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Review: Practical 2 (Sensors)

• Bump sensor (returns yes/no state): use to detect collision and
trigger avoidance action.

• Sonar sensor (returns depth value in cm): can be used for smooth
servoing behaviour with proportional gain.

• Both are examples of negative feedback.



Review: Wall Following with Sonar

d

z

• Use sideways-looking sonar to measure distance z to wall.

• Use velocity control and a while loop at for instance 20Hz.

• With the goal of maintaining a desired distance d , set difference
between left and right wheel velocities proportional to difference
between z and d :

vR − vL = Kp(z − d)

Symmetric behaviour can therefore be achieved using a constant offset
vC :

vR = vC +
1

2
Kp(z − d)

vL = vC − 1

2
Kp(z − d)



Review: Wall Following with Sonar

d
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• Problem if angle between robot’s direction and wall gets too large
because sonar doesn’t measure the perpendicular distance.

• Solutions: ring of sonar sensors would be most straightforward.
Clever combination of measurements from different times?

• A simple way to a better is to mount the sonar forward of the
wheels. This couples rotation and the distance from the wall:

d

z



Monte Carlo Localisation (MCL)

• In MCL, a cloud of weighted particles represents the uncertain
position of a robot.

Two ways of thinking about how MCL works:

• A Bayesian probabilistic filter.

• ‘Survival of the fittest’, like a genetic algorithm. After motion
prediction, the particles are in a set of random positions which
should span the possible positions into which the robot might have
really moved. When a measurement is made from sonar, the
likelihood each particle is assigned, according to how well it fits the
measurement, is a ‘fitness’ score. Normalising and resampling then
allow strong particles to reproduce (multiple copies are made of
them), while weak particles die out.



MCL Successful Large-Scale Implementation

(Dieter Fox et al.1999, using sonar. See animated gif at
http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/

montecarlolocalization.gif .)

http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/montecarlolocalization.gif
http://www.doc.ic.ac.uk/~ajd/Robotics/RoboticsResources/montecarlolocalization.gif


The Particle Distribution

• A particle is a point estimate xi of the state (position) of the robot
with a weight wi .

xi =

 xi
yi
θi


• The full particle set is:

{xi ,wi} ,

for i = 1 to N. A typical value might be N = 100.

• All weights should add up to 1. If so, the distribution is said to be
normalised:

N∑
i=1

wi = 1 .

• Interpretation: the probability that the robot is within any region
(multi-D volume) of the state space is the sum of all of the weights
of particles within that region.



Continuous vs. Global Localisation

• Continuous localisation is a tracking problem: given a good estimate
of where the robot was at the last time-step and some new
measurements, estimate its new position.

• Global localisation is often called the ‘kidnapped robot problem’: the
environment is known, but the robot’s position within it is
completely uncertain.

MCL can be used to tackle both of these problems; the only difference is
in how we initialise the particle set.



Continuous vs. Global Localisation

• In continuous localisation we usually assume that we start from a
perfectly known robot position: set the state of all particles to the
same value. Set all weights to be equal. The result is a ‘spike’,
completely certain point estimate of the robot’s location.

x1 = x2 = . . . = xN = xinit ; w1 = w2 = . . .wN = 1/N

• In global localisation we start from knowledge only that the robot is
somewhere within a certain region. The state of each particle should
be sampled randomly from all of the possible positions within that
region. Set all weights to be equal.

xi = Random ; w1 = w2 = . . .wN = 1/N

• With only one sonar sensor global localisation is very difficult, so in
the practical we will attempt continuous localisation, initialising all
particles to the same location.



Inferring an Estimate and Position-Based Navigation

• At any point, our uncertain estimate of the location of the robot is
represented by the whole particle set.

• If we need to, we can make a point estimate of the current position
and orientation of the robot by taking the mean of all of the
particles:

x̄ =
N∑
i=1

wixi .

• i.e. the means of the x , y and θ components are all calculated
individually and stored in x̄.

• The robot could use this for instance to plan A → B waypoint
navigation.



Steps in MCL/Particle Filter

These steps are repeated every time the robot moves a little and makes
measurements:

1. Motion Prediction based on Odometry

2. Measurement Update based on Outward Looking Sensors (Sonar)

3. Normalisation

4. Resampling



Motion Prediction

• See details from the last lecture.

• Be aware of angular wrap-around — the θ values of particles could
go outside of the −π to π range. Actually this isn’t generally a
problem, and in fact it is easier to take a mean of particle
orientations if you haven’t shifted them to be always in the −π to π
range.



Displaying a Particle Set
• We can visualise the particle set by plotting the x and y coordinates
as a set of dots; more difficult to visualise the θ angular distribution
(perhaps with arrows?) — but we can get the main idea just from
the linear components.

• This example shows a robot only using repeated motion prediction
— the particles get more and more spread out.



Measurement Updates

• A measurement update consists of applying Bayes Rule to each
particle; remember:

P(X|Z) = P(Z|X)P(X)
P(Z)

• So when we achieve a measurement z , we update the weight of each
particle as follows:

wi(new) = P(z |xi )× wi ,

remembering that the denominator in Bayes’ rule is a constant
factor which we do not need to calculate because it will later be
removed by normalisation.

• P(z |xi ) is the likelihood of particle i ; the probability of getting
measurement z given that xi represents the true state.



Likelihood Functions

• A likelihood function fully describes a sensor’s performance.

• Its form can be determined by repeated experiments with the sensor:
make multiple many measurements at each of a set of precisely
measured ground truth values, and calculate the statistics.

• p(z |v) is a function of both measurement variables z and ground
truth v and can be plotted as a probability surface. e.g. for a depth
sensor:

p(z|v)
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Measurement Update: How do we get the Ground Truth
Value?

θ

Robot at (x, y,   )θ

(Ax, Ay)

(Bx, By)

m

• If robot is at pose (x , y , θ) then its forward distance to an infinite
wall passing through (Ax ,Ay ) and (Bx ,By ) is:

m =
(By − Ay )(Ax − x)− (Bx − Ax)(Ay − y)

(By − Ay ) cos θ − (Bx − Ax) sin θ
.



Measurement Update: Sonar

θ

Robot at (x, y,   )θ

(Ax, Ay)

(Bx, By)

m

• The world coordinates at which the forward vector from the robot
will meet the wall are: (

x +m cos θ
y +m sin θ

)
.

Using this you can check if the sonar should hit between the
endpoint limits of the wall.

• If the sonar would independently hit several of these walls, obviously
the closest is the one it will actually respond to.



Likelihood for Sonar Update

• The likelihood should depend on the difference z −m: if this is
small, then the measurement validates a particle; if it is big it does
not and weakens the particle.

• The further away the measurement is from the prediction, the less
likely it is to occur. A Gaussian function is usually a good model for
the mathematical form of this. The standard deviation σs is based
on our model of how uncertain the sensor is, and may depend on z
or may be constant.

p(z |m) ∝ e
−(z−m)2

2σ2
s

• Note the difference between this and the motion prediction step.
There we sampled randomly from a Gaussian distribution to move
each particle by a slightly different amount. Here in the
measurement update we just read off a value from a Gaussian
function to obtain a likelihood for each particle.



Robust Likelihood for Sonar Update
• A robust likehood function models the fact that real sensors

sometimes report ‘garbage’ values which are not close to ground
truth. Robust functions have ‘heavy tails’. This can be achieved
most simply by adding a constant to the likelihood function. The
meaning of this is that there is some constant probability that the
sensor will return a garbage value, uniformly distributed across the
range of the sensor.

z0
K

p(z|m)

z=m

p(z |m) ∝ e
−(z−m)2

2σ2
s + K

• The effect of a robust likelihood function in MCL is that the filter is
less aggressive in ‘killing off’ particles which are far from agreeing
with measurements. An occasional garbage measurement will not
lead to the sudden death of all of the particles in good positions.



Likelihood for Sonar Update

θ

Robot at (x, y,   )θ

(Ax, Ay)

(Bx, By)

m

β
Normal to map line

• Possibly relevant for real sensors may be the angle between the sonar
direction and the normal to the wall. If this is too great, probably
the sonar will not give a sensible reading and you should ignore it.

β = cos−1

(
cos θ(Ay − By ) + sin θ(Bx − Ax)√

(Ay − By )2 + (Bx − Ax)2

)



Normalisation

• The weights of all particles should be scaled so that they again add
up to 1.

• Calculate
∑N

i=1 wi and divide all existing weights by this:

wi(new) =
wi∑N
i=1 wi



Resampling

• Resampling consists of generating a new set of N particles which all
have equal weights 1/N, but whose spatial distribution now reflects
the probability density.

• To generate each of the N new particles, we copy the state of one of
the previous set of particles with probability according to that
particle’s weight.

• This is best achieved by generating the cumulative probability
distribution of the particles, generating a uniformly distributed
random number between 0 and 1 and then picking the particle
whose cumulative probability this intersects.

• (Note that for efficiency it is possible to skip the normalisation step
and resample directly from an unnormalised distribution.)



Another Measurement Possibility: Compass Sensor

A digital compass gives a robot the ability to estimate its rotation
without drift.

• Compass measures bearing β relative to north. What is P(β|xi )?
• Clearly the likelihood only depends on the θ part of xi .

• If the compass is working perfectly, then:

β = γ − θ ,

where γ is the magnetic bearing of the x coordinate axis of frame
W .

• So we should assess the uncertainty in the compass, and set a
likelihood which depends on the difference between β and γ − θ; e.g.

Gaussian e
−(β−(γ−θ))2

2σ2
c

• Particles far from the right orientation will get low weights.


