN is a convolution is known as a Fully Convolu-

tional Neural Network [Long et al., 2015], and it is particularly useful for semantic

segmentation. In semantic segmentation the aim is to output a label for each pixel

in a given image rather than one label for the image as a whole. The Fully Convo-

lutional structure outlined above allows the final ‘classifier’ filter to stride along a

larger input feature map to output logits for each pixel in the feature map. The final

softmax layer operates independently over the n channels to produce a probability

distribution at each pixel location. This probability ‘heatmap’ over an image still

contains n channels for each class, and the argmax is used to select the most likely

class as shown in Figure 2.8.

Figure 2.8: An example from the NYUv2 test set of per-channel semantic probability
maps as well as the final labels compared to the ground truth labelling.

As already discussed, a common architectural choice in a CNN is to reduce the

spatial resolution in later layers and increase the number of feature maps. However

40

2.5. Convolutional Neural Networks

this creates a problem for semantic segmentation which also requires a high spatial

resolution in the final prediction layer. A wide range of approaches to this problem

exist [Long et al., 2015, Noh et al., 2015, Ronneberger et al., 2015, Lin et al.,

2017, Chen et al., 2018], but almost all involve some form of encoder-decoder style

bottleneck architecture alongside some form of ‘skip connections.’

The bottleneck approach is designed around a normal CNN with progressively

lower spatial resolution and larger numbers of feature maps up to a minimum spa-

tial resolution known as the ‘bottleneck.’ After this, the operations are reversed

in a decoder, with progressively larger spatial resolutions (via classical or learned

upsampling methods) and fewer feature maps. This allows global image information

to be combined in the bottleneck to condition the decoder output, but fine-grained

spatial resolution has been lost.

To maintain spatial information skip connections duplicate feature maps of high

resolution encoder layers and provide them as input to the upsampled decoder lay-

ers. This can be supplied as input either through concatenation (stacking feature

maps channel-wise) such as in U-Net [Ronneberger et al., 2015] or via element-wise

addition of the feature map activations such as in [Long et al., 2015]. Many altern-

ative approaches have also been used. For example in Section 4.3.2 an architecture

which stores max pooling indices and ‘unpools’ them later is used [Noh et al., 2015].

Figure 2.9 provides a network diagram of an example U-Net architecture.

Figure 2.9: A example network diagram. In this case showing the RGB-D architec-
ture based on U-Net used in Chapter 5 for semantic segmentation.

Although the above architecture is a useful starting point, and is used throughout

the thesis it must be noted that it is quite limited in the number and generality

of the classes provided. Throughout this work somewhat arbitrarily defined sets of

common indoor semantic classes are used for training and prediction. It is of course

41

2. Preliminaries

possible to encode a large number of classes in the manner above, however many of

these class tokens may be closely related and even form a hierarchy. It is therefore

unsatisfactory to treat the mistake between say a ‘monitor’ and a ‘television’ as

equally incorrect as a ‘cat’ from a ‘ceiling’.

This property of semantic similarity has been studied extensively in the machine

learning field called Natural Language Processing. It has been known since the early

2000s [Bengio et al., 2001] that semantically meaningful low-dimensional (≈300) vec-
tor spaces can be learned rather than using arbitrary ‘one-hot’ tokens with dimension

equal to the number of words. In this way similar words such as capital cities, an-

imals, people, and verbs are all grouped in close proximity. Furthermore, vector

addition illustrates particularly interesting semantic operations such as (England-

London)≈(Spain-Madrid) and (King-Man)≈(Queen-Woman) [Mikolov et al., 2013].

Replacing classification with regression in this semantic space, such as in [Socher

et al., 2013], would not only provide a more nuanced and semantically error-weighted

cost function, but also allow for novel guesses and ambiguity in responses. If the

CNN cannot classify an animal based on its appearance, the cost of guessing a vector

in the vicinity of ‘animal’ will be less costly than a completely random guess and

also still provides some useful information to the user. This is an interesting area

for future study.

2.5.2 Discrete Convolutions

The core operation in a CNN is of course the convolution. A convolution is the

integral of the product of two functions, after flipping one (here called the ‘filter’)

and striding it along the other. In discrete convolutions it is the sum over the area

of support of the kernel and the input, as shown in Figure 2.10. It can also be seen

from Figure 2.10 that in the discrete case, the product operation is the dot product,

and unwrapping the convolutional filter (or alternatively the input) into a matrix

form can reduce the convolution operation to simple matrix multiplication.

In most Deep Learning frameworks the reversal of the convolutional filter is in fact

omitted (or assumed to be performed prior to the operation) and so they actually

are performing an operation related to a convolution called ‘cross-correlation.’ As

the filters are learned from randomly initialised weights in any case, this omission

does not have a significant impact. In 2D, the filter strides over an input tensor

42

2.5. Convolutional Neural Networks

Figure 2.10: A discrete convolution (in 1D for clarity). A kernel of size 3 is applied
to a 4-length input. Zero-padding of 1 ensures the output length is also 4. The
Toeplitz matrix forms for both unwrapped input and filter are shown below.

which can be either an image or the output of previous convolutional operations

(the feature map). As in the 1D case, the filter slides along the input by a number

of pixels known as the ‘stride.’ The spatial dimension of the convolutional filter

(or ‘kernel’) is called the ‘kernel size’ which for a single channel in 2D is a H ×W
matrix, where H denotes kernel height, W kernel width. A common kernel size is

H = W = 3. The filter itself is actually of size C ×H ×W where C is dictated by

the number of input channels (e.g. for RGB it would be C = 3).

To ensure a spatial output size equal to the input size, the convolutional stride is

often set to 1 and zero-padding of kernel size−1
2 is added to the input (for the common

3× 3 kernel size zero-padding of size 1 is added). For each stride of a convolution a

43

2. Preliminaries

single output activation is calculated. An additional learned ‘bias’ parameter is also

generally added to the filter’s final activation, and can be viewed as another weight

operating on a constant pseudo-input of 1. This process is visualised in Figure 2.11

for a single filter with a 3-channel input. In a manner analogous to the 1D case,

the output of this convolution also can be seen as simple matrix multiplication by

appropriate unwrapping of the filters. This unwrapping is explicitly shown in a

small example when discussing transpose convolutions in Figure 2.14.

Figure 2.11: Discrete 2D image convolutions with a single filter (and hence, single
output channel) on an RGB input image.

Essential components within a CNN are the non-linearities or ‘activation func-

tions.’ As convolutions can be viewed as matrix multiplication, repeated compos-

ition without any non-linearities means the entire network can be compacted to a

single linear operation on the inputs. Including a non-linearity after each convolu-

tional layer allows for more expressive non-linear functions to be composed. This

non-linearity is applied elementwise to the feature map. Many non-linearities are

in use, but in this thesis the most commonly used is the Rectified Linear Unit or

‘ReLU.’ It is a simple piecewise linear function defined as,

ReLU(x) = max(0, x), (2.44)

and is shown alongside other common activation functions in Figure 2.12.

A given ‘layer’ in a CNN consists of a number of filters, each of which processes

the same input to produce one of the output channels. For example, a 3×480×640

RGB input image has 3 output channels. This would require a 3 × 3 × 3 kernel

44

2.5. Convolutional Neural Networks

−5 0 5
0.0

2.0

4.0

ReLU(x)

−5 0 5
0.0

0.2

0.5

0.8

1.0
Sigmoid(x)

−5 0 5
-1.0

-0.5

0.0

0.5

1.0
TanH(x)

Figure 2.12: The ReLU function alongside other common non-linearities.

size (if using the common 3 × 3 kernel), with a zero-padding of 1. If there are 64

of these filters they will output a 64 × 480 × 640 feature map that goes through

the non-linearity function which is the output of this layer and passed into the next

layer. The next set of 3 × 3 convolutional filters will then require kernels of size

64× 3× 3.

2.5.3 Max Pooling

If feature maps were left at full image resolution in later layers it would result in

enormous computational and memory requirements. Therefore it is also a common

feature that the spatial dimension in a CNN decreases as the number of feature

maps increases. Simply increasing the stride of a convolution as already described

is one way to reduce the spatial dimension of a feature map, but a more commonly

used approach to down sample a feature map is called Max Pooling.

Max Pooling is designed to reduce the spatial dimensions of a feature map while

preserving the highest activations. It is frequently included in CNNs after a ‘block’

of similarly sized convolutional layers. The idea is to pool multiple input activations

(on each feature map independently) into a single output by taking the maximum

activation, as depicted in Figure 2.13. The kernel size and stride can vary, but the

CNNs in this thesis almost exclusively perform max pooling with a stride of 2 and

kernel size of 2. This has the effect of halving the input size if the feature map

spatial dimensions are a multiple of 2, such that a 64×256×256 feature map would

be reduced to a 64× 128× 128 feature map.

45

2. Preliminaries

Figure 2.13: An illustration of the max pooling operation on two feature maps.

2.5.4 Batch Normalisation

Although there are a number of other layers which will be used within this thesis,

a common addition to the standard convolutional layer described above is Batch

Normalisation [Ioffe and Szegedy, 2015]. For semantic segmentation we have found

Batch Normalisation to be a useful addition. It is particularly helpful during training

as it reduces the number of training steps required for convergence, but it does lead

to complications during inference. It is also a foundational building block in many

state-of-the-art CNNs such as the Residual Network (ResNet) architecture [He et al.,

2016].

Batch Normalisation was developed to mitigate the changing activation distribu-

tions input to upper layers in a CNN as the weights in lower layers are updated.

In [Ioffe and Szegedy, 2015] they speculate on this issue (termed internal covariate

shift) and propose adding a normalisation layer to address it. In the original work,

and here, Batch Normalisation is situated between the convolutional layer and the

non-linearity, with a complete ‘layer’ often abbreviated to Conv+BN+ReLU. The al-

ternative ordering (applying Batch Normalisation after the ReLU) has also been

evaluated and found to be beneficial in certain architectures [Mishkin et al., 2016].

The Batch Normalisation layer operates by subtracting the mean and dividing

by the standard deviation of individual mini-batches during training (as discussed

in Section 2.5.6) and is applied per filter kernel. Grouping by filter kernel means

that all of the output activations produced from a given filter are included in the

statistics, i.e. all of the output pixels in all of the training examples in the mini-

46

2.5. Convolutional Neural Networks

batch. Various other grouping schemes for calculating statistics have also (almost

exhaustively) been proposed [Ba et al., 2016, Ulyanov et al., 2016b, Wu and He,

2018].

To allow this normalised output to also represent the identity transform and to

provide generality, two parameters are included which operate to scale (γ) and bias

(β) the normalised value. These parameters are differentiable with respect to the

loss and so are also trained alongside other weights in the CNN. They are commonly

initialised with γ = 1 and β = 0.

The calculation of statistics based on mini-batches allows for efficient training,

however during inference there is only a single example, and it may not be desirable

to operate on the statistics of that sample. In [Ioffe and Szegedy, 2015] the exponen-

tial moving average of the mean and variance statistics of the previous mini-batches

are calculated and stored. As the weights of lower layers, and hence input values

to upper layers are changing it is useful to slowly decay the previous statistics by a

constant τ (commonly set to 0.999) as older activations become less representative

of the activations to be expected during inference. During inference these stored

statistics operate on the feature maps rather than statistics calculated for the cur-

rent example. Algorithm 1 shows the operation of the BatchNorm layer on a single

filters’ output.

Algorithm 1: Batch Normalisation

Input : Filter activations x1..N ∈ X .
Moving average statistics EMAµ and EMA

σ
2 .

Parameters: Learned scale γ and bias β. Moving average decay, τ .
Output : Output activations z1..N = BNγ,β(x1..N)

1 µ← 1
N

N∑
i=1

xi;

2 σ2 ← 1
N

N∑
i=1

(xi − µ)2;

3 EMAµ ← τEMAµ + (1− τ)µ;
4 EMA

σ
2 ← τEMA

σ
2 + (1− τ)σ2;

5 for i← 1 to N do

6 x′i ← xi−µ√
σ
2
+ϵ

;

7 zi ← γx′i + β;

8 end

47

2. Preliminaries

2.5.5 Upsampling

It is necessary to increase the size of feature maps within a CNN in order to achieve

a reasonable resolution for tasks such as semantic segmentation. A number of ap-

proaches to this problem exist, but the two main techniques used in this thesis are

learnable ‘transpose convolutional’ layers and non-learned image upsampling. The

first approach is to learn the weights of a convolution which increases the feature

map size. This is accomplished by transposing the filter matrix illustrated in Fig-

ure 2.10, which has the result of multiplying a larger kernel by the input activation

and cumulating the strided output of this kernel into an output feature map.

Figure 2.14 shows the operation of the transpose convolutional layer, and it also

highlights a number of important caveats about the operation. It shows how trans-

posing the convolutional filter matrix allows one to invert the original operation in

terms of the sizes of the feature maps (as long as the matrices are appropriately

reshaped). It also shows that the operation is not the inverse of a convolution, as

performing the operation on the output with the same filter does not result in the

original input again. This is the reason why the widely used term for a transpose

convolution of ‘Deconvolution’ is actually quite misleading.

Figure 2.14: A diagram showing the operation of a transpose convolutional layer
with its equivalent matrix form.

A frequently encountered issue with the transpose convolutional layer is that the

cumulative striding causes a checkerboard pattern. This effect is also illustrated in

Figure 2.14 where the output values on the intersection of the two strided filters can

be seen to be larger than the non-intersected areas. For this reason [Odena et al.,

2016] suggest using image upsampling instead of transpose convolutional layers.

These upsampling layers can then be followed by a normal convolutional layer. In

48

2.5. Convolutional Neural Networks

this thesis nearest neighbour upsampling is the most common choice, however some

CNNs also use bilinear upsampling, and this will be specified where appropriate.

2.5.6 Optimisation and Cross-Entropy Loss

The weights of a CNN are optimised (also often described as ‘trained’ or ‘learned’)

using gradient descent to minimise a selected loss function, denoted L, on a given

dataset. A large variety of numerical optimisation procedures are used by the Deep

Learning community,2 however in this thesis the majority of CNNs are optimised

using the very simple and standard Stochastic Gradient Descent algorithm with mo-

mentum (SGD). Momentum acts like its physical analogue to smooth noisy gradients

and better move past saddle points and small bumps in the loss function by accu-

mulating past gradients into the velocity variable, v. For weights, wt, at training

update index t, updates proceed according to the scheme:

vt+1 = µvt − α
∂L

∂wt
(2.45)

wt+1 = wt + vt+1. (2.46)

Here α is called the ‘learning rate’ and scales the gradient. It is commonly initialised

to 0.01 and scaled by a factor of 0.1 according to a schedule based on training

iterations or loss convergence. The variable µ specifies the momentum exponential

decay, and is often set to 0.9. A µ of 0 implies no momentum and a µ of 1 means

previous updates are cumulated indefinitely. For robustness the output gradients

are also sometimes L2-norm clipped with respect to a threshold τ , often set to 5.

When the gradient’s L2-norm exceeds that threshold it is rescaled by a factor τ
| ∂L
∂w

|2
.

The ‘Stochastic’ term in Stochastic Gradient Descent stems from calculating the

gradients based on a single sample of the full dataset as an approximation to the

true gradient. In practice small ‘mini-batches’ of samples are used to reduce the

noise in parameter updates and for computational efficiency. For this reason, mini-

batch SGD is sometimes called ‘Mini-batch Gradient Descent,’ but here we will

continue to use the term SGD for mini-batches also. The full list of training samples

is randomly shuffled and samples are removed from the list in mini-batches. After

all of the training samples in the dataset have been used (termed an ‘epoch’) the

dataset is shuffled again and the procedure repeats.

2
Examples include Adadelta, Adagrad, Adam, BFGS, and RMSProp to name but a few.

49

2. Preliminaries

As the gradient is required to train the CNN, the chosen loss function must be

differentiable and penalise predictions far from the ground truth label. A common

loss function for classification, and by far the most frequently used in this thesis, is

the negative log-likelihood of the multinomial distribution also known as the cross

entropy loss. Cross entropy, denoted H(p, q), is a term derived from information

theory which calculates the expected ‘cost’ in bits (or ‘nats’ if using the natural

logarithm) of using a probability distribution, q, to design an optimal encoding

scheme to specify which sample, such as a class label c from a set of n classes, was

drawn from the true distribution of labels, p, in a random trial:

H(p, q) = −
n∑

i=1

p(ci) log q(ci). (2.47)

In our classification task, training examples are pairs of images and labels, (I, g),

where labels can be represented with a distribution, p(c), and are encoded as a ‘one-

hot’ vector, with a probability of 1 for the ground truth class, cg, and 0 elsewhere. It

can be seen from Equation 2.47 that in this case the result of the summation is only

dependent on one value of the q(c) distribution, namely q(cg) i.e. the probability

the CNNs assign to the true ground truth class (although the other logits do often

have an implicit impact due to the normalisation in the Softmax function below).

The loss for a given training example therefore becomes the negative logarithm of

the predicted probability of the ground truth class, which is 0 when q(cg) = 1 and

approaches ∞ as q(cg) tends towards 0. A plot is shown in Figure 2.15.

The probability distribution q(c) is the output of the last CNN layer and can be

seen as a function f(I,w) of the CNN weights, w, and the input image, I, which

then goes through the softmax to produce a probability distribution. For a number

of training examples, M , such as a mini-batch or the set of all pixels in a mini-batch

for semantic segmentation, the loss is calculated by taking the average:

L(I, g,w) = − 1

M

M∑
m=1

log softmax(f(Im,w))gm . (2.48)

A regulariser on all of the weights, w, such as an L2-norm is also commonly used to

prevent over fitting via large weights. This results in an extra term, 1
2 ||w||

2
2, being

added to the standard classification loss function.

Before training the weights are often initialised with small random values either

from a Gaussian distribution, a more refined scheme such as Glorot [Glorot and

50

2.5. Convolutional Neural Networks

0.0 0.2 0.4 0.6 0.8 1.0
q(cg)

0

2

4

6

C
ro

ss
-E

nt
ro

py
L

os
s

Figure 2.15: The Cross-Entropy or Negative Log-Likelihood Loss

Bengio, 2010] or He initialisation [He et al., 2015]. After that, a training example

is fed into the network during the forward pass (or forward-propagation), and the

output prediction is used to calculate the scalar loss. To update the weights, back-

propagation [Rumelhart et al., 1986] is used to calculate the gradients of the loss

with respect to each of the weights for a given training example.

As we operate on K sequential layers of the CNN, the function f(Im,w) can be

viewed as a composition of functions, with each function representing a layer:

f(I,w) = fK(..f2(f1(I,w1),w2)..wK). (2.49)

Although a ‘layer’ was above described in terms of CNN architectures as the com-

position of a convolution and non-linearity (sometimes with Batch Normalisation),

for the purposes of back-propagation these operations are separated to produce more

modular systems and simpler derivative calculations. Operations are occasionally

combined again for numerical stability, such as when taking the derivative of the

commonly combined softmax and cross entropy layers. Back-propagation is essen-

tially a recursive application of the chain rule to the composite CNN function and

the loss function. It works backwards starting from the derivative of the scalar loss

with respect to the output of the final CNN layer:

∂L

∂fK
=

1

M

M∑
m=1

softmax(f(Im,w))− 1. (2.50)

51

2. Preliminaries

After calculating the ∂L
∂fK

term for the first layer, this term can be used to calculate

the ∂L
∂wK

term needed for the wK weight update. This is possible because, by design,

all of the layer functions are differentiable with respect to their weights. It can also

be used to calculate the loss with respect to the inputs to the layer, ∂L
∂fK−1

:

∂L

∂wK
=

∂L

∂fK

∂fK
∂wK

, (2.51)

∂L

∂fK−1
=

∂L

∂fK

∂fK
∂fK−1

. (2.52)

The ∂L
∂fK−1

term can then be passed down to the K−1 layer and is used to calculate

the weight gradients of the layer below as well as the ∂L
∂fK−2

term for the layer after

that and so on:

∂L

∂wK−1
=

∂L

∂fK−1

∂fK−1

∂wK−1
, (2.53)

∂L

∂fK−2
=

∂L

∂fK−1

∂fK−1

∂fK−2
. (2.54)

In practice the full Jacobians
∂fK−1

∂wK−1
and

∂fK−1

∂fK−2
are not explicitly calculated and

multiplied with the ∂L
∂fK−1

Jacobian, because this would require huge amounts of

memory and be wasteful in the case of sparse connections such as elementwise non-

linearities or shared weights in a convolution. Instead a direct product and sum

aggregation of the required partial derivatives, ∂L
∂fK−1

, with the relevant weights,

wK−1, and inputs, fK−2, can often be performed.

Additionally, although simplified here in the mathematical notation to vectors

and Jacobian matrices, in practice 4-dimensional tensors are required for training a

2D CNN (batch size×channels×height×width). However these can also be thought

of as being ‘reshaped’ into an appropriate vector form and this does not affect the

above mathematical underpinnings.

After calculating the gradients for all of the weights in the CNN they are updated

simultaneously according to Equation 2.45. The updated weights are then used for

the forward pass of the next mini-batch of training data. This procedure continues

until some stopping criteria is reached, often after a set number of training epochs

or when a chosen error metric begins to increase on a held-out validation set.

Other more complicated tasks than classification are approached using CNNs in

later chapters of this thesis, such as object detection and instance segmentation. The

52

2.5. Convolutional Neural Networks

‘backbone’ of these architectures rely heavily on the layers and methods already de-

scribed in this chapter, but generally include some additional task specific operations

and custom loss functions. These will be introduced and described in more detail in

the relevant section.

2.5.7 Evaluation

During optimisation (and afterwards) performance metrics provide a valuable dia-

gnostic tool to evaluate the improvement or detriment of a change in the methodo-

logy. A number of different performance metrics are used in this thesis to quantit-

atively evaluate the semantic segmentation performance. The simplest metric is the

pixel (or global) accuracy. That is, for each pixel with a valid ground truth labelling

the predicted label is compared and the proportion of correctly assigned labels out

of all valid ground truth labels is the accuracy. Using Ngp to denote the number of

pixels with ground truth label g ∈ C which have been predicted to be class p ∈ C:

Pixel Accuracy =

∑
g∈C

Ngg∑
g∈C,p∈C

Ngp
, (2.55)

for example, if there are 1000 labelled pixels (
∑

g∈C,p∈C
Ngp = 1000), and for 600 of

them the predictions are correct, (
∑
g∈C

Ngg = 600), then the pixel-wise accuracy is

0.60.

A complication commonly encountered is that labelled images often contain areas

where no labelling has been provided called a ‘void’ or ‘unknown’ class. For the pur-

poses of most metrics these pixels are completely discounted from any performance

metric as one cannot tell whether the system’s prediction was correct or not. As the

performance metrics described here are defined at the pixel-level this implies that

images with large areas that are not labelled count for less in the final total.

For diagnostic purposes, summing the performance of a system into a single num-

ber can mask problems. A confusion matrix is a useful depiction of all of the

misclassifications for a multi-class segmentation problem. It is a square |C| × |C|
matrix in which each entry is the already defined term, Ngp. Dividing each row of a

confusion matrix by the sum of that row (
Ngp∑

g∈G
Ngp

) produces a normalised confusion

matrix, in which each entry indicates the proportion of ground truth pixels classified

53

2. Preliminaries

as a certain other class. From the perspective of the confusion matrix, the pixel-wise

accuracy is the sum of the diagonal (the trace) over the sum of the entire matrix.

When there are imbalanced classes the simple pixel-wise accuracy can be quite

misleading. For example suppose there are only two classes, C = {structure, books}.
If structure makes up 99

100 pixels of the ground truth then a semantic predictor which

always predicts ‘structure’ will achieve 99% Pixel Accuracy without even looking at

the image input. Two common metrics which aim to alleviate this are the Class

Average Accuracy and the mean Intersection over Union (mIoU).

The Average Class Accuracy calculates the accuracy for each class independently

and then takes the average of them:

Average Class Accuracy =
1

|C|
∑
g∈C

Ngg∑
p∈C

Ngp
. (2.56)

This is equivalent to the mean of the diagonal of the normalised confusion matrix.

In the case of the ‘structure’ predictor described above the average class accuracy is

therefore 1
2(

99
99+

0
1)=50%, as it achieves 100% for the structure class but 0% for books.

This is a fairer sounding statistic than 99% however as noted by [Everingham et al.,

2010], giving an individual class accuracy of 100% for structure is itself misleading. If

the classifier predicts a certain pixel to be structure, even on this dataset in which it

scored 100% accuracy for structure it still only has a 99% probability being correct,

as 1% of the time it produced a false positive.

The mIoU metric is similar to the Average Class Accuracy, except that it takes

into account false positives in the denominator:

Mean Intersection over Union =
1

|C|
∑
g∈C

Ngg∑
p∈C

Ngp +
∑
g
′∈C

Ng
′
g −Ngg

. (2.57)

As the name suggests, this is done for each class by taking the area of correct

predictions (the areas where the predictions class overlaps with the ground truth)

and dividing by the union of these two areas (i.e. the sum of both areas minus

the intersection). In the case of the structure predictor the IoU for structure is
99

99+100−99 = 99% and 0
1+0−0 = 0% for floor giving a mIoU of 49.5%. Figure 2.16

illustrates a worked example of all of the described metrics, as well as the equivalent

confusion matrix from which they can be calculated for a given ground truth label

and prediction.

54

2.6. General-Purpose Graphics Processing Units

Figure 2.16: An illustration of the frequently used semantic segmentation perform-
ance metrics.

It should be noted that for specific tasks certain misclassifications could be con-

sidered much more costly than others. In such a case more specialised metrics

should be used to account for the cost of a given error. In this work the more gen-

eric performance metrics commonly used in semantic segmentation benchmarks is

often used. The idea being to provide a general semantic mapping framework which

can be tailored to specific tasks when required.

2.6 General-Purpose Graphics Processing Units

The two main threads of research in this thesis of Deep Learning and dense SLAM

have both been enabled by the rise of powerful consumer Graphics Processing Units

(GPUs). A very brief introduction to GPU computing is therefore provided here

and some more specific implementation details will be included in later chapters

where appropriate.

GPUs were, as the name suggests, originally designed for 3D rendering and were

optimised for performing the same set of operations on large batches of input data.

They have thousands of processing cores in contrast to modern Central Processing

Units (CPUs) which have tens of cores. A GPU is designed to operate in a highly

parallel manner with multiple Stream Processors containing local memory on which

their many cores can operate quickly and a larger slower DRAM memory which is

global to the whole GPU is used for memory transfers to and from the host CPU.

55

2. Preliminaries

The allocation of more die space to Arithmetic Logic Units on a GPU provides

greater bulk computational processing power than the CPU.3 In previous years,

accessing this computational power relied on harnessing specialised graphical shader

pipelines in a manner they were not originally designed for in order to solve the

actual computational problem at hand. The availability of higher level General-

Purpose GPU programming languages such as CUDA and OpenCL compatible with

modern consumer GPU hardware has now granted significantly improved access to

the computational power of GPUs to the scientific community.

The GPU hardware used in this thesis is manufactured by NVIDIA. NVIDIA has

developed the CUDA programming language for programming computation on their

GPU hardware. CUDA provides a useful API and compiler (nvcc) which can be

accessed and called in a straightforward manner in C++ programs. Listing 2.1 shows

a simple CUDA program illustrating many of the most basic operations involved in a

CUDA kernel. In this case the kernel sums the values in an array, using a reduction

algorithm similar to that employed in Chapter 6 for ICP Jacobian reduction of the

Gauss-Newton system.

In the program the required global GPU memory is first allocated and the CPU

data is copied across to the GPU device memory. The CUDA kernel is launched

using the <<<blocksDim,threadsDim,sharedMemoryBytes>>> chevrons to indicate

how many parallel thread blocks and threads of the kernel should run, as well as how

much shared memory should be allocated for each thread block. Shared memory is

a faster type of memory than global memory, but is much smaller in size with data

that can only be accessed by threads in the same thread block. Within the kernel

itself there is a threadIdx (and blockIdx) to identify a given thread and organise

the operations it should perform.

The sum reduce kernel is called with one block of 512 threads, and the shared mem

array consists of 512 float variables, one for each thread. Each thread initialises

its shared mem location (indexed by threadIdx.x) to 0, and then cumulates the

values from its part of the input data into that location. Its input data is defined in

a blockwise fashion, with threads accessing sequential global memory addresses in

each iteration of the for loop. In the first iteration thread 0 adds x[0] and thread

1 adds x[1], up to thread 511 which adds x[511]. In the second iteration thread 0

3
Illustrative diagrams can be found in the NVIDIA Programming Guide [NVIDIA, 2018] avail-

able at https://docs.nvidia.com/cuda/cuda-c-programming-guide/.

56

https://docs.nvidia.com/cuda/cuda-c-programming-guide/

2.6. General-Purpose Graphics Processing Units

Listing 2.1: An example C++ CUDA program showing a simple sum reduction kernel.

1 #include <iostream >

2 #include <vector >

4 __global__ void sum_reduce(float *x, float *result , int size) {

5 // The size of shared memory is set by the launch kernel

6 extern __shared__ float shared_mem [];

7 // Each thread cumulates part of the input blockwise into shared memory

8 shared_mem[threadIdx.x] = 0.0;

9 for (unsigned int xid = threadIdx.x; xid < size; xid += blockDim.x)

10 shared_mem[threadIdx.x] += x[xid];

11 // Ensure all threads have finished cumulation before the final reduction

12 __syncthreads ();

13 // In thread 0 sum the values from all the other thread ’s shared memory

14 if (threadIdx.x == 0) {

15 for(unsigned int tid = 1; tid < blockDim.x; ++tid)

16 shared_mem [0] += shared_mem[tid];

17 // Set the output result equal to the value in thread 0’s shared_mem

18 result [0] = shared_mem [0];

19 }

20 }

22 int main() {

23 // CPU data with 100 ,000 length array filled with 7s

24 std::vector <float > x(100000 ,7);

25 const int x_bytes = x.size() * sizeof(float);

26 // Allocate GPU memory for input data and result

27 float *gpu_x , *gpu_result;

28 cudaMalloc ((void **) &gpu_x , x_bytes);

29 cudaMalloc ((void **) &gpu_result , sizeof(float));

30 // Copy input data from CPU to GPU

31 cudaMemcpy(gpu_x , x.data(), x_bytes , cudaMemcpyHostToDevice);

32 // Launch kernel on the GPU with number of threads and shared memory size

33 const int threads = 512;

34 const int shared_mem_size = threads * sizeof(float);

35 sum_reduce <<<1,threads ,shared_mem_size >>>(gpu_x , gpu_result , x.size());

36 // Copy to host and synchronise before printing (Sum result: 700000)

37 float result;

38 cudaMemcpy (&result , gpu_result , sizeof(float), cudaMemcpyDeviceToHost);

39 cudaDeviceSynchronize ();

40 std::cout <<"Sum result: "<<result <<std::endl;

41 // Free the memory

42 cudaFree(gpu_x);

43 cudaFree(gpu_result);

44 return 0;

45 }

then adds x[512] and thread 1 x[513], with the loop continuing until each thread

has iterated beyond the end of the input data.

The syncthreads(); instruction ensures that all of the threads in the thread

block have completed cumulating their part of the input data into their shared

memory location before thread 0 performs the final reduction. Thread 0 does this by

simply iterating over the partial results written by the other threads and cumulating

them into shared mem[0], before writing the result to the global memory output

57

2. Preliminaries

address. The resulting cumulated sum can then be copied back to the CPU. As CUDA

calls are asynchronous with respect to the CPU the cudaDeviceSynchronize(); is

used to ensure the GPU operations are complete before printing the result. Finally,

it is important to note that the sum reduction kernel shown here is a relatively naive

implementation and has significant room for optimisation.

Throughout the thesis many of the performance improvements are gained from

simply offloading bulk, easy to parallelise computations on to the GPU. In the field

of Deep Learning, much of the work in GPU performance optimisation has been

abstracted in recent years and organised into higher-level Neural Network primitives

in frameworks such as Caffe [Jia et al., 2014], Torch [Collobert et al., 2011], and

Tensorflow [Abadi et al., 2015] all of which have been used in this thesis. The

backends of these frameworks are primarily developed in C++/CUDA (although most

also have experimental OpenCL versions for use with AMD hardware) and make

use of specialised lower-level libraries such as cuDNN which have been developed by

NVIDIA to speed up Deep Learning.

All Neural Network frameworks provide the most common layers already described

earlier in this chapter and also provide the other required infrastructure such as

data provision pipelines, optimisation algorithms, and auto-differentiation. In recent

years the Python programming language has become a particularly popular language

for machine learning. This is evidenced by the fact that all of the frameworks

used in this thesis now provide well supported Python interfaces (unlike the others,

Tensorflow has always been primarily designed for Python). The availability of

these simpler interfaces has significantly reduced the barriers to entry for those with

little GPU experience to design, train, and use Neural Networks for various tasks.

Only when specialised or particularly novel operations or architectures are being

explored does it become necessary for one to develop in CUDA. Even then it is only

required to produce a high performance version for shorter training times. Instead

slower prototypes developed in Python or C++ may be sufficient to explore an idea.

A number of high-quality open-source dense SLAM systems exist [Whelan et al.,

2015a, Whelan et al., 2015b, Choi et al., 2015, Kahler et al., 2016, Dai et al., 2017b]

but unlike the Deep Learning frameworks, interfacing with them frequently requires

some proficiency in C++ and GPU programming. In a small step towards the low

barriers to entry of Deep Learning and in many ways inspired by them, Chapter 6

of this thesis explores an object-level SLAM system that has back-end components

58

2.6. General-Purpose Graphics Processing Units

primarily implemented in C++/CUDA which have been wrapped and incorporated

into an easily accessible Python front-end.

As well as CUDA, dense SLAM systems frequently require projections of 3D data

into a target camera and so they also make use of the specialised rendering operations

available in the graphics pipeline of the GPU which is commonly accessed through

the OpenGL API. Very usefully, OpenGL buffers can also be efficiently accessed

directly from CUDA kernels, as will be discussed in more detail in Chapter 4. In the

graphics pipeline raw 3D data such as a triangular mesh or small circular disks called

surfels (used in ElasticFusion [Whelan et al., 2015a]) are rendered to a 2D image

through small specialised kernels in the programmable pipeline called ‘shaders.’

The first programmable shader is called a ‘vertex shader’ which performs per-

vertex operations, the second optional shader called a ‘geometry shader’ takes the

result as input and emits one or more primitives, and finally after these primitives are

rasterised into pixel candidates (called fragments) the ‘fragment shader’ calculates

the final depth and colour value to be written to the FrameBuffer. In ElasticFusion

for example, the vertex shader transforms and projects surfel positions into the

camera-view. The geometry shader then uses the surfel’s radius and normal vector

to emit 4 vertices as a primitive defining a projected square plane. Finally the

fragment shader discards any fragment of the square which is outside of the circular

radius to render the final surfel.

Although the OpenGL shader pipeline is frequently used to render colour images,

it can also be re-purposed to produce images and data structures containing other

useful information. For example, it is possible to render an image of unique surfel

indices and to capture emitted geometry primitives directly in a TransformFeed-

backBuffer rather than producing an image at all. In Chapter 3 we will describe the

development of a 3D surfel map annotation tool that relies heavily on this versatility

in order to allow real-time interaction with a map consisting of millions of surfels.

59

2. Preliminaries

60

Chapter 3

Object Tagger

Contents

3.1 Introduction . 61

3.2 Related Work . 64

3.3 Method . 68

3.3.1 ElasticFusion . 68

3.3.2 Annotation GUI . 71

3.3.3 3D GrabCut . 73

3.3.4 Planar Selection . 74

3.4 Results . 75

3.5 Conclusion . 77

3.1 Introduction

A major challenge facing those who use CNNs for non-standard tasks is the availab-

ility of large well-annotated datasets. For certain tasks such as image classification

into one of the categories of the ImageNet competition [Russakovsky et al., 2015]

training data is abundant. It was the ability to make good use of this extremely

large (1.2M) image training dataset in the work of [Krizhevsky et al., 2012] that

initiated the current wave of research into CNNs. However when one strays off

this well-trodden path, access to clean well-annotated ground truth data becomes

an important challenge for practitioners. [Goodfellow et al., 2016] suggest that in

practice gathering more training data is often a much better approach to improving

performance than improving the learning algorithm itself.

61

3. Object Tagger

A large task-specific dataset is very useful for improving the performance of a

CNN, but it must be noted that its absence does not entirely prevent CNNs from

being used. For many visual tasks, transfer learning has been found to be an effective

substitute in the case of small dataset sizes [Razavian et al., 2014, Oquab et al., 2014].

Transfer learning relies on the fact that the same generic image features learned in

a CNN on one task (normally image classification) continue to be very useful for

a wide range of other tasks. The computational expense of training a large CNN

model from scratch and the abundance of publicly available models has in fact led

to fine-tuning a pre-trained model to become standard practice when dealing with

smaller task-specific datasets. This has been done for a number of CNNs used in

the experiments of this thesis in Chapters 4, 5, & 6.

The transferability of features in lower layers where simple edge and blob filters

are learned is readily apparent. However, in higher layers features become both

more co-adapted (between layers) as well as task specific [Yosinski et al., 2014].

[Yosinski et al., 2014] also show that as the required tasks become more different,

the performance ‘transfer gap’ grows. A more thorough analysis of transferability

between specific tasks has also recently been published by [Zamir et al., 2018]. In

practice it therefore remains very useful to have access to a domain specific dataset.

Even with pre-trained weights, access to at least a small task specific dataset is

required for fine-tuning and validation, and the bigger that dataset is, the better.

One of the first per-pixel semantically annotated datasets to be released is the

MSRC dataset [Shotton et al., 2006]. It consists of 591 images primarily of outdoor

scenes with 21 semantic classes and a void class. Like many subsequent image seg-

mentation datasets it is composed of images captured with a still camera. Although

still useful for the present purpose, the domain of these datasets differs substantially

from that of a moving camera. Not only is the temporal information required for

SLAM lost but the images themselves do not contain the motion blur and variable

exposure artefacts common in video trajectories. Videos also often include objects

seen from less canonical viewpoints, with significant occlusions and surrounding clut-

ter. [Brostow et al., 2009] produced the first video dataset to contain dense semantic

annotations called CamVid. The labelled portion of video includes 10 minutes of

outdoor driving footage with a ground truth frame sampled at 1Hz (once every 30

frames of 30Hz video) and one 6 second sequence with every other frame labelled.

Unlike image classification tasks where the ground truth label is a single category,

62

3.1. Introduction

semantic segmentation requires detailed pixel-level annotations. Of course annota-

tion is not a pixel by pixel affair; a 100× 100 image for semantic segmentation does

not take 10,000 times longer to annotate than when the goal is image classification.

However accurate per-pixel masks do take great effort to label. For example in the

CamVid dataset it took approximately 230 man-hours to label the 701 frames using

the accompanying ‘InteractLabeler’ tool. This tool uses automated segmentation

algorithms to assist the user by defining regions which can be flood filled and al-

lows problem areas to be refined manually. More approximate labelling tools such

as LabelMe [Russell et al., 2008]1 allow frames to be annotated by drawing simple

polygons around the objects. This approach is faster and annotates most of the

object’s visible area but it provides less precise boundary information and is still

substantially more time consuming than providing a simple image classification tag.

Given the time consuming and costly nature of manual annotation, semantic seg-

mentation datasets have historically been limited to the order of a thousand im-

ages [Shotton et al., 2006, Brostow et al., 2009, Everingham et al., 2010, Silberman

et al., 2012]. Platforms such as Amazon’s Mechanical Turk2 (AMT) have in recent

years assisted in scaling up segmentation datasets. The COCO dataset is an ex-

ample of a much larger segmentation dataset [Lin et al., 2014] consisting of 330K

labelled images, having expanded from the initial 160K release. The production of

a segmentation dataset of that scale was a significant undertaking, requiring 70,000

AMT worker hours to complete [Lin et al., 2015].

In this chapter we look at some early work aimed at reducing the burden of

producing well-annotated datasets for the task of indoor scene segmentation with

a moving camera. It is designed with RGB-D data in mind, which is particularly

useful for dense reconstruction and can be used as training input to the CNN as

well as the more common RGB only inputs. We called this tool the ‘Object Tagger’

and it is shown in Figure 3.1. Subsequent chapters of this thesis will focus on how

SLAM and Deep Learning can be usefully combined, but in this chapter we instead

look at how dense SLAM can be used to assist in the generation of datasets which

can be used for Deep Learning. The availability of a dense reconstructed map as

well as the camera trajectory within it allows for annotations to be made on the

map itself in 3D. These annotations although made only once can then be projected

1
https://github.com/CSAILVision/LabelMeAnnotationTool

2
https://www.mturk.com/

63

https://github.com/CSAILVision/LabelMeAnnotationTool
https://www.mturk.com/

3. Object Tagger

and overlayed per-pixel into many thousands of real RGB-D frames which would

otherwise require manual frame-by-frame annotations. An additional benefit of this

approach is that it also provides temporal consistency between frames which may

be hard to achieve in 2D.

Even with the tools presented in this chapter, the significant resources required

to produce a large-scale real-world dataset led us to quickly turn our attention

to synthetic dataset generation described in Chapter 5. Therefore there remain

a number of unexplored areas for future research and development in the work

presented here. Much of the work aimed to provide tools to assist a user annotate

a 3D map, and while in our experience we found certain tools more practical than

others, it would require quantitative user studies to verify that this was the case. It

also may be that some of the tools which we found less useful could be improved

with further tuning, for example in the case of the 3D GrabCut tool (described in

Section 3.3.3) by learning the segmentation hyperparameters. A thorough evaluation

could also look at the trade-off of annotation time and accuracy of different tools.

As discussed in Section 3.4 we also found that for larger scenes the annotations

occasionally became misaligned to the raw RGB-D input. We believe this could

be a result of the map deformation approach in ElasticFusion, which can lead to

historical poses, that are never updated, slowly becoming misaligned with the map

which deforms based on later measurements. Future work could explore this prob-

lem, which may require including elements of pose-graph approaches into a dense

annotation system in order to optimise the entire historic trajectory, rather than

operating purely in an online manner.

3.2 Related Work

The driving inspiration behind this work was the SLAM system ElasticFusion [Whelan

et al., 2015b] and the limited data availability for semantically annotated RGB-D in-

door datasets. ElasticFusion provided both a readily accessible dense map and cam-

era trajectory as well as a discretised surface representation for manual annotation.

In Chapter 4 we will see a similar annotation approach refined into an automated

procedure for scene understanding. The well known NYUv2 RGB-D dataset [Silber-

man et al., 2012] was the largest publicly available source for semantically annotated

RGB-D data at the time with 1,449 annotated frames. This became one of the most

64

3.2. Related Work

Figure 3.1: A screenshot of the final Object Tagger software being used to annotate
a real scene.

used datasets within subsequent work in this thesis as it was also one of the few

datasets to provide a complete video trajectory.

Some of the earliest methods to assist video semantic annotation aimed to track

regions between video frames in order to propagate the 2D user annotations [Mar-

cotegui et al., 1999, Fauqueur et al., 2007]. These 2D methods have the benefit of

allowing moving objects to also be tracked between frames unlike the current system

which is based on a SLAM system that assumes a static scene. However, if a static

scene is assumed the process of labelling a 3D reconstruction and re-projecting it

into the camera view to produce a segmentation removes the inherent difficulties of

2D region tracking between frames and instead only requires the camera pose and

scene geometry to be estimated.

For the annotation of static indoor scenes a number of public datasets have also

taken the approach of labelling directly in 3D. The Cornell RGB-D dataset [Koppula

et al., 2011] consisted of 52 point-clouds of indoor scenes produced using RGB-D

SLAM [Endres et al., 2014]. These point clouds were annotated in 3D and used

65

3. Object Tagger

Figure 3.2: A timeline of our contributions and related work on semantic segmenta-
tion datasets. Blue: Our work, including the Object Tagger, the SceneNet RGB-D
dataset presented in Chapter 5 (both the dataset release [McCormac et al., 2016]
and later experiments [McCormac et al., 2017b]), as well the subsequent InteriorNet
dataset [Li et al., 2018] on which we collaborated. Orange: The SUN datasets;
SUN3D [Xiao et al., 2013], SUN RGB-D [Song et al., 2015] and SUN-CG [Song
et al., 2017], with * denoting the SUN-CG renderings by [Zhang et al., 2017]. Green:
Other important related datasets; NYUv2 [Silberman et al., 2012], COCO [Lin et al.,
2014], SceneNet [Handa et al., 2016], and ScanNet [Dai et al., 2017a].

to validate their approach to annotating an already reconstructed 3D point-cloud.

This differs from the current work which instead projects the 3D annotations back

into 2D frames which have corresponding real RGB-D data to be used for validation

and training data of 2D segmentation algorithms. These can be used to annotate a

SLAM map in an online manner as discussed in Chapter 4.

The series of published datasets using the prefix “SUN” (short for Scene Under-

standing [Xiao et al., 2010]) is closely related not only to the work in this Chapter,

but also to the synthetic SceneNet RGB-D dataset described in Chapter 5. To organ-

ise the ordering of contributions, Figure 3.2 provides a timeline of the most related

datasets for ease of reference. The earliest related SUN publication, SUN3D [Xiao

et al., 2013], produced a tool and a dataset of 8 annotated sequences which used

SLAM to assist in producing 2D semantic labels. Instead of directly labelling the 3D

map and projecting it, they instead take a LabelMe approach on individual frames,

and use the SLAM system to propagate labels which can then later be corrected by

the user if they are incorrect. They also use the labelled objects themselves as land-

marks to improve the consistency of the reconstruction through bundle adjustment.

This nice feature is missing from the Object Tagger, as annotation is performed on

the final map alone.

The SUN RGB-D dataset [Song et al., 2015] consists of approximately 10k frames

66

3.2. Related Work

and 3D oriented bounding boxes of objects within local patches of an RGB-D point

cloud. Frames of RGB-D video were used to fill holes in the depth map, but a

loop-closure capable SLAM system was not used to reconstruct large areas of the

scene. The 2D frames themselves were labelled using a LabelMe approach in a

similar manner to the NYUv2 dataset, rather than using reprojections of more fine-

grained annotated 3D surface elements as done here. They used AMT for the 2D

annotations and oDesk (now upwork3) for the 3D annotations which took 2,051

hours to complete. Another tool designed to annotate RGB-D still frames is the

SmartAnnotator tool by [Wong et al., 2015]. It assists annotation by using learned

priors and the scene geometry itself to make automated structural predictions which

are then refined and corrected by the user.

The present work is offline in nature using a Graphical User Interface (GUI) on

a final reconstructed map. Later work by [Valentin et al., 2015] produced an online

labelling tool called SemanticPaint which is both interactive and immersive. In this

system the user would annotate objects in a scene by physically touching objects and

speaking object class labels as voice command. A dense reconstruction would then

be annotated through these touch commands assisted by a random forest and CRF

backend. Our work also makes use of tools designed to assist the 3D labelling process,

but these tools are limited to simple region growing and graph-cut approaches.

In more recent work direct 3D annotation has become the method of choice for

many larger scale indoor scene understanding datasets. SceneNN [Hua et al., 2016]

is a semantically annotated dataset of 100 indoor scene meshes which includes ob-

ject poses. Initial segmentations based on [Felzenszwalb and Huttenlocher, 2004]

annotations are merged using a Markov random field and fine-tuned by manual user

annotations. The ScanNet dataset [Dai et al., 2017a]4 is an impressively large data-

set of 2.5M images in 1.5k different scenes reconstructed using BundleFusion [Dai

et al., 2017b]. They developed a WebGL interface to allow AMT workers to annot-

ate the 3D map directly, and as here these can be projected back into the original

camera viewpoint to provide pixel annotations. The map is initially automatic-

ally segmentated with [Felzenszwalb and Huttenlocher, 2004] and these regions are

grouped into instances by the annotator.

Many of the datasets discussed have been generated with a 6 DoF continuous

3
https://www.upwork.com/

4
https://github.com/ScanNet/ScanNet

67

https://www.upwork.com/
https://github.com/ScanNet/ScanNet

3. Object Tagger

scanning trajectory of a single RGB-D camera. Another set of datasets have now

been produced using the Matterport camera5 which provides a 360◦ panorama of a

scene at uniformly spaced viewpoints throughout a scene (often at human-height).

[Armeni et al., 2017] produced a dataset of 70k images from 6 large indoor office

areas, annotating the 3D point cloud directly and projecting these labels into 2D for

2D semantic annotations in a manner similar to that done here. The Matterport3D

dataset [Chang et al., 2017] includes approximately 200k images from 90 buildings

including private home environments. They also provide semantic and instance level

segmentations of the 3D reconstructions collected by using the ScanNet interface and

AMT. These annotations were then verified by specialised annotators.

Very recently the Taskonomy dataset [Zamir et al., 2018] was released, consist-

ing of 4M images from 600 buildings. It provides RGB-D data along with numerous

ground truth labels on a wide range of tasks, but unfortunately only pseudo-semantic

annotations automatically generated from a supervised CNN (ResNet-151) are cur-

rently provided.

3.3 Method

The operating principle of the system is straightforward. An RGB-D video tra-

jectory of a scene is first captured and saved. ElasticFusion processes the sequence

to produce a dense surfel map and a camera trajectory. The Object Tagger then

provides an interface and some tools allowing the user to annotate the map with se-

mantic instances. Finally the annotated map is projected into the camera trajectory

poses to produce pixel-level labellings corresponding to the original video sequence.

As a dense reconstruction of the scene is available, occlusions of annotated objects

by non-annotated geometry are properly handled without additional complications.

Below we provide a brief introduction to ElasticFusion as this will also be useful for

Chapter 4 and then we go on to describe the operation of the Object Tagger in more

detail.

3.3.1 ElasticFusion

The Object Tagger was developed on top of the ElasticFusion SLAM system by

[Whelan et al., 2015b].6 ElasticFusion is a real-time online dense SLAM system

5
https://matterport.com

6
Publicly available at https://github.com/mp3guy/ElasticFusion.

68

https://matterport.com
https://github.com/mp3guy/ElasticFusion

3.3. Method

capable of capturing a globally consistent surfel-based map of a static scene using

an RGB-D camera. It is based on the work of [Keller et al., 2013] but includes the

ability to perform loop closure. A surfel is a small disc that represents a surface

patch. It can be seen rendered in the ElasticFusion GUI in the close-up view of the

map in Figure 3.3. The map consists of a set S of independent surfels and for each

surfel, index s, there is a defined position ps ∈ R3, normal ns ∈ R3, colour cs ∈ R3,

radius rs ∈ R, confidence cs ∈ R, and timestamp ts ∈ R.

Figure 3.3: A snapshot of the ElasticFusion GUI as it processes a video sequence, in
this case displaying the surfel RGB colour. The close-up on the right clearly shows
the small discs from which the map reconstruction is composed.

As an RGB-D camera browses a scene, ElasticFusion alternates between mapping

and tracking. Incoming depth images are denoised using a bilateral filter [Tomasi

and Manduchi, 1998] and also used to estimate the normal map. Using these input

measurements a new surfel is either initialised or fused with an existing point using

the scheme of [Keller et al., 2013]. Measurements are associated to a single map

surfel by first excluding surfels based on depth and normal difference thresholds,

and then ordering the surfels by confidence and proximity to the viewing ray. A

weighted average scheme is employed to fuse a measurement um associated to surfel

s using a weight W (um) which is calculated as a Gaussian function based on the

radial distance of the measurement pixel from the camera center. This is used to

fuse the measured position V (um), normal N(um), and colour I(um) information

69

3. Object Tagger

in an identical manner:

ps ←
ps +W (um)V (um)

cs +W (um)
, ns ←

ps +W (um)N(um)

cs +W (um)
, cs ←

ps +W (um)I(um)

cs +W (um)
.

(3.1)

The timestamp and confidence values are also updated:

ts ← tm, cs ← cs +W (um). (3.2)

If no corresponding surfel is associated, a new one is simply initialised with the

parameters that would otherwise have been fused. Surfels are initially considered

‘unstable’ until a confidence threshold is reached cs > cthresh. The radius of the

surfel is calculated in order to minimise the holes in the surface rs =
√
2Cpz

f where

f is the camera focal length [Salas-Moreno et al., 2014]. Surfels can also be removed

from the map under certain conditions. A surfel that remains unstable for a given

time-period is considered an outlier measurement and removed. If a stable surfel

has new data merged, any occluding surfel in the model is removed as a free-space

violation. Finally if a surfel has overlapping neighbour surfels with a similar position

and normal information is it also removed.

In addition to the standard [Keller et al., 2013] surfel fusion scheme, the Elast-

icFusion map is also divided into ‘active’ and ‘inactive’ surfels. If ts is sufficiently

old compared to the current timestamp, that surfel is considered inactive and is not

used for either tracking or depth fusion. This helps to prevent old areas of geometry

from being disturbed when the camera pose is subject to drift before loop closure

and registration. After local loop closures the matched inactive area is set to active

again.

For the tracking step, ICP is used as described in Section 2.4.1 of Chapter 2.

As RGB data is stored in the map, a joint cost function is used which combines

both the geometric and photometric errors. For tracking, the three-channel RGB is

converted to an intensity image via the weighted summation:

I = 0.587R+ 0.114B + 0.299G. (3.3)

The photometric residual becomes:

rphoto(T̃WCl
,ul) = (Ir(ur)− Il(ul)), (3.4)

where Ir is the rendered RGB model converted to intensity and the estimated live

camera pose, T̃WCl
, is used to calculate the associated pixel in the reference image

70

3.3. Method

ur according to Equation 2.36. The final combined error function combines the two

with a weighting wphoto, which is set to 0.1 by default:

Etotal = Eicp + wphotoEphoto, (3.5)

this error is optimised using Gauss-Newton and a three level coarse-to-fine pyramid.

A deformation graph is used to deform the map when loop closures occur. It

uses a weighting technique originally designed for graphical applications [Sumner

et al., 2007]. The deformation graph is computationally cheap to build and so it

is rebuilt on each frame rather than modifying the existing graph. It is built by

uniformly sampling the population of surfels, with connectivity based on temporal

locality. This connectivity provides each surfel with a set of influencing nodes in the

deformation graph. To optimise the graph, a set of constraints is formulated into

a cost function which is optimised using Gauss-Newton. The cost function includes

rigidity constraints, smoothness, and positional constraints.

Local loop closures can occur between the inactive and active sets of surfels us-

ing the same ICP approach already discussed. To verify this has been successful

a number of criteria must be met. The residual cost must be below a specified

threshold and must include a minimum number of inlier measurements, and the

Hessian approximation of the system must be well conditioned. Global loop clos-

ures are detected using the real-time randomised fern encoding approach developed

by [Glocker et al., 2015]. If a match is found, the same registration as for local loop

closures is attempted, and the map is again deformed.

3.3.2 Annotation GUI

The GUI itself was implemented independently of ElasticFusion in Qt5.7 New in-

stances can be added and assigned one of the classes from a user-provided class.cfg,

which is a plain text file listing the set of semantic classes. The annotation data

stored internally for the tool is simply a single integer within each surfel denoting

the annotated instance it belongs to, as well as a mapping from the instance index

to the semantic class. The majority of the tool is designed to make it easy for a user

to select surfels en masse in order to group them into a single object instance.

Figure 3.1 shows the appearance of the final version of the software. The toolbox

and instances can be seen along the left side and the main interactive window on the
7
https://www.qt.io

71

https://www.qt.io

3. Object Tagger

right allows users to navigate the space to find the best viewing angle for annotation.

The currently selected instance is highlighted in orange and previously annotated

objects are highlighted green. Already annotated objects can be completely hidden

from view so they do not obstruct the annotation of other objects. Another viewing

mode allows the user to see only the currently selected set of surfels; this viewing

mode proved particularly useful for subtractive refinement of an instance after a

bounding box like selection using an area-select tool. All of the tools listed below

for selection can equally be used for de-selection by using the eraser checkbox.

For performance reasons the surfels are stored in an OpenGL FrameBufferObject

and rendered into a Qt5 OpenGL Widget using the same surfel shaders as Elastic-

Fusion. To allow users to easily select and edit large numbers of surfels the basic set

of tools are the well-known paintbrush and rectangular area select tools (with ex-

ample usage shown in Figure 3.4). These tools operate only on the visible surfels of

the map, unlike the other tools described below. To do this, the surfels’ indices are

encoded and rendered to a FrameBufferObject; the paintbrush tool and rectangular

select tool simply aggregate all of the surfel indices within their area of influence

and assign those surfels to the current instance.

Figure 3.4: The three basic area selection tools included in the Object Tagger.

In practice the surfaces of objects are made of numerous surfels overlayed on top

of each other. From one viewpoint all of the surfels may be selected but when the

viewpoint changes slightly new previously occluded surfels will appear and these will

72

3.3. Method

not have been selected. Additionally it is sometimes helpful to select a larger volume

surrounding an object so that it can be subtractively refined. For this reason the

frustrum selection tool was added. A specialised vertex and geometry shader was

made which accepts a user defined bounding box and filters the map for any surfel

that projects into the bounding box (regardless of occlusions). These surfels’ indices

are written into a TransformFeedbackBuffer and assigned to the current instance.

3.3.3 3D GrabCut

The 3D GrabCut tool was created in order to simplify the process of fine-grained

selection of an object from its surroundings using a rectangular selection area. It was

based on the work of [Meyer and Do, 2015] who developed a 3D GrabCut tool for

triangular meshes. The idea is to specify a simple 2D bounding box (corresponding

to a 3D frustum) around an object of interest. The tool formulates the segmentation

as a graph cut optimisation problem. Given a set of disconnected surfels we first

construct the edge connections by loading the surfels into a k-d tree to allow for

efficient spatial searching [Blanco and Rai, 2014].

For the set of surfels within the current view frustrum s ∈ VD, connecting edges

(s, s′) ∈ ED are added between each surfel and its 4 nearest neighbours. The aim

of the optimisation is to assign each surfel to be a member of the foreground set

F or the background set B. The energy function we wish to minimise by assigning

particular labels to each surfel is:

E(S) =
∑
s∈VD

U(ls) + γ ·
∑

(s,s
′
)∈ED

S(ls, ls′). (3.6)

The first term U(ls) is the data term, which defines a penalty based on the dis-

tance of a point inside the frustrum from the edge boundary, the farther the point

is, especially via concave creases, the more likely that point is to be part of the

foreground and the larger the penalty for assigning it a label corresponding to back-

ground. Points outside of the frustrum are given a large constant penalty K for not

being labelled background:

U(ls) =

⎧⎨⎩(1− ls) ·
(
1− e−G(s)

)
, if s ∈ F

ls ·K, otherwise.
(3.7)

Dijkstra’s shortest path algorithm is used to calculate the path to the edge boundary

for a given surfel denoted as G(s). For two surfels s and s′ with positions p and

73

3. Object Tagger

normals n, the distance between them is given by:

D(s′, s) = α · dδ(s, s
′)

⟨dδ⟩
+ (1− α) · dθ(s, s

′)

⟨dθ⟩
, (3.8)

with ⟨⟩ being used to denote the average over the selected surfels,

dδ(s
′, s) = ||ps − ps

′ ||2, (3.9)

dθ(s
′, s) = µ · (1− ns · ns

′), (3.10)

were α is a balancing factor set to 0.2 and the variable µ is set to 1 for concave

pairs, and 0.1 otherwise. This concavity prior is based on evidence that the human

visual system defines object boundaries using concavity information [Meyer and Do,

2015]. The smoothness term simply penalises connected surfels for being assigned

different labels:

S(s, s′) = |ls − ls′ | · e
−D(s,s

′
). (3.11)

The resulting graph is cut using the [Boykov and Kolomogorov, 2004] algorithm.

The surfel nodes which are assigned to the foreground group are then selected.

These terms and the final cut are visualised in Figure 3.5. Unfortunately the local

connectivity of the surfels can lead to a relatively uniform smoothness term. This

issue is exacerbated by the smoothing of normal information in the map due to the

finite difference calculation.

Figure 3.5: The 3D GrabCut tool operating on a simple surfel map.

3.3.4 Planar Selection

In practice we found that the 3D GrabCut tool was quite difficult to use in com-

plex scenes. It often failed to properly segment complex geometric objects and the

smoothed normals from the finite difference calculation often led to the inclusion

of background geometry in the foreground segmentation. Further work could be

74

3.4. Results

done to improve this, for example by learning the GrabCut hyperparameters from

an annotated dataset, however the ubiquity of planar supporting surfaces in indoor

domestic scenes led us to to an alternative method which we found to be more

effective in practice.

Instead of segmenting the complex foreground geometry in the scene first, we

reversed the procedure and began by selecting the simple planar surfaces that often

support objects. We found that we could robustly segment planar regions, which

not only allowed the planar elements themselves to be annotated but also greatly

assisted in the annotation of the objects on top of them. Once supporting surfaces

are removed they often leave behind separated objects which can be easily and

precisely annotated using a simple volume selection tool as illustrated in Figure 3.6.

Figure 3.6: The planar select tool assists in annotating structural elements and helps
separate objects of interest for annotation purposes.

The tool itself uses a very simple region growing algorithm to propagate from

a set of surfels selected by the user with a paintbrush tool to an entire plane, by

requiring normals of connected surfels to be within a given threshold and also by

placing limits on the maximum normal difference (15◦) of a connected surfel to the

set selected by the user (see Algorithm 2). The connected graph used the same

graphical structure as the 3D GrabCut tool described above.

3.4 Results

The final output of the tool is a video of aligned overlayed ground truth segmentation

of the annotated classes which can be seen visualised in Figure 3.7. It only took

fifteen minutes to annotate this scene. The work on the Object Tagger did not result

in the production of a publicly available dataset, although it was used to produce a

small dataset of an indoor office. This dataset is used for validation experiments in

Chapter 4.

75

3. Object Tagger

Algorithm 2: Planar Select algorithm

1 function Planar Select (G,S, θ)
Input: G = (V,E), the connected graph of surfels and edges.

2 S ∈ V , set of selected surfels, with average normal navg.
3 θ, an angular threshold between surface normals.
Output: P ∈ V , the final set of surfels on the plane.

4 P = ∅
5 C = ∅
6 while S not empty do
7 Remove element s from S
8 Add s to C
9 if arccos(navg · ns) < θ then

10 Add s to P

11 foreach s′ connected to s do

12 if (arccos(ns · ns
′) < θ) and (s′ not in C) then

13 Add s′ to S
14 end

15 end

16 end

17 end
18 return P

The annotations work well on relatively small scenes. However it was later found

on more extensive scenes with many loop closures that the annotations, when pro-

jected into the historically estimated camera view, do not always perfectly align

with the RGB-D footage. Further investigation is needed to better understand why

this is the case, but it could be in part due to ElasticFusion’s map-centric deforma-

tion graph approach. ElasticFusion emits a camera pose estimate at the time when

the frame is first processed and that emitted pose is not updated with later meas-

urements; instead the map geometry is deformed around the current camera pose

estimate in order to close loops. When a historic camera pose is used and the final

deformed map is then projected into it (having been deformed to conform to sub-

sequent measurements), the resulting projection may no longer be well-aligned with

the raw RGB-D input for the original frame.

One approach could be to refine the projected 3D annotations in 2D using the

RGB-D frames themselves to better adhere to the boundaries of objects. However

if the misalignment grows too large, potentially to the point of missing objects from

the view entirely, a simple label refinement would be insufficient. In contrast to

76

3.5. Conclusion

Figure 3.7: An RGB-D video sequence with the annotated labels overlayed.

the deformation graph approach, pose-graph approaches optimise the entire historic

camera trajectory to best fit all of the measurements of a sequence. An alternative

solution that could therefore be explored in future would be to include elements

of pose-graph approaches in a dense annotation system. A more unified approach

could also tighten the link between the 3D annotations, the map, and trajectory

estimation itself using some of the methods explored by [Xiao et al., 2013] for the

SUN3D dataset. Even when operating correctly in small scenes, it is difficult to

produce a reconstruction and camera pose trajectory with enough accuracy to attain

pixel-perfect reprojections. In Figure 3.7 slight misalignments are visible on the

boundaries of objects, and small holes caused by missing depth data can also be

seen.

3.5 Conclusion

In this chapter we highlight the practical importance of domain specific training

data for Deep Learning methods. We have reviewed some of our early work which

sought to reduce the burden of producing segmentation datasets with the aid of a

dense SLAM system. Although we used the tool to produce some small evaluation

datasets the process of scanning and annotating scenes is still slow and laborious.

As discussed in Section 3.2 more recent datasets have used a similar 3D annotation

approach and still required significant manual effort.

It is possible to produce huge numbers of pixel-level annotated frames from a single

annotated map by simply scanning a small area for hours on end, but the value of

such a dataset is quite limited. Capturing the wide variability of indoor scenes

77

3. Object Tagger

is important for CNN training in order to learn more general features applicable

beyond the training set. Producing this sort of dataset still requires thousands of

scans and their maps to be annotated as done, for example, in the more recent

ScanNet dataset [Dai et al., 2017a].

In Chapter 5 we will return to the problem of dataset generation. In that chapter

we seek to mitigate the manual effort required to capture and annotate a large-

scale indoor dataset with sufficient scene variability. To do this we look to modern

photorealistic rendering approaches in order to create an automated synthetic data-

set generation system called SceneNet RGB-D.

78

Chapter 4

SemanticFusion

Contents

4.1 Introduction . 79

4.2 Related Work . 82

4.3 Method . 84

4.3.1 SLAM Mapping . 85

4.3.2 CNN Architecture . 86

4.3.3 Semantic Probability Table and Surfel Association . . . 87

4.3.4 Incremental Semantic Fusion 90

4.3.5 Map Regularisation . 92

4.3.6 Network Training . 94

4.4 Experiments . 94

4.4.1 Reconstruction Dataset 95

4.4.2 CNN and CRF Update Frequency 95

4.4.3 Accuracy Evaluation . 96

4.4.4 NYUv2 Dataset . 98

4.4.5 Run-time Performance 100

4.5 Limitations . 102

4.6 Conclusion . 104

4.1 Introduction

An important decision that must be made in all mapping systems is that of the map

representation. How can one ensure that all of the important information is included

79

4. SemanticFusion

Figure 4.1: The output of SemanticFusion: On the left, a dense surfel based
colour reconstruction of a bedroom from a video sequence in the NYUv2 test set.
On the right, a semantically annotated visualisation with classes given in the legend
below.

within the map? The answer depends heavily on what information is deemed to be

important for the task at hand. For static scenes, accurately reconstructing the

entire scene geometrically provides a great deal of information that is useful in

applications ranging from robotic path planning to augmented reality.

Geometry however is not the only important attribute of a scene. Additional at-

tributes such as texture and material properties are required to accurately visualise

a scene, and can also assist in accurate tracking. In a dense geometric map it is

possible to estimate and encode this information into the map’s surface elements

themselves. Semantic information is another important property of a scene, and in

a similar manner to the material properties, a particularly straightforward manner

of including semantic information within a dense map is to also densely annotate the

elements within the reconstruction with semantic classes. This allows semantic in-

formation to be directly read from and visualised in the map reconstruction without

fundamentally altering the underlying SLAM system.

In this chapter we combine the geometric information from a state-of-the-art dense

surfel-based SLAM system ElasticFusion [Whelan et al., 2015b] which was used for

generating annotated indoor scene data in the previous chapter, with advances in 2D

semantic segmentation powered by CNNs. In dense SLAM systems, multiple depth

readings are fused to produce accurate dense map geometry. Here multiple 2D

semantic predictions produced from different viewpoints for the same map elements

80

4.1. Introduction

Figure 4.2: Illustration of a surfel and an example accompanying data table.

are also fused in 3D, giving rise to the name SemanticFusion.

The core idea of the approach is to use the SLAM system as a ‘correspondence

engine’ that can associate predictions made in 2D using a globally consistent 3D

map. This allows semantic predictions from multiple viewpoints to be probabilist-

ically fused into a dense semantically annotated map, as shown in Figure 4.1. One

of the key insights is that ElasticFusion is a particularly suitable SLAM system for

producing a real-time dense 3D semantic map due to its surfel-based surface repres-

entation, globally consistent map deformation approach to loop closure, and efficient

runtime performance.

Surfels store geometric information such as their position, radius, and normal, but

other data can also be stored in a surfel such as colour (see Figure 4.2). As a result

surfels form a very natural container in which to also store semantic probability

distributions. They are defined over a small surface area allowing integration of

multiple readings into a reasonably sized discrete unit, while also providing spatial

granularity to allow accurate boundaries in semantic segmentation.

As ElasticFusion uses a deformation graph to deform a globally consistent map

for loop closures immediately, individual surfels simply carry with them their corres-

ponding semantic information as they are deformed into the new global map shape.

This greatly simplifies the process of long-term fusion of per-frame semantic predic-

tions over wide changes in viewpoint by avoiding the complications of reintegration

of semantic information required in key-frame based approaches. Instead the surfel

is immediately available, with its state intact, in the new location ready for the next

semantic prediction to update its state.

Most of the data for the components of this system resides on the GPU. Elast-

icFusion is a real-time SLAM system which uses OpenGL texture buffers to store

the map. The CNN is capable of performing a prediction for a given input image

81

4. SemanticFusion

in 50ms with the result being stored in a CUDA memory buffer. This allows the

system as a whole to be efficiently designed for real-time use. This is done in two

ways. Firstly, instead of performing a prediction for every frame, we skip a certain

number of frames between predictions. The camera motion between a single frame

tends to be relatively small and so the predictions are quite similar. Skipping frames

means that successive updates are fusing less-correlated predictions, which in some

ways assists the independence assumption made in the update scheme. Secondly,

we design the map updates to occur on the GPU where the majority of the data

resides to minimise device-host transfers and take advantage of the updates’ highly

parallel nature.

An additional benefit of projecting the 2D predictions into native 3D entities

is that the geometry of the map itself provides useful information which can be

used to regularise the final semantic predictions. In this chapter a straightforward

Conditional Random Field (CRF) is employed which operates on the full 3D map.

Although it does somewhat improve the final results, the CRF used did not lead

to significant improvements. However as discussed below in Section 4.2, subsequent

related work has since been developed and shown improved performance with more

refined CRF schemes. Here the regularisation is a one-way system, with geometry

being employed to assist in semantic annotation. However it is also entirely possible

to jointly optimise both, allowing semantic information to modify and refine the

geometry as well as assist with tracking. Research in this area is also discussed in

Section 4.2 below.

4.2 Related Work

Two of the most closely related pieces of previous work are [Stückler et al., 2015]

and [Hermans et al., 2014] which both aim towards a dense, semantically annotated

3D map of indoor scenes. They both obtain per-pixel label predictions for incom-

ing frames using Random Decision Forests, whereas here we use a Convolutional

Neural Network. They both also fuse predictions from different viewpoints in a

classic Bayesian framework. [Stückler et al., 2015] used a Multi-Resolution Surfel

Map-based SLAM system capable of operating at 12.8Hz. However, unlike our sys-

tem, they do not maintain a single global semantic map as local key frames store

aggregated semantic information, and these are subject to graph optimisation in

each frame.

82

4.2. Related Work

[Hermans et al., 2014] did not use the capability of a full SLAM system with

explicit loop closure: they registered the predictions in the reference frames using

camera tracking only. Their run-time performance was 4.6Hz, which would prohibit

processing a live video feed, whereas our system is capable of operating online and

interactively. As here, they also experiment with regularising their predictions using

[Krähenbühl and Koltun, 2011]’s fully-connected CRF inference scheme to obtain a

final semantic map.

Another closely related piece of work by [Cavallari and Di Stefano, 2016c] ap-

proaches the problem of dense annotation using a KinectFusion [Newcombe et al.,

2011a] map. They also use a CNN to provide the semantic predictions for annotating

a 3D map. An issue they encountered when adding semantics to a 5123 resolution

TSDF volume was that the naive approach of storing a class probability distribu-

tion within each voxel required 7GB for just 13 semantic classes. To circumvent

this problem, they store a single identifier of the most likely class along with its

score. This approach reduces the system’s memory usage which no longer grows

linearly with the number of classes. Updates proceed by incrementing the score of

a given class by the prediction’s confidence if a prediction is the same as the cat-

egory stored there and decrementing it if it is different. When the score becomes

negative the class can change. This work was also later extended [Cavallari and

Di Stefano, 2016a, Cavallari, 2017] to work in real-time over larger scenes using

the more memory-efficient TSDF encoding scheme of VoxelHashing [Nießner et al.,

2013].

In our case the surfel map is natively parameterised at a surface level and so

does not exhibit the cubic scaling memory requirements of a naive TSDF. A relat-

ively large indoor map of an office may consist of ≈4M surfels which would mean

that storing 13 4-byte floats to represent the complete probability distribution only

requires an additional 200MB. In the present work we therefore use this represent-

ation and explore a Bayesian update scheme for the surfel state. In later chapters

we also explore using a TSDF as part of a semantic map. However the problem of

memory usage is in that case avoided by grouping elements together and sharing

their semantic data rather than having a fully dense semantic annotation for each

voxel.

The majority of other previous approaches to indoor semantic labelling either

focus on offline batch mapping methods [Valentin et al., 2013, Koppula et al., 2011]

83

4. SemanticFusion

or on single-frame 2D segmentations which do not aim to produce a semantically

annotated 3D map [Everingham et al., 2010, Silberman et al., 2012, Lin et al., 2014,

Song et al., 2015]. [Valentin et al., 2013] used a CRF and a per-pixel labelling from

a variant of TextonBoost to reconstruct semantic maps of both indoor and outdoor

scenes. This produces a globally consistent 3D map, but inference is performed on

the whole mesh once instead of incrementally fusing the predictions online. [Koppula

et al., 2011] also tackle the problem on a completed 3D map, forming segments of the

map into nodes of a graphical model and using hand-crafted geometric and visual

features as edge potentials to infer the final semantic labelling.

A core component of our system is the advance in 2D semantic segmentation

powered by CNNs. CNNs have have proven capable of both state-of-the-art accuracy

and efficient test-time performance. They have have exhibited these capabilities

on numerous datasets and a variety of data modalities, in particular RGB [Noh

et al., 2015, Long et al., 2015], Depth [Couprie et al., 2013, Handa et al., 2016] and

Normals [Eigen and Fergus, 2015, Gupta et al., 2014, Gupta et al., 2015b, Gupta

et al., 2015a]. In this work we build on the CNN model proposed by [Noh et al.,

2015], but we modify it to take advantage of the directly available depth data. We

also explore using the CNN architecture of [Eigen and Fergus, 2015] which uses

surface normals as input.

Unlike object-oriented mapping, such as SLAM++ [Salas-Moreno et al., 2013] and

the system presented in Chapter 6, dense semantic annotation systems aim to annot-

ate the entire scene. Structural elements such as walls, doors, and windows which

are important for describing the extent of the room are included. In this way it

follows the maxim of dense reconstruction to ‘map everything,’ and important in-

formation can be prevented from being lost. However it must be noted that it is also

possible to customise an object-oriented mapping system to include any structural

elements deemed important for a given task. This approach is well exhibited by the

structural planar floor prior used in SLAM++.

4.3 Method

Our SemanticFusion pipeline is composed of three separate units: a real-time SLAM

system ElasticFusion, a Convolutional Neural Network, and a Bayesian update

scheme, as illustrated in Figure 4.3. The role of the SLAM system is to provide

84

4.3. Method

Figure 4.3: An overview of our pipeline: Input images are used to produce a
SLAM map and a set of probability prediction maps (here only four are shown).
These maps are fused into the final dense semantic map via Bayesian updates.

long-term correspondences between frames, via a globally consistent map of fused

surfels. Separately, the CNN receives a 2D image of either RGB/RGB-D (for [Eigen

and Fergus, 2015]’s architecture it also includes estimated normals), and returns a

set of per-pixel class probabilities. A Bayesian update scheme keeps track of the

class probability distribution for each surfel, and uses the correspondences provided

by the SLAM system to update those probabilities based on the CNN’s predictions.

We also experiment with a CRF regularisation scheme to use the geometry of the

map itself to improve the semantic predictions [Hermans et al., 2014, Krähenbühl

and Koltun, 2011]. The following sections outline each component in more detail.

4.3.1 SLAM Mapping

As described in Chapter 3, for each arriving frame, k, ElasticFusion tracks the

camera pose via a combined ICP and RGB alignment, to yield a new pose T̃WC . New

85

4. SemanticFusion

surfels are added into the map using this camera pose, existing surfel information is

fused with associated measurements, and inconsistent or unstable measurements are

removed. Additional checks for a loop closure event run in parallel and the map is

optimised immediately upon a loop closure detection. It operates at real-time frame-

rates at VGA resolution and so can be used both interactively by a human or in

robotic applications. We used the default parameters in the public implementation,1

except for the depth cutoff, which we extend from 3m to 8m to allow reconstruction

to occur on sequences with geometry outside of the 3m range.

4.3.2 CNN Architecture

Our CNN is implemented in Caffe [Jia et al., 2014] and adopts the Deconvolutional

Semantic Segmentation network architecture proposed by [Noh et al., 2015]. Their

architecture is itself based on the VGG 16-layer network [Simonyan and Zisserman,

2015], but with the addition of max unpooling and transpose convolutional layers

which are trained to output a dense pixel-wise semantic probability map. This CNN

was trained for RGB input, and in the following sections when using a network with

this setup we describe it as ‘RGB-CNN.’

Max unpooling is an approach to storing fine-grained spatial information without

skip-layers in the classical sense. Instead, the information that is ‘skipped’ over

the bottleneck are the indices of the activated pixel in the max pooling layers.

Although information is still lost as all of the unactivated pixel’s data is not passed

on, later layers operate to ‘unpool’ features which have now been processed by the

bottleneck to the more refined spatial location saved from lower levels. This process

is illustrated in Figure 4.4.

Given the availability of depth data, we modified the original network architecture

to accept depth information as a fourth channel. Unfortunately, the depth modality

lacks the large scale training datasets of its RGB counterpart. The NYUv2 dataset

only consists of 795 labelled training images. To use depth, we initialized the depth

filters with the average intensity of the other three inputs, which had already been

trained on a large dataset, and converted it from the 0–255 colour range to the 0–8m

depth range by increasing the weights by a factor of ≈ 32×. The network diagrams

for the two architectures are illustrated in Figure 4.5.

1
Available at https://github.com/mp3guy/ElasticFusion.

86

https://github.com/mp3guy/ElasticFusion

4.3. Method

Figure 4.4: An illustration of the ‘max unpooling’ operation with a 2×2 kernel with
a stride of 2. Here the max pooled layer is immediately unpooled for simplicity, but
in practice convolutional layers operate between pooling and unpooling.

We rescale incoming images to the native 224×224 resolution for our CNNs using

bilinear interpolation for RGB, and nearest neighbour for depth. As we train the

RGBD-CNN on the NYUv2 training set the depth images used in training have been

filled using the scheme of [Levin et al., 2004]. To maintain consistency with the base

CNN in our experiments we also fill in the depth for each frame requiring depth in

the same manner. However the colourisation scheme was developed in unoptimised

MATLAB code. For interactive use when using the RGB-D CNN we replace this

in-filling scheme with OpenCV using the inpainting approach of [Telea, 2004]. In our

experiments with [Eigen and Fergus, 2015]’s implementation we rescale the inputs in

the same manner to 320×240 resolution and also calculate the normals for all of the

frames on which a forward pass is performed using the NYUv2 tool box [Silberman

et al., 2012].2

4.3.3 Semantic Probability Table and Surfel Association

For each surfel (index s) in our map,M, we store an associated discrete probability

distribution, p(c), over the set of all n class labels ci ∈ C. Each newly generated surfel

is initialised with a uniform distribution over the semantic classes, as we begin with

no a priori evidence as to its latent classification. Although we choose ElasticFusion

as our mapping system, we keep the operation of SemanticFusion separate from the

2
Available at https://cs.nyu.edu/~silberman/projects/indoor_scene_seg_sup.html.

87

https://cs.nyu.edu/~silberman/projects/indoor_scene_seg_sup.html

4. SemanticFusion

Figure 4.5: The network diagrams of the two CNN architectures used. The first set
of convolutional filters are 3-channel if RGB input or 4-channel if RGBD.

map through a defined interface. Unique indices of the surfels within ElasticFusion

are used to lookup and update probability values in SemanticFusion’s separate table

of semantic probabilities. In this way any SLAMmap that can adhere to the interface

and provide a globally consistent map with quantised map elements with associated

indices can in principal use SemanticFusion. A simplified diagram illustrating the

update procedure can be seen in Figure 4.6.

After a pre-specified number of frames, we perform a forward pass of the CNN

with the image I coming from the live camera. Depending on the CNN architecture,

this image can include any combination of RGB, depth, or normals. Given the data

Ik of the kth frame, the 224× 224 output probability map Pk of the CNN provides

for each pixel the probability over classes Pk(u) = p(u = ci|Ik).

The same frame is also processed by ElasticFusion which estimates the camera

pose, T̃WCk
, and if a loop is closed the global map is deformed immediately. The

map is also updated using the depth frame to either produce new surfels where

required or delete surfels that were fused with other surfels or which have been

unstable for a long period of time [Keller et al., 2013].

To associate surfels’ positions with the corresponding CNN predictions a new

OpenGL shader was added to ElasticFusion which renders the GL_VertexID of each

surfel into an off-screen FrameBufferObject (in our case of size 640 × 480) using

the standard pinhole camera projection given in Equation 2.18. The provision of

88

4.3. Method

Figure 4.6: Illustration of the projective association between surfel ids and the CNN
predictions, as well as the external probability table and Bayesian update scheme
used by SemanticFusion.

this rendered index map is the main source of information SemanticFusion uses

for its updates. The rest of the interface is to ensure the probability table stays

synchronised with the maps surfels, discussed below, and to provide methods for

visualisation of the semantic classes.

The surfel index map uses the GL_VertexID as the surfels do not explicitly store

a unique identifier internally. When surfels are added or deleted the associated

GL_VertexID in ElasticFusion’s Map FrameBuffer changes. A deleted surfel results

in every surfel with a higher GL_VertexID being ‘compacted’ down. For example, if

the surfel with GL_VertexID=3 is deleted, the first three surfels are unaffected but

the surfel 4 will be moved to 3 and 5 to 4 and so on. New surfels are initialised from

GL_VertexID=|M| onwards where |M| is the number of remaining surfels after the

deletion step.

As illustrated in Figure 4.6, the surfel’s semantic state is indexed into the prob-

ability table by its column number. As surfels are removed it is necessary to also

remove them from the probability table and perform a similar compaction proced-

ure on the table to keep the data synchronised. For this purpose the ElasticFu-

sion map update was modified to also produce a list equal in length to the set

of persistent surfels. Each entry of that list contains the previous GL_VertexID

89

4. SemanticFusion

(before the present update) for the surfel currently in that position. The interop-

erability of OpenGL and CUDA is particularly useful here. It allows the OpenGL

FrameBufferObject (FBO) storing this data to be registered with CUDA (using

cudaGraphicsGLRegisterBuffer) and mapped to a CUDA accessible pointer (us-

ing cudaGraphicsResourceGetMappedPointer). In this way the CUDA kernels in

SemanticFusion can efficiently access the memory directly in the FBO in order to

synchronise the columns of the probability table.

As surfels have a spatial extent described by their normal and radius it is possible

and quite likely for a single surfel’s index to project on multiple pixels in the FBO.

In the probability update CUDA kernel we parallelise over pixels in the index map.

To prevent independent threads from editing the same surfel simultaneously each

thread searches within a local patch of its own pixel location and gives priority to

pixels with the same index that exist before it in scanline order. In our case, the

measurements are of a lower resolution than the index map so each thread calculates

its normalised image coordinates and samples the CNN probability map in a nearest

neighbour fashion. If two surfels’ image coordinates fall on the same pixel in the

probability map, it is therefore possible they will both be updated using the same

measurement probabilities.

4.3.4 Incremental Semantic Fusion

Having associated a surfel in the 3D map to both the semantic probability table

and the new measurement, the surfel’s state can now be updated. This update

occurs by means of a recursive Bayesian update derived by [Hermans et al., 2014]

and outlined below. Given time-series of measurements, I0..k, we aim to predict the

probability distribution, p(c), over a set of classes C. We are interested in obtaining

the probability distribution over classes given the measurements up to that point,

p(ck|I0..k).

Beginning with Bayes’ rule:

p(ck|I0..k) = p(ck|Ik, I0..k−1), (4.1)

=
p(Ik|ck, I0..k−1)p(ck|I0..k−1)∑

c∈C
p(Ik|ck, I0..k−1)p(ck|I0..k−1)

, (4.2)

we then make the first order Markov assumption that the current measurement is

90

4.3. Method

conditionally independent of past measurements given p(ck):

p(Ik|ck, I0..k−1) = p(Ik|ck), (4.3)

and substituting Equation 4.3 into Equation 4.1 gives:

p(ck|I0..k) =
p(Ik|ck)p(ck|I0..k−1)∑

c∈(C)

p(Ik|ck)p(ck|I0..k−1)
. (4.4)

Given that our beliefs over classes do not change in the absence of measurements

(i.e. class distributions are not modelled to be time varying):

p(ck|I0..k−1) = p(ck−1|I0..k−1), (4.5)

Equation 4.4 becomes:

p(ck|I0..k) =
p(Ik|ck)p(ck−1|I0..t−1)∑
c∈C

p(Ik|ck)p(ct|I0..k−1)
. (4.6)

As
∑
c∈C

p(ck|I0..k) = 1 we can use a normalisation constant, Zk, for the values which

are the same for any given class, ck:

p(ck|I0..k) =
p(Ik|ck)p(ck−1|I0..k−1)

Zk
. (4.7)

When running the model online we assume we get an estimate of the current class,

p̃(ck|Ik). Using Bayes’ rule again,

p(ck|I0..k) =
p̃(ck|Ik)p(Ik)

p(ck)

p(ck−1|I0..k−1)

Zk
. (4.8)

As p(Ik) is the same for all classes, it can also be included within the normalisation

constant:

p(ck|I0..k) =
1

Zk

p̃(ck|Ik)p(ck−1|I0..k−1)

p(ck)
, (4.9)

and here we assume a uniform class prior so it too can be included in Zk which gives

us the final update Equation:

p(ck|I0..k) =
1

Zk
p̃(ck|Ik)p(ck−1|I0..k−1), (4.10)

where p(ck−1|I0..k−1) is the current state of a projected surfel to be updated and

p̃(ck|Ik) is the new measurement associated to it as described in Section 4.3.3 above.

As this procedure is independent for each surfel it can be readily parallelised in a

simple CUDA kernel shown in Listing 4.1.

91

4. SemanticFusion

Listing 4.1: CUDA kernel showing a simplified example of how the surfel state
update can be performed in a parallel manner on a GPU.

1 __global__

2 void semanticFusion(cudaTextureObject_t index_map , const uint2 index_size ,

3 const float* cnn_probabilities , const uint2 cnn_size ,

4 float* probability_table , const int num_classes) {

5 const int x = blockIdx.x * blockDim.x + threadIdx.x;

6 const int y = blockIdx.y * blockDim.y + threadIdx.y;

7 // Read thread ’s surfel_id from texture memory and ensure a surfel exists

8 const int surfel_id = tex2D <int >(index_map ,x,y);

9 if (surfel_id < 0) return;

10 // Check for conflicting threads with same surfel_id in search window

11 const int window_size = 16;

12 const int h_min = max(0, y - window_size);

13 const int w_min = max(0, x - window_size);

14 const int w_max = min(index_size.x, x + window_size);

15 // Give priority to threads in scanline order

16 for (int h = h_min; h <= y; ++h) {

17 for (int w = w_min; w < w_max; ++w) {

18 if (h == y && w == x) {

19 // No other pixel with matching surfel_id within window - update

20 break;

21 } else if (surfel_id == tex2D <int >(index_map ,w,h)) {

22 // Found same surfel_id in scanline window - do not perform update

23 return;

24 }

25 }

26 }

27 // Sample measurement from CNN probability map

28 const float2 norm_xy = (make_float2(x,y) + 0.5) / make_float2(index_size);

29 const uint2 cnn = make_uint2 ((norm_xy * make_float2(cnn_size)) + 0.5);

30 const int cnn_offset = num_classes * (cnn.y * cnn_size.x + cnn.x);

31 const float* measurement = cnn_probabilities + cnn_offset;

32 // Use the surfel_id to find the surfel probability table entry

33 const int surfel_offset = (num_classes * surfel_id);

34 float* surfel_state = probability_table + surfel_offset;

35 // Perform the update over all classes

36 float normaliser = 0.0;

37 for (int class_id = 0; class_id < num_classes; ++ class_id) {

38 surfel_state[class_id] *= measurement[class_id];

39 normaliser += surfel_state[class_id];

40 }

41 // Renormalise the semantic distribution

42 for (int class_id = 0; class_id < num_classes; ++ class_id) {

43 surfel_state[class_id] /= normaliser;

44 }

45 }

4.3.5 Map Regularisation

We explore the benefits of using map geometry to regularise predictions by applying

a fully-connected CRF [Krähenbühl and Koltun, 2011] with Gaussian edge potentials

to surfels in the 3D world frame, as in [Hermans et al., 2014].

We do not use the CRF to arrive at a final prediction for each surfel, but instead

use it incrementally to update the probability distributions. In our work, we treat

92

4.3. Method

each surfel as a node in the graph. The algorithm uses the mean-field approximation

and a message passing scheme to efficiently infer the latent variables that approx-

imately minimise the Gibbs energy E of a labelling, x, in a fully-connected graph,

where xs ∈ {li} denotes a given labelling for the surfel with index s.

The energy E(x) consists of two parts. The unary data term ψu(xs) is a function

of a given label, and is parameterised by the internal probability distribution of

the surfel from fusing multiple CNN predictions as described above. The pairwise

smoothness term, ψp(xs, xs′) is a function of the labelling of two connected surfels

in the graph, and is parameterised by the geometry of the map:

E(x) =
∑
s

ψu(xs) +
∑
s<s

′

ψp(xs, xs′). (4.11)

For the data term we simply use the negative logarithm of the chosen labelling’s

probability for a given surfel,

ψu(xs) = −log(P (Ls = xs|I1,...,k)). (4.12)

In the scheme proposed by Krähenbühl and Koltun [Krähenbühl and Koltun,

2011] the smoothness term is constrained to be a linear combination of K Gaussian

edge potential kernels, where fs denotes some feature vector for surfel, s, and in our

case µ(xs, xs′) is given by the Potts model, µ(xs, xs′) = [xs ̸= xs′]:

ψp(xs, xs′) = µ(xs, xs′)

(
K∑

m=1

wmkm(fs, fs′)

)
. (4.13)

Following previous work [Hermans et al., 2014] we use two pairwise potentials;

a bilateral appearance potential seeking to closely tie together surfels with both a

similar position and appearance, and a spatial smoothing potential which enforces

smooth predictions in areas with similar surface normals:

k1(fs, fs′) = exp

(
−|ps − ps

′ |2

2θ2α
− |cs − cs′ |

2

2θ2β

)
, (4.14)

k2(fs, fs′) = exp

(
−|ps − ps

′ |2

2θ2α
− |ns − ns

′ |2

2θ2γ

)
. (4.15)

93

4. SemanticFusion

We chose unit standard deviations of θα = 0.05m in the spatial domain, θβ = 20

in the RGB colour domain, and θγ = 0.1 radians in the angular domain. We did

not tune these parameters for any particular dataset. We also maintained w1 of 10

and w2 of 3 for all experiments. These were the default settings in Krähenbühl and

Koltun’s public implementation [Krähenbühl and Koltun, 2011].3

4.3.6 Network Training

We initialise our CNNs with weights from [Noh et al., 2015] pre-trained for segment-

ation on the PASCAL VOC 2012 segmentation dataset [Everingham et al., 2010].

For depth input we initialise the fourth channel as described in Section 4.3.2, above.

We fine-tuned this network on the training set of the NYUv2 dataset for the 13

semantic classes defined by [Couprie et al., 2013]. For optimisation we used SGD,

with a learning rate of 0.01, momentum of 0.9, and weight decay of 5× 10−4. After

10k iterations we reduced the learning rate to 1× 10−3. We use a mini-batch size of

8, and trained the networks for a total of 20k iterations over 2 days on an NVIDIA

GTX Titan X.

4.4 Experiments

A wide range of possible metrics can be used to evaluate a 3D semantic mapping

system. Given the available NYUv2 dataset, in this evaluation we focus on re-

projected 2D classification accuracy as well as run-time performance. We compare

our method against a single-frame segmentation baseline using an identical CNN

and find that our method improves upon the baseline 2D classification accuracy on

both the NYUv2 dataset and our own dataset which was taken with a trajectory

more suited to reconstruction. This suggests that the inclusion of SLAM not only

provides an immediately useful semantic 3D map, but also that many state-of-the-art

2D single frame semantic segmentation approaches may be boosted in performance

when combined with SLAM if video data is available. The focus of this thesis is on

online semantic SLAM systems. Ideally the algorithms selected should be capable

of real-time (interactive) use on current consumer hardware. Here we evaluate the

run-time performance of this system on a random set of 30 NYUv2 sequences, and

find the performance sufficient for interactive use operating on average at ≈ 25Hz.

3
Available at http://www.philkr.net/home/densecrf.

94

http://www.philkr.net/home/densecrf

4.4. Experiments

Figure 4.7: Our office reconstruction dataset: On the left are the captured
RGB and Depth images. On the right, is our 3D reconstruction and annotation
using the tool described in Chapter 3. Inset into that is the final ground truth
rendered labelling we use for testing.

4.4.1 Reconstruction Dataset

Unfortunately the public NYUv2 dataset was not taken with full room reconstruc-

tion in mind, and often does not provide significant variations in viewpoints for

a given scene. To explore the benefits of SemanticFusion within a more thorough

reconstruction, we developed a small dataset of a reconstructed office room, annot-

ated with the NYUv2 semantic classes using the tool developed in Chapter 3. In

this dataset we aimed for a relatively complete reconstruction of an office room. The

trajectory used is notably more loopy, both locally and globally, than the NYUv2

dataset which typically consists of a single back and forth sweep.

We believe the trajectory in our dataset is more representative of the scanning

motion an active agent may perform when inspecting a scene. An annotated portion

of the scene is shown in Figure 4.7. Every 100th frame of the sequence was used as a

test sample to validate our predictions against the annotated ground truth, resulting

in 49 test frames.

4.4.2 CNN and CRF Update Frequency

We used the office dataset to evaluate the accuracy of our system when only per-

forming a CNN prediction on a subset of the incoming video frames. We used

95

4. SemanticFusion

the RGB-CNN described above, and evaluated the accuracy of our system when

performing a prediction on every 2n frames, where n ∈ {0..7}. To illustrate the

time-accuracy trade off we overlay the plot of average frame-rate for a given number

of skipped frames based upon the run-time analysis discussed in Section 4.4.5. As

shown in Figure 4.8, the accuracy is highest (52.5%) when every frame is processed

by the network, however this leads to a significant drop in frame-rate to 8.2Hz.

Processing every 10th frame results in a slightly reduced accuracy (49-51%), but

over three times the frame-rate of 25.3Hz. This is the approach taken in all of our

subsequent evaluations.

0 4 8 16 32 64 128
0

10

20

30

40

50

60

No. Frames Skipped by CNN

C
la
ss

A
v
g.

A
cc
u
ra
cy

(%
)

RGB-CNN (LHS)

Avg. Frame Rate (RHS)

0

5

10

15

20

25

30

35

F
ra
m
e
R
at
e
(H

z.
)

Figure 4.8: The class average accuracy of our RGB-CNN on the office reconstruction
dataset against the number of frames skipped between fusing semantic predictions.
We perform this evaluation without CRF smoothing. The right hand axis shows the
estimated run-time performance in terms of FPS.

We also evaluated the effect of varying the number of frames between CRF updates

(Figure 4.9). We found that when applied too frequently, the CRF can ‘drown out’

predictions of the CNN, resulting in a significant reduction in accuracy. Performing

an update every 500 frames results in a very slight improvement, and so we use that

as the default update rate in all subsequent experiments.

4.4.3 Accuracy Evaluation

We evaluate the accuracy of our SemanticFusion pipeline against the accuracy

achieved by a single frame CNN segmentation. The results of this evaluation are

summarised in Table 4.1. We observe that in all cases semantically fusing additional

96

4.4. Experiments

500 1,000
46

47

48

49

50

51

No. Frames Skipped by CRF

C
la
ss

A
v
g
.
A
cc
u
ra
cy

(%
)

RGB-CNN, CRF
RGB-CNN, No CRF

Figure 4.9: The average class accuracy processing every 10th frame with a CNN,
with a variable number of frames between CRF updates. If applied too frequently
the CRF was detrimental to performance, and the performance improvement from
the CRF was not significant for this CNN.

viewpoints improved the accuracy of the segmentation over a single frame system.

Performance improved from 43.6% for a single frame to 48.3% when projecting the

predictions from the 3D SemanticFusion map.

The performance for common classes that span a large area such as ‘wall’ and

‘floor’ is notably much higher than infrequent classes that cover a smaller area

and are often heavily occluded such as ‘table.’ As CNN predictions tend to be

more inaccurate near the boundaries of objects, the performance on classes with

proportionally more border pixels (either because of clutter or because of a smaller

visible area) is generally lower. There are also fewer training examples in the dataset

for these infrequent classes.

We also evaluate our system on the office dataset when using predictions from a

much slower but (at the time) state-of-the-art CNN developed by [Eigen and Fergus,

2015]4 based on the VGG architecture. Although it is not possible to use the [Eigen

and Fergus, 2015] CNN in real-time (it takes 1.6s to perform a prediction), we

used it to evaluate whether the SemanticFusion system was capable of improving

upon the predictions of even a state-of-the-art CNN, regardless of the performance

4
We use the publicly available network weights and implementation from: http://www.cs.nyu.

edu/~deigen/dnl/.

97

http://www.cs.nyu.edu/~deigen/dnl/
http://www.cs.nyu.edu/~deigen/dnl/

4. SemanticFusion

considerations. The network requires ground truth normal information, and so to

ensure the input pipeline is the same as in [Eigen and Fergus, 2015], we pre-process

the entire NYUv2 sequence with the MATLAB script linked to in the project page to

produce the ground truth normals. With this setup we see an average improvement

of 2.9% over the single frame implementation with SemanticFusion, from 57.1% to

60.0%. The performance benefit of the CRF was less clear. It provided a very

small improvement of 0.5% for the [Eigen and Fergus, 2015] network, but a slight

detriment to the RGBD-CNN.

In the individual class breakdown SemanticFusion produced positive results in

most classes, with the notable exception of the painting class for the RGBD CNN.

For the painting class the accuracy decreased from 39.5% for the single-frame

prediction to 26.2% when performing SemanticFusion. A review of the sequence re-

vealed that this was largely caused by a misclassification of pictures on the wall when

the camera viewpoint was pitched up in order to reconstruct the ceiling. Although

the CNN initially correctly classified most of the paintings in SemanticFusion from

a level camera pose, when the camera viewpoint pitched upwards the CNN con-

sistently misclassified pictures as either furniture or objects. This bias is likely

because such an upward looking viewpoint is rarely seen in the NYUv2 training

set, on which the CNN was fine-tuned. In future, this issue could potentially be

mitigated by providing the CNN with geometric information about the camera’s

pose, either directly from the SLAM system, or via additional input channels such

as surface-normal information relative to the gravity vector.

4.4.4 NYUv2 Dataset

We chose to validate our approach on the NYUv2 dataset [Silberman et al., 2012],

as it was one of the few datasets which provided all of the information required

to evaluate semantic RGB-D reconstruction. The SUN RGB-D [Song et al., 2015],

although an order of magnitude larger than NYUv2 in terms of labelled images,

did not provide the raw RGB-D videos and therefore it could not be used in our

evaluation.

The NYUv2 dataset itself is still not ideally suited to the role. Many of the 206 test

set video sequences exhibit significant drops in frame-rate and thus prove unsuitable

for tracking and reconstruction. In our evaluations we excluded any sequence which

experienced a frame-rate under 2Hz. The remaining 140 test sequences result in

98

4.4. Experiments

Office Reconstruction: 13 Class Semantic Segmentation

Method b
o
ok

s

ce
il
in
g

ch
ai
r

fl
o
or

ob
je
ct
s

p
ai
n
ti
n
g

ta
b
le

w
al
l

w
in
d
ow

cl
as
s
av

g.

p
ix
el

av
g.

RGBD 61.8 48.2 28.6 63.9 41.8 39.5 9.1 80.6 18.9 43.6 47.0

RGBD-SF 66.4 78.7 36.8 63.4 41.9 26.2 12.1 84.2 25.3 48.3 54.7

RGBD-SF-CRF 66.4 78.1 37.2 64.2 40.8 27.5 10.6 85.1 22.7 48.1 54.8

[Eigen and Fergus, 2015] 57.8 54.3 57.8 72.8 49.4 77.5 24.1 81.6 38.9 57.1 62.5

Eigen-SF 60.8 58.0 62.8 74.9 53.3 80.3 24.6 86.3 38.8 60.0 65.8

Eigen-SF-CRF 65.9 53.3 65.1 76.8 53.1 79.6 22.0 87.7 41.4 60.5 67.0

Table 4.1: Reconstruction dataset results: For both our RGBD CNN and the
state-of-the-art (non-real time) Eigen CNN, the SemanticFusion approach (denoted with
SF) improved upon the classification accuracy of their respective baseline CNNs which
perform single-frame prediction. The improvement as a result of the CRF is less significant
but still generally positive. SF results were captured immediately if a keyframe was present
in a strictly online fashion. When no reconstruction is present for a pixel, we fall back to
the predictions of the baseline single frame network. Following previous work [Hermans
et al., 2014] we exclude pixels without a corresponding depth measurement. All accuracy
evaluations were performed at 320 × 240 resolution.

360 labelled test images of the original 654 image test set in NYUv2. The results of

our evaluation are presented in Table 4.2 and some qualitative results are shown in

Figure 4.10.

Overall, fusing semantic predictions resulted in a notable improvement over single

frame predictions. However, the total relative gains of 3.3% for the RGBD-CNN

was less than the 4.7% improvement witnessed in the office reconstruction dataset.

We believe this is largely a result of the style of capturing NYUv2 datasets. The

primarily rotational scanning pattern often used in test trajectories does not provide

as many useful different viewpoints from which to fuse independent predictions.

Despite this, there is still a significant accuracy improvement over the single frame

predictions.

We also improved upon the state-of-the-art [Eigen and Fergus, 2015] CNN, with

the class average accuracy going from 59.9% to 63.2% (+3.3%). This result clearly

shows, even on this challenging dataset, the capacity of SemanticFusion to not only

provide a useful semantically annotated 3D map, but also to improve the predictions

of state-of-the-art 2D semantic segmentation systems.

The improvement as a result of the CRF was not particularly significant, but

99

4. SemanticFusion

NYUv2 Test Set: 13 Class Semantic Segmentation

Method b
ed

b
o
o
k
s

ce
il
in
g

ch
a
ir

fl
o
o
r

fu
rn
it
u
re

o
b
je
ct
s

p
a
in
ti
n
g

so
fa

ta
b
le

tv w
a
ll

w
in
d
ow

cl
a
ss

av
g
.

p
ix
el

av
g
.

RGBD 62.5 60.5 35.0 51.7 92.1 54.5 61.3 72.1 34.7 26.1 32.4 86.5 53.5 55.6 62.0

RGBD-SF 61.7 58.5 43.4 58.4 92.6 63.7 59.1 66.4 47.3 34.0 33.9 86.0 60.5 58.9 67.5

RGBD-SF-CRF 62.0 58.4 43.3 59.5 92.7 64.4 58.3 65.8 48.7 34.3 34.3 86.3 62.3 59.2 67.9

[Eigen and Fergus, 2015] 42.3 49.1 73.1 72.4 85.7 60.8 46.5 57.3 38.9 42.1 68.5 85.5 55.8 59.9 66.5

Eigen-SF 47.8 50.8 79.0 73.3 90.5 62.8 46.7 64.5 45.8 46.0 70.7 88.5 55.2 63.2 69.3

Eigen-SF-CRF 48.3 51.5 79.0 74.7 90.8 63.5 46.9 63.6 46.5 45.9 71.5 89.4 55.6 63.6 69.9

[Hermans et al., 2014] 68.4 45.4 83.4 41.9 91.5 37.1 8.6 35.8 28.5 27.7 38.4 71.8 46.1 48.0 54.3

Table 4.2: NYUv2 test set results: Similar to the reconstruction dataset, both
our RGBD CNN and the state-of-the-art (non-real time) Eigen CNN witnessed improve-
ments upon the respective baseline single-frame classification accuracy by the inclusion of
SemanticFusion (SF). However the improvement was less than that of the reconstruction
dataset; this could be because of the rotational scanning pattern, which provides less view-
point variation. The improvement as a result of the CRF is again not large but generally
positive. SF results were captured immediately if a keyframe was present and when no re-
construction is available we fall back to the predictions of the baseline CNN. The accuracies
of [Eigen and Fergus, 2015] were calculated from their publicly available implementation.
Our results are not directly comparable with [Hermans et al., 2014] as we only evaluate
on a subset of the test set, and their annotations are not available. However, we include
their results for reference. Following previous work [Hermans et al., 2014] we exclude pixels
without a corresponding depth measurement. All accuracy evaluations were performed at
320× 240 resolution.

positive for both CNNs. Eigen’s CNN saw +0.4% improvement, and the RGBD-

CNN saw +0.3%. This could possibly be improved with proper tuning of edge

potential weights and unit standard deviations, and the potential exists to explore

many other kinds of map-based semantic regularisation schemes, such as those later

developed by [Pham et al., 2018].

4.4.5 Run-time Performance

We benchmark the performance of our system on a random sample of 30 sequences

from the NYUv2 test set. All tests were performed on an Intel Core i7-5820K

3.30GHz CPU and an NVIDIA Titan Black GPU. Our SLAM system requires 29.3ms

on average to process each frame and update the map. For every frame we also

update our stored surfel probability table to account for any surfels removed by

the SLAM system. This process requires an additional 1.0ms. As discussed above,

the other components in our system do not need to be applied for every frame. A

forward pass of our CNN requires 51.2ms and our Bayesian update scheme requires

100

4.4. Experiments

a further 41.1ms. Our standard scheme performs this every 10 frames, resulting in

an average frame-rate of 25.3Hz.

Figure 4.10: Qualitative NYUv2 test set results: The results of SemanticFusion
shown use the RGBD-CNN with CRF after the trajectory is complete, against the same
network’s single frame predictions. For evaluation, the black regions of SemanticFusion
denoting areas without a reconstruction are replaced with the baseline CNN predictions.
Here we show only the semantic reconstruction result for clarity. The first two rows show
instances where SemanticFusion has clearly improved the accuracy of the 2D annotations.
The third row shows an example of a very rotational trajectory, where there is little difference
as a result of fusing predictions. The final row shows an example where the trajectory was
clearly not taken with reconstruction in mind, and the distant geometry leads to tracking
and mapping problems even within our subset requiring 2Hz frame-rate. Cases such as this
provide an advantage to the accuracy of the single frame network.

Our experimental CRF implementation was developed only for the CPU in C++,

but the message passing algorithm adopted could lend itself to an optimised GPU

implementation. The overhead of copying data from the GPU and performing infer-

101

4. SemanticFusion

ence on a single threaded CPU implementation is significant. Therefore on average,

it takes 20.3s to perform 10 CRF iterations. In the evaluation above, we perform a

CRF update once every 500 frames, but for online use it can be disabled entirely or

applied once at the conclusion of a sequence.

4.5 Limitations

There are a number of limitations and areas which remain to be explored in terms

of both system engineering and further research and analysis. We explored the

use of two different CNNs, the CNN based on the [Noh et al., 2015] architecture,

which was capable of real-time operation and the slower state-of-the-art system of

[Eigen and Fergus, 2015]. However, the performance issues of the [Eigen and Fergus,

2015] CNN is quite implementation specific rather than inherent to the architecture,

and so further engineering effort could allow it, or other more modern semantic

segmentation systems to be used in future. We also opted for the simple approach

of performing the CNN forward pass on the same thread as the main SLAM system.

This simplified the system but unfortunately caused a small delay on prediction

frames. In future work, the CNN forward pass and table update operations could

be performed asynchronously in another thread to mitigate this issue.

The CRF regulariser used allows information from the geometry of the map to

flow one way towards regularising semantic predictions. Going further, it is read-

ily apparent, as demonstrated in a so far relatively simple manner in systems like

SLAM++ [Salas-Moreno et al., 2014] that not only can reconstruction be used to

provide correspondence to help labelling, but that labelling/recognition can make

reconstruction and SLAM more accurate and efficient. A loop-closure capable surfel

map as in ElasticFusion is highly suitable for applying operations such as class-

specific smoothing (as in the extreme case of planar region recognition and fit-

ting [Salas-Moreno et al., 2014]). The final annotated map is also highly suitable

for more expensive offline post-processing which has also not been explored here.

Interesting work by [Häne et al., 2013] explores joint optimisation of semantics and

geometry and thereby allows the semantic predictions to directly improve the map

in more complex ways than simple plane fitting and compression.

The current system is a one-way street in another way. As well as simply improv-

ing the geometry of the map, the semantic information has not been used to improve

102

4.5. Limitations

tracking or localisation. This area has been explored by [Cavallari and Di Stefano,

2016b, Cavallari, 2017] to improve upon the TSDF annotation system described in

Section 4.2. Work also exists exploring using the feature maps of CNNs directly in

order to improve the robustness of tracking systems [Czarnowski et al., 2017].

The recursive Bayesian update scheme used here follows the approach of [Her-

mans et al., 2014], which was originally developed for predictions from a Random

Forest. However, research into modern CNNs suggest that while they are accurate

classifiers, they also tend to be poorly calibrated and provide overconfident predic-

tions [Guo et al., 2017]. The problem of overconfidence is further exacerbated by

the independence assumption of the Bayesian update scheme, as repeated confident

predictions can quickly collapse the probability distribution. These issues are not

explored here but they became more apparent later when dealing with the confid-

ence rankings of individual objects in the work in Chapter 6. Future research on this

could explore the benefits of alternative fusion schemes as well as better calibration

of the CNN predictions, for example by using the temperature scaling techniques

proposed by [Guo et al., 2017].

There also exist opportunities for more thorough evaluation of the system as it

stands. As discussed in Section 4.4.3, an upward looking camera pose seemed to

have a negative impact on the accuracy of the painting class. Further research

could more thoroughly analyse the importance of different viewing poses for certain

object classes. This analysis could look not only at viewing pose relative to the

global scene coordinate system, such as looking upwards, but also with respect to

some canonical object pose for each class. Some of this analysis may necessitate

more detailed scene annotations than available in the NYUv2, such as canonical

object poses and ground-truth camera poses, as well as a greater variety of viewing

poses. Some of the work described in Chapter 5 on synthetic indoor datasets may

be one source of such data. With such analysis, it may be possible to improve

the performance of the system by, for example, selecting prediction frames based

on whether they will be particularly informative, rather than simply skipping a set

number of frames between predictions. Another important factor which could be

similarly explored is the effect of clutter on performance.

There is also an issue with the representation of the map itself. Although annot-

ating a dense map certainly provides useful semantic information, interpreting and

using a dense map with millions of independent semantic probability distributions

103

4. SemanticFusion

is more problematic and does not provide a neat ‘API’ to access the map in an

intuitive manner. It does not allow task-relevant queries such as ‘How many chairs

do we have in the conference room?’ to be directly answered. As the surfels are

independent it is also possible to produce quite inconsistent semantic maps. For

example, if an object has different appearance characteristics on opposite sides that

leads to different semantic predictions, then the map will simply label the two halves

of the same object with different semantic classes, rather than recognise that these

are different semantic predictions for the same entity. Many of these issues can be

approached by including instance groupings within the map, an approach we explore

in Chapter 6.

4.6 Conclusion

The work in this chapter confirmed our strong expectation that using a SLAM

system to provide pixel-wise correspondences between frames allows the fusion of

per-frame 2D segmentations into a coherent 3D semantic map. It was, to the best

of our knowledge, the first time that this has been demonstrated with a real-time,

loop-closure capable approach suitable for interactive room scanning. Not only that,

the evaluation indicated that the incorporation of such a map led to an improvement

in the corresponding 2D segmentation accuracy.

We exploited the flexibility of CNNs to improve the accuracy of a pretrained RGB

network by incorporating an additional depth channel. In this work we opted for

the simplest feasible solution to allow this new modality. Other work has explored

other ways to incorporate depth information [Hoffman et al., 2016], but such an

approach requires a duplication of the lower network parameters and was infeasible

in our system due to GPU memory limitations. However we do explore architectures

of this variety in the following chapter.

The reconstruction-focused office dataset showed a larger improvement in labelling

accuracy via fusion than the NYUv2 dataset with less varied trajectories. This sug-

gests viewpoint variation is an important factor for semantic fusion. It also hints at

the improvements that could be achieved with significantly longer trajectories, such

as those of an autonomous robot in the field making direct use of the semantically

annotated 3D map.

Our experiments using [Krähenbühl and Koltun, 2011]’s fully-connected CRF in-

104

4.6. Conclusion

ference for regularisation did not provide significant performance improvements.

Subsequent work by [Pham et al., 2018] fuses a TSDF of the entire scene and se-

mantically labels voxels using a CNN followed by a progressive CRF. Unlike here

where our CRF was a slow CPU base computation, their progressive CRF operates

using higher-order constraints on supervoxels in a highly efficient incremental man-

ner enabling real-time use. That work advances beyond the Potts potential used

here to include class specific relationships to form an object relationship potential,

as well as including an objectness and consistency potential. They show a more

significant improvement over the base SemanticFusion approach.

There are a number of problems which were encountered in this chapter which

direct the research in later chapters. Given the data-hungry nature of CNNs, one

problem was the lack of any large-scale RGB-D indoor datasets for training purposes.

Exploration of this avenue of research had already led to the object annotation

software described in Chapter 3 however producing varied data at scale using this

system was still an expensive labour intensive process. To approach this problem

a large scale synthetic dataset was explored and is described in the next chapter

(Chapter 5). There was also the already described issue of interpreting a semantic

map consisting of independent semantic probability distributions. One approach

that could be taken is to cluster the already produced semantic map described here

and some research is moving in this direction [Pham et al., 2018]). However, we

take a different approach outlined in Chapter 6 which follows in the footsteps of

SLAM++ [Salas-Moreno et al., 2013] with an instance-based SLAM system.

105

4. SemanticFusion

106

Chapter 5

SceneNet RGB-D

Contents

5.1 Introduction . 108

5.2 Related Work . 110

5.3 Dataset Overview . 112

5.4 Scene Generation . 115

5.4.1 Estimating Metric Scales 115

5.4.2 Generating Random Scenes with Physics 117

5.5 Random Trajectory Generation 118

5.5.1 Two-Body Camera Trajectories 119

5.6 Rendering RGB Frames . 121

5.6.1 Photon Mapping . 123

5.6.2 Rendering Quality . 123

5.6.3 Random Layout Textures and Lighting 125

5.6.4 Camera Model and Motion Blur 125

5.7 Experiments . 127

5.7.1 Network Architectures 128

5.7.2 Training . 129

5.7.3 Results . 130

5.8 Limitations . 131

5.9 Conclusion . 133

107

5. SceneNet RGB-D

5.1 Introduction

In this chapter we explore a method to obtain and experiment with large quantities

of labelled training data without the cost of manual capture and annotation. As

discussed in Chapter 3, tasks which need more than a simple categorisation for an

image such as semantic and instance segmentation require a pain-staking process of

capturing and then annotating accurate per-pixel ground truth labels. This cost has

historically limited the size of such datasets, and although the software presented in

Chapter 3 mitigates some of the annotation cost for video datasets of static scenes,

generating large-scale datasets would still require significant resources.

In real-world scenes it is sometimes difficult to gather some of the ground truth

labels that may be desired, such as very accurate depth readings, precise camera

poses, and pixel-perfect instance segmentations. These modalities often can only be

estimated or potentially provided with costly additional equipment such as LIDAR

for depth and VICON for camera pose tracking. In other domains such as interactive

dynamic scenes, no pre-captured dataset will suffice to cover the outcome of the

many possible options available to an agent. For all of the above problems, the use

of synthetic data rendered using computer graphics is a potential solution. Inspired

by the low cost of producing very large-scale synthetic datasets with complete and

accurate ground truth information, as well as the recent successes of synthetic data

for training scene understanding systems, in this chapter we aim to generate a large

photorealistic dataset tailored for indoor RGB-D video trajectories.

Our dataset has several key strengths relative to previous publicly available data-

sets for indoor scene understanding that make it especially useful for training com-

puter vision models which could be used for real-world applications in robotics and

augmented reality. We have used ray-tracing to generate high quality synthetic

RGB images, aiming towards photorealism with full lighting effects and elements

such as motion blur, as well as accompanying synthetic depth images. The images

are rendered from randomly generated smooth trajectories to create sequential video

clips from a moving virtual camera (shown in Figure 5.1) using a novel two-body

approach, which we found produced images more representative of handheld camera

motion than a completely random approach.

The pipeline we have developed for generating the contents of the synthetic scenes

has relied to the greatest degree possible on fully automatic methods. Object distri-

108

5.1. Introduction

Figure 5.1: Example of a two-body camera trajectory through a synthetically gen-
erated scene with inset rendered views from the first and last camera pose.

butions are statistically sampled from publicly available real-world scene repositories

and randomly positioned within a physics simulation that then ensures physically

plausible scene configurations. The camera trajectory itself is also randomly gen-

erated and fully automated, while also respecting collisions in the scene geometry,

unlike previous manual approaches such as inserting a captured trajectory into a

scene [Handa et al., 2014]. This means that our pipeline can produce a greater

degree of variety of scene configurations than others, enabling a potentially much

larger dataset without the need for direct human scene design or annotation. We

use this automated pipeline to generate and make available a 5M image indoor

synthetic video dataset1 of RGB-D images with accompanying ground-truth labels.

We experimentally validate its usefulness for CNN pre-training when fine-tuned and

tested on two real-world datasets.

1
The dataset and open source data generation pipeline are available from the project page:

https://robotvault.bitbucket.io/scenenet-rgbd.html.

109

https://robotvault.bitbucket.io/scenenet-rgbd.html

5. SceneNet RGB-D

5.2 Related Work

The use of synthetic data in computer vision tasks is not new. Early uses of synthetic

data focused on using it for evaluation purposes because of the highly accurate

ground-truth data it could provide. This approach has a long history in the field

of optical flow [Barron et al., 1994, Butler et al., 2012] and has also been used

for evaluation of visual odometry and SLAM systems [Handa et al., 2012, Handa

et al., 2014]. A growing body of more recent research has highlighted that synthetic

training data can be an effective substitute for real-world labelled data in problems

where ground truth data is difficult to obtain. [Aubry et al., 2014] used synthetic

3D CAD models for learning visual elements to do 2D-3D alignment in images, and

similarly [Gupta et al., 2015b] trained on renderings of synthetic objects to align 3D

models with RGB-D images. [Peng et al., 2015] augmented small datasets of objects

with renderings of synthetic 3D objects with random textures and backgrounds to

improve object detection performance. FlowNet [Fischer et al., 2015] and FlowNet

2.0 [Ilg et al., 2017] both used training data obtained from synthetic flying chairs

for optical flow estimation; and [DeSouza et al., 2017] used procedural generation

of human actions with computer graphics to generate a large dataset of videos for

human action recognition.

For outdoor scenes, [Ros et al., 2016] generated the SYNTHIA dataset for road

scene understanding, and two independent pieces of work by [Richter et al., 2016]

and [Shafaei et al., 2016] produced synthetic training data from photorealistic gam-

ing engines, validating the performance on real-world segmentation tasks. [Gaidon

et al., 2016] used the Unity engine to create the Virtual KITTI dataset, which takes

real-world seed videos to produce photorealistic synthetic variations to evaluate ro-

bustness of models to various visual factors. For indoor scenes, recent work by [Qiu

and Yuille, 2016] called UnrealCV provided a plugin to generate ground truth data

and photorealistic images from the UnrealEngine. This use of gaming engines is an

exciting direction, but it can be limited by proprietary issues either by the engine

or the assets. Our SceneNet RGB-D dataset uses open-source scene layouts and ob-

jects and for rendering we have built upon the ray-tracing framework OptiX2 which

allows significant flexibility in the ground truth data we can collect and visual effects

we can simulate.

2
https://developer.nvidia.com/optix

110

https://developer.nvidia.com/optix

5.2. Related Work

The inspiration for the present work was the SceneNet dataset produced by [Handa

et al., 2016]. SceneNet consisted of a repository of labelled synthetic 3D scenes from

five different categories. That repository was used to generate per-pixel semantic

segmentation ground truth for depth-only images from random viewpoints. They

demonstrated that a CNN trained on 10k images of synthetic depth data and fine-

tuned on the original NYUv2 [Silberman et al., 2012] and SUN RGB-D [Song et al.,

2015] real image datasets showed an increase in the performance of semantic seg-

mentation when compared to a network trained on just the original datasets.

Concurrent work by [Song et al., 2017] produced the SUN-CG dataset which

contains ≈46k synthetic scene layouts created using Planner5D.3 The most closely

related approach to ours is the follow-up work of [Zhang et al., 2017] which used the

SUN-CG layouts to generate 400k physically-based RGB renderings of a randomly

sampled still camera within those indoor scenes. They also provided ground truth

labels for three selected tasks: normal estimation, semantic annotation, and object

boundary prediction. They compared pre-training a CNN (already with ImageNet

initialisation) on lower quality OpenGL renderings against pre-training on high qual-

ity physically-based renderings, and found pre-training on high quality renderings

outperformed on all three tasks.

Our dataset, SceneNet RGB-D, samples random layouts from SceneNet [Handa

et al., 2016] and objects from ShapeNet [Chang et al., 2015] to create a practic-

ally unlimited number of scene configurations. As shown in Table 5.1, there are a

number of key differences between our work and others that were available at the

time. Firstly, our dataset explicitly provides a randomly generated sequential video

trajectory within a scene, allowing 3D correspondences between viewpoints for 3D

scene understanding tasks, with the ground truth camera poses acting in lieu of a

SLAM system. Secondly, [Zhang et al., 2017] use manually designed scenes, while

our randomised approach produces chaotic configurations that can be generated on-

the-fly with little chance of repeating. Moreover, the layout textures, lighting, and

camera trajectories are all randomised, allowing us to generate a wide variety of

geometrically identical but visually differing renders as shown in Figure 5.10.

We believe such randomness could help prevent overfitting by providing large

quantities of less predictable training examples with high instructional value. Addi-

3
https://planner5d.com/

111

https://planner5d.com/

5. SceneNet RGB-D

NYUv2 SUN RGB-D sceneNN 2D-3D-S ScanNet SceneNet SUN CG* SceneNet RGB-D
[Silberman et al., 2012] [Song et al., 2015] [Hua et al., 2016] [Armeni et al., 2017] [Dai et al., 2017a] [Handa et al., 2016] [Song et al., 2017]

∗
[McCormac et al., 2017b]

RGB-D videos available ✓ ✗ ✗ ✓ ✓ ✗ ✗ ✓

Per-pixel annotations Key frames Key frames Videos Videos Videos Key frames Key Frames Videos
Trajectory ground truth ✗ ✗ ✗ ✓ ✓ ✗ ✓ ✓

RGB texturing Real Real Real Real Real Depth Photorealistic Photorealistic
Number of layouts 464 - 100 270 1513 57 45,622 57
Number of configurations 464 - 100 270 1513 1000 45,622 16,895
Number of annotated frames 1,449 10k - 70k 2.5M 10k 400k 5M
3D models available ✗ ✗ ✓ ✓ ✓ ✓ ✓ ✓

Method of design Real Real Real Real Real Random & Manual Manual Random

Table 5.1: A comparison table of 3D indoor scene datasets and their differing charac-
teristics at the time of SceneNet RGB-D’s publication. SceneNN provides annotated
3D meshes instead of frames. 2D-3D-S provides rotational scans at positions rather
than free-moving 3D trajectories. *We combine within this column the additional
[Zhang et al., 2017] work of physically-based renderings of the same scenes.

tionally, randomness provides a simple baseline approach against which more com-

plex scene-grammars can justify their added complexity. It remains an open question

whether randomness is preferable to designed scenes for learning algorithms. Ran-

domness leads to a simpler data generation pipeline and, given a sufficient compu-

tational budget, allows for dynamic on-the-fly generated training examples suitable

for active machine learning. A combination of the two approaches, with reasonable

manually designed scene layouts or semantic constraints alongside physically simu-

lated randomness may provide the best of both worlds, and is just recently starting

to be explored [Li et al., 2018].

5.3 Dataset Overview

Our pipeline begins with 3D models of empty scene layouts and object models from

the ShapeNet repository [Chang et al., 2015]. We sample a number of objects based

on the area of the layout and a randomly selected object density. The categories

of objects selected are based on the scene layout type (e.g. living room) so as to

make semantically plausible scenes. As the ShapeNet models lack absolute scale

information we first estimate a metric scale for each object and then position it ran-

domly within the layout. Physically plausible scene configurations are created using

a physics engine to simulate the scene dynamics with collisions and gravity. Within

each of these generated scenes a collision-aware camera trajectory is generated to

mimic human hand-held camera motion. Finally both the scene geometry and the

trajectory are passed to the rendering engine which adds lighting effects and random

textures to render the RGB images, depth images, and instance segmentations.

For the dataset, we had to balance the competing requirements of frame-rates for

112

5.3. Dataset Overview

video sequences with the computational cost of rendering many very similar images,

which would not provide significant variation in the training set for CNNs. We

decided upon 5 minute trajectories at 320×240 image resolution, but with a single

frame per second, resulting in 300 images per trajectory. Our trajectory is calculated

at the full 25Hz, but we only render every 25th pose. Each pose in fact consists of

a pair of poses, which define the shutter open and shutter close of the camera. We

sample from poses linearly interpolated between the two points to produce motion

blur artefacts.

Different ground truth labels can be obtained with an extra rendering pass. In-

stance labels are obtained by assigning indices to each object and rendering for

each pixel the index of that object instead of RGB values. Depth is defined as the

Euclidean ray length from the camera origin to the first surface it intersects. This

provides perfect depth information even in the case of reflections. Our depth defin-

ition is different from that of the Kinect which gives the z-axis component of the

distance along the camera’s principal axis. For depth and instance indices we do

not supersample each pixel as we do for RGB; instead a single ray is emitted from

the centre of the pixel.

From the above explicit ground truth information and accompanying metadata it

is possible to calculate a number of other pieces of implicitly defined ground truth

information. For example, for each trajectory we store a mapping from instance

labels to a semantic label to produce semantic segmentation data. These semantic

labels are defined with a WordNet index [Princeton University, 2010], which provides

a useful network structure for semantic links and hierarchies. It is also possible

to calculate the instantaneous optical flow using the static scene assumption, the

camera trajectory, and the depth map. Some examples of the available ground truth

information for a given frame is shown in Figure 5.2.

By using the camera pose and backprojecting the depth map, it is also possible

to calculate the 3D position of each surface point in F−→W . We use this to calculate

voxel correspondence indices (for some arbitrarily selected voxel size) for an entire

trajectory to mimic the correspondences available in a perfect SLAM system using a

voxel grid. Figure 5.3 shows an example colourisation of this correspondence system.

Our dataset is separated into train, validation, and test sets. Each of these sets

has a unique set of layouts, objects, and trajectories particular to the set. However

113

5. SceneNet RGB-D

(a) RGB (b) Depth (c) Instance (d) Semantic (e) Optical flow

Figure 5.2: Hand-picked examples of scenes from our dataset. Rendered images on
the left and the corresponding available ground truth information on the right.

(a) Rendered image (b) 0.5m voxels (c) 0.15m voxels

Figure 5.3: On the left is the rendered image; on the right are unique randomly
coloured voxels that remain the same throughout a trajectory. Outside the window
there is no depth reading so we assign all of these areas the same default identifier.

the parameters for randomly choosing lighting and trajectories remains the same.

We selected two layouts from each type (bathroom, kitchen, office, living room,

and bedroom) for the validation and test sets making the layout split 37-10-10.

For ShapeNet objects within a scene we randomly divide the objects within each

WordNet class into 80-10-10% splits for train-val-test. This ensures that some of

114

5.4. Scene Generation

each type of object are in each data split. Our final training set has 5M images from

16k layouts and our validation and test set have 300k images from 1k different room

layouts. Each layout has a single accompanying trajectory through it.

5.4 Scene Generation

To create scenes, we first randomly choose the density of objects per square meter

of layout floor area. In our case we have two of these densities. For large objects we

randomly sample a density uniformly in the range 0.1−0.5 objects/m2, and for small

objects (<0.4m in height) we sample from a density in the range 0.5−3.0 objects/m2.

Given the floor area of a scene, we calculate the number objects required.

We sample objects for a given scene according to the distribution of object cat-

egories in that scene-type in the SUN-RGBD dataset [Song et al., 2015]. We do

this with the aim of including semantically relevant objects within a scene context.

For example a bathroom is more likely to contain a sink or toilet than a microwave

(see Figure 5.4 for an object breakdown by scene type). For each sampled object

type we pick a random instance uniformly from the available ShapeNet models for

that object type. This approach requires accurate associations between the objects

in SUN-RGBD and ShapeNet. In Figure 5.4, the unfortunate number of mailboxes

in a number of layouts is a result of a mistaken mapping of the ‘box’ class in SUN

RGB-D to a class named ‘box’ in ShapeNets which contains primarily mailboxes.

This mishap serves to highlight some of the difficulties inherent in working with

large-scale objects repositories in an automated way.

5.4.1 Estimating Metric Scales

The majority of 3D models in free 3D asset repositories are created by 3D designers

and artists without any explicit designation of metric-scale information. This is a

problem as it is desirable that the objects placed in our synthetic scenes have physical

dimensions similar to their real world counterparts. Fortunately, datasets like SUN

RGB-D [Song et al., 2015] are captured with a depth camera and provide metric 3D

bounding boxes for each labelled object in the scene. We leverage this information

to obtain the height distribution of object categories, and then randomly sample

metric heights from this distribution to scale each object before placing it in the

scene. We maintain the aspect ratio of these objects during this scaling procedure.

115

5. SceneNet RGB-D

Figure 5.4: Top 50 objects and their log proportions by scene type. Note that beds
are subdivided into a number of similar classes such as miscbeds and kingsized

beds which we here combine these into a single group.

Figure 5.5 shows probability distributions of heights of some objects as obtained

from our analysis of the SUN RGB-D dataset.

This simple approach has a number of drawbacks. The lack of granularity within

classes can lead to multimodal height distributions. For example bedside lamps

and floor lamps both are within the same ‘lamp’ class, however their heights vary

significantly. If the height of a floor lamp is applied to a squat bedside lamp, the

resulting object can appear closer in its dimensions to a refrigerator than any lamp.

Tackling this issue is a significant problem and could be addressed in future work

by using either more refined scale estimation methods [Savva et al., 2014] or a large

object repository with accurately defined metric scales [Li et al., 2018].

116

5.4. Scene Generation

(a) chair (b) desk (c) bed

(d) cabinet (e) table (f) lamp

Figure 5.5: Probability distributions of heights of different objects as obtained from
SUN RGB-D. It is interesting to see that some objects like cabinets and lamps clearly
do have multimodal height distributions.

5.4.2 Generating Random Scenes with Physics

We use an off-the-shelf physics engine called Project Chrono4 to simulate the scene

dynamics to attain a final physically plausible static scene configuration. We op-

ted for this rather than a computationally more efficient static geometric analysis

method for a number of reasons. Firstly, the computational bottleneck in our system

was the rendering pipeline on the GPU and the physics engine uses only the CPU. We

found we could physically simulate many scenes in the same time it takes to render

one trajectory, so in a sense the extra computation is ‘free’ for us. Secondly, the

off-the-shelf physics software was readily available and quite easy to use, and early

prototypes showed it resulted in qualitatively sensible layouts. Finally, although

not explored here, a full physics simulator leaves open the potential for physically

simulated dynamic scenes in future work.

The objects are provided with a constant mass (10kg) and a convex collision hull

and positioned uniformly within the 3D space of the layouts axis-aligned bounding

box. To slightly bias objects towards maintaining a correctly oriented upwards

direction, we offset the center of gravity on the objects to be below the mesh.

4
https://projectchrono.org/

117

https://projectchrono.org/

5. SceneNet RGB-D

Without this, we found that very few objects such as chairs were in their normal

upright position after the physics simulation had completed. One drawback of the

simplified convex collision hull is that certain objects such as tables can sometimes

be propped up by a small object underneath the middle of it without any contacting

model geometry.

The physics engine models the movement of objects using Newtonian laws, and

their interactions with each other and the layout itself (which is properly modelled

as a static non-convex collision object). We simulate 60s of the system, which we

found was sufficient time to allow the objects to settle to a stable and physically

realistic configuration most of the time as visualised in Figure 5.6. It is important to

note that the scene is not necessarily organised and structured in a human manner.

It contains objects in random poses and locations but the overall configuration is

physically plausible i.e. we will not have configurations where an object cannot

physically support another, and unrealistic object intersections are also avoided.

Figure 5.6: Selected still frames of a physical simulation for a randomly initialised
scene. We use a physics engine to simulate 60s of scene dynamics to allow the objects
to settle to a stable and physically realistic configuration.

5.5 Random Trajectory Generation

As we aim to render videos at a large scale, it is imperative that the trajectory

generation be automated to avoid costly manual labour. The majority of previous

approaches have used a SLAM system operated by a human to collect realistic hand-

118

5.5. Random Trajectory Generation

held motion. The trajectory of the camera poses returned by the SLAM system is

then inserted in a synthetic scene and the corresponding data is rendered at discrete

or interpolated poses of the trajectory [Handa et al., 2012, Handa et al., 2014]. Such

reliance on humans to collect trajectories quickly limits the potential scale of the

dataset and ignores collisions with scene geometry.

We automate this process using a simple random camera trajectory generation

procedure which we have not found in any previous synthetic dataset work. For our

trajectories, we have the following desiderata. Our generated trajectories should be

random, but slightly biased towards looking into central areas of interest, rather

than, for example panning along a wall. It should contain a mix of fast and slow

rotations such as those of a human operator focusing on nearby and far away points.

It should also have limited rotational freedom with emphasis on yaw and pitch rather

than roll, which is a less prominent motion in hand-held or head-mounted display

trajectories or ground robot trajectories.

5.5.1 Two-Body Camera Trajectories

To achieve the desired trajectory paths we simulate a random trajectory of two

physical bodies in space. One defines the location of the camera and the other its

‘look-at’ point which serves as a proxy for a human’s focus within a scene. We take

the simple approach of locking roll entirely, by setting the up-vector to always be

along the y-axis. With this constraint these two points then completely define the

camera coordinate system. An alternative more realistic approach could in future

allowing slight deviations from the y-axis.

A physically-based approach to simulating the two bodies has a number of benefits.

Firstly, it provides an intuitive set of metric physical properties we can set to achieve

a desired trajectory, such as the accelerations and the drag coefficients. Secondly,

it naturally produces smooth trajectories as accelerations are integrated over time,

with the notable exception of the simple collision system described in more detail

below. Finally, although not provided in this dataset, it provides physically based

motions from which IMU accelerometer measurements could be derived (for example

via spline fitting) which could in future prove useful for Visual-Inertial systems.

We initialise the camera and look-at point by sampling from a uniform random

distribution within the bounding box of the scene, ensuring they are less than 0.5m

119

5. SceneNet RGB-D

apart. As not all scenes are convex, it is possible to initialise the starting points

outside of a layout, for example in an ‘L’-shaped room. To reduce the frequency of

invalid trajectories such as this we employ three heuristics. The first is to restart

the simulation if either body leaves the bounding volume. This is because in the

case it is initialised outside of the layout there would exist no collision surfaces to

prevent it from exiting the bounding volume completely. The second is that within

the first 500 poses (a ‘burn-in’ period) at least 10 different object instances must be

visible. This prevents trajectories external to the scene layout with only the outer

wall visible. Finally we require that both bodies have ventured more than 1.0m

from the starting position during the burn-in period. This is to prevent situations

where the bodies are trapped in certain layouts; for example in the cavity between

two wall planes.

We use simple Euler integration to simulate the motion of the bodies and apply

acceleration vectors to them independently. Each body is initialised with a posi-

tion, p, in the manner described above and a velocity, v, initialised to zero. We

sample from a uniform spherical distribution by first sampling from a 3-dimensional

Gaussian,

g ∼ N (0, I), (5.1)

and normalising g to be on the unit sphere. This is then scaled by an acceleration

constant, a, which we set to 2.5m s−2, to calculate the random acceleration vector,

a:

a = a
g

||g|| . (5.2)

We also include drag to dampen fast motions. We roughly model this as air drag on

a smooth sphere of radius 0.3m and mass of 1 kg. With a cross-sectional area A =

0.09m2, drag coefficient C = 0.1, and air density ρ =1.2 kgm−3, the acceleration

due to drag becomes:

d = − v

2||v||ρAC||v||
2. (5.3)

We use simple semi-implicit Euler integration over a timestep, τ , which here we set

to 1
60s for the shutter open exposure time and 7

300s for the shutter closed time to fill

the remainder of the 0.04s period needed for 25Hz operation:

vt+1 = vt + (d+ a) τ. (5.4)

120

5.6. Rendering RGB Frames

We also limit the maximum speed of the body to a threshold, smax, which we set to

3m/s in our dataset:

vt+1 =

⎧⎨⎩smax
vt+1

||vt+1||
, if ||vt|| > smax

vt+1, otherwise.
(5.5)

After this we then update the position with the capped velocity:

pt+1 = pt + vt+1τ. (5.6)

Finally, to avoid collisions with the scene or objects we render a depth image using

the z-buffer of OpenGL. We render from a virtual camera looking in the direction

of the body’s velocity vector and if there is a depth reading smaller than the body’s

collision radius (0.3m) then we consider a collision to have occurred. On a collision

the velocity of the body is simply negated in a ‘bounce’, which simplifies the collision

by ignoring the actual surface normal and assuming that the surface normal is always

equal to the negative velocity vector. The end result of this process is the two-body

trajectory that has already been visualised in Figure 5.1. Listing 5.1 shows a sample

trajectory file defining the scene and camera trajectory that is then passed to the

rendering engine.

5.6 Rendering RGB Frames

The rendering engine used was the Opposite Renderer5 [Pedersen, 2013], a flexible

open-source ray-tracer built on top of the NVIDIA OptiX framework. We added

certain extra features such as Phong shaded specular materials, ground truth mater-

ials, and multiple photon maps which can be stored in CPU memory and swapped

into the GPU as they are too large to keep entirely on the device. Although there

were other open-source alternatives that we considered such as POVRay, Blender,

and OpenGL each one had their own limitations. For instance, although POVRay

is able to use multi-threading on the CPU to improve performance, it does not have

GPU support and we had a number of GPUs available for rendering purposes. It is

not easy to render high quality visual artefacts such as global illumination, caustics,

reflections or transparency in OpenGL and in our initial experiments we did not

find Blender as flexible as OptiX for customised rendering.

5
http://apartridge.github.io/OppositeRenderer/

121

http://apartridge.github.io/OppositeRenderer/

5. SceneNet RGB-D

Listing 5.1: Partial scene layout textfile output after trajectory generation.

1 layout_file :./ bedroom/bedroom3_layout.obj

2 object

3 03938244/218 f86362028a45b78f8b40f4a2ae98a

4 wnid

5 03938244

6 scale

7 0.416493

8 transformation

9 0.999238 -0.00604157 -0.0385491 1.46934

10 0.00627241 0.999963 0.00587011 -0.0346129

11 0.0385122 -0.00610744 0.999239 -1.00603

13 object

14 03938244/ ac2477b9b5d3e6e6c7c8ce3bef5c2aa9

15 wnid

16 03938244

17 scale

18 0.169709

19 transformation

20 0.505633 0.123627 0.853845 3.57641

21 -0.00155019 0.989809 -0.142395 -0.0223919

22 -0.862747 0.070676 0.500672 -0.377113

23

25 # Poses come in alternating pairs. With shutter open

26 # on the first line then shutter close on the next.

27 # Each line has a timestamp in seconds as well as

28 # the camera position and look at position both defined

29 # in world coordinates. The layout is as follows:

30 # time cam_x cam_y cam_z lookat_x lookat_y lookat_z

32 # frame rate (Hz): 25

33 # shutter duration (s): 0.0166667

35 0.0000 -2.157 1.234 2.384 -0.5645 2.491 0.5848

36 0.0167 -2.157 1.233 2.384 -0.5646 2.490 0.5847

38 0.0400 -2.156 1.232 2.384 -0.5647 2.489 0.5843

39 0.0567 -2.156 1.232 2.384 -0.5648 2.489 0.5841

We do not have strict real-time constraints to produce renders, but the scale and

quality of images required does mean the computational cost is an important factor

to consider. OptiX is specifically designed for rendering on the GPU and it is able to

make good use of the computational capacity offered by modern day GPUs. More

recently NVIDIA’s new RTX family of GPUs6 have included within them hard-

ware designed specifically to improve the computational performance of ray tracing

frameworks such as OptiX. They aim to allow real-time ray tracing applications and

in future these improvements will allow similar approaches to ours to have improved

performance. This framework also provides us with significant flexibility with our

rendering pipeline, enabling us to obtain ground truth information of various kinds

6
https://developer.nvidia.com/rtx/raytracing

122

https://developer.nvidia.com/rtx/raytracing

5.6. Rendering RGB Frames

(a) Direct & specular (b) Surface radiance (c) Combined

Figure 5.7: Comparison of direct and indirect photon map gathered light.

such as depth and object instance indices in a convenient manner. Moreover, in fu-

ture it could also allow for more complicated BRDF surface properties to be easily

modelled.

5.6.1 Photon Mapping

We use a process known as photon mapping to approximate the rendering equa-

tion. Our static scene assumption makes photon mapping particularly efficient as

we can produce photon maps once for a given scene and query them repeatedly

throughout the camera trajectory. A good tutorial on photon mapping by [Jensen

and Christensen, 2000] is available for more details.

As a quick summary, this technique works via a two-pass process. In the first pass,

simulated photons are emitted from light sources accumulating global illumination

information and storing this information in a photon map. In the second pass ra-

diance information from this photon map is gathered along with direct illumination

from light sources and specular reflections using ray-tracing to produce the final

render. These separate and combined images can be seen in Figure 5.7. Normal

ray-tracing allows for accurate reflections and transparency renderings, but photon

mapping provides an efficient global illumination model that also approximates in-

direct illumination, colour-bleeding from diffuse surfaces, and caustics. Many of

these effects can be seen through the transparent shower enclosure in Figure 5.8.

5.6.2 Rendering Quality

Rendering over 5M images requires a significant amount of computation. We rendered

our images on between 4-12 GPUs for approximately one month. An important

trade-off in this calculation is between the quality and quantity of images. Fig-

123

5. SceneNet RGB-D

(a) No reflections & transparency (b) With reflections & transparency

Figure 5.8: Ray tracing allows for accurate reflections and transparency effects.

ure 5.9 shows two of the most important variables dictating this balance within

our rendering framework, the number of rays sampled per pixel and the number of

photon maps generated. The multiple rays per-pixel act to smooth aliasing effects

while fewer photon maps lead to a blotchy appearance with gaps between the light

patches within the radius of the photons.

Figure 5.9: Illustration of the trade-off between rendering time and quality. The
top-right is at maximum quality but took over 48 minutes to complete.

A single pre-calculated photon map stores approximately 3M photons and requires

4GB of memory. As our GPU memory was not large enough to store sufficient

photon maps to attain the desired rendering quality we store additional photon

maps in main memory and swap them to the device. The computational cost of this

124

5.6. Rendering RGB Frames

is the amortised photon map computation cost across a trajectory as well as the

host-device transfer overhead. If more than 8 photon maps are required this exceeds

the available 32GB of main memory on our computer and we must either store to

disk or recompute a new set of photon maps for each frame in a trajectory. This is

why in the first row and after the first column of Figure 5.9 it takes so much more

time as we must include the cost of generating new photon maps.

As a compromise between the computational expense per-image and the desired

image quality, we chose to render our dataset with 16 samples per pixel and 4 photon

maps per scene. At this setting it takes approximately 3 s on an NVIDIA GTX 1080

GPU to produce a single frame (excluding the one-off photon map calculation cost).

Unfortunately at this setting some aliasing and photon map artefacts are still visible,

and they can be seen in the final dataset.

5.6.3 Random Layout Textures and Lighting

To improve the variability within our 57 layouts, we randomly assign textures to

each of their constituent components. Each component of a layout has a material

type, and for each material type we created a suitable texture library from which a

texture can be sampled. For example, we have a large number of different seamless

wall, floor, and curtain textures. As well as this, we add random lighting to the

scene. Between 1 and 5 lights are randomly added to each scene. We have two types

of lights, spherical orbs, which serve as point light sources, and parallelograms which

act as area lights. We randomly pick the hue and power of each light and then add

them to a random location within the scene. We bias this location to be within the

upper half of the scene to mimic light placement in most real-world scenes.

This texture and lighting randomisation approach allows identical geometric lay-

outs to result in renders with quite different visual characteristics as shown in Fig-

ure 5.10. In this work we have only rendered a single version of each layout, but the

availability of such pairs could prove an interesting facet for training and validating

invariance to such differences in competing algorithms.

5.6.4 Camera Model and Motion Blur

Our virtual camera is a simple global shutter pinhole model with a horizontal Field

of View (FoV) of 60° and vertical FoV of 45°. This is relatively close to the Kinect’s

camera intrinsics, but at the lower resolution of 320×240. In order to make sure the

125

5. SceneNet RGB-D

(a) Version 1 (b) Version 2

Figure 5.10: Random lighting and background textures allows the same scene geo-
metry and semantics to produce numerous renderings with quite different appear-
ances.

rendered images are a faithful approximation of real-world images, we also apply a

non-linear Camera Response Function (CRF) that maps the irradiance to quantised

brightness values. We use a static CRF shown in Figure 5.11, though it would be

straightforward to randomise these parameters.

0.2 0.4 0.6 0.8 1.0
Normalised Irradiance

0.2

0.4

0.6

0.8

1.0

N
or

m
al

is
ed

B
ri

gh
tn

es
s

Figure 5.11: The Camera Response Function used by our renderer.

For fast motion we integrate incoming rays throughout a shutter exposure to

approximate motion blur. This can be efficiently performed within the rendering

process by changing the poses from which each of the supersampled rays are emit-

ted and then properly integrating these irradiance values rather than for example

averaging RGB values after rendering.

126

5.7. Experiments

To calculate the motion blur we draw linearly interpolated lines between the cam-

era position and look-at position at both shutter open and shutter close. Then when

rendering we uniformly sample a value in the range (0,1) to define an interpolated

camera and look-at pose and then render from those sampled poses. For an example

rendering using this technique see Figure 5.12. The motion blur does not affect the

ground truth output of depth or instance segmentations. For those renders we set

the pose to be the exact midpoint of the shutter exposure.

(a) Without motion blur (b) With motion blur

Figure 5.12: An example of the effect of the motion blur artefact. In this example
the camera speed has been increased in order to better illustrate the effect but in
the actual dataset itself the effect is generally much less pronounced.

5.7 Experiments

We test the value of SceneNet RGB-D as a training set for semantic segmentation us-

ing the real-world NYUv2 and SUN RGB-D datasets as our benchmarks. More spe-

cifically, we compare the performance of three different pre-trained network weights

on the task of per-pixel semantic labelling. The three weight initialisations are: a

network trained from scratch with initialisation proposed by [He et al., 2015], a net-

work (originally initialised with [He et al., 2015]) pre-trained on the 5M synthetic

RGB images from the SceneNet RGB-D dataset, and a network initialised with the

VGG-16 ImageNet weights. As the VGG-16 ImageNet weights are for a classification

task, only the feature-encoder layers (the bottom layers which process the raw input

image) can be initialised with them; the layers above this are randomly initialised

with the scheme proposed by [He et al., 2015].

The comparison of ImageNet vs. synthetic RGB-only is particularly challenging

127

5. SceneNet RGB-D

as the ImageNet weights are trained using 1M real-world images, just as our final

test datasets are drawn from the real-world. The question we seek to answer here is

whether the task-specific information available in our dataset of indoor scene classes

and per-pixel ground truth labelling (instead of simple classification tags of unrelated

semantic entities) combined with 5× more images is enough to counter-balance the

advantages of real-world images.

We also experiment with another advantage that our synthetic dataset provides;

a wider variety of potential input modalities. We modify the network architecture

to include a depth-channel and train this from scratch using the SceneNet RGB-

D dataset. We compare this (after fine-tuning) to training from scratch on the

real-world dataset alone but we do not directly compare the depth network against

ImageNet pre-training for a number of reasons. First, ImageNet does not provide

depth data so there is no depth channel for publicly available weights to directly

compare against. Second, in the RGB-D network architecture described below we

split the feature maps evenly between depth and RGB due to memory constraints;

this unfortunately prevents a direct mapping of VGG-16 weights into even the RGB-

only part of the network. For both the NYUv2 and SUN RGB-D datasets we

choose the same 13 class semantic mapping defined by [Couprie et al., 2013] used in

Chapter 4. We manually map each of the WordNet indices in our dataset to one of

those 13 semantic classes.

5.7.1 Network Architectures

We choose the straightforward U-Net [Ronneberger et al., 2015] architecture as the

basis for our experiments, with the slight modification of applying Batch Normal-

isation [Ioffe and Szegedy, 2015] between each convolution and non-linearity. It can

be seen visualised in Figure 5.13. Our inputs are RGB 320×240 images and our

output is a tensor of 320×240×14 class probabilities (the first class being ‘missing

ground truth label’ in SUN RGB-D and NYUv2 and ignored in the loss function for

training purposes). The RGB-only network contains 22M free parameters.

To accommodate a depth channel in the RGB-D CNN we modify the U-Net ar-

chitecture to have an additional column of depth-only convolutions. The second

half of U-Net remains almost unchanged; we simply concatenate the output of both

the depth and RGB feature maps during the upsampling portion of the CNN. We

maintain the same number of feature maps in the encoder half of the CNN, but split

128

5.7. Experiments

Figure 5.13: The schematic for the RGB-only architecture based on the U-Net [Ron-
neberger et al., 2015] concatenation approach to skip layers.

the channels evenly between depth and RGB, i.e. the first 64-channel RGB convo-

lution becomes a 32-channel RGB convolution and 32-channel depth convolution.

Finally, to maintain approximately consistent memory usage and batch sizes during

training, we drop the concatenation skip connection at the lowest resolution feature

map. A diagram of this architecture is shown in Figure 5.14. Overall these changes

reduce the number of free-parameters to 17.2M. This is only one architectural choice

for including depth and other schemes such as FuseNet proposed by [Hazirbas et al.,

2016] could be explored in future.

Figure 5.14: The schematic for the modified U-Net architecture that allows a depth
channel to be included in an additional column of inputs.

5.7.2 Training

Our network implementation is built within the Torch7 [Collobert et al., 2011] frame-

work and trained on a multi-GPU system. We train with the largest batch-size that

would fit in memory. Depending on the network architecture the batch-size varied

from 25 to 30 images. For all experiments the learning rate was initialised at 0.1,

129

5. SceneNet RGB-D

and scaled by 0.95 after every 30 epochs. Our networks pre-trained on SceneNet

RGB-D were trained for less than the 30 epochs at which the learning rate would

be scaled so both maintained a constant learning rate throughout training. The

RGB CNN was pre-trained for 15 epochs which took approximately 1 month on 4

NVIDIA Titan X GPUs, and the RGB-D CNN was pre-trained for 10 epochs, taking

3 weeks.

We use SGD with momentum of 0.95 for optimisation and no weight regularisa-

tion. We use the standard train/test split on the NYUv2 and SUN RGB-D datasets

and for all fine-tuning experiments. We perform early stopping and give the valida-

tion performance on the test set in the results. Generally fine-tuning required ≈50
epochs.

5.7.3 Results

The results of our experiments are summarised in Tables 5.2 & 5.3. For RGB we see

that in both datasets the network pre-trained on SceneNet RGB-D outperformed

the network initialised with VGG-16 ImageNet weights on all three metrics. For

the NYUv2 the improvement was +8.4%,+5.9%, and +8.1% for the class average,

pixel average, and mean IoU respectively, and for the SUN RGB-D dataset the

improvement was +1.0%,+2.1%, and +3.5% respectively. This result suggests that a

large-scale high-quality synthetic RGB dataset with task-specific labels can be more

useful for CNN pre-training than even a quite large (≈1M image) real-world generic

dataset such as ImageNet, which lacks the fine-grained ground truth data (per-pixel

labelling), or domain-specific content (indoor semantics). The trend between the

two datasets is also clear, the improvement from pre-training on the synthetic data

is less significant when fine-tuning on the larger 5K image SUN RGB-D dataset vs.

the 795 image NYUv2 dataset.

The inclusion of depth as an additional input channel resulted in a significant

performance improvement over RGB-only in both datasets (+6.2%,+5.6%,+6.4% in

the NYUv2, and +5.5%,+5.0%,+6.0% in the SUN RGB-D for the class average, pixel

average, and mean IoU respectively). When compared against training from scratch

for the depth channel, pre-training showed a clear performance improvement. We

found training the architecture from scratch on the depth modality challenging,

taking longer to converge (300 epochs) and with infrequent classes, such as books

and TV showing particularly poor results in both datasets.

130

5.8. Limitations

NYUv2: 13 Class Semantic Segmentation

Pre-training b
ed

b
o
o
k
s

ce
il
in
g

ch
a
ir

fl
o
o
r

fu
rn
it
u
re

o
b
je
ct
s

p
a
in
ti
n
g

so
fa

ta
b
le

tv w
a
ll

w
in
d
ow

cl
a
ss

av
g
.

p
ix
el

av
g
.

m
ea
n
Io
U

No pre-training RGB 42.6 11.8 57.5 15.5 76.1 55.5 37.9 48.2 17.9 18.8 35.5 78.4 51.1 42.1 55.8 29.0

ImageNet 45.7 29.4 56.4 35.9 84.1 51.3 43.4 58.6 24.4 26.2 18.8 80.8 63.8 47.6 60.2 33.7

SceneNet RGB 54.7 30.0 65.0 48.3 86.2 59.7 52.5 62.1 50.2 32.5 40.5 82.4 64.5 56.0 66.1 41.8

No pre-training RGB-D 58.2 1.7 75.5 48.7 94.8 54.6 47.6 38.2 42.2 32.8 23.2 82.5 43.0 49.5 63.4 36.9

SceneNet RGB-D 69.4 22.7 71.1 63.8 94.8 64.4 56.8 61.2 68.9 41.0 43.1 84.3 66.9 62.2 71.7 48.2

Table 5.2: NYUv2 validation set results: Segmentation performance using U-Net
architectures described above. The CNN that was pre-trained on SceneNet RGB-D im-
ages outperformed the same CNN trained from scratch and with VGG ImageNet weights
after fine-tuning. The inclusion of depth data also improved the classification performance
over RGB-only, and SceneNet pre-training again improved performance over the baseline
approach. After the listed form of pre-training, all networks are then fine-tuned on the
NYUv2 train set. All evaluations were performed at 320 × 240 resolution.

SUN RGB-D: 13 Class Semantic Segmentation

Pre-training b
ed

b
o
ok

s

ce
il
in
g

ch
ai
r

fl
o
or

fu
rn
it
u
re

ob
je
ct
s

p
ai
n
ti
n
g

so
fa

ta
b
le

tv w
al
l

w
in
d
ow

cl
as
s
av

g.

p
ix
el

av
g.

m
ea
n
Io
U

No pre-training RGB 47.0 26.9 50.0 57.7 88.9 38.4 31.2 39.7 43.0 55.8 18.2 84.6 61.2 49.4 68.9 36.5

ImageNet RGB 56.8 42.2 58.0 64.7 88.6 42.9 49.2 59.1 59.2 51.9 22.6 84.1 59.2 56.8 71.2 40.3

SceneNet RGB 56.4 29.0 66.7 68.9 90.1 53.0 43.4 50.4 51.6 60.1 28.7 83.5 69.0 57.8 73.3 43.8

No pre-training RGB-D 69.0 19.3 68.0 68.8 94.3 46.7 37.8 41.6 55.8 59.0 5.7 86.7 50.5 54.1 73.9 41.4

SceneNet RGB-D 67.2 33.8 76.2 71.6 93.9 55.4 46.5 56.1 63.1 72.8 35.8 88.2 61.7 63.3 78.3 49.8

Table 5.3: SUN RGB-D validation set results: Similar to the NYUv2 results,
the CNN that was pre-trained on SceneNet RGB-D images again outperformed the other
two weight initialisations after fine-tuning. However the improvement over the ImageNet
weights is less significant here on the approximately 5× larger SUN RGB-D dataset. The
inclusion of depth data again improved the classification performance over RGB-only. After
the listed form of pre-training, all networks are then fine-tuned on the SUN RGB-D train
set. All evaluations were performed at 320 × 240 resolution.

5.8 Limitations

There is still significant future work that remains to be done in this area. For the

pipeline itself, one obvious limitation is that it is not suitable for dynamic scenes as

the system has been developed around a static scene to take advantage of efficient

rendering techniques. Another limitation is due to the lack of a curated dataset of

high quality metrically-scaled object models with detailed physical meta-data. As

mentioned in Figure 5.4, our automated systems mistakenly found mailboxes from

ShapeNets when searching for the object category ‘box.’ This unfortunately led to

large numbers of mailboxes in indoor scenes. At present even a synthetic dataset

131

5. SceneNet RGB-D

requires significant manual intervention in cases such as this to prevent mistakes.

The lack of metric scales in ShapeNet meant that we had to resort to automated

methods of scaling objects. Many objects in modern domestic environments are

designed and built using highly detailed and accurate computer models. Given this

data exists, in future it may become possible to use it for research purposes. Accurate

physical information of objects not only can improve the visual appearance of objects

in the scene, but also allows interactive scene dynamics to be properly modelled.

Some work is being done in this direction with the photorealistic InteriorNet [Li

et al., 2018] dataset which uses industrial object model repositories, with accurate

metric scales and physical meta-data to simulate traces of daily life.

Here we have aimed to produce a dataset that is as close as possible to the

domain found in the real-world. While tuning the quality of the dataset, we have

largely relied on a human assessment of what appears ‘more’ realistic. However,

in our experiments the synthetically trained CNN still had to be fine-tuned on

real images to perform well in the real-world. This suggests that, despite our best

efforts, there remain significant differences between our synthetic approximation

and the real-world. Further research is needed to analyse and verify what the most

important discrepancies are for the purposes of CNN training. It could be that the

rendering engine itself failed to produce images of sufficient quality, either by missing

important image artefacts entirely (e.g. an explicit noise model) or as a result of the

compromises taken to reduce the computational expense of rendering. It could also

be that the quality of the underlying assets used was insufficient to properly mimic

real-scenes.

Generative Adversarial Networks (GANs) [Goodfellow et al., 2014] may be partic-

ularly useful for this problem. GANs make use of both a generative and a discrim-

inative model which are trained together in an adversarial manner. The generative

model is trained to produce samples that mimic the distribution of an input data-

set, while the discriminative model learns to detect whether a given sample is real

or generated. This technique could be applied to synthetic datasets in a number

of ways. One approach could be to improve the existing dataset by conditionally

translating images to better mimic a real-world dataset. The work of [Zhu et al.,

2017] on Cycle GANs allows domain translation without paired images in both do-

mains. This would allow the use of any large real-world dataset to serve as the

target domain for translation.

132

5.9. Conclusion

Another route is to circumvent the inherent difficulties involved with producing

such a faithful approximation entirely. [Ren and Lee, 2018] used images from

SceneNet RGB-D and SUN-CG to train an adversarial network to detect whether

generated CNN features were produced from a real or a synthetic image. In this way

the CNN itself learns to minimise the domain differences between the two datasets

and so improve domain transfer. A similar non-adversarial approach is to jointly op-

timise for a given task as well as the domain transformation itself [Sener et al., 2016].

A very different approach to circumvent the requirement of a faithful real-world sim-

ulation is called domain randomisation [Tobin et al., 2017]. Instead of aiming for a

very realistic synthetic training set, domain randomisation seeks to make the train-

ing domain so varied that the model can directly cope with the real-world as just

another possible variation. Regardless of the manner in which the problem is ap-

proached, it is clear that mitigating domain transfer and the ‘reality-gap’ is a key

area of research that is yet unsolved and will need to be better understood to allow

fully synthetic approaches to become useful in real-world applications.

5.9 Conclusion

In this chapter we have approached the problem of segmentation dataset generation

for indoor scenes by using computer rendered synthetic data. This has enabled the

production of a large-scale dataset of reasonable quality and at low cost. We have

outlined a pipeline which provides a solution to problems such as the generation of

physically plausible scene layouts and automated randomised camera trajectories.

The randomness inherent in our pipeline also allows for a continuous stream of

unseen training examples to be generated. In the future, we believe it is likely that

the generation of synthetic training data and the training procedure for the models

themselves will become more tightly interleaved. An example of this is curriculum

learning [Bengio et al., 2009] where simpler subtasks are used as pre-training in

order to prime the model with features useful for more complicated tasks.

Our approach to trajectory generation was simple and provided an unlimited

stream of different camera trajectories. It could in future be tailored for the type of

trajectory that is expected in the final dataset. However in the present form it lacks

certain realistic characteristics of a hand-held camera trajectory. The work of [Li

et al., 2018] expanded upon the trajectory generator used here to include different

133

5. SceneNet RGB-D

styles of camera movement and also explored adding a learned camera shake model

to improve the realism of the otherwise artificially smooth trajectories. A compli-

mentary approach that could be explored is to match the semantic distribution of

selected views with those seen in a source dataset [Genova et al., 2017] in order to

produce tailored training data. Although that approach was for still-frames only,

the same idea could be applied to camera trajectories.

The results of our experiments show an RGB-only CNN pre-trained from scratch

on synthetic RGB images can improve upon the performance of an identical CNN

partially initialised with ImageNet weights. This experiment was only performed for

a single style of network architecture and it may be the case that alternative models

or training methods could make better use of the pre-trained ImageNet weights.

However the experiment does illustrate the value synthetic datasets can bring to

real-world problems at relatively low cost compared to capturing and annotating a

real-world dataset. The additional performance improvement achieved by including

the depth also serves to highlight the importance of the flexibility and ease with

which synthetic data can produce alternative modalities.

Certain capabilities of the dataset as it stands remain to be explored. As discussed

in Chapter 4 (Section 4.5) the importance of different viewing poses for certain

object classes and clutter needs further analysis and requires the variety of views

and ground-truth information available in synthetic datasets such as SceneNet RGB-

D. The availability of smooth temporal trajectories with camera pose data provides

multi-view correspondences, and lends itself to the exploration of SLAM systems

and CNN architectures with a more explicit temporal component, such as the work

by [Xiang and Fox, 2017] on Data Associated Recurrent Neural Networks.

As the dataset has been made publicly available, its benefits are not limited to the

experiments that have been performed here. It has since enabled other researchers

to explore a variety of problems. The scale and availability of ground truth depth

has allowed it to be used as training data for single view depth prediction [Chen

and Deng, 2018]. The inclusion of image artefacts such as motion blur has led to its

use for pre-training networks in order to mitigate problems specific to robot vision

[Balloch and Chernova, 2017]. The dataset’s focus on video trajectories rather than

still images led to its use in deep learned ego-motion induced view prediction [Sham-

well et al., 2017] in novel deep learned SLAM systems such as CodeSLAM [Bloesch

et al., 2018].

134

Chapter 6

Fusion++

Contents

6.1 Introduction . 135

6.2 Related work . 140

6.3 Object Detection . 143

6.3.1 Real-time Object Proposals 144

6.3.2 Real-time Region Classification 146

6.3.3 The Evolution To Mask R-CNN 148

6.4 Method . 150

6.4.1 TSDF Object Instances 150

6.4.2 Detection and Data Association 156

6.4.3 Layered Local Tracking 157

6.4.4 Relocalisation . 158

6.4.5 Object-Level Pose Graph 159

6.5 Experiments . 161

6.5.1 Loop Closure and Map Consistency 162

6.5.2 Reconstruction Quality 163

6.5.3 RGB-D SLAM Benchmark 163

6.5.4 Memory and Run-time Analysis 165

6.6 Conclusion . 166

6.1 Introduction

The work in Chapter 4 highlighted important limitations of what could be achieved

with SemanticFusion’s representation for dense 3D semantic mapping. Interpreting

135

6. Fusion++

Reconstructed Object InventoryLive Frame View Object-centric Map

Figure 6.1: Fusion++ result on the fr2 desk sequence [Sturm et al., 2012]. left: live
view combining instance detections (in pastel colours) overlayed on the throwaway
background TSDF.middle: a rendering of the discovered objects in the map. right:
the object-level pose-graph and camera trajectory.

and using a dense map with millions of independent semantic probability distri-

butions requires a further level of processing before the map can be used in an

intuitive manner. It does not allow task-relevant queries such as ‘How many chairs

do we have in the conference room?’ to be directly answered. This problem could

be approached by clustering semantically similar surfels into ‘instances’ but such

an approach would fail when multiple semantically similar instances are in close

proximity, and also requires semantic understanding as a pre-requisite for instance

segmentation. Another problem with SemanticFusion is that it lacks any form of in-

stance grouping, so it is possible to produce highly inconsistent semantic maps with

different surfaces of the same object being labelled with different semantic labels.

As the surfels in the map are completely independent there is no means to pool the

semantic information of the object from opposing sides.

In this chapter we make the paradigm shift away from dense semantic annota-

tion to object-level (or object-oriented) instance mapping. Unlike many dense re-

construction systems [Newcombe et al., 2011b, Whelan et al., 2012, Zhou et al.,

2013, Whelan et al., 2015b, Choi et al., 2015, Dai et al., 2017b] we make no attempt

to keep a dense representation of the entire scene. Our persistent map consists of

only reconstructed object instances that are discovered and segmented using object

detection and instance masks to form a scene inventory (illustrated in Figure 6.1).

Each object is contained within a separate TSDF volume [Curless and Levoy, 1996],

allowing each one to have a different, suitable, resolution. We believe this is a nat-

ural and efficient way to represent much of the data that is important for robotic

scene understanding and interaction and it is also highly suitable as the basis for

human-robot communication.

Combining instance segmentation with online SLAM and TSDF reconstruction

136

6.1. Introduction

created new problems which required a number of contributions. The first issue is

that if one were to simply reconstruct an object by only fusing depth measurements

from the segmentation mask into the volume, useful measurements about surface

geometry near the object would be discarded. Due to the variability in instance mask

predictions, the predicted segmentation mask could increase in size and suddenly

new areas would have to be reconstructed from scratch. It also causes problems

when the segmentation mask decreases in size, as previously reconstructed surface

geometry persists and would require some other mechanism for removal.

To solve this problem we propose reconstructing all of the geometry within the

TSDF volume, regardless of the instance mask. To segment the object we instead

use an incrementally fused 3D foreground probability mask encoded in each voxel

to denote surfaces that belong to the object’s foreground. We found that fusing the

2D instance masks using a multiplicative Bayesian update scheme, such as that of

SemanticFusion, was unstable, as a single poor mask prediction with a false negative

of very low probability would occasionally destroy the entire foreground mask. To

alleviate this we present a more robust approach which views the binarised instance

mask as the result of a binomial trial in a manner analogous to coin flips and

use a Beta distribution conjugate prior to calculate the expectation a given voxel

corresponds to the object’s foreground.

A second issue encountered was related to the object-level pose-graph. The use

of an object-level pose-graph allows a globally consistent map of instances to be

produced on repeated loops of a scene, but to produce the edge measurements for

each object in the pose-graph it is necessary to track individual objects using ICP.

In SLAM++ this was possible because they were operating on a small database of

pre-reconstructed objects with geometry well suited for tracking. In Fusion++ the

greater variety of object geometries discovered as well as noise from the input depth

map during the initial stages of online reconstruction, led ICP tracking of individual

objects to fail to converge. In order to calculate edge constraints for each object, we

therefore develop a more robust approach which first performs ICP on the complete

scene geometry and then subsequently partitions the residual error for each object

instance. For each partition we perform a single Gauss-Newton step to ensure that

the final measurement coincides with the minimum of the object’s quadratically

approximated error function.

Splitting the map into separate reconstructed instances not only produces se-

137

6. Fusion++

Figure 6.2: A comparison of the reconstruction quality of a single large KinectFu-
sion volume and the Fusion++ system on the fr2 desk sequence [Sturm et al., 2012].
When the camera returns to a previously mapped area, the accumulated pose drift
quickly degrades the reconstruction quality of the scene with the standard Kinect-
Fusion approach. In contrast Fusion++ can perform loop-closure and optimise the
camera and instance volume poses to best fit the measurements, rather than erod-
ing surface geometry. A: The previous reconstruction of the computer monitor is
being eroded on the right, and a new reconstruction is being created on the left to
match the current measurements. In Fusion++ the original reconstruction can be
seen in the correct pose. B & C: New surfaces are being generated for the desk to
accommodate the offset measurements caused by drift. D: The duct tape instance
created on the first loop can be seen in the correct pose for the next loop.

mantically meaningful map entities, but also can improve the reconstruction quality

after repeated loops of a scene. If a single large KinectFusion volume is used to re-

construct a large-scene, the accumulated drift on repeated loops leads to the erosion

of and duplication of previously mapped surfaces (illustrated in Figure 6.2). This re-

duces the reconstruction quality and can also lead to severe deterioration in tracking

performance. The approach taken here, of combining the high-quality reconstruc-

tions possible with TSDFs with the flexibility of a pose graph fixes this by allowing

the relative poses of locally reconstructed segments of geometry to be optimised in

an online manner and without the complication of performing intra-TSDF deform-

ations or object re-integration.

We aim to produce reconstructions of object instances without strong a priori

knowledge of the objects present in the scene. There are many ways in which

138

6.1. Introduction

an ‘object’ can be defined and discovered. Unsupervised approaches can look for

repeated elements within a scene and temporal cues can be used to segment com-

ponents of a scene which move together via change detection. In this work we use a

pre-trained supervised model called Mask R-CNN [He et al., 2017, Wu et al., 2016b]

to provide 2D object detections and instance mask predictions. This means that al-

though the geometric properties of the objects can vary dramatically, no completely

new semantic classes of objects are discovered. The definition of an object is thereby

modelled by the network weights of Mask R-CNN trained on a selected dataset.

This approach is quite flexible as any task-specific grouping of objects can be used

by providing a dataset with the desired grouping and fine-tuning Mask R-CNN with

it. The breadth of newly discovered object types that can be semantically grouped

is also quite wide. We have found that generic classes such as the NYUv2 dataset’s

other prop class allow a wide variety of objects to be reconstructed and segmented

without strong semantic cues. In this way, the Mask R-CNN system can rely on

‘objectness’ cues to become a more general object detector which can be used in the

current system. Miscellaneous discovered objects could then be filtered or manually

annotated and potentially used for a bootstrap training scheme. For object detection

we also conservatively filtered for favourable views of an object (i.e. fully visible

and centred in the image) to improve the instance segmentation quality and TSDF

initialisation. Such favourable views are more likely to occur during longer mapping

operations by an active agent.

For each object a single semantic probability distribution is maintained and up-

dated. The approach of first grouping and then labelling entities neatly avoids the

memory limitation problems inherent in storing a semantic distribution for each

voxel independently which necessitates approximation approaches [Cavallari and

Di Stefano, 2016c]. Explicitly storing a semantic distribution with thousands of dif-

ferent classes costs barely any additional memory, just a single scalar for each class.

The objects also carry with them an ‘existence’ probability which allows a spurious

object to eventually be deleted if it is no longer being detected as an object when

the model of the map predicts it should be clearly visible.

As part of the theme of this area of research is providing an easy to use de-

veloper interface we developed the system itself using a Python front-end. Python

has become one of the most popular languages for the machine learning research

139

6. Fusion++

community in recent years, and new tools such as pybind11
1 allow it to operate

with C++ and CUDA with very minimal overhead. Computationally intensive tasks

in our system such as ray-marching, ICP, and pose graph optimisation are still per-

formed in C++ and CUDA but with a wrapper exposing their core functionality to

Python. As our Mask R-CNN is implemented in Tensorflow it naturally forms just

another component used within the Python front-end.

The system is designed to operate online but unfortunately it is not yet a truly

real-time system. Excluding relocalisation and pose-graph optimisation, the system

operates at 10-13Hz on our indoor office scene with the majority of this cost coming

from the layered tracking step and raycasting and integration of the numerous object

instances. Each visible instance costs another ≈1ms for all of these steps, and

filtering for the visible set of TSDFs takes approximately 0.3ms per map object

(regardless of visibility). Mask R-CNN takes approximately ≈250ms for a forward-

pass so the system has been designed to perform predictions in a parallel thread so as

not to interfere with local tracking. The relocalisation and pose-graph operations are

particularly slow at present and use a simple exhaustive search of previous snapshots

which is filtered based on object snapshots. We believe that with sufficient software

optimisation the methods outlined in this chapter have the capacity to achieve real-

time performance on current consumer hardware.

6.2 Related work

For reconstruction, we follow the TSDF formulation of [Curless and Levoy, 1996]

and the KinectFusion approach of [Newcombe et al., 2011a] for local tracking. Our

approach to object-centric reconstruction is related to the work of [Zhou and Koltun,

2013], where ‘points of interest’ are detected and the scene reconstructed so as to

preserve detail in these areas while distributing drift and registration errors through-

out the rest of the environment. In our work we analogously aim to optimise the

quality of object reconstructions and allow residual error to be absorbed in the edges

of the pose graph. We also aim for an online system so we do not perform the off-

line two-pass registration procedure used there, instead selectively integrating depth

measurements when in close agreement to the model.

SLAM++ [Salas-Moreno et al., 2013] was an early RGB-D object-oriented map-

1
https://github.com/pybind/pybind11

140

https://github.com/pybind/pybind11

6.2. Related work

ping system which serves as the primary inspiration for the present work. They used

point pair features for object detection and a pose graph for global optimisation.

The drawback was the requirement that the full set of object instances, with their

very detailed geometric shapes, had to be known beforehand and pre-processed in an

offline stage before running. [Stückler and Behnke, 2012] also previously tracked ob-

ject models learned beforehand by registering them to a multi-resolution surfel map.

[Tateno et al., 2016] used a pre-trained database of objects to generate descriptors,

but they used a KinectFusion [Newcombe et al., 2011a] TSDF to incrementally seg-

ment regions of a reconstructed TSDF volume and match 3D descriptors directly

against those of other objects in the database. In this work we aim to use Deep

Learning to remove the need to build an explicit object database beforehand; in-

stead objects are discovered and reconstructed within the loop of the SLAM system.

A number of approaches to object discovery exist [Collet et al., 2013, Stückler

and Behnke, 2013, Choudhary et al., 2014]. Most related to ours is the work of

[Choudhary et al., 2014] where they localised the camera in an online manner us-

ing discovered objects as landmarks in a pose-graph formulation similar to ours,

although they used the point cloud centroid only, whereas in our pose-graph object

landmarks provide 6 DoF constraints based on the result of ICP on dense volumes.

To discover these objects they clustered points after removing planar regions. They

showed that the approach improves SLAM results by detecting loop closures. How-

ever, unlike our work they use point clouds rather than TSDFs and do not train an

object detector but instead use the unsupervised segmentation approach of [Trevor

et al., 2013].

Another approach to object discovery is through dense change detection between

successive mappings of the same scene. [Finman et al., 2013] used temporally separ-

ated scans of the same scene using Kintinuous [Whelan et al., 2012]. [Ma and Sibley,

2014] performed unsupervised object discovery using a dense TSDF system, introdu-

cing objects after an initial reconstruction is created to reconstruct and track objects

which are inconsistent with the initial model. More recently [Fehr et al., 2017] used

a TSDF approach to perform change detection but on more general dynamic scenes

without requiring an initial empty view. Unlike these systems, our system is de-

signed for online use and does not require changes to occur in a scene before objects

are detected. These approaches are complementary to our proposed approach for ob-

ject discovery. They could be used to provide supervisory signals for CNN adaption

141

6. Fusion++

in the field and enable additional object database filtering mechanisms.

In RGB-only SLAM for object detection, [Pillai and Leonard, 2015] use ORB-

SLAM [Mur-Artal and Tardós, 2014] to assist object recognition. They use a semi-

dense map to produce object proposals and aggregate detection evidence across

multiple views for object detection and classification. MO-SLAM by [Dharmasiri

et al., 2016] focused on object discovery through duplicates. They use ORB [Rublee

et al., 2011] descriptors to search for sets of landmarks which can be grouped by

a single rigid-body transformation. This approach is similar to our relocalisation

method, which uses BRISK features [Leutenegger et al., 2011] but augmented with

depth.

Very closely related to our approach is the Meaningful Maps work by [Sünder-

hauf et al., 2017], who proposed an object-oriented mapping system composed of

instances using bounding box detections from a CNN and an unsupervised geometric

segmentation algorithm using RGB-D data. Although the premise is closely related,

there are a number of differences when compared to our system. They use a separate

SLAM system, ORB-SLAM2 [Mur-Artal and Tardós, 2015], whereas in our system

the discovered object instances are tightly integrated into the SLAM system itself.

We also fuse instances into separate TSDF volumes with a foreground/background

mask from 2D instance mask detections rather than using point cloud segments.

A number of more recent related pieces of work have also been announced. [Pham

et al., 2018] fuse a TSDF of the entire scene and semantically label voxels using

a CNN followed by a progressive CRF. To segment instances, instead of fusing

native instance detections, they opt to cluster semantically labelled voxels in 3D.

This approach, although a natural next-step from dense 3D semantic mapping, is

not suitable for object-centric pose graph optimisation and reconstruction as the

instances are embedded within a shared TSDF. As already discussed, it also requires

semantic recognition as a pre-requisite for object discovery.

[Rünz and Agapito, 2018], as in our method, use Mask R-CNN [He et al., 2017]

predictions to detect object instances. They aim to densely reconstruct and track

moving instances using an ElasticFusion [Whelan et al., 2015b] surfel model for

each object, as well as for the background static map. Although using the same

prediction model, the approach and goals of these two systems differ substantially.

Unlike the present work, they do not aim to reconstruct high-quality objects as pose-

142

6.3. Object Detection

graph landmarks in room-scale SLAM. We on the other hand do not currently tackle

dynamic scenes and assume all objects to be static during an observation. Clearly

there is the long-term potential to combine these two approaches. [Nicholson et al.,

2018] also used CNN-based object detection to produce QuadricSLAM, a SLAM

system with an object-oriented pose graph. In that work, they used 2D bounding

boxes from YOLOv3 to produce object landmarks encoded in the form of quadrics

(3D ellipsoids) which provides information about the size, position, and orientation

of the objects.

Concurrent work by [Sommer and Cremers, 2018] produced an object-oriented

SLAM system combining geometric primitives such as planes and cylinders with

known non-primitive objects, detected using Point-Pair features, into a scene SDF.

They use this for Bundle Adjustment optimisation as well as scene completion and

de-noising. Here we do not consider scene primitives as part of our map, but in

indoor environments the ubiquity of planes and other simple primitives lends itself

naturally to simpler parametrisations of certain elements of a scene with a fraction

of the memory cost. [Salas-Moreno et al., 2013] for example included a simple floor

plane in their SLAM++ system. The inclusion of such primitives in the present work

is an important area still to be explored.

6.3 Object Detection

Unlike semantic segmentation, object detection does not aim to produce a dense

prediction. Instead the location and area of each independent object instance is

predicted usually in the form of a classified bounding box. Object detection is

frequently split into two distinct phases: object proposal and region classification.

In the object proposal step bounding boxes which are likely to contain objects are

predicted. This step can even be as simple as an exhaustive sliding window approach

using every possible bounding box size and aspect ratio. The region classification

then takes each of these windows and either discards them as spurious detections,

or classifies them appropriately.

A common final stage in almost all of the methods presented here is to remove

heavily overlapping predictions using an approach called Non-Maximum Suppression

(NMS). NMS is a greedy algorithm which works from the most to least confident

predictions. Predictions with an IoU below a manually selected threshold against

143

6. Fusion++

all other already accepted predictions are themselves accepted. Predictions which

do show a significant overlap with an already accepted (and hence more confident)

prediction are filtered out.

An influential approach to using CNNs for object detection is called Regions with

CNN Features (or R-CNN) [Girshick et al., 2014]. In that system regions are first

proposed using Selective Search [van de Sande et al., 2011] and then the regions are

squashed into a 227× 227 input image which is fed into AlexNet [Krizhevsky et al.,

2012] for feature extraction. The original ImageNet weights of AlexNet were fine-

tuned on anN+1 classification task, with N object classes plus a background class to

filter spurious proposals. Regions with an IoU overlap less that 0.3 with the ground

truth were considered false positives for training purposes. Instead of using the

output of the Softmax layer directly they then trained N+1 separate SVM classifiers

on the extracted features. They found that this had slightly better performance than

using the softmax layer directly but conjectured that improvements to fine-tuning

the CNN would reduce this performance gap.

Some of the earliest research performed in the present work was unpublished re-

search that focused on real-time approaches to object detection. This work is briefly

reviewed here as the same techniques were built upon by a number of subsequent

object detection systems culminating in the Mask R-CNN [He et al., 2017] system

used in Fusion++.

6.3.1 Real-time Object Proposals

R-CNN required approximately 13s to process an image. The Selective Search sys-

tem takes approximately 2s to form object proposals on the CPU and then 2,000

proposals are processed by the full AlexNet region classifier taking approximately

11s. Some state-of-the-art region proposal techniques available at the beginning of

research for this thesis in 2014 such as Multiscale Combinatorial Grouping [Arbeláez

et al., 2014] required up to ≈30s to propose regions for a single frame. To explore

real-time object detection we looked at two faster object proposal systems. The first

was a fast binary SVM proposer called BING [Cheng et al., 2014] and the second

was a Deep Learned solution called MultiBox [Erhan et al., 2014].

BING [Cheng et al., 2014] is a very fast object proposal generator based on Binar-

ized Normed Gradients. It operates by resizing an image region to an 8×8 window,

144

6.3. Object Detection

and uses the norm of the gradient as a 64 dimensional feature to learn a generic

‘objectness’ measure in a cascaded Support Vector Machine (SVM) framework. The

binarized version requires only a few atomic operations, and has been optimised

to work at 300Hz on a consumer CPU. Although fast the performance of BING

as part of a full object detection pipeline in areas outside the standard PASCAL

VOC 2007 dataset is less impressive. [Hosang et al., 2014] produced a study com-

paring the effectiveness of different region proposers as part of a detection pipeline.

They noted that BING in particular showed a dramatic decline in recall ability at

IoU thresholds greater than 50%. As well as this, it also produced the worst mean

Average Precision (mAP) results of the 11 proposal methods considered.

An alternative method we explored for improving the efficiency was to use a

CNN for both aspects of the object detection system. A forward-pass of AlexNet

for a 256 × 256 image on a GTX Titan Black GPU is ≈24ms. Additionally, the

possibility of reusing the same feature maps for both region proposals and region

classification would allow even greater performance still. The MultiBox system

developed by [Erhan et al., 2014] produces a number of output bounding boxes

defined by regressing four offsets li from an anchor position (the set of which are

calculated via K-means clustering on ground truth object boxes in the training

dataset) as well as a confidence value, ci, for that object detection.

The loss function for training MultiBox requires an indicator variable, xij , with a 1

denoting the ith anchor’s nodes were assigned to the jth ground truth bounding box,

gj , using a bipartite matching algorithm based on Euclidean distance, or 0 otherwise.

According to [Erhan et al., 2014], this consistent matching is an important aspect of

structuring the problem to ensure convergence. The loss function itself is a simple

combination of the Euclidean distance of li and the negative log-likelihood of ci

along with a balancing hyper-parameter between the two denoted α:

Llocation(x, l, g) =
1

2

∑
i,j

xij ||li − gj ||22 (6.1)

Lconfidence(x, c) = −
∑
i,j

xij log(ci)−
∑
i

(1−
∑
j

xij)log(1− ci) (6.2)

L(x, l, g, c) = αLlocation(x, l, g) + Lconfidence(x, c). (6.3)

The base architecture we chose was the GoogLeNet winning entry to the ILSVRC-

2014 competition [Szegedy et al., 2015], with the pretrained bottom layers from

145

6. Fusion++

the classification task2 fine-tuned and the final fully connected layers trained from

scratch (from Gaussian initialization) on the ILSVRC-2014 detection dataset. Train-

ing was conducted using Adagrad with a learning rate of 0.005 and an α value of 3.

In our experiments the detection rate of the resulting network improved upon both

BING and MCG (see Figure 6.3), while only requiring 20ms for inference on a GTX

Titan Black GPU.

0 100 200 300 400 500 600 700 800
Number of Proposals

0.0

0.2

0.4

0.6

0.8

1.0

D
et

ec
ti

on
R

at
e

(5
0%

Io
U

)

Ground Truth

Multibox

MCG

BING

Figure 6.3: A comparison of the detection rates (50% IoU) achieved on the ILSVRC-
2014 detection validation set with the three tested methodologies: BING, MCG, and
Multibox.

6.3.2 Real-time Region Classification

The second component to the object detection system is region classification. The

original R-CNN system proposed [Girshick et al., 2014] simply passed each raw

image region patch through the entire CNN to arrive at an output. Although hard

to beat in terms of accuracy, this is a hugely expensive procedure. To improve the

efficiency of this system, two key points were noted. Firstly, approximately 90-95%

of the computation of a CNN is in the lower convolutional layers [Krizhevsky, 2014],

and there is a great deal of overlap between the image patches. Secondly, the spatial

organisation of a CNN stays largely intact (with a certain amount of receptive field

2
Using caffe’s official weights: https://github.com/BVLC/caffe/tree/master/models/bvlc_

googlenet.

146

https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet
https://github.com/BVLC/caffe/tree/master/models/bvlc_googlenet

6.3. Object Detection

Figure 6.4: Spatial Pyramid Pooling transforms regions of interest within a feature
map into a fixed length vector that can be used by a fully connected layer.

‘bleeding’) up to the final convolutional layer. A more efficient solution we explored

was to perform a single CNN forward-pass of the whole image with a classifier CNN

and use the pre-calculated feature map at a higher level to classify all of the object

proposals in parallel. For classification we opted for the simpler pure-CNN approach

of using the output of the Softmax layer directly and dropping the SVMs used in

R-CNN.

The issue with classifying variable size region proposals based on higher-level

feature maps is that the final fully connected layer requires a constant size of input.

The solution proposed by [He et al., 2014] was a final Spatial Pyramid Pooling (SPP)

layer, which produces a constant sized output regardless of the input size, using a

pyramid of increasingly fine max-pooling grids (see Figure 6.4). To greatly speed

up classification of object proposals, a CUDA-based SPP [He et al., 2014] layer was

implemented in Caffe. In [He et al., 2014] they showed that SPP could be used to

greatly speed up the processing of regions, however they continued to use Selective

Search for the region proposals.

In our experiments the SPP layer was designed to directly accept region proposals

in CUDA from the MultiBox CNN. To allow video feed to be classified in real-time

only the top 20 object proposals were selected to be passed to the classifier CNN.

A forward-pass of a frame through both the proposal and classification CNNs takes

only 52ms on a GTX Titan Black GPU, allowing objects to be detected live in 20Hz

video as shown in Figure 6.5.

147

6. Fusion++

For the classification network another GoogLeNet CNN was fine-tuned to operate

on the 200 object classes in the ILSVRC-2014 object detection challenge using the

standard challenge training set. We evaluated the mean Average Precision (mAP)

of the various explored object proposal methods using the same SPP classifier on

the ILSVRC-2014 object detection validation set [Russakovsky et al., 2015].3 Us-

ing ground truth region proposals the system achieved 52.4% mAP. Not only was

MultiBox real-time capable but it also proved to be the best proposal system of those

evaluated, achieving 21.9% mAP. The MCG and BING proposal systems achieved

11.9% and 5.2% mAP respectively.

(a) A clear frame with correct detections. (b) An example with poor localisation.

Figure 6.5: Example frames from the designed real-time object detection pipeline.

6.3.3 The Evolution To Mask R-CNN

Shortly after initial work on this project was completed a number of approaches

aiming to speed up object detection methods were published. These approaches

developed new techniques that have been incorporated into many subsequent object

detection systems.

In Fast R-CNN [Girshick, 2015] the detection portion of the pipeline (i.e. exclud-

ing the proposal time itself) was sped up to run at 300ms on 2,000 region proposals.

The speed up in the detection system was attained in the same manner as the sys-

tem described above. The whole image is first processed with a set of convolutional

layers and then SPP is used on regions of interest on the calculated feature map.

For SPP they chose a single-level pyramid which became known as an ‘RoIPool’

3
http://www.image-net.org/challenges/LSVRC/2014/

148

http://www.image-net.org/challenges/LSVRC/2014/

6.3. Object Detection

layer. They also dropped the use of the SVM and instead use the Softmax classifier

which they experimentally showed outperformed the SVM approach in Fast R-CNN.

Unlike our method described above, proposals for Fast R-CNN were still produced

via Selective Search and so the system could not be used at real-time frame-rates.

Although the initial proposals were not entirely deep learned as above, the classifier

CNN itself was trained with a multi-task loss in order to refine Selective Search’s

region proposals by producing offsets for each object class. In our work above, the

classifier network simply took the detected regions as a given.

[Ren et al., 2015] produced Faster R-CNN a system which could operate at 5Hz

including both region proposals and classification. To achieve this performance they

used the Fast R-CNN method for detection but as done above also used a Deep

Learned method for region proposals, called the Region Proposal Network (RPN).

Unlike our method above, they unify the detection and classification approaches

to an even greater extent by sharing the same convolutional layer computation for

both tasks and trained in an alternating manner. Additionally they did not follow

the MultiBox method and instead used a Fully Convolutional approach. For each

convolutional stride of the feature map they produce k object proposals and object

confidence scores. The object proposals are centred on the image location of the

convolution, but are parametrised with offsets relative to k anchor boxes of multiple

scales and aspect ratios. This technique is translation-invariant unlike the MultiBox

approach which defines anchors in terms of absolute image coordinates.

The ‘YOLO’ network [Redmon et al., 2016] was one of the first published Deep

Learned object detectors to operate at (and beyond) real-time frame rates (≈45Hz).

This was achieved by completely separating the classification and bounding box

regression tasks. The image is divided into a uniform grid of cells and at each grid

location a bounding box is regressed, object confidence is predicted, and the class of

that grid cell is predicted independently and in parallel. This approach is in contrast

to the ‘first detect then classify’ system stemming from R-CNN as the classifier in

YOLO is based only on the grid square rather than on a complete region defined by

the regressed bounding box.

Mask R-CNN [He et al., 2017] consists of a straightforward addition to the Faster

R-CNN system and also can operate at ≈5Hz. As well as producing a classification

for the output of the RPN they produce in parallel for each object detection a

binary instance mask segmenting the object itself. It was found to be important

149

6. Fusion++

to prevent competition between classes by predicting a separate mask output for

each of the classes. In this way the classification of the object does not depend on

the instance segmentation; instead the classification is used to select which of the

predicted instance masks are output as the final segmentation. This binary mask and

semantic classification are used as input to our Fusion++ system. They also modified

the RoIPool method to reduce the quantization error of sampling feature maps by

using bilinear interpolation, which they call RoIAlign. The improved alignment was

found to be particularly important for the system’s performance.

6.4 Method

The complete Fusion++ system is visualised in Figure 6.6. From RGB-D input, a

coarse background TSDF is initialised for local tracking and occlusion handling (Sec-

tion 6.4.3). If the pose changes sufficiently or the system appears lost, relocalisation

(Section 6.4.4) and graph optimisation (Section 6.4.5) are performed to arrive at

a new camera location, and the coarse TSDF is reset. In a separate thread RGB

frames are processed by Mask R-CNN and the detections are filtered and matched

to the existing map (Section 6.4.2). When no match occurs, new TSDF object in-

stances are created, sized, and added to the map for local tracking, global graph

optimisation, and relocalisation. On subsequent frames, associated foreground de-

tections are fused into the object’s 3D ‘foreground’ mask alongside semantic and

existence probabilities (Section 6.4.1).

6.4.1 TSDF Object Instances

Our map is composed of object instances reconstructed within separate TSDFs, Vo.
The TSDF pose, TWO ∈ SE(3), is defined relative to the object coordinate frame,

F−→O, which has its origin at the centre of the volume and is axis-aligned with the

voxels.

Initialisation and resizing: Detections not matched by the procedure described

in 6.4.2 are used to initialise an appropriately sized and positioned instance TSDF.

In the kth frame each detection i produces a binary mask, Mk
i . We project all of

the masked image coordinates, u = (u1, u2), into F−→W using the depth map, Dk(u),

and estimated camera pose, T̃k
WC (see Equation 2.19 in Chapter 2 for details).

To robustly size the TSDF in the presence of masks which can occasionally include

150

6.4. Method

CNN Filter IOU Calc

CNN
Thread

Main
Thread

RGB-D Init / Reset
Local TSDF

Track Lost? Reset? Render Init / Delete
Object TSDF

Integrate TSDF /
Update Probs

Posegraph
Optimise

Relocalise

?
No

Yes

No

IOU

Figure 6.6: An overview of the Fusion++ operating loop. RGB-D input data is
processed in two separate threads: (top) the CNN thread detects object instances
and attempts to match them to existing instances in the map. (bottom) the main
thread performs tracking, TSDF initialisation/integration, and relocalisation/pose-
praph optimisation. The SLAM system tracking loop (green arrows) continues
either until the camera exits the background TSDF volume or tracking fails. When
either occur the system enters relocalisation mode (blue arrows) and attempts to
relocalise itself against historic snapshots. Once relocalised, the camera and object
instance pose-graph is optimised and the background TSDF volume is reset and
centered around the current camera pose before returning to the tracking loop.

far-away background surfaces, we do not directly accept the maximum and minimum

of this point cloud. Instead we use the 10th and 90th percentiles of this point cloud

(separately for each axis) to define points p10 and p90 respectively, which are used to

calculate the volume centre, po =
p90+p10

2 , and volume size, so = m∥(p90 − p10)∥∞.

We use an m of 1.5 to account for erosion and provide additional padding.

Each instance TSDF has an initial fixed resolution of r3o , which we choose to be

643. The total physical size of the volume, so, is used to calculate the physical size

of a single voxel, vo =
so
ro
. This system means that small objects will be reconstruc-

ted with fine details and large objects more coarsely, making the map as useful as

possible for a given memory footprint.

During operation matched objects may need to be re-sized as new detections in-

clude additional areas. To do this, the point cloud of the current mask described

above is combined with a similarly eroded point cloud generated from the current

TSDF reconstruction. The 3D volume encompassing them both is used to calculate

151

6. Fusion++

the new volume centre and size as before. Early attempts which sampled the TSDF

with a general transformation quickly led to severe deterioration of the reconstruc-

tion as a result of aliasing. Therefore when re-sizing we quantize the transformation

by only translating by discrete multiples of vo. If the size of the volume must in-

crease, we maintain the voxel’s physical size, vo, but increase ro. We also ensure

that ro maintains an even parity:

ro =

⎧⎨⎩⌊
so
vo
⌋+ 1, if⌊ sovo ⌋is odd

⌊ sovo ⌋, otherwise,
(6.4)

and limit the maximum voxel resolution to 128, by re-initialising the volume as

though new if ro > 128. Finally we limit the maximum object size to be 3m.

To initialise an instance we require that the volume centre be within 5m of the

camera to prevent noise at far depth ranges from producing poorly reconstructed

objects. As it is possible to produce multiple 3D boxes in the same volume area

we use a 3D version of the NMS algorithm and require that the 3D axis-aligned

bounding box IoU with any other volume in the map is less than 0.5. When an

object centre is moved, the pose-graph node and associated measurements are also

updated as described in Section 6.4.5.

Integration: For integrating surface measurements from a depth map, Dk, into

a volume, Vo, we follow the KinectFusion approach of [Newcombe et al., 2011a].4

The depth map here is assumed to be of the kind produced from a Kinect device,

consisting of measurements of the z-axis component of each pixel along the cam-

era’s principal axis (see Figure 2.3, Chapter 2). Vo stores at each discrete voxel

location, vo = (vx, vy, vz), both the current normalised truncated signed distance

value, So
k−1(vo), and its associated weight, W o

k−1(vo). For visualisation purposes we

also store and integrate RGB values in each voxel in a manner identical to the SDF

values which produces a coarse texture for each object.

Discrete voxel locations can be mapped to their continuous spatial location Op(v)

in F−→O, and any continuous spatial location within the volume can be mapped to

the voxel within which it resides. Each vo is transformed into the kth camera frame

using the camera pose estimate, T̃k
CW , and known object pose, TWO:

Cp(vo) = T̃k
CWTWOOp(vo). (6.5)

4
The implementation is based on https://github.com/GerhardR/kfusion.

152

https://github.com/GerhardR/kfusion

6.4. Method

Cp(vo) can then be projected to an image coordinate, uvo
, using the camera’s

intrinsic matrix (Equation 2.18, Chapter 2). The Signed Distance Function (SDF)

represents the distance of a given voxel from the surface described by the depth

measurement. We use the convention of positive SDF values outside the surface and

negative values within the interior of the surface. The SDF is calculated as:

So(vo) = (Dk(uvo
)− [Cp(vo)]3)

∥Cp(vo)∥
[Cp(vo)]3

, (6.6)

where [p]3 indicates the z-component of p corresponding to the planar depth image,

D. We do not know how thick the object is, and so values that are deep within the

object (So(vo) > −µ) are considered occluded and not updated. Here we choose

the threshold, µ, based on the physical size of the voxels µ = 4vo. So
k−1(vo) and

W o
k−1(vo) are then updated via weighted averaging using the normalised measure-

ment, S
o
(v)
µ , truncated to be in the range [−1, 1] which in physical distance is [−µ, µ]:

So
k(v) = max(−1,min(1,

So
k−1(v)W

o
k−1(v) + min(S

o
(v)
µ , 1)

W o
k−1(v) + 1

)). (6.7)

The weighting scheme follows simple addition for the first 100 measurements and

then is capped to prevent voxel weights becoming overly rigid after many updates:

W o
k (v) = min(W o

k−1(v) + 1, 100). (6.8)

This integration step is performed in our system on every frame where the TSDF

volume is visible, when 50% of TSDF pixels are validly tracked and the ICP RMSE

is less than 3cm (these error metrics are described in more detail in Section 6.4.3).

This is to maintain the reconstruction quality of instances when the camera pose

may have drifted relative to them.

It is also important to note that the above surface integration is performed

throughout the entire volume, regardless of whether it is a masked instance region or

not. The TSDF’s zero-crossing point already correctly defines the surface/free-space

boundary for all of the geometry within the volume, so if just one instance were to

exist within the volume (surrounded only by free-space) then the volume’s recon-

struction would properly segment its instance. In practice an object’s volume almost

always includes geometry from other instances as well, such as its supporting surface

and other objects in close proximity. This makes it necessary to also encode which of

the voxels within the volume are associated to that volume’s instance ‘foreground.’

153

6. Fusion++

To store which voxels correspond to this instance’s foreground we fuse the binary

instance mask detections into the voxel’s state. We view each positive or negative

detection as the result of a binomial trial sampled from a latent foreground prob-

ability, po(vo ∈ foreground). We store foreground, F o
k−1(vo), and not foreground,

No
k−1(vo), detection counts as the (α, β) shape parameters in a Beta distribution

conjugate prior which are initialised with (1, 1). When a new detection is matched

and So(vo) > −µ then we also update the detection counts using the corresponding

instance mask, M i
k,

F o
k (vo) = F o

k−1(vo) +M i
k(uvo

), (6.9)

with the ‘not foreground’ detection counts simply being the inverse,

No
k (vo) = No

k−1(vo) + (1−M i
k(uvo

)). (6.10)

Finally we compute whether a voxel is part of the foreground by calculating the

expectation from the beta distribution,

E[po(vo)] =
F o
k−1(vo)

F o
k−1(vo) +No

k−1(vo)
, (6.11)

and use a decision threshold of E[po(vo)] > 0.5 for rendering.

A heatmap visualisation of the expectation this produces at the surface crossing

point is shown in Figure 6.7. However it is important to note that the heatmap

exists everywhere in the volume in a manner analogous to the SDF itself rather

than just at the surface crossing illustrated here. Figure 6.7 also neatly illustrates

that it is possible for the same surface element to be reconstructed multiple times in

separate TSDFs; a part of each bag is also reconstructed in the TSDF for the other

but that part is considered background within the TSDF.

Raycasting: For tracking, data association, and visualisation we render depth,

normals, vertices, RGB, and object indices using raycasting. Within each object

volume Vo we step along the ray with a stepsize of vo (and 0.5vo when S
o
k(vo) < 0.8,

where So
k(vo) is the SDF normalised by µ) and search for the zero-crossing point

where E[po(v)] > 0.5. Both So
k(vo) and E[po(v)] are trilinearly interpolated from

neighbouring voxels to smooth the representation. We store the ray length of the

nearest of these intersections to avoid searching through another object volume

which starts beyond the current hit point.

154

6.4. Method

0 1
Foreground probability for each instance

Bag 1 Bag 2

Figure 6.7: A heatmap of the volumetric foreground probability on the implicit
surface of two nearby objects. It can be seen that, although portions of each bag
are reconstructed in each others volumes, the foreground probability heatmap allows
each instance to be neatly segmented within its own volume while the other instance
can be ignored as background. If the foreground probability falls below 0.5 it is not
rendered for either tracking or data association, but it is shown here for illustration
purposes.

Occluding surfaces that are not objects would not be respected if the represent-

ation stored objects alone. If the background TSDF described in Section 6.4.3 is

available and either no intersection with a foreground object occurs or the inter-

section is farther than 5cm behind the background TSDF intersection, then the

background TSDF ray intersection is used instead. The 5cm threshold is there to

give priority to the reconstructed objects. If a background TSDF is not available a

depth consistency check against the raw depth image can also be used to properly

occlude objects.

Existence Probability: To prevent spurious instances from building up over

time, we also model the probability of each instance’s existence as p(o) using the

Beta distribution, in a manner identical to the foreground mask. For any frame

where a predicted instance should be clearly visible (i.e. our raycasted image has

more than 502 pixels of that instance which is not occluded by other scene elements),

then if the instance has been associated to a detection its existence count, eo, is

incremented, and if not its non-existence count, do, is incremented. If E[p(o)] falls

below 0.1, the instance is deleted and the object node with all associated edges are

removed from the pose graph (described in Section 6.4.5).

155

6. Fusion++

Semantic Labels: Each TSDF also stores a probability distribution over poten-

tial class labels, c. Mask R-CNN provides a probability distribution p̃(ck|Ik) over the
classes given the image, Ik. We found that the standard multiplicative Bayesian up-

date scheme used in SemanticFusion (described in Equation 4.10 of Chapter 4) often

leads to an overly confident class probability distribution, with scores unsuitable for

ranking in terms of object detection. As described in Section 6.4.2 we only accept

detections with a class probability over 50%. Over time the independence assump-

tion in the Bayesian update leads to object probabilities clustered close to 100%, as

the class distribution between views is, in practice, closely related. To avoid this,

instead of treating these predictions as independent probabilities, we view them as

‘noisy’ measurements of a latent class distribution, and so fuse multiple associated

detections via simple averaging:

p(ck|I0..k) =
1

k

k∑
i=1

p̃(ci|Ii). (6.12)

Intuitively, we want repeated identical class distribution predictions to result in that

same distribution, rather than to compound to an almost certainty by assuming

independence. We found that this approach produced a more even class probability

distribution in practice than the Bayesian update scheme.

6.4.2 Detection and Data Association

Detections from the Mask R-CNN model [He et al., 2017] for a given frame k contain

instances i with a binary mask M i
k and class probability distribution p(cik|Ik). A

forward pass takes ∼250ms, and although our system is not real-time, this still

represents a significant bottleneck and so is performed in a parallel thread. For

GPU memory efficiency, we take only the top 100 detections scored according to the

Region Proposal Network’s ‘object’ score.

Ideally we wish to correctly size the TSDF when we first initialise it for a given

object. In the context of long-term use by an active agent a method to achieve this

is to wait until the object is viewed from a favourable pose where it is reasonably

close to the viewer and is centred in the image. We also found that the Mask R-CNN

predictions deteriorated when objects were only partially visible near the border of

the image. For both of these reasons we filter for masks not near the image border

(within 20 pixels) and where both max(p(cik|Ik)) > 0.5 and
∑
M i

k > 502. Over

shorter time-horizons this approach comes at the cost of missing large objects which

156

6.4. Method

are only occasionally viewed at the correct distance to be both entirely visible and

not too small.

After local tracking (Section 6.4.3) we use the estimated camera pose and TSDFs

already initialised in the map to raycast a binary mask Mo
k for object instances o in

the current view. We map each detection i to a single instance o by calculating the

intersection of the two as a proportion of the detection’s area:

adetect(i, o) =

∑
Mo

k ∩M i
k∑

M i
k

, (6.13)

and assigning the detection to the largest intersection, õ = argmaxo adetect(i, o),

where adetect(i, õ) > 0.2, otherwise the detection is unassigned. For the integration

step, each detection that has been mapped to the same instance is combined by

taking the union of the detection masks, and the average of the class probabilities.

6.4.3 Layered Local Tracking

We maintain an instance-agnostic coarse background TSDF, a, to assist local frame-

to-model tracking where/when there are no instances and to handle occlusions. It

has a resolution of 2563 with a voxel size of 2cm. Its initialisation point, Wpa =

Tk
WC [0 0 2.56]⊺, is 2.56m along the z-axis in the camera frame, F−→C , to prevent

wasted volume as in [Whelan et al., 2015a]. The volume is reset when its new

initialisation point exits a spherical threshold (1.28m) around the previous volume

centre, i.e. ∥Wpa −Tk
WC [0 0 2.56]⊺∥2 > 1.28.

We combine the background TSDF with individual instances to raycast (Sec-

tion 6.4.1) a ‘layered’ reference frame, denoted r, with vertex map, Vr, normal map,

Nr, and object index map, Xr, from the previous camera pose, TWCr
, with vertices

and normals defined in the world frame, F−→W . The transform to the live frame,

denoted l, is estimated by aligning the live depth map (after bilateral filtering) to

the rendered maps with ICP using projective data association and a point-to-plane

error as described in detail in Section 2.4.1 of Chapter 2.

The valid vertex set, Vvalid, used for tracking includes any ul with a correspond-

ing vertex and normal, where there is a corresponding ur with a valid vertex and

normal, and where Nr(ur) ·Nl(ul) < 0.8 and ∥Vr(ur)− T̃WCl
Vl(ul)∥2 < 0.1m. We

minimize this NLLS problem using the Gauss-Newton algorithm. The 6×6 Hessian

approximation, J⊺
icpJicp, and 6 × 1 error Jacobian, J⊺

icpricp, are reduced in parallel

157

6. Fusion++

on the GPU and solved on the CPU using SVD and back substitution. We use a

three-level coarse-to-fine pyramid scheme with 5 Gauss-Newton iterations per level.

We perform an additional reduction on the GPU to produce the same system of

equations partitioned into pixels, ul, associated to each instance in Xr(ur) for pose-

graph optimisation and to produce per-instance error metrics. The error metrics

are the ICP RMSE, (|Vvalid|−1Eicp(T̃WCl
))

1
2 , and the proportion of validly tracked

pixels, |Vvalid|
|Vl|

. These are used for instance integration and to check whether local

tracking is lost. We consider local tracking to be lost when the total ICP RMSE is

greater than 0.05m or when at least 10% of the image consists of instance TSDFs and

less than half of the pixels are validly tracked, in which case we enter relocalisation

mode as described below.

6.4.4 Relocalisation

If the system is lost or we reset the coarse TSDF, we perform relocalisation to align

the current frame to the current set of instances (if there are any). We found that

direct dense ICP methods using only the volume reconstructions did not produce

accurate results for wide baseline relocalisation as they are sensitive to the initial

pose and small objects were often ambiguous without texture constraints. Although

alternative dense methods may also prove useful here, we took the approach of using

snapshots of sparse BRISK features5 (with a detection threshold of 10) projected to

3D using the depth map. For a given detection of an object, if there is no existing

snapshot of the object within 15◦ view angle difference, then we add a new snapshot

of the object from that pose (see Figure 6.8).

To relocalise we perform 3D-3D RANSAC against each instance where the dot

product with the predicted class distribution is greater than 0.6. We use the

OpenGV library as our back-end [Kneip and Furgale, 2014] with a minimum of

5 inlier features (within 2cm) to match each object individually. If we find one or

more matching objects in the scene, we run a final 3D-3D RANSAC on every point

in the scene (from all objects and the background jointly) with a minimum of 50

inlier features (within 5cm) to arrive at a final camera pose.

The calculated pose is the only output of the relocalisation system. To add new

constraints to the pose-graph the pose is used to render a new reference image of

5
BRISK v.2 with homogeneous Harris scale space corner detection on only the highest image

resolution.

158

6.4. Method

Snapshots Min. Angle

Sphere

Figure 6.8: Re-localisation snapshots around an instance. For each object we add a
new snapshot if there is no existing snapshot of the object within a 15◦ view angle
difference.

the map. ICP is then performed on the reference image to produce the partitioned

measurements and constraints required for pose graph optimisation as described

below.

6.4.5 Object-Level Pose Graph

Our pose-graph formulation is similar to that of [Salas-Moreno et al., 2013]. For

every frame with a Mask R-CNN detection (including coarse TSDF resets), we add

a new camera pose node to our graph. When a new instance, index o, is initialised,

a corresponding landmark node is added to the graph, defined by the coordinate

frame attached to the centre of the object’s volume, po. The first camera pose node

is fixed and defined to be the origin of the world frame, F−→W . Each node consists of

a full SE(3) transformation from object to world, TWO, or camera to world, TWC ,

and the measurements are SE(3) relative pose constraints between nodes.

Unfortunately the geometry of many of the discovered objects and the noisy partial

reconstructions during online operation meant that ICP on individual objects was

frequently unsuccessful. To produce the edge measurements for each object, we

instead used the ICP error terms calculated from the combined layered tracking

reference image, but with errors partitioned to correspond to the pixels of the specific

159

6. Fusion++

object o (for object-camera constraints), or the instance-agnostic background a (for

camera-camera constraints). To ensure that the measurement coincides with the

minimum of the partitioned set’s quadratically approximated error function, an

additional Gauss-Newton step is performed. The step uses the partitioned Jo
icp (see

Section 6.4.3) to produce ‘virtual’ relative pose measurements, T̃′a
Ck−1Ck

, between

camera nodes, and T̃′o
OCk

, between camera and landmark objects. The resulting

measurement errors for the graph factors are:

ecc(TCk−1W
,TWCk

) = log((T̃′a
Ck−1Ck

)−1TCk−1W
TWCk

), (6.14)

eoc(T
o
OW ,TWCk

) = log((T̃′o
OCk

)−1To
OWTWCk

). (6.15)

For every relative measurement, we approximate the inverse measurement cov-

ariance by Σ−1 = Jo⊺
icpJ

o
icp. This is an approach similar to that of [Bengtsson and

Baerveldt, 2003] which was for 2D scan-matching except that it neglects the scalar

relating to the unbiased estimate of the assumed Gaussian noise. An alternative

approach proposed by [Censi, 2007] also exists and could in future be explored.

The way perturbations are modelled differs between the ICP algorithm and the

employed pose graph optimiser, so we need to transform the covariance by con-

sidering the relation between the local perturbations. The graph optimiser mod-

els perturbations to relative pose measurements, ζpg, via T̃′o
O

′
Ck

= T̃′o
OCk

exp(ζpg)

(equivalently for T̃′a
Ck−1Ck

). To ensure our information matrix properly corresponds

to perturbations ζpg, it is necessary to convert Jicp. As can be seen in Equa-

tion 2.42 (Chapter 2), Jicp is with respect to perturbations applied via T̃W
′
Ck

=

exp(ζicp)T̃WCk
. The relation between ζicp and ζpg is:

exp(ζicp)TWCk
= To

WOT̃
′o
OCk

exp(ζpg), (6.16)

ζicp = log(TWCk
exp(ζpg)T

−1
WCk

) = AdjTWCk
ζpg, (6.17)

Jpg =
∂ζicp
∂ζpg

= AdjTWCk
. (6.18)

The derivation for camera nodes follows an identical pattern and results in the same

transformation. The new information matrix therefore becomes:

Hpg = J⊺
pg(J

o⊺
icpJ

o
icp)Jpg. (6.19)

160

6.5. Experiments

The final error to be minimised in the pose graph is the sum over all the edges

from the camera to objects, O, and camera to camera, C, given their state, the

measurement, and the information matrix,

Epg =
∑
cc∈C

Lσ(e
⊺
ccHpgecc) +

∑
oc∈O

Lσ(e
⊺
ocHpg, eoc), (6.20)

where Lσ denotes a robust Huber kernel. We solve this graph in the g2o [Kümmerle

et al., 2011] framework using sparse Cholesky decomposition and Levenberg-Marquart

optimisation. After optimisation we update the pose of the instance TSDFs and the

camera before initialising the new coarse TSDF to that pose and continuing with

local tracking.

As described in Section 6.4.1, when a landmark is re-sized, its centre, po, can also

be adjusted from F−→O to a new frame F−→O
′ via the transform TO

′
O . In this case we

also transform the corresponding node variable, To
WO

′ = To
WOT

−1
OO, as well as the

measurement for every edge connected to that node, T̃′o
O

′
C
= TO

′
OT̃

′o
OC .

6.5 Experiments

We evaluate the performance and memory usage of our system on a Linux system

with an Intel Core i7-5820K CPU at 3.30GHz, and an NVIDIA GeForce GTX1080

Ti GPU with 11.175GB of memory. Our core pipeline is implemented in Python

and uses Tensorflow for instance predictions, and Python wrappers around other

core components which are developed in C++ and/or CUDA, such as KFusion, g2o,

BRISK, and OpenGV. Our input is standard VGA (640 × 480) resolution RGB-D

video. To allow for reproducibility, instead of running an asynchronous CNN thread

we here perform predictions synchronously every 30 frames.

Our Mask-RCNN uses the ResNet-101 base model [He et al., 2016] (up to the

final layer in the conv4 x block) and is finetuned from the publicly available weights

and implementation [Wu et al., 2016b].6 The base weights are pre-trained on the

COCO dataset, so it is necessary to finetune on a set of classes more suitable for

indoor scenes. For finetuning we use the NYUv2 training set and lock the ResNet-

101 backbone weights from the COCO pretraining. As the COCO dataset consists

of 80 classes we resize and reinitialise the class-specific upper layers of Mask R-CNN

6
models.tensorpack.com

161

models.tensorpack.com

6. Fusion++

and Faster R-CNN to the 40 class split defined by [Gupta et al., 2013]. We train

using SGD with momentum of 0.9 for 30 epochs and a learning rate of 0.001.

As well as simply having the wrong type of classes we also found that the class-

agnostic instance predictions from the base COCO weights were worse than that of

the fine-tuned CNN. We believe this is largely due to the difference between image

domains of the COCO dataset and that of a cluttered indoor scene typified by the

NYUv2 dataset. We converted the NYUv2 test set into the required format to be

used as part of the COCO Evaluation API.7 The COCO class-agnostic Average

Precision (AP) for the COCO trained weights was 8.9% vs. 19.8% for the fine-tuned

weights. Figure 6.9 shows a qualitative comparison of the instance predictions.

Figure 6.9: Qualitative comparison of the Mask R-CNN instance predictions on the
NYUv2 test using the base COCO trained weights (top row) and predictions after
fine-tuning on the NYUv2 training set (bottom row). Predictions with confidence
> 0.5 are shown. Fine-tuning improves the recall of smaller objects.

6.5.1 Loop Closure and Map Consistency

To evaluate the performance of our system while repeatedly viewing a scene of

instances we captured a 3,685 frame sequence of an indoor office scene. We tailored

this sequence to evaluate the consistency of our map in the presence of poorly

constrained geometry. For a small segment of the first loop we aim directly at the

floor so that the camera pose is poorly constrained with motion parallel to the plane.

After this segment we loop over the same scene for a second time to validate the

loop closure approach.

7
The COCO evaluation tools are available at: https://github.com/cocodataset/cocoapi.

162

https://github.com/cocodataset/cocoapi

6.5. Experiments

Before loop-closure After loop-closure

Figure 6.10: Comparison of office sequence trajectory before loop-closure (left) and
after loop-closure (right). After loop-closure the object TSDF poses have been
updated to align with current measurements, allowing their reconstructions to be
maintained on repeated loops.

The pose-graph and loop closure view inset is shown in Figure 6.10, it can be

seen that despite the accumulated drift, the system relocalises and corrects the pose

graph, this allows the previously reconstructed objects to be correctly associated

in future frames. Overall in the trajectory our system reconstructed approximately

100 landmark object instances. However, it must be noted that despite our filtering

mechanisms, a build up of noisy partially reconstructed objects still occurs.

6.5.2 Reconstruction Quality

To evaluate the reconstruction quality we use objects from the YCB dataset which

provides ground truth models [Calli et al., 2015] and reconstructs discovered ob-

jects from sequence 0001 of the public YCB video dataset [Xiang et al., 2017].

Figure 6.11 shows a qualitative comparison against the ground truth. The missing

portion of the cracker box was caused by an occlusion by another object, and a

missed foreground detection on one of the few frames where the cracker box was

unoccluded.

6.5.3 RGB-D SLAM Benchmark

We evaluate the trajectory error of our system against the baseline approach of

simple coarse TSDF odometry, i.e. using the same coarse resetting background

without instances layered on top, and without loop-closure pose graph optimisa-

tion. Table 6.1 shows the results. It can be seen that in all but one of the sequences

evaluated, our Fusion++ system improved upon the baseline approach (while provid-

163

6. Fusion++

1

2

3

4

Fusion++

Ground Truth

Figure 6.11: Reconstruction quality vs ground truth from sequence 0001 of the
public YCB video dataset [Xiang et al., 2017].

ing an inventory of objects as Figure 6.1 visualises for the fr2 desk sequence).

Our system does not achieve trajectory accuracies that are competitive with state-

of-the-art SLAM systems [Whelan et al., 2015b, Mur-Artal and Tardós, 2017], and

it would require additional work to do so, such as including joint depth and pho-

tometric tracking. However it is worth noting that the RGB-D SLAM sequences

themselves are not particularly well suited for evaluating some of the strengths of

the system, as they comprise of relatively short video snippets often with a single

loop of a scene. Associating objects over multiple loops and an increasingly refined

global map structure over longer periods of time are useful attributes for long term

navigation by a robotic agent, and this is one of the goals of the present system. It

was for this reason that we created the sequence with a repeated loop of an office

scene (discussed above) in order to better approximate such an operating environ-

ment.

Table 6.1: RGB-D SLAM Benchmark ATE RMSE (m).

Sequence TSDF Odometry Fusion++

fr1 desk 0.066 0.049
fr1 desk2 0.146 0.153
fr1 room 0.305 0.235
fr2 desk 0.342 0.114
fr2 xyz 0.022 0.020
fr3 long office 0.281 0.108

164

6.5. Experiments

0 50 100
Number of objects

2

4

M
em

or
y

U
sa

ge
(G

B
)

Base Usage

CNN

Coarse + Buffers

Objects

0 50
Number of objects

75

100

T
im

e
(m
s)

Figure 6.12: GPU memory usage and median per-frame wall clock scaling by number
of objects on the office sequence. With an 11GB consumer GPU up to 2.5k object
TSDF’s can be stored on device. The frame rate of the system varied from 13Hz
without objects to 10Hz for 100 objects due to the linear scaling of visibility checks
which are coded in Python.

6.5.4 Memory and Run-time Analysis

Memory usage: We use the office sequence to evaluate the run-time performance

and memory usage of our system. As memory usage scales cubically with the size of

a TSDF, it is significantly more efficient to compose a map of many relatively small,

highly detailed volumes in dense areas of interest than to use one large volume with

a resolution equal to the smallest. After loading the CNN and image buffers, our

remaining ∼7GB GPU memory budget would allow a single 9003 volume with 10

bytes per voxel (16-bit SDF, 16-bit SDF-weight, 2×8-bit foreground/background,

4×8-bit RGB+weight) or, as here, a 2563 background volume and up to 2.5k object

volumes with dimension 643, which requires 2MB. Our object volumes dynamically

vary up to 1283 and on our office sequence used ∼4MB/object, as shown in Fig-

ure 6.12. Of course, more efficient alternatives such as an octree or voxel hashing

can also be used to directly eliminate wasted free-space voxels, and these methods

are also directly applicable to our approach.

Runtime performance: Our system, although not real-time, scales well with

the number of objects. Excluding relocalisation on the office sequence, the frame

rate performance against the number of objects was between 10-13Hz (shown in

Figure 6.12). Table 6.2 shows that the performance of many components of the

system scale with the number of visible objects, and so because the number of objects

visible in any given frame is dictated more by the viewpoint than by the total number

165

6. Fusion++

of objects in the map, these components have relatively constant performance. The

driving force behind the linear scaling witnessed in Figure 6.12 is the cost of filtering

for the visible set of TSDFs, which costs an additional +0.3ms per object. The TSDF

visibility checks were coded in Python and this cost only became particularly evident

when larger numbers of objects were included in the map. In future this cost could

be reduced by moving to a C++ implementation for visibility checks.

Table 6.2: Run-time analysis of system components (ms) with approximate scaling
performance on the indoor office sequence.

Component Base (ms) Scaling

Every frame

Tracking + coarse TSDF 35 constant
Filter for visible TSDFs - +0.3/object
Raycast all TSDFs 25 +0.2/vis. object
Object integration - +0.7/vis. object

On detection frames

Mask R-CNN thread 260 constant
Detection point-cloud 10 constant
New object initialisation - +30/new object
Object resize+mask fuse - +20/vis. object

TSDF reset/re-localisation

Relocalisation 780 +65/snapshot
Pose-graph optimisation 80 +2/object

6.6 Conclusion

In this chapter we have explored a method to perform instance mapping and classi-

fication of numerous objects of previously unknown shape in real, cluttered indoor

scenes. Our online system is built from separate modules designed for image-based

instance segmentation, TSDF fusion and tracking, and pose graph optimisation. It

makes a persistent map which focuses on object elements of a scene with variable,

object-size dependent resolution.

Although a step in the direction of object-oriented mapping, a number of short-

comings became apparent through experimentation with this approach. There is a

balance that must be struck between filtering detections and providing good cov-

erage of a scene, and even with the existence probability and deletion mechanism

detailed here, over time spurious detections result in a growing clutter of partial ob-

ject reconstructions. More thorough precision/recall evaluations would be useful for

166

6.6. Conclusion

benchmarking further refinements to this aspect of the system. A learned mechan-

ism for filtering and reconstructing these objects, such as [Dai et al., 2018] may prove

useful in this regard, or combining view-based segmentation and classification with

3D methods which take advantage of object databases such as ShapeNet [Chang

et al., 2015].

There are also important caveats relating to coverage when using the instances

within the tracking and localisation system itself. If, for example, the CNN is trained

only to detect a single object of interest which is small in size and infrequent in the

scene, this will have a detrimental effect on the value of the map for localisation.

One way to approach this is to always aim for a large coverage of objects to be

viewed in the scene regardless of their worth for the task at hand, and then use only

the subset of interest. Another approach in cases with degenerate objects would be

to perform tracking and mapping independently of the objects in the same manner

as Meaningful Maps [Sünderhauf et al., 2017].

Beyond simply tracking, some important scene components are missing from the

map which are necessary for long-range path planning outside of the local back-

ground TSDF. Although it is possible to represent these objects with volumetric

reconstructions, more efficient and parametrised models such as occupancy floor

planes or ‘door portals’ as part of topographic maps may instead better help to

store the essential information for path planning. Work such as that of [Sommer

and Cremers, 2018] combines primitive types with SDF map objects and it could be

very useful in this regard in future work.

There is also significant scope in future to better combine information from mul-

tiple duplicate objects seen from very different views to then reconstruct a single

better model, rather than maintaining separate TSDFs for each. The complication

with this is that many objects, although similar in appearance, are geometrically ad-

justable. Chairs can be raised, swivel bases can be rotated, monitors can be angled.

If one were to naively reconstruct many adjusted objects into a single TSDF the

result would be a significantly worse reconstruction. A more flexible parametrisa-

tion with deformable parts and learned degrees of freedom could be useful in future

work [Fish et al., 2014], and a number of recent Deep Learned approaches which

operate on voxel grids could usefully be applied as well [Wu et al., 2016a].

Finally, in this chapter, as in the rest of this thesis, we have restricted our attention

167

6. Fusion++

to static indoor scenes. If one excludes people (and the objects they are in contact

with) this is a reasonable assumption for many indoor domestic scenes. There has

been some recent work on outdoor scenes which specifically mask out semantic areas

which break the static scene assumption [Kaneko et al., 2018] and such an approach

could also be used in domestic scenes. However longer term, this exclusion approach

is unsatisfactory as dynamic objects in a scene may also be particularly important

elements of a map for a given task. Our object-oriented representation can naturally

be extended to model dynamic rigid objects with individually changing poses and

also provides the ability to perform life-long mapping by updating object poses as

things are moved between scans.

168

Chapter 7

Conclusions

Contents

7.1 Contributions . 169

7.2 Discussion and Future Research 173

7.1 Contributions

In this thesis we have presented a number of contributions towards 3D indoor scene

understanding by combining SLAM techniques with deep learned semantic predic-

tions. We have developed and experimented with two different SLAM systems that

aim to incorporate semantic information within quite different map representations.

Although very different in nature, a common theme for both of these systems is the

focus on real-time capable methods as a practical necessity for many applications

of interest ranging from robotics to augmented reality. To this end they have both

been developed to make heavy use of GPU computing hardware both for the SLAM

systems and for the deep learned semantic components. While not all of the systems

presented here achieve real-time performance those that do not are still completely

online and have been shown to be near real-time without significant optimisation.

The first semantic map representation we explored was that of SemanticFusion

presented in Chapter 4. It mirrored the dense reconstruction approach of ‘recon-

struct everything’ with the semantic equivalent of ‘label everything.’ The map rep-

resentation therefore closely followed the surfel formulation of its underlying SLAM

system ElasticFusion, which allowed for a simple and efficient update scheme that

could operate in real-time. The surfel-based surface representation forms a very

169

7. Conclusions

natural container in which to also store semantic probability distributions. They

form a small surface patch that allows integration of multiple semantic predictions

into a single discrete unit, while also providing spatial granularity for semantic seg-

mentation. ElasticFusion’s map deformation approach to loop-closure provided a

consistent 3D global map and avoided the complications of reintegration of semantic

information required in key-frame based approaches.

ElasticFusion is a real-time SLAM system with much of the data and processing

occurring on the GPU and our chosen CNN was capable of performing a prediction

for a given input image in 50ms also on GPU. To allow the system to operate in

real-time we designed the map updates to also occur on the GPU to both minimise

device-host transfers and take advantage of the updates highly parallel nature as

the surfels are treated independently. This alone was not sufficient to achieve real-

time performance given the cost of a CNN prediction and so we also skip a certain

number of frames between predictions. The camera motion between a single frame

tends to be relatively small and the predictions are quite similar and we found that

skipping frames did not cause significant deterioration of the system’s performance.

Our experiments in SemanticFusion showed that combining a CNN with a dense

SLAM system could lead to improvements in the semantic segmentation accuracy,

but the limits of the approach also became clear. The annotated surfels of Se-

manticFusion operate independently and lack any form of higher-level grouping. To

answer simple map queries such as ‘How many chairs do we have in the conference

room?’ would require post-processing to cluster the many surfels with the chair label

into coherent groups. Also, because the semantic map lacks instance associations

between surfels, inconsistencies can occur such as a single object with many different

semantic labels. The process of first reconstructing the entire scene geometry and

only then performing instance segmentation means that object geometry cannot be

preserved or prioritised in the event of a loop-closure.

To overcome these limitations we explore the new paradigm of object-level map-

ping by developing the Fusion++ system described in Chapter 6. Fusion++ is a

SLAM system designed from the ground up to operate on object instances. This

approach has been called object-oriented (or object-level) mapping and we believe

it is a natural and efficient way to represent much of the data that is important for

robotic scene understanding and interaction as well as human-robot communication.

Fusion++ builds a map comprising solely of discovered and reconstructed object in-

170

7.1. Contributions

stances. Each object is reconstructed within its own individual TSDF volume which

allows high-quality reconstructions to be combined with the flexibility of a pose-

graph system which does not require the complication of intra-TSDF deformations

and which can improve reconstruction quality.

We detect and segment newly discovered object instances by using a deep learned

object detection and segmentation architecture called Mask R-CNN. To produce

accurate reconstructions, the entirety of the surface geometry is reconstructed within

the volume. In order to segment the foreground of the instance a novel 3D analog

of a 2D instance mask was used. We found the variability in mask predictions made

them unsuitable for multiplicative Bayesian updates, such as that performed in

SemanticFusion, and so we used a Beta distribution conjugate prior to robustly fuse

2D instance masks into 3D ‘foreground’ counts encoded within the TSDF voxels.

For each object a single semantic probability distribution is maintained and updated

and an ‘existence’ probability counts missed detections to allow spurious objects to

eventually be deleted.

The objects in Fusion++ are used for both tracking and as landmarks in an object-

level pose graph. The previous work of SLAM++ used a small pre-reconstructed

database of objects to populate a scene and ICP to track them individually. In

Fusion++, the variety of object geometries encountered as well as the inherent noise

during early stages of reconstruction led ICP to frequently fail to converge. To

produce the pose-graph edge measurements we therefore developed a more robust

approach which performed ICP on the combined scene geometry and partitioned

the resulting residual errors for each object instance.

Fusion++ is designed to operate online and, although not yet a real-time system

(operating at 10-13Hz excluding relocalisation on our indoor office scene), we believe

that with sufficient software optimisation it can achieve real-time performance on

current consumer hardware. A theme of this area of research is providing an easy

to use developer interface, and to this end we developed the system itself using a

Python front-end with wrappers around the core C++ and CUDA components. The

system itself enables large scenes to be tracked with relatively small memory usage

and high-fidelity reconstructions by excluding large areas of free-space; up to two

thousand object instances can be accommodated on-board a single consumer GPU.

As well as exploring semantics in SLAM systems themselves, we also tackled the

171

7. Conclusions

problem of data production. Deep learning optimises model parameters on the basis

of a gathered dataset. This approach is not unique to deep learning, it is common

in all machine learning algorithms, but supervised deep learning has proven to be a

particularly effective method to make use of very large datasets with ground truth

labels. In the domain of indoor scene understanding with a moving camera the

question is, how do we gather such a dataset?

While much of the work in this thesis is focused on how SLAM and deep learn-

ing can be usefully combined, in Chapter 3 we instead look at how dense SLAM

can be used to assist deep learning. Producing a per-pixel semantic segmentation

ground truth dataset is notoriously labour intensive. The availability of a dense re-

constructed map as well as the camera trajectory within it allows annotations that

are made once in 3D to be reprojected into the camera view in order to produce

numerous annotated 2D frames of video data. We discuss the development of the

‘Object Tagger’ software which provides a GUI and a number of tools designed to

assist the user in efficiently annotating a 3D surfel map produced by ElasticFusion

with ground truth annotations.

The ‘Object Tagger’ assists in scene annotation, but the process of capturing se-

quences and annotating them is still sufficiently costly to prohibit large-scale dataset

production without substantial resources. In Chapter 5 we explore using photoreal-

istic rendering approaches in order to bypass these costs completely to create an

automated synthetic dataset generation system called SceneNet RGB-D. We de-

scribe the production of an extremely large (5M images) synthetic dataset of video

trajectories which provides pixel-accurate ground truth instance annotations, as

well as the camera trajectory, perfect depth, and realistic ray-traced RGB images.

We use the dataset to show the performance improvements a synthetic dataset can

bring to indoor semantic segmentation, and other researchers have since used it to

explore a variety of related problems [Shamwell et al., 2017, Balloch and Chernova,

2017, Chen and Deng, 2018, Bloesch et al., 2018].

We used a physics engine and a large-scale object model dataset to generate phys-

ically plausible random scene configurations to improve the variation within the

dataset. Previous approaches to trajectory generation, such as inserting manually

hand-captured trajectories [Handa et al., 2014] into the scene are unsuitable for such

large-scale dataset generation. It lacks variety and is unaware of potential collisions

with scene geometry. We found a completely random trajectory generation approach

172

7.2. Discussion and Future Research

produced trajectories that were a poor approximation of hand-held trajectories in

real datasets. To alleviate these issues we propose a novel two-body random traject-

ory method, consisting of a camera position and a look-at point which operates as

a proxy for a point of focus. This approach has since been modified and refined in

the InteriorNet dataset [Li et al., 2018], for example by correcting the overly smooth

trajectories produced by the original two-body method by augmenting it with a

learned generative model to produce more realistic camera shake.

7.2 Discussion and Future Research

The methods explored in this thesis provide a general and useful foundation for

combining SLAM with Deep Learning for indoor scene understanding from which

more task specific semantic maps can be developed and refined. There is obviously

significant scope in future to further develop the systems themselves. For example

engineering effort and optimisation of the Fusion++ could allow it to become a truly

real-time system and improving the tracking to include photometric information

may allow it to produce trajectory errors more competitive with state-of-the-art

methods.

The virtues associated with a given map representation often come with their own

set of challenges, and to decide what the best representation is depends heavily on

the application under consideration. SemanticFusion provides an annotated recon-

struction of an entire environment which can be immediately used for path plan-

ning and structural awareness, but lacks information regarding coherent instances

in the map. We approached this problem by developing Fusion++ which provides

the object-level information directly, but in so doing we also gave up the complete

scene reconstruction. The background TSDF can be used locally for path planning

but it is confined to a small volume and cannot provide long distance path planning

and large scene navigation. The two approaches could be combined by saving and

stitching together the background TSDFs into a complete reconstruction. Another

approach more in keeping with the minimum requirements of navigation could be

to augment the system with flexible topographic maps of the navigable space that

work flexibly with the pose graph structure.

There are a number of features of modern domestic indoor scenes that we have

notably not taken full advantage of in the work presented here, and this also offers

173

7. Conclusions

an opportunity for future improvements. Indoor scenes often include significant

structural elements which can be modelled with simple geometric primitives, most

notably bounded planar regions. Including this information in a robust manner

could greatly enhance the information encoded in simple object-level maps both

reducing the memory footprint, improving the map models, and allowing inference

about the support surfaces and orientation of objects.

Related to using simple geometric primitives for scene modelling is the potential

to explore alternative parametrisations of the objects themselves. In Fusion++ we

reconstruct each object individually, but a map often contains repeated elements of

nearly identical instances. The slight variability between instances such as reclined

chairs or open drawers in a filing cabinet means that a naive approach of simply

combining reconstructions will only work for completely rigid objects. A deep learn-

ing approach could be to learn the degrees of freedom in each object instance as well

as their geometry to form a deformable canonical model. Another possibility, given

the ubiquity of mass manufactured products that populate indoor scenes, is that in

future large databases of high quality objects may become available to be recognised

and downloaded to the map during operation. However, even in this case objects

outside of the database or that are highly deformable may still require on-the-fly

reconstruction and ‘editing’ based on available measurements.

This thesis has focused on static scenes, however in domestic environments there

are clearly scene dynamics that are important and must be captured. Most notably

humans and the objects they interact with are an important element of a map that

must be modelled by robotic agents operating in the same environment, for safety

considerations if nothing else. The object-level representation provides a natural way

to model rigid dynamic objects in a scene, but deformable human models would be

required to capture the motion of people. Humans have an intuitive understanding

of the properties of more complex entities in indoor scenes as well such as clothes and

liquids, and to attain human-level understanding of a scene requires these properties

must also be encoded in the map. Work on this could enable augmented reality

applications and life-long maps that can be updated as scenes change over time.

Here we have explored using synthetic data as a means of producing training data

for supervised training for indoor semantic segmentation. Further work to produce

interactive and dynamic synthetic environments could provide a useful means of

training and validating different approaches to indoor scene understanding by do-

174

7.2. Discussion and Future Research

mestic agents that is difficult or very costly to achieve in the physical world. In our

work we found that to transfer to the real world, datasets still required fine-tuning

on real world images. This reality gap is an important limitation of current ap-

proaches to synthetic training data which must be better understood and mitigated

in order to allow synthetic training to reach its true potential. Recent approaches

to domain transfer such as Generative Adversarial Networks (GANs) and Domain

Separation Networks provide modern tools to tackle the challenges in this area, but

it is by no means a solved problem.

Finally, the modular approach of combining independent SLAM and deep learn-

ing components taken here is by no means the only approach. Components of

the SLAM systems used here may greatly benefit from the robustness of having

learned approaches embedded to a greater degree. The map representations ex-

plored here have followed a classical metric approach to mapping. The versatility of

deep learning also provides the potential for more drastically alternative approaches

to mapping. An example of this is to have the ‘map’ stored within the weights of a

Neural Network and queried for the desired information while allowing the internal

representation itself to be entirely learned. This operation could be seen as akin to

asking a human to sketch a room layout. Should the system correctly answer the

sufficiently detailed and varied questions we can assume it has properly understood

the scene.

175

7. Conclusions

176

Bibliography

Bibliography

[Abadi et al., 2015] Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z.,

Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Good-

fellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L.,

Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S., Murray, D., Olah,

C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P.,

Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg,

M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale machine

learning on heterogeneous systems. http://download.tensorflow.org/paper/

whitepaper2015.pdf. 58

[Arbeláez et al., 2014] Arbeláez, P., Pont-Tuset, J., Barron, J., Marques, F., and

Malik, J. (2014). Multiscale combinatorial grouping. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 144

[Armeni et al., 2017] Armeni, I., Sax, A., Zamir, A. R., and Savarese, S. (2017).

Joint 2D-3D-Semantic Data for Indoor Scene Understanding. arXiv preprint

arXiv:1702.01105. 68, 112

[Aubry et al., 2014] Aubry, M., Maturana, D., Efros, A., Russell, B., and Sivic, J.

(2014). Seeing 3D chairs: exemplar part-based 2D-3D alignment using a large

dataset of CAD models. In CVPR. 110

[Ba et al., 2016] Ba, J. L., Kiros, J. R., and Hinton, G. E. (2016). Layer normaliz-

ation. arXiv preprint arXiv:1607.06450. 47

177

http://download.tensorflow.org/paper/whitepaper2015.pdf
http://download.tensorflow.org/paper/whitepaper2015.pdf

Bibliography

[Bailey and Durrant-Whyte, 2006] Bailey, T. and Durrant-Whyte, H. (2006). Sim-

ultaneous Localisation and Mapping (SLAM): Part II. IEEE Robotics and Auto-

mation Magazine, 13(3):108–117. 9

[Balloch and Chernova, 2017] Balloch, J. C. and Chernova, S. (2017). An RGBD

segmentation model for robot vision learned from synthetic data. In Proceedings

of the Workshop on Spatial-Semantic Representations in Robotics at Robotics:

Science and Systems (RSS). 7, 134, 172

[Bao et al., 2012] Bao, S. Y., Bagra, M., Chao, Y.-W., and Savarese, S. (2012). Se-

mantic Structure From Motion with Points, Regions, and Objects. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

14

[Barron et al., 1994] Barron, J., Fleet, D., and Beauchemin, S. (1994). Performance

of optical flow techniques. International Journal of Computer Vision (IJCV),

12:43–77. 110

[Bay et al., 2006] Bay, H., Tuytelaars, T., and Van Gool, L. (2006). SURF: Speeded

up robust features. In Proceedings of the European Conference on Computer

Vision (ECCV). 11

[Bengio et al., 2001] Bengio, Y., Ducharme, R., and Vincent, P. (2001). A neural

probabilistic language model. In Neural Information Processing Systems (NIPS).

42

[Bengio et al., 2009] Bengio, Y., Louradour, J., Collobert, R., and Weston, J.

(2009). Curriculum Learning. In Proceedings of the International Conference

on Machine Learning (ICML). 133

[Bengtsson and Baerveldt, 2003] Bengtsson, O. and Baerveldt, A. J. (2003). Robot

localization based on scan-matching—estimating the covariance matrix for the

IDC algorithm. Robotics and Autonomous Systems, 44:29–49. 160

[Bergen et al., 1992] Bergen, J. R., Anandan, P., Hanna, K. J., and Hingorani,

R. (1992). Hierarchical model-based motion estimation. In Proceedings of the

European Conference on Computer Vision (ECCV). 36

[Besl and McKay, 1992] Besl, P. and McKay, N. (1992). A method for Registration

of 3D Shapes. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 14(2):239–256. 34

178

Bibliography

[Blais and Levine, 1995] Blais, G. and Levine, M. D. (1995). Registering Multiview

Range Data to Create 3D Computer Objects. IEEE Transactions on Pattern

Analysis and Machine Intelligence (PAMI), 17(8):820–824. 34

[Blanco and Rai, 2014] Blanco, J. L. and Rai, P. K. (2014). nanoflann: a C++

header-only fork of FLANN, a library for nearest neighbor (NN) wih kd-trees.

https://github.com/jlblancoc/nanoflann. 73

[Bloesch et al., 2018] Bloesch, M., Czarnowski, J., Clark, R., Leutenegger, S., and

Davison, A. J. (2018). CodeSLAM — learning a compact, optimisable representa-

tion for dense visual SLAM. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 5, 7, 134, 172

[Bloesch et al., 2016] Bloesch, M., Sommer, H., Laidlow, T., Burri, M., Nützi, G.,

Fankhauser, P., Bellicoso, D., Gehring, C., Leutenegger, S., Hutter, M., and

Siegwart, R. (2016). A Primer on the Differential Calculus of 3D Orientations.

CoRR, abs/1606.0. 26

[Boykov and Kolomogorov, 2004] Boykov, Y. and Kolomogorov, V. (2004). An Ex-

perimental Comparison of Min-Cut/Max-Flow Algorithms for Energy Minimiza-

tion in Vision. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 26(9):1124–1137. 74

[Brockman et al., 2016] Brockman, G., Cheung, V., Pettersson, L., Schneider, J.,

Schulman, J., Tang, J., and Zaremba, W. (2016). Openai gym. arXiv pre-

print:1606.01540. 6

[Brostow et al., 2009] Brostow, G., Fauqueur, J., and Cipolla, R. (2009). Semantic

object classes in video: A high-definition ground truth database. Pattern Recog-

nition Letters, 30(2):88 – 97. 62, 63

[Brostow et al., 2008] Brostow, G., Shotton, J., Fauqueur, J., and Cipolla., R.

(2008). Segmentation and Recognition using Structure from Motion Point Clouds.

In Proceedings of the European Conference on Computer Vision (ECCV). 14

[Butler et al., 2012] Butler, D. J., Wulff, J., Stanley, G. B., and Black, M. J. (2012).

A naturalistic open source movie for optical flow evaluation. In Proceedings of the

European Conference on Computer Vision (ECCV). 110

179

https://github.com/jlblancoc/nanoflann

Bibliography

[Cadena et al., 2016] Cadena, C., Carlone, L., Carrillo, H., Latif, Y., Scaramuzza,

D., Neira, J., Reid, I., and Leonard, J. J. (2016). Past, present, and future of

simultaneous localization and mapping: Toward the robust-perception age. IEEE

Transactions on Robotics (T-RO), 32(6):1309–1332. 9, 10, 13

[Calli et al., 2015] Calli, B., Singh, A., Walsman, A., Srinivasa S. and, Abbeel, P.,

and Dollar, A. M. (2015). The ycb object and model set: Towards common

benchmarks for manipulation research. In International Conference on Advanced

Robotics (ICAR), pages 510–517. 163

[Calonder et al., 2010] Calonder, M., Lepetit, V., Strecha, C., and Fua, P. (2010).

BRIEF: Binary Robust Independent Elementary Features. In Proceedings of the

European Conference on Computer Vision (ECCV). 11

[Castellanos, 1998] Castellanos, J. A. (1998). Mobile Robot Localization and Map

Building: A Multisensor Fusion Approach. PhD thesis, Universidad de Zaragoza,

Spain. 9

[Castle et al., 2007] Castle, R. O., Gawley, D. J., Klein, G., and Murray, D. W.

(2007). Towards simultaneous recognition, localization and mapping for hand-

held and wearable cameras. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). 15

[Cavallari, 2017] Cavallari, T. (2017). Semantic SLAM: A New Paradigm for Object

Recognition and Scene Reconstruction. PhD thesis, University of Bologna. 83, 103

[Cavallari and Di Stefano, 2016a] Cavallari, T. and Di Stefano, L. (2016a). Online

Large Scale Semantic Fusion. In ECCV 2016 Workshop on Geometry Meets Deep

Learning. 83

[Cavallari and Di Stefano, 2016b] Cavallari, T. and Di Stefano, L. (2016b). Se-

manticFusion: Joint Labeling, Tracking and Mapping. In ECCV 2016 Workshop.

103

[Cavallari and Di Stefano, 2016c] Cavallari, T. and Di Stefano, L. (2016c). Volume-

Based Semantic Labeling with Signed Distance Functions. Image and Video Tech-

nology, 1:544–556. 15, 83, 139

[Censi, 2007] Censi, A. (2007). An accurate closed-form estimate of ICP’s cov-

ariance. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). 160

180

Bibliography

[Chang et al., 2017] Chang, A., Dai, A., Funkhouser, T., Halber, M., Niessner, M.,

Savva, M., Song, S., Zeng, A., and Zhang, Y. (2017). Matterport3D: Learning

from RGB-D data in indoor environments. In Proceedings of the International

Conference on 3D Vision (3DV). 68

[Chang et al., 2015] Chang, A. X., Funkhouser, T., Guibas, L., Hanrahan, P.,

Huang, Q., Li, Z., Savarese, S., Savva, M., Song, S., Su, H., Xiao, J., Yi, L.,

and Yu, F. (2015). ShapeNet: An information-rich 3d model repository. arXiv

preprint arXiv:1512.03012. 111, 112, 167

[Chatila and Laumond, 1985] Chatila, R. and Laumond, J. (1985). Position refer-

encing and consistent world modeling for mobile robots. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). 13

[Chen et al., 2018] Chen, L. C., Papandreou, G., Kokkinos, I., Murphy, K., and

Yuille, A. L. (2018). Deeplab: Semantic image segmentation with deep convolu-

tional nets, atrous convolution, and fully connected crfs. IEEE Transactions on

Pattern Analysis and Machine Intelligence (PAMI), 40(4):834–848. 41

[Chen and Deng, 2018] Chen, W. and Deng, J. (2018). Learning Single-Image

Depth from Videos using Quality Assessment Networks. arXiv preprint

arXiv:1806.09573. 7, 134, 172

[Chen and Medioni, 1992] Chen, Y. and Medioni, G. (1992). Object modeling by

registration of multiple range images. Image and Vision Computing (IVC),

10(3):145–155. 34

[Cheng et al., 2014] Cheng, M., Zhang, Z., Lin, W., and Torr, P. H. S. (2014).

BING: Binarized Normed Gradients for Objectness Estimation at 300fps. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 144

[Cheng et al., 2005] Cheng, Y., Maimone, M., and Matthies, L. (2005). Visual odo-

metry on the mars exploration rovers. In Proceedings of the International Con-

ference on Systems, Man and Cybernetics, (SMC), volume 1, pages 903–910. 9

[Choi et al., 2015] Choi, S., Zhou, Q., and Koltun, V. (2015). Robust Reconstruc-

tion of Indoor Scenes. In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR). 58, 136

181

Bibliography

[Choudhary et al., 2014] Choudhary, S., Trevor, A. J. B., Christensen, H. I., and

Dellaert, F. (2014). SLAM with object discovery, modeling and mapping. In Pro-

ceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).

16, 141

[Civera et al., 2011] Civera, J., Gàlvez-Lòpez, D., Riazuelo, L., Tard‘øs, J. D., and

Montiel, J. M. M. (2011). Towards semantic slam using a monocular camera.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems

(IROS). 15

[Collet et al., 2013] Collet, A., Xiong, B., Gurau, C., Hebert, M., and Srinivasa,

S. S. (2013). Exploiting Domain Knowledge for Object Discovery. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA). 141

[Collobert et al., 2011] Collobert, R., Kavukcuoglu, K., and Farabet, C. (2011).

Torch7: A Matlab-like Environment for Machine Learning. In Neural Inform-

ation Processing Systems (NIPS). 58, 129

[Couprie et al., 2013] Couprie, C., Farabet, C., Najman, L., and LeCun, Y. (2013).

Indoor semantic segmentation using depth information. In Proceedings of the

International Conference on Learning Representations (ICLR). 84, 94, 128

[Curless and Levoy, 1996] Curless, B. and Levoy, M. (1996). A volumetric method

for building complex models from range images. In Proceedings of SIGGRAPH.

3, 12, 136, 140

[Czarnowski et al., 2017] Czarnowski, J., Leutenegger, S., and Davison, A. J.

(2017). Semantic texture for robust dense tracking. In Proceedings of the In-

ternational Conference on Computer Vision Workshops (ICCVW). 103

[Dai et al., 2018] Dai, A., , Sturm, J., and Nießner, M. (2018). Scancomplete: Large-

scale scene completion and semantic segmentation for 3d scans. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 167

[Dai et al., 2017a] Dai, A., Chang, A. X., Savva, M., Halber, M., Funkhouser, T.,

and Nießner, M. (2017a). ScanNet: Richly-annotated 3d reconstructions of indoor

scene. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 66, 67, 78, 112

182

Bibliography

[Dai et al., 2017b] Dai, A., Nießner, M., Zollhöfer, M., Izadi, S., and Theobalt,

C. (2017b). BundleFusion: Real-time Globally Consistent 3D Reconstruction

using On-the-fly Surface Re-integration. ACM Transactions on Graphics (TOG),

36(3):24:1–24:18. 58, 67, 136

[Davison, 1998] Davison, A. J. (1998). Mobile Robot Navigation Using Active Vis-

ion. PhD thesis, University of Oxford. 9

[Davison, 2003] Davison, A. J. (2003). Real-Time Simultaneous Localisation and

Mapping with a Single Camera. In Proceedings of the International Conference

on Computer Vision (ICCV). 10

[DeSouza et al., 2017] DeSouza, C. R., Gaidon, A., Cabon, Y., and López Peña,

A. M. (2017). Procedural generation of videos to train deep action recognition

networks. In Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR). 110

[Dharmasiri et al., 2016] Dharmasiri, T., Lui, V., and Drummond, T. (2016). MO-

SLAM: Multi Object SLAMwith Run-Time Object Discovery through Duplicates.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems

(IROS). 142

[Drummond, 2014] Drummond, T. (2014). Lie groups, lie algebras, projective

geometry and optimization for 3d geometry, engineering and computer vision.

http://twd20g.blogspot.com/p/notes-on-lie-groups.html. 26

[Durrant-Whyte and Bailey, 2006] Durrant-Whyte, H. and Bailey, T. (2006). Sim-

ultaneous Localisation and Mapping (SLAM): Part I The Essential Algorithms.

IEEE Robotics and Automation Magazine, 13(2):99–110. 9

[Durrant-Whyte, 1988] Durrant-Whyte, H. F. (1988). Uncertain Geometry in Ro-

botics. International Journal of Robotics Research (IJRR), 4(1):23–31. 9

[Eade, 2009] Eade, E. (2009). Gauss-Newton / Levenberg-Marquardt Optimization.

http://www.ethaneade.com/optimization.pdf. 32

[Eade, 2014] Eade, E. (2014). Lie groups for computer vision. http://www.

ethaneade.com/lie_groups.pdf. 26

[Eigen and Fergus, 2015] Eigen, D. and Fergus, R. (2015). Predicting Depth, Sur-

face Normals and Semantic Labels with a Common Multi-Scale Convolutional

183

http://twd20g.blogspot.com/p/notes-on-lie-groups.html
http://www.ethaneade.com/optimization.pdf
http://www.ethaneade.com/lie_groups.pdf
http://www.ethaneade.com/lie_groups.pdf

Bibliography

Architecture. In Proceedings of the International Conference on Computer Vision

(ICCV). 84, 85, 87, 97, 98, 99, 100, 102

[Endres et al., 2014] Endres, F., Hess, J., Sturm, J., Cremers, D., and Burgard, W.

(2014). 3D Mapping with an RGB-D Camera. IEEE Transactions on Robotics

(T-RO), 30(1):177–187. 65

[Engel et al., 2017] Engel, J., Koltun, V., and Cremers, D. (2017). Direct sparse

odometry. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI). 11

[Erhan et al., 2014] Erhan, D., Szegedy, C., Toshev, A., and Anguelov, D. (2014).

Scalable object detection using deep neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 19, 144, 145

[Everingham et al., 2010] Everingham, M., Van Gool, L., Williams, C. K., Winn,

J., and Zisserman, A. (2010). The pascal visual object classes (VOC) challenge.

International Journal of Computer Vision (IJCV), 2:303–338. 54, 63, 84, 94

[Fauqueur et al., 2007] Fauqueur, J., Brostow, G., and Cipolla, R. (2007). Assisted

video object labeling by joint tracking of regions and keypoints. In ICCV Work-

shops. 65

[Fehr et al., 2017] Fehr, M., Furrer, F., Ivan, D., Sturm, J., Gilitschenski, I.,

Siegwart, R., and Cadena, C. (2017). TSDF-based change detection for consistent

long-term dense reconstruction and dynamic object discovery. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA). 141

[Felzenszwalb and Huttenlocher, 2004] Felzenszwalb, P. and Huttenlocher, D.

(2004). Efficient Graph-Based Image Segmentation. International Journal of

Computer Vision (IJCV), 59(2):167–181. 67

[Felzenszwalb et al., 2010] Felzenszwalb, P. F., Girshick, R. B., McAllester, D.,

and Ramanan, D. (2010). Object detection with discriminatively trained part-

based models. IEEE Transactions on Pattern Analysis and Machine Intelligence

(PAMI), 32(9):1627–1645. 14

[Finman et al., 2013] Finman, R., Whelan, T., and Kaess, M. (2013). Toward

lifelong object segmentation from change detection in dense RGB-D maps. In

Proceedings of the European Conference on Mobile Robotics (ECMR). 141

184

Bibliography

[Fischer et al., 2015] Fischer, P., Dosovitskiy, A., Ilg, E., Häusser, P., Hazırbaş, C.,

Golkov, V., van der Smagt, P., Cremers, D., and Brox, T. (2015). FlowNet:

Learning Optical Flow with Convolutional Networks. In Proceedings of the Inter-

national Conference on Computer Vision (ICCV). 20, 110

[Fish et al., 2014] Fish, N., Averkiou, A., van Kaick, O., Sorkine-Hornung, O.,

Cohen-Or, D., and Mitra, N. J. (2014). Meta-representation of shape families.

Transactions on Graphics (Special issue of SIGGRAPH 2014). 167

[Fukushima and Miyake, 1982] Fukushima, K. and Miyake, S. (1982). Neocog-

nitron: A new algorithm for pattern recognition tolerant of deformations and

shifts in position. Pattern Recognition, 15(6):455–469. 18

[Gaidon et al., 2016] Gaidon, A., Wang, Q., Cabon, Y., and Vig, E. (2016). Virtual

Worlds as Proxy for Multi-Object Tracking Analysis. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 110

[Galindo et al., 2005] Galindo, C., Saffiotti, A., Coradeschi, S., Buschka, P.,

Fernandez-Madrigal, J. A., and Gonzalez, J. (2005). Multi-hierarchical semantic

maps for mobile robotics. In Proceedings of the IEEE/RSJ Conference on Intel-

ligent Robots and Systems (IROS). 15

[Garcia and Zalevsky, 2007] Garcia, J. and Zalevsky, Z. (2007). Range mapping

using speckle decorrelation. US Patent, US7433024B2. 28

[Genova et al., 2017] Genova, K., Savva, M., Chang, A. X., and Funkhouser, T.

(2017). Learning Where to Look: Data-Driven Viewpoint Set Selection for 3D

Scenes. arXiv preprint arXiv:1704.02393. 7, 134

[Girshick, 2015] Girshick, R. (2015). Fast r-cnn. In Proceedings of the International

Conference on Computer Vision (ICCV). 148

[Girshick et al., 2014] Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).

Rich feature hierarchies for accurate object detection and semantic segmentation.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). 19, 144, 146

[Glocker et al., 2015] Glocker, B., Shotton, J., Criminisi, A., and Izadi, S. (2015).

Real-Time RGB-D Camera Relocalization via Randomized Ferns for Key-

frame Encoding. IEEE Transactions on Visualization and Computer Graphics,

21(5):571–583. 71

185

Bibliography

[Glorot and Bengio, 2010] Glorot, X. and Bengio, Y. (2010). Understanding the

Difficulty of Training Deep Feedforward Neural Networks. In International Con-

ference on Artificial Intelligence and Statistics (AISTATS). 51

[Goodfellow et al., 2016] Goodfellow, I., Bengio, Y., and Courville, A. (2016). Deep

Learning. MIT Press. http://www.deeplearningbook.org. 17, 39, 61

[Goodfellow et al., 2014] Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B.,

Warde-Farley, D., Ozair, S., Courville, A., and Bengio, Y. (2014). Generative

adversarial nets. 132

[Guennebaud et al., 2010] Guennebaud, G., Jacob, B., et al. (2010). Eigen v3.

http://eigen.tuxfamily.org. 36

[Guo et al., 2017] Guo, C., Pleiss, G., Sun, Y., and Weinberger, K. Q. (2017). On

calibration of modern neural networks. The Proceedings of Machine Learning

Research. 103

[Gupta et al., 2013] Gupta, S., Arbelaez, P., and Malik, J. (2013). Perceptual or-

ganization and recognition of indoor scenes from RGB-D images. In CVPR. 162

[Gupta et al., 2015a] Gupta, S., Arbeláez, P. A., Girshick, R. B., and Malik, J.

(2015a). Aligning 3D models to RGB-D images of cluttered scenes. In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

84

[Gupta et al., 2015b] Gupta, S., Arbeláez, P. A., Girshick, R. B., and Malika, J.

(2015b). Aligning 3D Models to RGB-D Images of Cluttered Scenes. In Pro-

ceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 84, 110

[Gupta et al., 2014] Gupta, S., Girshick, R., Arbelaez, P., and Malik, J. (2014).

Learning Rich Features from RGB-D Images for Object Detection and Segment-

ation. In Proceedings of the European Conference on Computer Vision (ECCV).

84

[Gutmann and Konolige, 1999] Gutmann, J.-S. and Konolige, K. (1999). Incre-

mental Mapping of Large Cyclic Environments. In International Symposium on

Computational Intelligence in Robotics and Automation (CIRA). 9

186

http://www.deeplearningbook.org
http://eigen.tuxfamily.org

Bibliography

[Handa et al., 2012] Handa, A., Newcombe, R. A., Angeli, A., and Davison, A. J.

(2012). Real-Time Camera Tracking: When is High Frame-Rate Best? In Pro-

ceedings of the European Conference on Computer Vision (ECCV). 6, 110, 119

[Handa et al., 2016] Handa, A., Pătrăucean, V., Badrinarayanan, V., Stent, S., and

Cipolla, R. (2016). SceneNet: Understanding Real World Indoor Scenes With

Synthetic Data. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 66, 84, 111, 112

[Handa et al., 2014] Handa, A., Whelan, T., McDonald, J. B., and Davison, A. J.

(2014). A Benchmark for RGB-D Visual Odometry, 3D Reconstruction and

SLAM. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). 6, 109, 110, 119, 172

[Häne et al., 2013] Häne, C., Zach, C., Cohen, A., Angst, R., and Pollefeys, M.

(2013). Joint 3d scene reconstruction and class segmentation. In Proceedings of

the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 102

[Hazirbas et al., 2016] Hazirbas, C., Ma, L., Domokos, C., and Cremers, D. (2016).

FuseNet: incorporating depth into semantic segmentation via fusion-based CNN

architecture. In Proceedings of the Asian Conference on Computer Vision

(ACCV). 129

[He et al., 2017] He, K., Gkioxari, G., Dollár, P., and Girshick, R. (2017). Mask r-

cnn. In Proceedings of the International Conference on Computer Vision (ICCV).

19, 139, 142, 144, 149, 156

[He et al., 2014] He, K., Zhang, X., Ren, S., and Sun, J. (2014). Spatial pyramid

pooling in deep convolutional networks for visual recognition. In Proceedings of

the European Conference on Computer Vision (ECCV). 147

[He et al., 2015] He, K., Zhang, X., Ren, S., and Sun, J. (2015). Delving deep

into rectifiers: Surpassing human-level performance on imagenet classification. In

Proceedings of the International Conference on Computer Vision (ICCV). 2, 51,

127

[He et al., 2016] He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learn-

ing for image recognition. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 19, 46, 161

187

Bibliography

[Henry et al., 2010] Henry, P., Krainin, M., Herbst, E., Ren, X., and Fox, D. (2010).

RGB-D Mapping: Using Depth Cameras for Dense 3D Modeling of Indoor Envir-

onments. In Proceedings of the International Symposium on Experimental Robotics

(ISER). 12

[Hermans et al., 2014] Hermans, A., Floros, G., and Leibe, B. (2014). Dense 3D

semantic mapping of indoor scenes from RGB-D images. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). 15, 82, 83,

85, 90, 92, 93, 99, 100, 103

[Hodgkin and Huxley, 1952] Hodgkin, A. L. and Huxley, A. F. (1952). A quant-

itative description of membrane current and its application to conduction and

excitation in nerve. The Journal of Physiology, 117:500–544. 17

[Hoffman et al., 2016] Hoffman, J., Gupta, S., Leong, J., S., G., and Darrell, T.

(2016). Cross-Modal Adaptation for RGB-D Detection. In Proceedings of the

IEEE International Conference on Robotics and Automation (ICRA). 104

[Hosang et al., 2014] Hosang, J., Benenson, R., and Schiele, B. (2014). How good

are detection proposals, really? In Proceedings of the British Machine Vision

Conference (BMVC). 145

[Hua et al., 2016] Hua, B.-S., Pham, Q.-H., Nguyen, D. T., Tran, M.-K., Yu, L.-F.,

and Yeung, S.-K. (2016). Scenenn: A scene meshes dataset with annotations. In

Proceedings of the International Conference on 3D Vision (3DV). 67, 112

[Hubel and Wiesel, 1962] Hubel, D. H. and Wiesel, T. N. (1962). Receptive fields,

binocular interaction and functional architecture in cat’s visual cortex. Journal

of Physiology (London), 160:106–154. 18

[Ilg et al., 2017] Ilg, E., Mayer, N., Saikia, T., Keuper, M., Dosovitskiy, A., and

Brox, T. (2017). FlowNet 2.0: Evolution of optical flow estimation with deep net-

works. In Proceedings of the IEEE Conference on Computer Vision and Pattern

Recognition (CVPR). 110

[Ioffe and Szegedy, 2015] Ioffe, S. and Szegedy, C. (2015). Batch normalization:

Accelerating deep network training by reducing internal covariate shift. In Pro-

ceedings of the International Conference on Machine Learning (ICML). 46, 47,

128

188

Bibliography

[Irani and Anandan, 1999] Irani, M. and Anandan, P. (1999). All About Direct

Methods. In Proceedings of the International Workshop on Vision Algorithms, in

association with ICCV. 11

[Isola et al., 2017] Isola, P., Zhu, J., Zhou, T., and Efros, A. A. (2017). Image-to-

image translation with conditional adversarial networks. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 20

[Jensen and Christensen, 2000] Jensen, H. W. and Christensen, N. J. (2000). A

practical guide to global illumination using photon maps. Siggraph 2000 Course

8. 123

[Jia et al., 2014] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Gir-

shick, R., Guadarrama, S., and Darrell, T. (2014). Caffe: Convolutional architec-

ture for fast feature embedding. arXiv preprint arXiv:1408.5093. 58, 86

[Kahler et al., 2016] Kahler, O., Prisacariu, V. A., and Murray, D. W. (2016). Real-

time large-scale dense 3d reconstruction with loop closure. In Proceedings of the

European Conference on Computer Vision (ECCV). 58

[Kalman, 1960] Kalman, R. (1960). A New Approach to Linear Filtering and Pre-

diction Problems. Journal of Basic Engineering, 82(1):35–45. 9

[Kaneko et al., 2018] Kaneko, M., Iwami, K., Ogawa, T., Yamasaki, T., and Aizawa,

K. (2018). Mask-SLAM: Robust feature-based monocular SLAM by masking using

semantic segmentation. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition Workshops (CVPRW). 168

[Keller et al., 2013] Keller, M., Lefloch, D., Lambers, M., Izadi, S., Weyrich, T., and

Kolb, A. (2013). Real-time 3D Reconstruction in Dynamic Scenes using Point-

based Fusion. In Proc. of Joint 3DIM/3DPVT Conference (3DV). 12, 69, 70,

88

[Kim et al., 2016] Kim, J., Lee, J. K., and Lee, K. M. (2016). Accurate image super-

resolution using very deep convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 20

[Kim et al., 2012] Kim, Y. M., Mitra, N. J., Yan, D.-M., and Guibas, L. (2012). Ac-

quiring 3D Indoor Environments with Variability and Repetition. In SIGGRAPH

Asia. 16

189

Bibliography

[Klein and Murray, 2007] Klein, G. and Murray, D. W. (2007). Parallel Tracking

and Mapping for Small AR Workspaces. In Proceedings of the International Sym-

posium on Mixed and Augmented Reality (ISMAR). 10

[Kneip and Furgale, 2014] Kneip, L. and Furgale, P. (2014). Opengv: A unified and

generalized approach to real-time calibrated geometric vision. In Proceedings of

the IEEE International Conference on Robotics and Automation (ICRA). 158

[Koppula et al., 2011] Koppula, H. S., Anand, A., Joachims, T., and Saxena, A.

(2011). Semantic Labeling of 3D Point Clouds for Indoor Scenes. In Neural

Information Processing Systems (NIPS). 14, 65, 83, 84

[Kostavelis and Gasteratos, 2015] Kostavelis, I. and Gasteratos, I. (2015). Semantic

mapping for mobile robotics tasks: A survey. Robotics and Autonomous Systems,

66:86 – 103. 13

[Krähenbühl and Koltun, 2011] Krähenbühl, P. and Koltun, V. (2011). Efficient

Inference in Fully Connected CRFs with Gaussian Edge Potentials. In Neural

Information Processing Systems (NIPS). 83, 85, 92, 93, 94, 104

[Krizhevsky, 2014] Krizhevsky, A. (2014). One weird trick for parallelizing convolu-

tional neural networks. arXiv preprint arXiv:1404.5997. 146

[Krizhevsky et al., 2012] Krizhevsky, A., Sutskever, I., and Hinton, G. (2012). Im-

ageNet classification with deep convolutional neural networks. In Neural Inform-

ation Processing Systems (NIPS). 19, 61, 144

[Kuipers and Byun, 1991] Kuipers, B. and Byun, Y.-T. (1991). A robot exploration

and mapping strategy based on a semantic hierarchy of spatial representations.

Journal of Robotics and Autonomous Systems, 8:47–63. 13

[Kümmerle et al., 2011] Kümmerle, R., Grisetti, G., Strasdat, H., Konolige, K.,

and Burgard, W. (2011). g2o: A General Framework for Graph Optimization. In

Proceedings of the IEEE International Conference on Robotics and Automation

(ICRA). 27, 161

[Ladicky et al., 2010] Ladicky, L., Russell, C., Kohli, P., and Torr, P. (2010). Graph

cut based inference with co-occurrence statistics. In Proceedings of the European

Conference on Computer Vision (ECCV). 14

190

Bibliography

[Lai et al., 2012] Lai, K., Bo, L., Ren, X., and Fox, D. (2012). Detection-based

object labeling in 3d scenes. In Proceedings of the IEEE International Conference

on Robotics and Automation (ICRA). 16

[Laidlow et al., 2017] Laidlow, T., Bloesch, M., Li, W., and Leutenegger, S. (2017).

Dense RGB-D-Inertial SLAM with map deformations. In Proceedings of the

IEEE/RSJ Conference on Intelligent Robots and Systems (IROS). 2

[LeCun et al., 2015] LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep Learning.

Nature, 521:436–444. 18

[LeCun et al., 1998] LeCun, Y., Bottou, L., Bengio, Y., and Haffner, P. (1998).

Gradient-based learning applied to document recognition. Proceedings of the

IEEE, 86(11):2278–2324. 18, 39

[Leonard and Whyte, 1991] Leonard, J. J. and Whyte, D. H. (1991). Simultaneous

map building and localization for an autonomous mobile robot. In Proceedings of

the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS). 9

[Leutenegger et al., 2011] Leutenegger, S., Chli, M., and Siegwart, R. (2011).

BRISK: Binary robust invariance scalable keypoints. In Proceedings of the In-

ternational Conference on Computer Vision (ICCV). 11, 142

[Levin et al., 2004] Levin, A., Lischinski, D., and Weiss, Y. (2004). Colorization

using Optimization. In Proceedings of SIGGRAPH. 87

[Levine et al., 2016] Levine, S., Finn, C., Darrell, T., and Abbeel, P. (2016). End-

to-end training of deep visuomotor policies. The Journal of Machine Learning

Research, 17(1). 20

[Li et al., 2018] Li, W., Saeedi, S., McCormac, J., Clark, R., Tzoumanikas, D., Ye,

Q., Huang, Y., Tang, R., and Leutenegger, S. (2018). Interiornet: Mega-scale

multi-sensor photo-realistic indoor scenes dataset. In Proceedings of the British

Machine Vision Conference (BMVC). 7, 8, 66, 112, 116, 132, 133, 173

[Limketkai et al., 2005] Limketkai, B., Liao, L., and Fox, D. (2005). Relational ob-

ject maps for mobile robots. In Proceedings of the International Joint Conference

on Artificial Intelligence (IJCAI). 14

[Lin et al., 2017] Lin, G., Milan, A., Chunhua, S., and Reid, I. (2017). RefineNet:

Multi-Path Refinement Networks for High-Resolution Semantic Segmentation. In

191

Bibliography

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 41

[Lin et al., 2015] Lin, T.-Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R.,

Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., and Dollár, P. (2015). Microsoft

COCO: Common objects in context. In arXiv preprint:1405.0312. 63

[Lin et al., 2014] Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan,

D., Dollár, P., and Zitnick, C. L. (2014). Microsoft COCO: Common objects in

context. In Proceedings of the European Conference on Computer Vision (ECCV),

pages 740–755. 63, 66, 84

[Long et al., 2015] Long, J., Shelhamer, E., and Darrell, T. (2015). Fully convolu-

tional networks for semantic segmentation. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 19, 40, 41, 84

[Lovegrove, 2011] Lovegrove, S. J. (2011). Parametric Dense Visual SLAM. PhD

thesis, Imperial College London. 11

[Lowe, 1999] Lowe, D. G. (1999). Object recognition from local scale-invariant

features. In Proceedings of the International Conference on Computer Vision

(ICCV). 11

[Lu and Milios, 1997] Lu, F. and Milios, E. (1997). Globally Consistent Range Scan

Alignment for Environment Mapping. Autonomous Robots, 4(4):333–349. 9

[Lucas and Kanade, 1981] Lucas, B. D. and Kanade, T. (1981). An Iterative Image

Registration Technique with an Application to Stereo Vision. In Proceedings of

the International Joint Conference on Artificial Intelligence (IJCAI). 11

[Ma and Sibley, 2014] Ma, L. and Sibley, G. (2014). Unsupervised Dense Ob-

ject Discovery, Detection, Tracking and Reconstruction. In Proceedings of the

European Conference on Computer Vision (ECCV). 141

[Marcotegui et al., 1999] Marcotegui, B., Zanoguera, F., Correia, P., Rosa, R.,

Marques, F., Mech, R., and Wollborn, M. (1999). A Video Object Generation

Tool Allowing Friendly User Interaction. In Proceedings of the IEEE International

Conference on Image Processing (ICIP). 65

192

Bibliography

[Matthies et al., 2007] Matthies, L., Maimone, M., Johnson, A., Cheng, Y., Willson,

R., Villalpando, C., Goldberg, S., and Huertas, A. (2007). Computer Vision on

Mars. International Journal of Computer Vision (IJCV). 9

[McCormac et al., 2018] McCormac, J., Clark, R., Bloesch, M., Davison, A. J., and

Leutenegger, S. (2018). Fusion++:volumetric object-level slam. In Proceedings of

the International Conference on 3D Vision (3DV). 3, 4, 20

[McCormac et al., 2017a] McCormac, J., Handa, A., Davison, A. J., and Leuteneg-

ger, S. (2017a). SemanticFusion: Dense 3D semantic mapping with convolutional

neural networks. In Proceedings of the IEEE International Conference on Robotics

and Automation (ICRA). 3, 4, 20

[McCormac et al., 2016] McCormac, J., Handa, A., Leutenegger, S., and Davison,

A. J. (2016). SceneNet RGB-D: 5m photorealistic images of synthetic indoor

trajectories with ground truth. In arXiv preprint:1612.05079. 66

[McCormac et al., 2017b] McCormac, J., Handa, A., Leutenegger, S., and Davison,

A. J. (2017b). SceneNet RGB-D: Can 5M synthetic images beat generic Im-

ageNet pre-training on indoor segmentation? In Proceedings of the International

Conference on Computer Vision (ICCV). 7, 20, 66, 112

[McCulloch and Pitts, 1943] McCulloch, W. S. and Pitts, W. (1943). A logical cal-

culus of ideas immanent in nervous activity. Bulletin of Mathematical Biophysics,

5:115–133. 17

[Meyer and Do, 2015] Meyer, G. P. and Do, M. N. (2015). 3d grabcut: interactive

foreground extraction for reconstructed 3d scenes. In Proceedings of Eurographics.

73, 74

[Microsoft Corp, 2010] Microsoft Corp (2010). Microsoft Kinect. https://www.

xbox.com/en-US/xbox-one/accessories/kinect. 12

[Mikolov et al., 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G., and Dean,

J. (2013). Distributed representations of words and phrases and their composi-

tionality. In Neural Information Processing Systems (NIPS). 42

[Mishkin et al., 2016] Mishkin, D., Sergievskiy, N., and Matas, J. (2016). Systematic

evaluation of CNN advances on the ImageNet. arXiv preprint arXiv:1606.02228.

46

193

https://www.xbox.com/en-US/xbox-one/accessories/kinect
https://www.xbox.com/en-US/xbox-one/accessories/kinect

Bibliography

[Mnih et al., 2015] Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J.,

Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,

et al. (2015). Human-level control through deep reinforcement learning. Nature.

6

[Montemerlo et al., 2002] Montemerlo, M., Thrun, S., Koller, D., and Wegbreit,

B. (2002). FastSLAM: A Factored Solution to the Simultaneous Localization

and Mapping Problem. In Proceedings of the National Conference on Artificial

Intelligence (AAAI). 9

[Moravec, 1977] Moravec, H. P. (1977). Towards Automatic Visual Obstacle Avoid-

ance. In Proceedings of the International Joint Conference on Artificial Intelli-

gence (IJCAI), volume 2, page 584. 8

[Moravec, 1980] Moravec, H. P. (1980). Obstacle Avoidance and Navigation in the

Real World by a Seeing Robot Rover. Technical Report CMU-RI-TR-3, Carnegie

Mellon University, Robotics Institute. 8

[Moutarlier and Chatila, 1989] Moutarlier, P. and Chatila, R. (1989). Stochastic

multisensory data fusion for mobile robot location and environement modelling.

In Proceedings of the International Symposium on Robotics Research (ISRR). 9

[Mozos et al., 2007] Mozos, Ò., Triebel, R., Jensfelt, P., Rottmann, A., and Bur-

gard, W. (2007). Supervised semantic labeling of places using information extrac-

ted from sensor data. Robotics and Autonomous Systems, 55(5). 14

[Mur-Artal and Tardós, 2014] Mur-Artal, R. and Tardós, J. D. (2014). ORB-SLAM:

Tracking and Mapping Recognizable Features. In Workshop on Multi View Geo-

metry in Robotics (MVIGRO) - RSS 2014. 10, 142

[Mur-Artal and Tardós, 2015] Mur-Artal, R. and Tardós, J. D. (2015). Probabilistic

Semi-Dense Mapping from Highly Accurate Feature-Based Monocular SLAM. In

Proceedings of Robotics: Science and Systems (RSS). 16, 142

[Mur-Artal and Tardós, 2017] Mur-Artal, R. and Tardós, J. D. (2017). ORB-

SLAM2: An Open-Source SLAM System for Monocular, Stereo, and RGB-D

Cameras. IEEE Transactions on Robotics (T-RO), 33(5):1255–1262. 164

[Newcombe et al., 2011a] Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D.,

Kim, D., Davison, A. J., Kohli, P., Shotton, J., Hodges, S., and Fitzgibbon, A.

194

Bibliography

(2011a). KinectFusion: Real-Time Dense Surface Mapping and Tracking. In

Proceedings of the International Symposium on Mixed and Augmented Reality

(ISMAR). 12, 83, 140, 141, 152

[Newcombe et al., 2011b] Newcombe, R. A., Lovegrove, S., and Davison, A. J.

(2011b). DTAM: Dense Tracking and Mapping in Real-Time. In Proceedings

of the International Conference on Computer Vision (ICCV). 11, 34, 136

[Newman, 1999] Newman, P. (1999). On the Structure and Solution of the Simultan-

eous Localization and Map Building Problem. PhD thesis, University of Sydney.

9

[Nicholson et al., 2018] Nicholson, L., Milford, M., and Sünderhauf, N. (2018).

QuadricSLAM: Constrained Dual Quadrics from Object Detections as Landmarks

in Object-oriented SLAM. IEEE Robotics and Automation Letters. 143

[Nießner et al., 2013] Nießner, M., Zollhöfer, M., Izadi, S., and Stamminger, M.

(2013). Real-time 3D Reconstruction at Scale using Voxel Hashing. In Proceedings

of SIGGRAPH. 13, 83

[Noh et al., 2015] Noh, H., Hong, S., and Han, B. (2015). Learning deconvolution

network for semantic segmentation. In Proceedings of the International Conference

on Computer Vision (ICCV). 41, 84, 86, 94, 102

[Nüchter et al., 2003] Nüchter, A., Surmann, H., Lingemann, K., and Hertzberg, J.

(2003). Semantic scene analysis of scanned 3d indoor environments. In Proceedings

of the International Workshop on Vision, Modelling and Visualization (VMV).

14

[NVIDIA, 2018] NVIDIA (2018). Compute Unified Device Architecture-

Programming Guide Version 9.2. 56

[Odena et al., 2016] Odena, A., Dumoulin, V., and Olah, C. (2016). Deconvolution

and checkerboard artifacts. Distill. 48

[Oquab et al., 2014] Oquab, M., Bottou, L., Laptev, I., and Sivic, J. (2014). Learn-

ing and transferring mid-level image representations using convolutional neural

networks. In Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition (CVPR). 62

195

Bibliography

[Pedersen, 2013] Pedersen, S. A. (2013). Progressive photon mapping on gpus. Mas-

ter’s thesis, NTNU. 121

[Peng et al., 2015] Peng, X., Sun, B., Ali, K., and Saenko, K. (2015). Learning deep

object detectors from 3d models. In Proceedings of the International Conference

on Computer Vision (ICCV). 110

[Pham et al., 2018] Pham, Q., Hua, B., Nguyen, D. T., and Yeung, S. (2018). Real-

time progressive 3d semantic segmentation for indoor scenes. arXiv preprint

arXiv:1804.00257. 100, 105, 142

[Pillai and Leonard, 2015] Pillai, S. and Leonard, J. J. (2015). Monocular SLAM

Supported Object Recognition. In Proceedings of Robotics: Science and Systems

(RSS). 142

[Princeton University, 2010] Princeton University (2010). About WordNet. https:

//wordnet.princeton.edu. 113

[Prisacariu et al., 2014] Prisacariu, V. A., Kähler, O., Cheng, M., Ren, C. Y.,

Valentin, J. P. C., Torr, P. H. S., Reid, I. D., and Murray, D. W. (2014). A

framework for the volumetric integration of depth images. CoRR, abs/1410.0925.

13

[Qiu and Yuille, 2016] Qiu, W. and Yuille, A. (2016). UnrealCV: Connecting com-

puter vision to unreal engine. arXiv preprint arXiv:1609.01326. 110

[Ranganathan and Dellaert, 2007] Ranganathan, A. and Dellaert, F. (2007). Se-

mantic Modeling of Places using Objects. In Proceedings of Robotics: Science

and Systems (RSS). 15

[Razavian et al., 2014] Razavian, A. S., Azizpour, H., Sullivan, J., and Carlsson, S.

(2014). CNN Features off-the-shelf: an Astounding Baseline for Recognition. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

Workshops (CVPRW). 62

[Redmon et al., 2016] Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016).

You only look once: Unified, real-time object detection. In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 149

196

https://wordnet.princeton.edu
https://wordnet.princeton.edu

Bibliography

[Ren et al., 2015] Ren, S., He, K., Girshick, R., and Sun, J. (2015). Faster r-cnn:

Towards real-time object detection with region proposal networks. In Neural

Information Processing Systems (NIPS), pages 91–99. 19, 149

[Ren and Lee, 2018] Ren, Z. and Lee, Y. J. (2018). Cross-Domain Self-supervised

Multi-task Feature Learning using Synthetic Imagery. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 133

[Richter et al., 2016] Richter, S., Vineet, V., Roth, S., and Koltun, V. (2016). Play-

ing for data: Ground truth from computer games. In Proceedings of the European

Conference on Computer Vision (ECCV). 110

[Ronneberger et al., 2015] Ronneberger, O., Fischer, P., and Brox, T. (2015). U-

Net: Convolutional networks for biomedical image segmentation. In Proceedings

of the International Conference on Medical Image Computing and Computer As-

sisted Intervention (MICCAI). 41, 128, 129

[Ros et al., 2016] Ros, G., Sellart, L., Materzynska, J., Vazquez, D., and Lopez,

A. (2016). The SYNTHIA Dataset: A large collection of synthetic images for

semantic segmentation of urban scenes. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR). 110

[Rosenblatt, 1958] Rosenblatt, F. (1958). The perceptron: A probabilistic model for

information storage and organization in the brain. Psychological Review, pages

65–386. 17

[Rosten and Drummond, 2006] Rosten, E. and Drummond, T. (2006). Machine

learning for high-speed corner detection. In Proceedings of the European Con-

ference on Computer Vision (ECCV). 11

[Rublee et al., 2011] Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011).

ORB: an efficient alternative to SIFT or SURF. In Proceedings of the International

Conference on Computer Vision (ICCV), pages 2564–2571. IEEE. 11, 142

[Rumelhart et al., 1986] Rumelhart, D. E., Hinton, G. E., and Williams, R. J.

(1986). Learning internal representations by error propagation. In Rumelhart,

D. E., McClelland, J. L., and PDP Research Group, C., editors, Parallel Distrib-

uted Processing: Explorations in the Microstructure of Cognition, volume 1, pages

318–362. MIT Press, Cambridge, MA, USA. 18, 51

197

Bibliography

[Rünz and Agapito, 2018] Rünz, M. and Agapito, L. (2018). Maskfusion: Real-time

recognition, tracking and reconstruction of multiple moving objects. CoRR. 142

[Rusinkiewicz and Levoy, 2001] Rusinkiewicz, S. and Levoy, M. (2001). Efficient

Variants of the ICP Algorithm. In Proceedings of the IEEE International Work-

shop on 3D Digital Imaging and Modeling (3DIM). 34, 35

[Russakovsky et al., 2015] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,

S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M., Berg, A. C., and

Fei-Fei, L. (2015). ImageNet Large Scale Visual Recognition Challenge. Interna-

tional Journal of Computer Vision (IJCV), 115(3):211–252. 2, 19, 61, 148

[Russell et al., 2008] Russell, B. C., Torralba, A., Murphy, K. P., and Freeman,

W. T. (2008). LabelMe: A Database and Web-Based Tool for Image Annotation.

International Journal of Computer Vision (IJCV), 77(1-3). 63

[Rusu et al., 2008] Rusu, R. B., Marton, Z. C., Blodow, N., Dolha, M., and Beetz,

M. (2008). Towards 3d point cloud based object maps for household environments.

Robotics and Autonomous Systems, 56(11):927 – 941. 14

[Salas-Moreno et al., 2014] Salas-Moreno, R. F., Glocker, B., Kelly, P. H. J., and

Davison, A. J. (2014). Dense planar SLAM. In Proceedings of the International

Symposium on Mixed and Augmented Reality (ISMAR). 70, 102

[Salas-Moreno et al., 2013] Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H.,

Kelly, P. H. J., and Davison, A. J. (2013). SLAM++: Simultaneous Localisation

and Mapping at the Level of Objects. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (CVPR). 3, 16, 84, 105, 140, 143, 159

[Savva et al., 2014] Savva, M., Chang, A. X., Bernstein, G., Manning, C. D., and

Hanrahan, P. (2014). On being the right scale: Sizing large collections of 3D

models. In Proceedings of SIGGRAPH. 116

[Sener et al., 2016] Sener, O., Song, H. O., Saxena, A., and Savarese, S. (2016).

Learning transferrable representations for unsupervised domain adaptation. In

Neural Information Processing Systems (NIPS). 133

[Sermanet et al., 2014] Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus,

R., and LeCun, Y. (2014). OverFeat: Integrated Recognition, Localization and

198

Bibliography

Detection using Convolutional Networks. In Proceedings of the International Con-

ference on Learning Representations (ICLR). 19

[Shafaei et al., 2016] Shafaei, A., Little, J. J., and Schmidt, M. (2016). Play and

Learn: Using Video Games to Train Computer Vision Models. In Proceedings of

the British Machine Vision Conference (BMVC). 110

[Shamwell et al., 2017] Shamwell, E. J., Nothwang, W. D., and Perlis, D. (2017).

Deepefference: Learning to predict the sensory consequences of action through

deep correspondence. In Joint IEEE International Conference on Development

and Learning and Epigenetic Robotics (ICDL-EpiRob). 7, 134, 172

[Shi and Tomasi, 1994] Shi, J. and Tomasi, C. (1994). Good Features to Track. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 10

[Shotton et al., 2006] Shotton, J., Winn, J., Rother, C., and Criminisi, A. (2006).

TextonBoost: Joint Appearance, Shape and Context Modeling for Multi-Class

Object Segmentation. In Proceedings of the European Conference on Computer

Vision (ECCV). 62, 63

[Silberman et al., 2012] Silberman, N., Hoiem, D., Kohli, P., and Fergus, R. (2012).

Indoor segmentation and support inference from RGBD images. In Proceedings

of the European Conference on Computer Vision (ECCV). 63, 64, 66, 84, 87, 98,

111, 112

[Silver et al., 2016] Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,

van den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,

Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,

Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016).

Mastering the game of Go with deep neural networks and tree search. Nature,

529:484–489. 2, 20

[Simonyan and Zisserman, 2015] Simonyan, K. and Zisserman, A. (2015). Very

Deep Convolutional Networks for Large-Scale Image Recognition. In Proceed-

ings of the International Conference on Learning Representations (ICLR). 19,

86

199

Bibliography

[Smith et al., 1988] Smith, R., Self, M., and Cheeseman, P. (1988). A stochastic

map for uncertain spatial relationships. In Proceedings of the International Sym-

posium on Robotics Research (ISRR). 9

[Smith and Cheeseman, 1986] Smith, R. C. and Cheeseman, P. (1986). On the Rep-

resentation and Estimation of Spatial Uncertainty. International Journal of Ro-

botics Research (IJRR), 5(4):56–68. 9

[Socher et al., 2013] Socher, R., Ganjoo, M., Manning, C. D., and Ng, A. (2013).

Zero-shot learning through cross-modal transfer. In Neural Information Pro-

cessing Systems (NIPS). 42

[Sommer and Cremers, 2018] Sommer, C. and Cremers, D. (2018). Joint represent-

ation of primitive and non-primitive objects for 3d vision. In Proceedings of the

International Conference on 3D Vision (3DV). 143, 167

[Song et al., 2015] Song, S., Lichtenberg, S. P., and Xiao, J. (2015). SUN RGB-

D: A RGB-D scene understanding benchmark suite. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR), pages 567–

576. 66, 84, 98, 111, 112, 115

[Song et al., 2017] Song, S., Yu, F., Zeng, A., Chang, A. X., Savva, M., and Funk-

houser, T. (2017). Semantic Scene Completion from a Single Depth Image. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 7, 66, 111, 112

[Strasdat et al., 2012] Strasdat, H., Montiel, J. M. M., and Davison, A. J. (2012).

Visual SLAM: Why filter? Image and Vision Computing (IVC), 30(2):65–77. 10

[Stückler and Behnke, 2012] Stückler, J. and Behnke, S. (2012). Model learning

and real-time tracking using multi-resolution surfel maps. In Proceedings of the

National Conference on Artificial Intelligence (AAAI). 141

[Stückler and Behnke, 2013] Stückler, J. and Behnke, S. (2013). Hierarchical object

discovery and dense modelling from motion cues in RGB-D video. In Proceedings

of the International Joint Conference on Artificial Intelligence (IJCAI). 141

[Stückler et al., 2015] Stückler, J., Waldvogel, B., Schulz, H., and Behnke, S.

(2015). Dense Real-Time Mapping of Object-Class Semantics from RGB-D Video.

Journal of Real-Time Image Processing JRTIP, 10(4):599–609. 15, 82

200

Bibliography

[Sturm et al., 2012] Sturm, J., Engelhard, N., Endres, F., Burgard, W., and Cre-

mers, D. (2012). A Benchmark for the Evaluation of RGB-D SLAM Systems.

In Proceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems

(IROS). 31, 136, 138

[Sumner et al., 2007] Sumner, R. W., Schmid, J., and Pauly, M. (2007). Embedded

deformation for shape manipulation. In Proceedings of SIGGRAPH. 71

[Sünderhauf et al., 2017] Sünderhauf, N., Pham, T. T., Latif, Y., Milford, M., and

Reid, I. (2017). Meaningful maps with object-oriented semantic mapping. In Pro-

ceedings of the IEEE/RSJ Conference on Intelligent Robots and Systems (IROS).

16, 142, 167

[Szegedy et al., 2015] Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,

Anguelov, D., Erhan, D., Vanhoucke, V., and Rabinovich, A. (2015). Going

deeper with convolutions. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (CVPR). 19, 145

[Tateno et al., 2016] Tateno, K., Tombari, F., and Navab, N. (2016). When 2.5D

is not enough: Simultaneous reconstruction, segmentation and recognition on

dense slam. In Proceedings of the IEEE International Conference on Robotics and

Automation (ICRA). 141

[Telea, 2004] Telea, A. (2004). An Image Inpainting Technique Based on the Fast

Marching Method. Journal of Graphics, GPU, & Game Tools, 9(1):23–34. 87

[Thrun et al., 1999] Thrun, S., Bennewitz, M., Burgard, W., Cremers, A. B., Del-

laert, F., Fox, D., Hahnel, D., Rosenberg, C., Roy, N., Schulte, J., and Schulz, D.

(1999). MINERVA: a second-generation museum tour-guide robot. In Proceedings

of the IEEE International Conference on Robotics and Automation (ICRA). 13

[Thrun et al., 2005] Thrun, S., Burgard, W., and Fox, D. (2005). Probabilistic Ro-

botics. Cambridge: MIT Press. 9

[Tobin et al., 2017] Tobin, J., Fong, R., Ray, A., Schneider, J., Zaremba, W., and

Abbeel, P. (2017). Domain randomization for transferring deep neural networks

from simulation to the real world. arXiv preprint arXiv:1703.06907. 133

[Tomasi and Manduchi, 1998] Tomasi, C. and Manduchi, R. (1998). Bilateral Fil-

tering for Gray and Color Images. In Proceedings of the International Conference

on Computer Vision (ICCV). 69

201

Bibliography

[Trevor et al., 2013] Trevor, A., Gedikli, S., Rusu, R., and Christensen, H. (2013).

Efficient Organized Point Cloud Segmentation with Connected Components. In

3rd Workshop on Semantic Perception Mapping and Exploration (SPME). 141

[Ulyanov et al., 2016a] Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016a). Deep

image prior. In Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (CVPR). 20

[Ulyanov et al., 2016b] Ulyanov, D., Vedaldi, A., and Lempitsky, V. (2016b). In-

stance normalization: The missing ingredient for fast stylization. arXiv preprint

arXiv:1607.08022. 47

[Valentin et al., 2013] Valentin, J., Sengupta, S., Warrell, J., Shahrokni, A., and

Torr, P. (2013). Mesh Based Semantic Modelling for Indoor and Outdoor Scenes.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-

nition (CVPR). 83, 84

[Valentin et al., 2015] Valentin, J., Vineet, V., Cheng, M.-M., Kim, D., Shotton, J.,

Kohli, P., Nießner, M., Criminisi, A., Izadi, S., and Torr, P. (2015). Semanticpaint:

Interactive 3d labeling and learning at your fingertips. ACM Transactions on

Graphics, 34(5). 67

[van de Sande et al., 2011] van de Sande, K. E., Uijlings, J. R., Gevers, T., and

Smeulders, A. W. (2011). Segmentation as selective search for object recognition.

In Proceedings of the International Conference on Computer Vision (ICCV). 144

[Whelan et al., 2015a] Whelan, T., Kaess, M., Johannsson, H., Fallon, M. F., Le-

onard, J. J., and McDonald, J. B. (2015a). Real-time large scale dense RGB-D

SLAM with volumetric fusion. International Journal of Robotics Research (IJRR),

34(4-5):598–626. 58, 59, 157

[Whelan et al., 2015b] Whelan, T., Leutenegger, S., Salas-Moreno, R. F., Glocker,

B., and Davison, A. J. (2015b). ElasticFusion: Dense SLAM without a pose

graph. In Proceedings of Robotics: Science and Systems (RSS). 3, 12, 58, 64, 68,

80, 136, 142, 164

[Whelan et al., 2012] Whelan, T., McDonald, J. B., Kaess, M., Fallon, M., Johanns-

son, H., and Leonard, J. J. (2012). Kintinuous: Spatially Extended KinectFusion.

In Workshop on RGB-D: Advanced Reasoning with Depth Cameras, in conjunc-

tion with Robotics: Science and Systems. 12, 136, 141

202

Bibliography

[Wong et al., 2015] Wong, Y.-S., Chu, H.-K., and Mitra, N. J. (2015). SmartAn-

notator: An Interactive Tool for Annotating Indoor RGBD Images. Computer

Graphics Forum (Special issue of Eurographics 2015). 67

[Wu et al., 2016a] Wu, J., Zhang, C., Xue, T., Freeman, W., and Tenenbaum, J.

(2016a). Learning a probabilistic latent space of object shapes via 3d generative-

adversarial modeling. In Neural Information Processing Systems (NIPS). 167

[Wu et al., 2016b] Wu, Y. et al. (2016b). Tensorpack. https://github.com/

tensorpack/. 139, 161

[Wu and He, 2018] Wu, Y. and He, K. (2018). Group normalization. arXiv preprint

arXiv:1803.08494. 47

[Xiang and Fox, 2017] Xiang, Y. and Fox, D. (2017). DA-RNN: Semantic mapping

with data associated recurrent neural networks. In Proceedings of Robotics: Sci-

ence and Systems (RSS). 134

[Xiang et al., 2017] Xiang, Y., Schmidt, T., Narayanan, V., and Fox, D. (2017). Po-

secnn: A convolutional neural network for 6d object pose estimation in cluttered

scenes. arXiv preprint arXiv:1711.00199. 163, 164

[Xiao et al., 2010] Xiao, J., Hays, J., Ehinger, K. A., Oliva, A., and Torralba, A.

(2010). SUN Database: Large-scale Scene Recognition from Abbey to Zoo. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 66

[Xiao et al., 2013] Xiao, J., Owens, A., and Torralba, A. (2013). Sun3d: A database

of big spaces reconstructed using sfm and object labels. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 66, 77

[Yi et al., 2016] Yi, K., Trulls, E., Lepetit, V., and Fua, P. (2016). LIFT: Learned

invariant feature transform. In Proceedings of the European Conference on Com-

puter Vision (ECCV). 11

[Yosinski et al., 2014] Yosinski, J., Clune, J., Bengio, Y., and Lipson, H. (2014).

How transferable are features in deep neural networks? In Neural Information

Processing Systems (NIPS). 62

203

https://github.com/tensorpack/
https://github.com/tensorpack/

Bibliography

[Yosinski et al., 2015] Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., and Lipson, H.

(2015). Understanding neural networks through deep visualization. In Deep Learn-

ing Workshop, Proceedings of the International Conference on Machine Learning

(ICML). 38

[Zamir et al., 2018] Zamir, A. R., Sax, A., Shen, W. B., Guibas, L. J., Malik, J.,

and Savarese, S. (2018). Taskonomy: Disentangling task transfer learning. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition

(CVPR). 62, 68

[Zhang et al., 2017] Zhang, Y., Song, S., Yumer, E., Savva, M., Lee, J.-Y., Jin,

H., and Funkhouser, T. (2017). Physically-based rendering for indoor scene un-

derstanding using convolutional neural networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR). 7, 66, 111,

112

[Zhou et al., 2018] Zhou, H., Ummenhofer, B., and Brox, T. (2018). Deeptam: Deep

tracking and mapping. In Proceedings of the European Conference on Computer

Vision (ECCV). 5

[Zhou and Koltun, 2013] Zhou, Q. and Koltun, V. (2013). Dense scene reconstruc-

tion with points of interest. In Proceedings of SIGGRAPH. 140

[Zhou et al., 2013] Zhou, Q., Miller, S., and Koltun, V. (2013). Elastic Fragments

for Dense Scene Reconstruction. In Proceedings of the International Conference

on Computer Vision (ICCV). 12, 136

[Zhu et al., 2017] Zhu, J., Park, T., Isola, P., and Efros, A. A. (2017). Unpaired

Image-to-Image Translation using Cycle-Consistent Adversarial Networks. In Pro-

ceedings of the International Conference on Computer Vision (ICCV). 132

204

	Introduction
	SLAM from Sparse to Dense
	Semantic SLAM
	A Very Brief History of Deep Learning
	Publications
	Thesis Structure

	Preliminaries
	Notation
	Transformations
	Cameras
	Non-Linear Least Squares Optimisation
	Convolutional Neural Networks
	General-Purpose Graphics Processing Units

	Object Tagger
	Introduction
	Related Work
	Method
	Results
	Conclusion

	SemanticFusion
	Introduction
	Related Work
	Method
	Experiments
	Limitations
	Conclusion

	SceneNet RGB-D
	Introduction
	Related Work
	Dataset Overview
	Scene Generation
	Random Trajectory Generation
	Rendering RGB Frames
	Experiments
	Limitations
	Conclusion

	Fusion++
	Introduction
	Related work
	Object Detection
	Method
	Experiments
	Conclusion

	Conclusions
	Contributions
	Discussion and Future Research

	Bibliography

