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Abstract: The performance of single-camera SLAM is improved when wide-angle
optics provide a field of view greater than the 40 to 50 degrees lenses normally
used in computer vision. The issue is one of feature contact: each landmark object
mapped remains visible through a larger range of camera motion, meaning that
feature density can be reduced and camera movement range can be increased.
Further, localisation stability is improved since features at widely differing viewing
angles are simultaneously visible. We present the first real-time (30 frames per
second), fully automatic implementation of 3D SLAM using a hand-waved wide-
angle camera, and demonstrate significant advances in the range and agility of
motions which can be tracked over previous narrow field-of-view implementations.
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1. INTRODUCTION

Real-time Simultaneous Localisation and Map-
ping (SLAM) will be a key component of any
autonomous robot system. Successful implemen-
tations of SLAM have generally been achieved
with laser, sonar or stereo vision range sensors
and built maps for controlled robots moving in 2D
(e.g. Davison and Murray (1998); Newman et al.
(2002); Thrun et al. (2000); Castellanos (1998)).
Recent research however has proved that real-
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time 3D SLAM can be achieved using monocular
vision as the only sensory input and using only
weak motion modelling (Davison (2003); Mayol
et al. (2003)) — indicating not only that vision
will become increasingly important as a cheap,
compact and flexible tool for robot navigation
but that visual SLAM will be able to play a role
in other domains in which automatic localisation
is required, such as wearable computing, human-
computer interface and television.

This research in visual SLAM has much in com-
mon with the wealth of research in the Struc-
ture from Motion (SFM) field in computer vi-
sion over the past two decades, which has pro-
duced impressive automatic systems for camera
trajectory recovery and 3D structure computation
(e.g. Fitzgibbon and Zisserman (1998); 2d3). The
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approach taken in SFM however has generally
been very different from SLAM because the appli-
cations aimed at have not required real-time oper-
ation, and trajectory and structure computation
are able to proceed off-line. Although some real-
time SFM systems (e.g. Nistér (2003)) have been
produced by efficient implementation of frame-to-
frame SFM steps, for real-time operation in which
repeatable localisation is possible (and motion un-
certainty does not grow without bound over time)
the sequential SLAM approach familiar from mo-
bile robotics is essential due to the fundamental
emphasis placed on propagation of uncertainty.

In this paper we extend the single camera SLAM
work of Davison by replacing the standard per-
spective camera used with one which has a wider
field of view of over 90◦, and demonstrate signif-
icantly improved SLAM results, with increased
movement range, accuracy and ability to track
agile motion. Wide-angle lenses typically do not
fit standard perspective projection models and we
give details of the perspective + distortion model
implemented for accurate camera calibration.

That wide field-of-view sensors are beneficial in lo-
calisation and mapping is something that has been
clear to many researchers. The laser range-finders
from Sick commonly used in robot SLAM provide
a field of view of 180◦, and similar ranges have
been provided by active steerable vision (Davison
and Murray (1998)) or scanning sonar(Manyika
and Durrant-Whyte (1993)). In computer vision,
recently there has been emphasis on catadioptric
cameras which use a camera/mirror system to
provide omni-directional imaging, and work on
off-line structure and motion (Geyer and Dani-
ilidis (2001)) and instantaneous motion estima-
tion using these. In particularly impressive work,
Bosse et al. (2002) used an omni-directional cam-
era to detect the vanishing points of lines as part
of a laser-based SLAM system.

While omni-directional sensors are certainly ap-
pealing from a theoretical point of view, we prefer
in this work to look at simpler, compact optics to
provide the widest range of application opportu-
nities. The lens used in this paper is a low-cost
wide-angle unit with volume less than 1cm3.

2. SINGLE CAMERA SLAM

Davison (2003) demonstrated SLAM at 30Hz for
a camera waved in the hand, building on-line a
sparse map of features to serve as localisation
landmarks. Here we summarise this work before
going on to explain the changes necessary to
incorporate a wide-angle lens.
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Fig. 1. Frames and vectors in camera geometry.

Fig. 2. Visualisation of the “constant velocity”
model for smooth motion.

A full-covariance Extended Kalman Filter (EKF)
approach is used, storing the estimated state and
covariance of the system at any instant as follows:
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Explicitly, the camera’s state vector xv com-
prises a metric 3D position vector rW , orientation
quaternion qRW , velocity vector vW and angular
velocity vector ωW relative to a fixed world frame
(13 parameters — the use of a quaternion for ori-
entation is non-minimal, but preferred for reasons
of conditioning and ease of manipulation). Feature
states yi are 3D position vectors. Figure 1 defines
coordinate frames and vectors.

With the aim of flexible application, it is assumed
that odometry is not available, and in the EKF
prediction step a model for smooth motion an-
ticipates Gaussian-distributed perturbations VW

and ΩW to the camera’s linear and angular veloc-
ity at each time-step — modelling motion with a
generally smooth character. The explicit process
model for motion in a time-step ∆t is:
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Figure 2 illustrates how this models potential de-
viations from a constant velocity trajectory. Im-
plementation requires calculation of the Jacobians
of this process function with respect to both xv

and the perturbation vector (not presented here).



The features used in the map are natural points
of high image interest detected using the operator
of Shi and Tomasi (1994) and saved as square
image template patches. Figure 3 shows the type
of image regions typically detected, corresponding
mainly to corners or well-localised small objects.
When a feature is first initialised, measurement
from a single camera position provides good in-
formation on its direction relative to the camera,
but its depth is initially unknown beyond poten-
tially very weak prior information on the typical
depths of objects in the scene. A semi-infinite 3D
line is therefore initialised into the SLAM map,
with end-point at the camera optical centre and
direction derived from the image measurement:
the 3D location of the feature lies somewhere
along this line. The parameters describing the
line have Gaussian-distributed uncertainties and
corresponding entries in the SLAM covariance
matrix, but to represent the non-Gaussian un-
certainty in depth a discrete particle probability
distribution is initialised along this coordinate
with an initial flat profile representing complete
uncertainty. As the camera moves and subsequent
images are acquired, each particle hypothesis for
depth is repeatedly tested and their probabilities
evolve. Figure 3(b) illustrates image search in a
set of overlapping ellipses corresponding to the
particles, and (c) the progression of the depth
PDF from flat to a final peak at which point it
can be replaced with a Gaussian and the feature
fully initialised as a 3D point in the SLAM map.
This process can take from 2–10 frames depending
on the camera motion and uncertainty.

Figure 3(d) illustrates active search for fully-
initialised features during normal operation. The
uncertainty in the relative position of the camera
and features is projected into the current im-
age and used to deduce elliptical search regions
corresponding to 3 standard deviation confidence
intervals within which the features are known to
lie with high probability. Expensive normalised
correlation search for matches can be restricted
to these regions and this gives the algorithm the
efficiency necessary for real-time implementation.

Note that the 3D positions and image descriptions
of a small number of features (the four corners of
an A4 piece of paper are enough) are required
to bootstrap the SLAM system, principally to
provide information on the overall metric scale of
the map and camera motion. All other features
are detected automatically and the initialisation
target can soon move out of the field of view
or even be removed. Heuristic map-management
criteria are used to decide when to initialise new
features: essentially, the requirement is to keep
a pre-defined number of features visible from all
camera locations. A typical number used is 10;
whenever fewer than 10 features are visible new
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Fig. 3. Feature detection, initialisation and match-
ing: (a) 11 × 11 pixel patches detected a
features; (b) searching a set of hypotheses
for feature depth which project as image
search ellipses; (c) probability distribution
over depth refined to a peak over several time-
steps; (d) elliptical search regions for mapped
features during normal operation.

ones are detected and initialised. Importantly, fea-
tures are not deleted from the map when the leave
the field of view, but remain in the map and can be
re-observed when the camera moves back and they
become visible again. In some cases it is necessary
to delete features which are not being reliably
matched on a regular basis: some features detected
will be frequently occluded or may contain parts
of objects at very different depths. These features
will lead to failed correlation attempts and can be
removed from the map automatically.

The main limitation in the results of Davison
(2003) is that the range of motion of the camera
for which tracking can be maintained is limited to
the desk-top scale, due largely to computational
restrictions on the number of mapped feature
estimates which can be maintained with 30Hz
updates. Noticeable “jitter” in the camera locali-
sation results is observed, and the speed of camera
motion is also limited by the need to initialise new
features while maintaining a good overlap with
already mapped features within the field of view.
A significant factor in these issues is the narrow
field of view of the camera used: the features
which can be seen simultaneously are fundamen-
tally close together, and this leads to high uncer-
tainty in the camera position estimate attainable.
High ambiguity between rotation and translation
is typical, especially when the features observed
have a small depth range, a common situation.
Further, features must be mapped very densely
in order that a sufficient number for localisation



can be seen at all times. In the following section
we describe the steps necessary to incorporate a
wide-angle lens into the system.

3. PROJECTION MODEL FOR
WIDE-ANGLE LENS

The lens used in this work was the integral lens
of the wide-angle version of the Unibrain Fire-
i IEEE1394 web-cam module which provides a
field of view of around 90◦ horizontal, 70◦ vertical.
As Figure 4 shows, images from this camera ex-
hibit a large discrepancy from the characteristics
of pure pinhole perspective projection, in which
straight lines in the 3D scene always project to
straight image lines. With narrow field of view
lenses, perspective projection is generally a good
approximation to the true imaging characteristics,
but clearly that is no longer the case here. Instead
we assume that the projection can be modelled as
the combination of a perspective projection and a
radial image distortion in sequence.

From Figure 1, given estimates of the 3D positions
of the camera and a feature, the position of the
feature relative to the camera is expected to be:

hR
L = RRW (yW

i − rW ) .

Considering first the perspective stage of projec-
tion, the position (u, v) at which the feature is
expected to be found in the image is found using
the pinhole camera model:
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where (using standard computer vision notation)
fku and fkv represent the focal length in hori-
zontal and vertical pixel units respectively, and u0

and v0 are the coordinates of the principal point.

A radial distortion then warps the perspective-
projected coordinates u to final image position ud:

u =

(

u

v

)

, ud =

(

ud

vd

)

. (3)

The following radial distortion model was chosen
because to a good approximation it is invert-
ible Swaminathan and Nayar (2000):

ud − u0 =
u − u0

√
1 + 2K1r2

(4)

vd − v0 =
v − v0

√
1 + 2K1r2

, (5)

where

r =
√

(u − u0)2 + (v − v0)2 . (6)

The inverse of this distortion is as follows:

u − u0 =
ud − u0

√

1 − 2K1r
2

d

(7)

v − v0 =
vd − v0

√

1 − 2K1r
2

d

, (8)

where

rd =
√

(ud − u0)2 + (vd − v0)2 . (9)

For implementation as the measurement step of
the EKF, the Jacobians of the projection function
with respect to camera and feature positions must
be found. The Jacobians of the perspective part
of the projection are trivial and given elsewhere;
forward and backward Jacobians of the distortion
function are shown in Table 1.

The camera was calibrated using standard soft-
ware and a calibration grid, obtaining values
fku = fkv = 195 pixels, (u0, v0) = (162, 125),
K1 = 6×10−6 for capture at 320×240 resolution.

4. RESULTS

To demonstrate clearly the advantages provided
by the wide-angle lens, an experiment was devised
in which two cameras, one with a narrow FOV
and one with the wide-angle lens, were mounted
rigidly together, side-by-side and parallel, and
each connected to a different PC for processing as
the rig was waved by hand from a starting position
in front of an initialisation target with four known
features. All parameters of the two systems were
identical (including the motion model noise pa-
rameters) apart from camera projection models.

Snapshot results are displayed in Figure 4. The
advantages clear in the wide-angle case were:

(1) Better camera motion estimation, and in par-
ticular improved disambiguation of rotation
and translational movements, as highlighted
in Figure 4. In the wide angle camera, fea-
tures in highly different directions are simul-
taneously visible, whereas in the narrow view
often all the features measured lie very close
together both in direction and depth. In such
situations small rotations and translations
are ambiguous.

(2) Increased movement range: due both to the
more efficient sparse mapping possible, and
lower rate of increase in uncertainty with mo-
tion since old features are visible for longer.

(3) Increased movement accelerations trackable:
even adjusting the motion model noise pa-
rameters to rather uncertain values (up to
10ms−2 in the linear acceleration component)
does not mean that the image search regions
in the wide angle camera’s “zoomed out”
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Table 1. Jacobian matrices for the forward and backward distortion models.

view do not grow too large. Large motions
appear in general much less abrupt when
viewed from the wide-angle camera.

A limitation that remains currently is that track-
ing can only be maintained while the camera
moves in such a way as to stay roughly horizontal,
since feature matching takes place through 2D
template matching and features that rotate in the
image cannot be matched. In current work we are
aiming to rectify this by considering features as
3D planar entities in the world, aiming to track
motions where cameras can turn upside-down.

5. CONCLUSIONS

Vision is the sensing modality most likely to
enable Simultaneous Localisation and Mapping
(SLAM) algorithms to be implemented widely
in the domestic robots of the future and other
various compact devices — camera modules of
the type installed in mobile telephones and other
devices are now omnipresent, cheap and compact.
In this paper we have shown that thoughtful
choice of a camera’s optical characteristics pro-
vides another important advance in the robustness
and range of application of single camera SLAM
with no increase in computational cost or system
complexity. In the future it will be interesting to
experiment futher with optical configurations and
determine which provides the best performance.
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NARROW FIELD-OF-VIEW CAMERA WIDE FIELD-OF-VIEW CAMERA

0.00s: Initialisation of camera position from four known features.

12.10s: Begin pure translation motion.

13.53s: Complete pure translation motion.

17.73s: Begin pure rotation motion.

18.67s: Complete pure rotation motion.

Later: narrow camera tracking lost due to high uncertainty; wide camera tracked through long trajectory.

Fig. 4. Synchronised snap-shot results from SLAM processing performed on image sequences obtained
from narrow and wide field-of-view cameras rigidly joined side-by-side and waved in the hand,
demonstrating improved disambiguation of rotation and translation in the wide case as specific
movements are performed. Each snap-shot shows the current image view with overlaid square feature
patches and elliptical feature search ellipses together with an external 3D view of the current
estimated positions of camera and features (with feature uncertainty ellipsoids). Feature colour-
coding is as follows: red = successfully observed at this time-step; blue = attemted measurement
failed; yellow = not selected for measurement. The final row shows a typical later situation, where the
narrow FOV camera has become lost while the wide camera is tracked through extended motions (the
yellow line is its estimated trajectory). Video illustrating the wide-angle SLAM results is available
from http://www.robots.ox.ac.uk/~ajd/Movies/uniwide.mpg.


