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Abstract

In most cases when information is to be extracted from an
image, there are priors available on the state of the world
and therefore on the detailed measurements which will be
obtained. While such priors are commonly combined with
the actual measurements via Bayes’ rule to calculate pos-
terior probability distributions on model parameters, their
additional value in guiding efficient image processing has
almost always been overlooked. Priors tell us where to look
for information in an image, how much computational ef-
fort we can expect to expend to extract it, and of how much
utility to the task in hand it is likely to be. Such consid-
erations are of importance in all practical real-time vision
systems, where the processing resources available at each
frame in a sequence are strictly limited — and it is exactly
in high frame-rate real-time systems such as trackers where
strong priors are most likely to be available.

In this paper, we use Shannon information theory to
analyse the fundamental value of measurements using mu-
tual information scores in absolute units of bits, specifically
looking at the overwhelming case where uncertainty can
be characterised by Gaussian probability distributions. We
then compare these measurement values with the computa-
tional cost of the image processing required to obtain them.
This theory puts on a firm footing for the first time princi-
ples of ‘active search’ for efficient guided image processing,
in which candidate features of possibly different types can
be compared and selected automatically for measurement.

1 Introduction

In most modern geometrical vision algorithms, image pro-
cessing is treated as a separable step — a bottom-up oper-
ation applied uniformly to incoming images, detecting or
re-finding various ‘features’. The results are fed forward to
estimation processing which calculates quantities of interest
like the global position of an object or camera motion and
structure. This methodology is recently being reinforced by
the success of new types of detector such as SIFT [7] which
can find features with a high degree of uniqueness and in-

variance, matchable despite weak priors. New images are
by default scanned exhaustively by such a detector, and the
raw image data need not again be examined.

Here we argue however that in many cases in real-time
vision it makes more sense to keep image processing ‘in the
loop’, top-down and adaptive. Let us be clear why it should
‘make sense’: only if the limited processing available in a
real-time budget can be used more effectively by this guided
approach than by bottom-up methods. The top-down ap-
proach to visual processing has often been called active
vision, and been associated with moving robotic cameras
(e.g. [10]). Controlling a camera always requires up-front
decisions to be taken about where to look next depending
on the task in hand. The active approach is however equally
applicable to passive cameras in any real-time system, en-
compassing wide fields such as tracking, robot guidance or
SLAM/SFM. Top-down decisions can be made about where
in each image to focus processing resources,

It has long been understood that guided search is of ben-
efit in real-time tracking: rather than searching for a moving
target from scratch in each image of a sequence, knowledge
of motion continuity is used to initialise a search from the
image location previously found, or more sophisticated pre-
dictions made based on models of dynamics. The particle
filter-based visual tracking methods introduced by Isard and
Blake [4] for instance achieve this in a particularly satisfac-
tory way by performing local image searches in the neigh-
bourhoods of the distribution of particles representing the
probability distribution of the location of a target after mo-
tion prediction — no attention is paid to parts of the image
where the probability of the target’s existence is low. Track-
ers using the Extended Kalman Filter to propagate Gaussian
probability distributions often work in a similar way by re-
stricting search to “gated” elliptical regions around the pre-
dicted target location, of size determined by the estimate
covariance and a chosen number of standard deviations.

However, none of these methods has told anything like
the whole story of active search. In [4], a local search is
performed close to each particle position by examining the
neighbourhoods of a set of fixed measurement sites spaced
evenly around the contour of the tracked object model. No
consideration is given to the fact that some sites are likely to
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be much more discriminitive than others, or that many will
give redundant information — and no calculation made of
how many features are needed to give good performance.

Overall, there has been surprisingly little theoretical
investigation of the mechanisms by which active search
should be achieved. Davison [2] used a simple innnova-
tion covariance criterion to great effect to choose between
candidate point measurements in a real-time SLAM system,
but this lacked genericity or justification. In this paper we
promote mutual information as surely the absolute measure
of the value of image measurements. As the use of Bayesian
probability theory has become standard in computer vision,
its natural extension in information theory has been crimi-
nally underused. We show with full theoretical support that
mutual information is a tool of wide use, and present the
foundations on which the first rigorous algorithms for ac-
tive search can be constructed.

2 Mutual Information

In this section we will derive from first principles the mutual
information (MI) of two uncertain vectors of parameters de-
scribed by a single joint Gaussian distribution. We will go
into detail because we feel that this is a result of wide im-
portance which has not previously been made explicit.

2.1 Probability and Entropy

Using the notation of Mackay [8], an observer’s uncertain
knowledge of the value of a parameter � whose possible
value lies within the discrete ‘alphabet’ �� � ���� ��� � � ��
of numeric values is represented probabilistically by a set
of mutually-exclusive statements of the form ‘� � ��’, as-
signed probabilities � �� � ��� which sum to one. The
information entropy ���� of this probability distribution
is the expectation of the information content of whichever
statement turns out to be true:
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where we use shorthand � ��� for the more precise � �� �
���. ����, in bit units, is a measure of the average surprise
value of the distribution, and therefore the uncertainty in the
observer’s state of knowledge about the parameter.

2.2 Joint Probability Distributions, Condi-
tional Entropy and Mutual Information

Uncertain knowledge of two parameters � and 	, where the
extra paramater 	 is known to have one of a second al-

phabet of values 
� � ���� ��� � � ��, is represented by a
set of statements ‘� � ��� 	 � ��’ covering all possible
combinations to which the observer assigns probabilities
� �� � ��� 	 � ��� which sum to one. This is a joint proba-
bility distribution over � and � , which has a joint entropy
representing total uncertainty defined as expected:
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where we have abbreviated � �� � ��� 	 � ��� to � ��	�.
Now if the observer were to learn the exact value of one

of the uncertain parameters, for instance that 	 � ��, he
would be left with a residual entropy in the distribution over
� called the conditional entropy of � given 	 � ��:
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If the observer is not told the value of 	 but considers the
expected effect on the entropy of � of each possibility, he
can calculate the expected conditional entropy of � given
� ; the expected new entropy of � on learning the value of
	, without knowing in advance what that value will be:
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We are led directly to the mutual information �� �� �, de-
fined as the average expected reduction in entropy of one
parameter on learning exact value of the other. The reduc-
tion in entropy equates to how much information learning
the value one parameter is expected to give the observer
about the other, and �� �� � is defined as follows:

�� �� � � �������� �� � � (8)

Note that it is easy to show that �� �� � = �� ���.

2.3 Continuous Distributions

The entropy of a probability density function ���� over an
uncertain parameter � which may take a continuum of dif-
ferent values over a range � is not well-defined. This can
be seen by splitting the range � into discrete intervals of
width Æ� to form a histogram where the probability that
� has a value within each particular bin is approximately
����Æ�. The entropy of this distribution is:

���� �
�
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�
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� (9)

2



On attempting to find the entropy of the continuous distribu-
tion by taking the limit Æ�� �, we find that���� diverges
since ����

�
����Æ� increases by one bit with every halving of

the width of Æ�. Still well-defined, however, is the mutual
information of two continuous distributions. With discrete
bin sizes Æ�, Æ	 the MI is:
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the Æ� terms in the logarithm cancelling. Taking the limit
Æ�� �� Æ	 � � we obtain the MI of two continuous PDFs:
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2.4 MI of a Multi-Variate Gaussian

The special characteristics and wide applicability of the
Gaussian as the central distribution of probability theory [5]
are so well established that we have no qualms about be-
coming Gaussian-specific at this point. Consider vector �
of � uncertain parameters for which we hold a continu-
ous probability density described by a single multi-variate
Gaussian. Such a probability distribution is parameterised
by a ‘state vector’ of means 	� of dimension� and an���
covariance matrix ���. Explicitly, the PDF is:
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Now let us suppose that � is divided into two interesting
sets of parameters, � and �, of lengths �	 and �
. We can
partition the state vector and covariance matrix as follows:
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The mutual information of � and � is as follows:
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Now distribution ���� is described trivially by the relevant
partitions of the joint state vector and covariance matrix:
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To obtain ������, we use the general formula for condi-
tioning one partition of a state vector and covariance with

respect to another, as presented very clearly recently by Eu-
stice et al.[3]. If we learn the exact values of all elements of
�, the state vector and covariance of � can be updated to:
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Note that this is essentially the update step of the Kalman
Filter, where usually � would represent the state of the sys-
tem in question and � a set of measurements. So:
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and, using parts of an argument given by Manyika [9]:
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3 Feature Search in Tracking

We now apply the theory developed above to the real-time
tracking problem, presented first generically and then with
a specific tracking example which will be analysed in detail.

In model-based tracking, a moving object is modelled
by a finite vector of parameters � describing the configura-
tions of its degrees of freedom, as well potentially as dy-
namics and other factors of interest. Note that this is the
case whether the object moves rigidly, is articulated or is
more generally deformable. An observer’s uncertain knowl-
edge of the state of the object at any instant is represented
by a multi-dimensional probability density in the space of
�. When this probability density can be characterised as
a multi-variate Gaussian, the observer’s knowledge is cap-
tured by a state vector 	� and covariance matrix ��.

Now we assume that the observer is in possession of a
sensor or sensors which can make measurements of certain
aspects of the object. Still speaking generally, we can call
each of these measurable aspects a feature, of which a mea-
surement attempt yields the vector of parameters ��, whose
form can be broken down as �� � ����� � ��. The func-
tion ����� describes the functional relationship between the
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expected measurement and the object state as far as under-
stood via the models used of the object and sensor, and
�� is a vector representing unmodelled effects (sometimes
called noise) which mean that an actual measurement will
deviate from this. The form of ����� depends on the type
of feature, relative pose of sensor and object, sensor charac-
teristics and so on. Assuming that the models have no sys-
tematic bias, the distribution of vector �� will have mean
zero, and in this analysis we assume that it is more specifi-
cally described by a multi-variate Gaussian with covariance
�� which is independent for each measurement.

At a given point in time, the observer will have a choice
of which of the features available to measure, and we define
the vector �� which stacks the object state and candidate
measurement vectors. Given his knowledge of the state of
the object, the observer’s knowledge of this vector is de-
scribed by its mean vector and covariance:
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The 	�� parts of 	�� contain the observer’s best guess or pre-
diction of the values of observations he would obtain if mea-
surements were attempted now, and ��� describes the un-
certainty in this prediction. Importantly, generally ��� will
not be block-diagonal but a full matrix giving information
on correlations between the predicted measurements of dif-
ferent features. The blocks along the top or left of ��� give
the correlation between each predicted measurement and
the object state estimate itself, and the off-diagonal blocks
the correlations between different measurements.

We now define the measurement information matrix
����� of MI scores between object state estimate and fea-
ture measurement predictions:
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Each scalar element ����� is calculated as in Equation 23
from the elements of ��� defined in Equation 25. Matrix
����� has dimension �� � ��� �� � ��, where � is the
number of measurements defined, and is symmetric thanks
to the symmetric property of mutual information. The di-
agnonal elements marked ‘�’ are left undefined since a vec-
tor’s MI with itself is meaningless.

The elements of ����� neatly summarise the role in-
formation theory can play in active search. Each element
��� ��� is the MI between a measurement and the object
state, describing the expected information about the state
the measurement is expected to furnish — the value of the
measurement in pure information-theoretic terms. Elements
���� ��� are the MI between individual measurements, de-
scribing to what degree they are independent or correlated,
and therefore whether two are redundant. All elements of
����� are directly and appealingly in bit units: in our opin-
ion it is extremely enlightening to see the yes/no concept of
the bit we are all familiar with from basic computing theory
available for our use here in a practical Bayesian treatment
of a computer vision problem with continuous variables. As
we shall see, this framework is therefore completely generic
and allows direct comparison of the values of measurements
of different types and different dimensionalities.

3.1 Tracking with Point and Edge Features

We now consider a specific visual tracking problem. An
object is assumed to move and rotate in a plane which is
fronto-parallel to a single observing camera. We parame-
terise the location of the centre of the object in image coor-
dinates ��� � ��� relative to the top-left image corner, and its
orientation with the angle � in radians, to give state vector:
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�
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�
 � (27)

The locations ��� of known measurable features are defined
in the object coordinate frame O, and we deduce the com-
ponent equation ���� � �

� � �
��
�
�
� for the location of the

feature in the image, where ��� is the rotation matrix:
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�
� (28)

3.1.1 Point Features

We consider two types of feature: firstly, for a point feature
(a “corner” or other local salient marking on the object sur-
face), we will directly measure its two-dimensional image
location, so in this case the measurement function is:

�� � �
�
�� �

�
�� � ���� ���� ���� ���
�� � ���� ���� ���� ���

�
� (29)

with diagonal two-dimensional measurement covariance

�� �

�
��� �
� ���

�
(30)

representing independent uncertainty in horizontal and ver-
tical feature location measurements with �� � � pixel.
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(a) Start (b) Measure feature 9

(c) Measure feature 8 (d) Measure feature 0

Figure 1: Choosing point measurements by mutual informa-
tion with state. Three standard deviation uncertainty bounds
are shown before and after measurement in blue and red re-
spectively. Alongside the integer label of each measurement
candidate is its MI with the object state.

3.1.2 Edge Features

An edge feature is a site on the object where a one-
dimensional textural gradient can be measured, and is de-
fined in the object frame both by the 2D measurement site
�
�
� and angle �� the gradient direction makes with the ob-

ject’s �� axis. An edge measurement reports the scalar dis-
tance to the edge along this direction from its predicted po-
sition, with scalar measurement covariance �� �

�
���
�
.

4 Choosing Measurements by
Information Value

In simulation, we set up the model of Section 3.1 to repre-
sent a snapshot in tracking with object state and covariance:
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This represents a fairly uncertain object state estimate, prob-
ably directly after the application of a motion model (here
the position and orientation estimates are currently uncorre-
lated and �� is diagonal, though this will not generally be
the case). First, in Figure 1 we consider the case where the
only features available for measurement are points.

(a) Start (b) Measure feature 11

(c) Measure feature 1 (d) Measure feature 5

Figure 2: Choosing edge measurements by MI with state.
Some point features are shown, but not measured here.

In Figure 1(a) we see the scenario at the start of the mea-
surement process, where the state estimate and covariance
of Equation 31 manifest themselves as differently shaped el-
lipses in image space representing three standard deviation
confidence bounds. The shape of each ellipse is defined

by the corresponding ���
��

��
���
��

�
� �� diagonal block of

��� and the chosen number of standard deviations. A basic
tenet of our approach to active search is that an attempt to
measure a particular feature should be made by seeking an
appearance match only within this bounded search region,
as has been proven in real-time applications such as [2].

Each feature is at this stage a measurement candidate,
labelled with its MI with the object state (from the top row
of �����). Seeing that feature 9 has the highest MI score
of 5.90 bits, and is therefore the single candidate with the
highest value, we select it for first measurement, and sim-
ulate a search and successful match to this feature at a lo-
cation within the ellipse. The state after the measurement
is shown in (b), where we have updated the object state, re-
maining feature search regions and MI scores appropriately
by updating 	�� and ��� according to Equations 18 and 19.
The first observation to make here is the dramatic reduction
in search region size and MI scores for the other features
which has been achieved by the measurement of 9. The
highest remaining candidate by MI with the object state is
feature 8 with a score of 2.67 bits, so this is selected for next
measurement with the outcome displayed in (c). This has a
further significant effect, with no feature now reporting an
MI greater than 1 bit. The highest candidate left, feature 0
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with score 0.86 bits is chosen for the third measurement. As
the object position becomes yet better known, the remaining
MI scores continue to shrink after this measurement in (d),
but we see diminishing returns as only tiny changes can now
be observed. The search ellipses all approach the uniform
circular shape defined by measurement uncertainty ��.

In Figure 2, we repeat the object measurement exercise
with the same starting position and uncertainty but now by
making observations of edge features. For reference, some
of the point features from the previous experiment are also
displayed. Figure 2(a) is the starting condition, where the
initial uncertainty translates into differing search lengths
and MI scores for the various edge features around the ob-
ject’s boundary. The first thing to note is that as expected
edge features provide on the whole less information than
point features, though some edges in advantageous posi-
tions actually have a higher MI than some of the point fea-
tures. The first measurement in (b) is of edge 11 of MI 4.09
bits, and this is followed in (c) by edge 1 of 2.03 bits. The
object position is still not well locked down, however, as
seen by the fact that the point features still have MI scores
around 2 bits. Measuring feature 5, one of several candi-
date edges at 1.52 bits removes most of the remaining un-
certainty and the situation in (d) shows search regions which
have collapsed to close to measurement uncertainty.

These simulations confirm what we would expect — that
measuring two well-spaced point features or three well-
chosen edges is sufficient to pin down well the location of
an object moving and rotating in 2D. To see this fact demon-
strated in this way using information theory, however, is in
our opinion much more convincing than the algebraic ar-
guments along the lines of ‘3 unknowns are determined by
three equations’ commonly used in geometrical computer
vision papers — a line of reasoning Jaynes dismisses as a
‘folk theorem’ in his authoritative book on Bayesian proba-
bility theory [5]. When the points or edges are not so well-
chosen as in these examples, we will see that the same num-
ber of measurements will not determine the state nearly so
well, in a way often referred to vaguely as ‘degeneracy’, but
which we can quantify precisely using information theory.

5 Measurement Value versus Cost

The active search strategy of Section 4 selected features one
by one to achieve the most rapid decrease in uncertainty per
measurement, but let us remember that the goal of active
search is to maximise computational efficiency — this sim-
ple method neglects the fact that some measurements re-
quire more computation to acquire than others. In this sec-
tion we reconsider our active search strategy if we trade off
information value against image processing cost.

Searching an image for a match to a known feature tem-
plate requires essentially an amount of computation propor-

(a) Start (b) Measure feature 7

(c) Measure feature 6 (d) Measure feature 2

(e) Measure feature 8 (f) 1D efficiencies

Figure 3: (a)–(e) Selecting point measurements on the ba-
sis of information efficiency. Each numbered point feature
is labelled with its MI with the state, search ellipse area in
square pixels and information efficiency score. Some edge
features are displayed for reference, with search length and
corresponding efficiency scores. (f) Edge searches for a lin-
ear object with only angular uncertainty.

tional to the search region size: the template must simply
be tried exhaustively in all possible positions. Faster gra-
dient descent search, such as in the Lucas/Kanade feature
tracker [1], can only be used in the restrictive case where
the search region is smaller than the ‘basin of attraction’ of
the match function minimum. We could take advantage of
gradient descent search when a search region is large using
multiple starting points uniformly spread across the region.
However, such a technique can only improve on the com-
putational requirements of exhaustive search by a constant
factor and proportionality to the search region area remains.

In the case of a point feature, therefore, the image pro-
cessing cost of a measurement will be proportional to the
search ellipse area� � ���

�

�
����, while for an edge it will

be proportional to the search length � � 
��

�
����, where
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in both cases �� is the relevant diagonal block of ��� . If the
constants of proportionality are known, which will depend
on the precise feature operators, we can compare edges di-
rectly with points. We can make comparisons between fea-
tures of the same type without knowing the constants.

In Figure 3 we show a sequence of point feature mea-
surements starting from the same object position and uncer-
tainty but now selected based on the information efficiency
ratio calculated as the MI of the feature with the state di-
vided by the area of its search ellipse (note that some edge
features are also drawn, but only for reference). It can be
seen that this leads to a measurement order very different
from Section 4. The first feature chosen is 7 in the centre,
which has a low MI score of 3.00 but a search area of only
226 square pixels, leading to the highest efficiency score of
0.0133. Making this measurement does not have a big im-
pact on the object state estimate, but its value is in cheaply
reducing the size of the search regions for the other point
features significantly as can be seen in (b). Subsequently
features 6, 2 and 8 are chosen, again each not the most infor-
mative measurement candidate but ‘good value’ in reducing
uncertainty for small search cost. After these three measure-
ments, in (e) a situation has been reached where the highest
point MI is feature 9 at 0.75 bits, which is the ballpark of an
acceptable object position estimate but at the cost of only


� � 
�� � �� � �� � ��� pixel search operations — for
comparison, the cost of choosing most informative feature
9 for the first measurement is 1687 operations alone.

It may appear initially that this criterion is acting in ex-
actly the opposite way to the previous one, choosing always
the least informative features to measure first, but this is not
the case — in Figure 3(c) and (d) for instance it can be seen
that feature 2 is selected despite having a larger search re-
gion than other features. In fact, it turns out that there is an
optimal size of search region for which the efficiency score
peaks. This can be seen most clearly in edge search ex-
ample (f), where an object is assigned dominantly angular
uncertainty and edge searches occur perpendicular to a line
radially extending from the rotation centre. Each feature is
shown with an integer label, MI score, search length and ef-
ficiency score, and a peak in efficiency is seen at feature 4.
Analytically, this peak occurs at the maximum with respect

to ��� � ���
��

��
���
��

�
, the prior uncertainty in the position of

a feature before measurement, of the function for efficiency
��:

�� �
�
� �������

�
� � ���������


��

�
��� � ���

� (32)

6 The Cost of Making Decisions

So information theory can lead us to efficient measurement
strategies which maximise information transfer per image

processing operation. Before each measurement, a decision
can be made about observing which feature will be most
beneficial, and all image processing can be pre-planned and
guided in this manner. However, this analysis neglects the
fact that there is a computational cost associated with actu-
ally making the decisions in active search.

In Sections 4 and 5, deciding which feature to measure
next requires the calculation of the MI of each measurement
with the state — we must compute the � elements of the
top row of measurement information matrix �����. Once
the measurement has been chosen and carried out, its ef-
fect must be transmitted to the rest of the state/measurement
vector �� and its covariance ��� so that the next measure-
ment can be chosen. This state and covariance update using
Equations 18 and 19 is an operation of order �����.

Depending on the size of � and the efficiency of matrix
calculations available, it is possible that this computational
cost before each measurement can be made may become
comparable with the cost of image processing operations
— and we must then start to question whether the efficiency
in pure measurement terms that we are gaining through this
active approach merits the extra probabilistic calculations
involved. This is really the crux of the question of top-down
vs. bottom-up processing, and we hope in future work to be
able to describe their meeting point theoretically.

In the meantime, an alternative to selecting feature mea-
surements one by one in between updates suggests itself
thanks to our earlier definition of the full matrix �����, not
just its top row. This matrix can be used to select several
candidate features at once. The following table is a selec-
tion of the elements of ����� at the start of the simulation
in Section 4, showing entries relating to the object state �
and some of the most informative features 0, 4, 8, 9 and 10.

� � 	 
 � ��

� � ���� ���� ���� ���� ����
� ���� � ��
� ��	 ���
 
���
	 ���� ��
� � 
��� ��
� 
���

 ���� ��	 
��� � ���� ����
� ���� ���
 ��
� ���� � ��



�� ���� 
��� 
��� ���� ��

 �

(33)

The features actually chosen for measurement in Section 4
were, in order, 9, 8 and 0. Looking at the table, these fea-
tures all have high MI with the state but are not the three
highest — feature 4 has the second-highest score of 5.71
bits. The table shows, however, that feature 4’s weakness is
a high MI of 4.21 bits with measurement 9, the individually
best candidate, thanks to their nearby locations. Feature 4
becomes largely redundant when measured alongside fea-
ture 9 — a fact that would have dropped out of our previous
step-by-step analysis, but which is also apparent before any
measurements from �����. Features 9, 8 and 0 have rela-
tively low inter-feature MI scores, highlighted in bold face,
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to go with their high MI with the object state, and this re-
flects their well-separated locations. Similarly useful sets of
three features, such as 0, 4 and 10, also suggest themselves.

Note that after each of these candidate features is mea-
sured, the appropriate reduction in the search area of the
other selected features can be carried out by only updating
the relevant sub-blocks of �� and ��� , avoiding the full
����� cost between measurements, using a method similar
to Postponement in SLAM [6]. Only one full update needs
to be performed when all the measurements are completed.

7 Conclusions

We have shown that mutual information is the absolute mea-
sure of the value of measurements with the theoretical sup-
port to be the basis for rigorous theories of active search,
and hope that this will inspire growing work in this area.

This paper presents analysis of the properties of
information-theoretic guided search in the case where
model and measurement uncertainties can be described with
Gaussian distributions. In practical vision systems, this is of
course not the whole story because of data association un-
certainty (possible mismatches). We aim to continue this
work by extending our analysis to more realistic cases with
matching uncertainty, principally by applying the theory de-
veloped here to a mixture of Gaussians model for multiple
hypotheses. We feel confident that information theory will
be able to guide active search in the presence of outliers, and
lead to active algorithms for search and matching which in-
clude image processing in the loop and are much more satis-
factory than RANSAC with its reliance on random numbers
and arbitrary thresholds. In inference, the only reason to re-
sort to random sampling must be when the cost of actively
deducing a more informative measurement strategy is pro-
hibitively high, and we should aim to describe this crossover
theoretically as pointed to in Section 6.

A particularly exciting area for active vision research is
in high frame-rate tracking. With active search, process-
ing requirements do not scale in proportion to frame-rate,
as would be the case with bottom-up methods. As inter-
image time gaps decrease, dynamical predictions become
more accurate, reducing search regions and therefore pro-
cessing time. Using information theory we will be able
to analyse how adapting frame-rate affects performance —
as in our study of measurement efficiency, there must be a
trade-off relating frame-rate and target motion bandwidth.

As a final point, we note that our pure analysis of com-
putational costs assumes monolithic processing resources,
but the situation may be very different in practical systems
with specialised embedded processors — image processing
effectively comes for free with the correct hardware.
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