
Automatic verification of multi-agent systems by
model checking via ordered binary decision diagrams

Franco Raimondi, Alessio Lomuscio
Department of Computer Science, University College London, UK

email:{f.raimondi,a.lomuscio}@cs.ucl.ac.uk

Abstract

We present a methodology for the verification of multi-agent systems, whose properties are
specified by means of a modal logic that includes a temporal, an epistemic, and a modal
operator to reason about correct behaviour of agents. The verification technique relies on
model checking via ordered binary decision diagrams. We present an implementation and
report on experimental results for two scenarios: the bit transmission problem with faults
and the protocol of the dining cryptographers.

1 Introduction

In the last two decades, the paradigm of multi-agent systems (MAS) has been
employed successfully in several disciplines, including, for example, philosophy,
economics, and software engineering. One of the reasons for the use of MAS for-
malisms in such different areas is the usefulness of ascribing autonomous and social
behaviour to the components of a system of agents. This allows us to abstract from
the details of the components, and to focus on the interaction among the various
agents. The modelling of MAS in such scenarios is typically conducted by using
logic-based formalisms [1,2].

Besides abstracting and specifying the behaviour of a complex system by means
of MAS formalisms based on logic, recently researchers have been concerned with
the problem of verifying MAS. Namely, if we model a real system by means of a
MAS formalism, how can we verify formally that the system complies with cer-
tain desired properties? Formal verification is normally associated with traditional
software engineering, where one wants to validate a piece of software or hardware
against a specification. One of the most successful formal techniques to verification
is model checking [3]. In this approach, a system S to be verified is represented by
means of a logical model MS encoding the computational traces of the system, and
a property P to be checked is expressed via a logical formula ϕP . Verification via

Preprint submitted to Elsevier Science 23 June 2005

model checking is defined as the problem of establishing whether or notMS |= ϕP .
Various tools have been built to perform this task automatically for temporal logic
models (SMV [4], SPIN [5], NuSMV [6], and others), and several concrete systems
have been tested.

Unfortunately, extending model checking techniques to the verification of MAS is
not trivial. This is because model checking tools are tailored to standard reactive
systems, and do not allow for the representation of the social interaction and the
autonomous behaviour of the agents. Specifically, traditional model checking tools
assume that MS is “simply” a temporal model, while MAS need more complex
formalisms. Typically, in MAS we want to reason about the epistemic, intentional,
and doxastic properties of agents, as well as their temporal evolution. Hence, the
logical models required are richer than the temporal model used in traditional model
checking.

In this paper we consider the formalism of interpreted systems [7] to reason about
temporal and epistemic properties of agents, and an extension of interpreted sys-
tems with modal operators to reason about correct behaviour [8]. Based on this
formalism, we extend the model checking algorithm that appeared in [9] and we
present an implementation relying on Ordered Binary Decision Diagrams (OBDDs)
to verify temporal, epistemic, and correct behaviour modalities in interpreted sys-
tems.

The rest of the paper is organised as follows. In Section 2 we review the frame-
work of deontic interpreted systems and model checking via OBDDs. In Section 3
we introduce a technique for the verification of deontic interpreted systems. An im-
plementation of the algorithm is then discussed in Section 4. In Section 5 we test
the soundness of our implementation by means of two examples: the bit transmis-
sion problem with faults and the protocol of the dining cryptographers. We discuss
our results, in comparison with existing work, in Section 6, and we conclude in
Section 7.

2 Preliminaries

In this section we briefly summarise the formalism of interpreted systems as pre-
sented in [7] to model MAS, and its extension to reason about the correct behaviour
of agents as presented in [10]. After this, we summarise the approach to model
checking via OBDDs.

2

2.1 Deontic interpreted systems and their temporal extension

An interpreted system [7] is a formalism representing a system of agents. Each
agent i (i ∈ {1, . . . , n}) in the system is characterised by a finite set of local states
Li and by a finite set of actions Acti. Actions are performed in compliance with a
protocol Pi : Li → 2Acti , specifying which actions may be performed in a given
state. In this formalism, the environment in which agents “live” may be modelled by
means of a special agent E. Associated with E are a set of local states LE , a set of
actionsActE , and a protocol PE. A tuple g = (l1, . . . , ln, lE) ∈ L1× . . .×Ln×LE ,
where li ∈ Li for each i and lE ∈ LE , is called a global state and gives a description
of the system at a particular instant of time. This description assumes a “global”
time and it has been proven useful in many circumstances [7] (approaches in which
time is local can be obtained by considering local clocks [11]).

The evolution of the agents’ local states is described by a function ti : Li × LE ×
Act1 × . . . × Actn × ActE → Li, which returns a local state (the “next” local
state) for agent i, given the “current” local state of the agent, the “current” local
state of the environment, and all the agents’ actions. Similarly, the evolution of the
environment’s local states is described by a function tE : LE×Act1× . . .×Actn×
ActE → LE . It is assumed that, in every state, agents evolve simultaneously (such
a composition is usually referred to as a lock-step system): the evolution of the
global states of the systems is described by a function t : S × Act → S, where
S = L1 × . . . × Ln × LE , and Act = Act1 × . . . × Actn × ActE. The function t
is defined as t(g, a) = g′ iff for all i, ti(li(g), a) = li(g

′) and tE(lE(g), a) = lE(g′),
where li(g) denotes the i-th component of global state g (corresponding to the local
state of agent i). Given a set I ⊆ S of possible initial global states, a set G ⊆ S of
reachable global states is generated by all the possible runs of the system.

In [10] the notion of correct behaviour of the agents is incorporated in the formal-
ism. This is done by partitioning the set of local states into two sets: a non-empty
set Gi of allowed (or correct, or “green”) states, and a set Ri of disallowed (or
faulty, or “red”) states, such that Li = Gi ∪Ri, and Gi ∩ Ri = ∅.

To complete the description of a MAS, a set of atomic propositions AP is intro-
duced, together with a valuation relation h ⊆ AP×S. Finally, given a set of agents
Σ = {1, . . . , n}, we define a deontic interpreted system as the tuple:

DIS =
〈

(Gi, Ri, Acti, Pi, ti)i∈Σ
, (GE, RE, ActE, PE, tE) , I, h

〉

.

It has been shown [12,7,10] that deontic interpreted systems can provide a seman-
tics to reason about time, knowledge, and correct behaviour.

We analyse multi-agent systems by means of the following language:

3

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EX(ϕ) | EGϕ | E(ϕUψ) | Kiϕ | EΓϕ | CΓϕ | DΓϕ |

Oi(ϕ) | K̂Γ

i (ϕ)

In the grammar above, p ∈ AP is an atomic proposition;EX and EG are temporal
operators expressing, respectively, that there exists a next state in which ϕ holds,
and that there exists a run in which ϕ holds globally; E(ϕUψ) is a temporal oper-
ator expressing that there exists a run in which ϕ holds until ψ holds; Γ denotes a
non-empty subset of the set of agents, Kiϕ is read as “agent i knows ϕ”, EΓϕ is
read as “everybody in group Γ knows ϕ”, CΓϕ is read as “it is common knowledge
in Γ that ϕ”, and DΓϕ is read as “it is distributed knowledge in group Γ that ϕ [7];
Oiϕ expresses the fact that, under all the correct alternatives for agent i, ϕ holds;
the operator K̂Γ

i expresses the knowledge that agent i has on the assumption that all
agents in Γ are functioning correctly. By slight abuse of notation, if Γ is a singleton
Γ = j, we write K̂j

i , representing the knowledge of agent i under the assumption
that agent j is functioning correctly. Notice that Oi does not represent obligations
of agent i to ϕ; we refer to [8] for more details.

Given a deontic interpreted system DIS , we associate to DIS a model MDIS =
(W,Rt,∼1, . . . ,∼n, R

O
1 , . . . , R

O
n , L) that can be used to interpret any formula ϕ, as

follows:

• The set of possible worlds W is the set G of reachable global states.
• The temporal relationRt ⊆ W×W relating two worlds (i.e. two global states) is

defined by considering the temporal transition t. Two worlds w and w ′ are such
that Rt(w,w

′) iff there exists a joint action a ∈ Act such that t(g, a) = g ′, where
t is the transition relation of DIS .

• The epistemic accessibility relations ∼i⊆ W × W are defined by considering
the equality of the local components of the global states. Two worlds w,w ′ ∈ W
are such that w ∼i w

′ iff li(w) = li(w
′) (i.e. two worlds w and w′ are related via

the epistemic relation ∼i when the local states of agent i in global states w and
w′ are the same [7]).

• The accessibility relationsRO
i ⊆ W×W are defined by considering the local i-th

component of the global state g′. Two worldsw,w′ ∈ W are such thatRO
i (w,w′)

iff li(g′) ∈ Gi.
• The labelling relation L ⊆ AP ×W is equivalent to the valuation relation h

Formulae can be interpreted inMDIS in a standard way [7,3,10]. Let π = (w0, w1, . . .)
be an infinite sequence of worlds such that for all i, Rt(wi, wi+1), and let π(i) de-
note the i-th world in the sequence (notice that, following standard conventions,
we assume that the temporal relation is serial and thus all computation paths are
infinite). We write MDIS , w |= ϕ when a formula ϕ is true at a world w in a Kripke
model MDIS , associated with a deontic interpreted system DIS . Satisfaction is de-
fined as follows.

4

MDIS , w |= p iff (p, w) ∈ L,

MDIS , w |= ¬ϕ iff MDIS , w 6|= ϕ,

MDIS , w |= ϕ1 ∨ ϕ2 iff either MDIS , w |= ϕ1 or MDIS , w |= ϕ2,

MDIS , w |= EXϕ iff there exists π such that π(0) = w,

and MDIS , π(1) |= ϕ,

MDIS , w |= EGϕ iff there exists a path π such that π(0) = w,

and MDIS , π(i) |= ϕ for all i ≥ 0,

MDIS , w |= E(ϕUψ) iff there exists a path π such that π(0) = w, and there exists

k ≥ 0 such that MDIS , π(k) |= ψ, and MDIS , π(j) |= ϕ

for all 0 ≤ j < k,

MDIS , w |= Kiϕ iff for all w′ ∈ W , w ∼i w
′ implies MDIS , w

′ |= ϕ,

MDIS , w |= Oiϕ iff for all w′ ∈ W , RO
i (w,w′) implies MDIS , w

′ |= ϕ,

MDIS , w |= K̂Γ
i ϕ iff for all w′ ∈ W and for all j ∈ Γ, w ∼i w

′ and RO
j (w,w′)

implies MDIS , w
′ |= ϕ,

MDIS , w |= EΓϕ iff for all w′ ∈ W , RE
Γ (w,w′) implies MDIS , w

′ |= ϕ,

MDIS , w |= CΓϕ iff for all w′ ∈ W , RC
Γ (w,w′)′ implies MDIS , w

′ |= ϕ,

MDIS , w |= DΓϕ iff for all w′ ∈ W , RD
Γ (w,w′)′ implies MDIS , w

′ |= ϕ

In the definition above, the relationRE
Γ is defined as the union of the epistemic rela-

tions for the agents in Γ:RE
Γ =

⋃

i∈Γ

∼i; the relationRD
Γ is defined as the intersection

of the epistemic relations for agents in Γ: RD
Γ =

⋂

i∈Γ

∼i; the relation RC
Γ is the tran-

sitive closure of RE
Γ . Other standard temporal modalities AX,EF,AF,AG,AU

can be derived in a standard way [3].

We say that a formula ϕ is true in model and we write MDIS |= ϕ if MDIS , w |= ϕ

for all w ∈ W . Similarly to [7], we say that a formula ϕ is true in a deontic
interpreted systems DIS , and we write DIS |= ϕ, if MDIS |= ϕ. Thus, a formula is
true in a deontic interpreted system if it is true in the associated Kripke model.

2.2 Model checking techniques

The problem of model checking can be defined as establishing whether or not a
modelM satisfies a formulaϕ (M |= ϕ). ThoughM could be a model for any logic,
traditionally the problem of building tools to perform model checking automatically

5

a

b b

c c c c

0 1

0 1 0 1

10 0 0 0 1 1

a

b

c

1

0 1

0

0

1

0

00

Fig. 1. OBDD representation for a ∧ (b ∨ c).

has been investigated mostly for temporal logics [3,13]. The model M is usually
represented by means of a dedicated programming language, such as PROMELA [5]
and SMV [14]. In many approaches, the model for the program is not built explicitly,
but symbolically. Techniques to achieve this are based on ordered binary decision
diagrams, SAT translations [15], or other algebraic structures. These approaches
are often referred to as symbolic model checking techniques; other approaches ex-
ist, notably with automata [5]. For the purposes of this paper, we review briefly
symbolic model checking using OBDDs.

OBDDs are an efficient representation for the manipulation of boolean functions.
As an example, consider the boolean function a ∧ (b ∨ c). The truth table of this
function would be 8 lines long. Equivalently, one can evaluate the truth value of
this function by representing the function as a directed graph, as exemplified on the
left-hand side of Figure 1. As it is clear from the picture, under certain assump-
tions, this graph can be simplified into the graph pictured on the right-hand side of
Figure 1. This “reduced” representation is called the OBDD of the boolean function.
Besides offering a compact representation of boolean functions, OBDDs of differ-
ent functions can be composed efficiently. In [16] algorithms are provided for the
manipulation and composition of OBDDs.

OBDDs are used in the verification of the model checking of systems specified by
means of formulae of CTL, a logic used to reason about branching time [13]. Here
states of the model and relations are represented by means of boolean formulae. A
CTL formula is identified with a set of states: the states of the model satisfying the
formula. As a set of states can be represented as a boolean formula, each CTL for-
mula can be characterised by a boolean formula. Thus, the problem of model check-
ing for CTL is reduced to the construction of boolean formulae. This is achieved
by composing OBDDs, or by computing fix-points of operators on OBDDs; we refer
to [13] for the details. Using this technique, systems with a state space in the region
of 1040 have been verified. This technique will be extended in the next section to
the verification of deontic interpreted systems.

6

3 Model checking deontic interpreted systems

In this section we present an algorithm for the verification of temporal, epistemic,
and correctness modalities for MAS. Our approach is similar, in spirit, to the tra-
ditional model checking techniques for the logic CTL. Indeed, we start by repre-
senting the various parameters of a deontic interpreted system by means of boolean
formulae. Then, we provide an algorithm based on this representation for the veri-
fication of formulae in the model associated with the deontic interpreted system.

Given a deontic interpreted system:

DIS =
〈

(Gi, Ri, Acti, Pi, ti)i∈Σ
, (GE, RE, ActE, PE, tE) , I, h

〉

note that the number nv(i) of boolean variables required to encode the local states
of an agent i is nv(i) = dlog2|Li|e. Similarly, to encode an agent’s action, the num-
ber na(i) of boolean variables wi required is na(i) = dlog2|Acti|e. Thus, a global
state g can be encoded as a boolean vector (v1, . . . , vN), where N =

∑

i
nv(i). A

joint action a = (a1, . . . , an, ae) ∈ Act1 × . . .× Actn × ActE can be encoded as a
boolean vector (w1, . . . , wM), where 1 M =

∑

i
na(i). In turn, a boolean vector can

be identified with a boolean formula, represented by a conjunction of literals, i.e.
a conjunction of variables or their negation. In this way, a set of global states (or
joint actions) can be expressed as the disjunction of the boolean formulae encoding
each global state in the set.

Having encoded local states, global states, and actions by means of boolean formu-
lae, all the remaining parameters can be expressed as boolean functions too. Indeed,
since the protocols relate local states to sets of actions, they can also be expressed as
boolean formulae. Similarly, the evolution functions can be translated into boolean
formulae. The set of initial states is easily translated, while h can be translated into
a boolean function which is true when a proposition is true in a given global state.

In addition to the parameters presented above, the algorithm for model checking
presented below requires the definition of n boolean functions RK

i (g, g′) (one for
each agent) representing the epistemic accessibility relation, the definition of n
boolean functions RO

i (g, g′) representing the accessibility relations for the correct-
ness operator, and the definition of a boolean function Rt(g, g

′) representing the
temporal transitions. Notice that we use the same symbols RO

i and Rt to denote
relations in W × W and boolean functions operating on boolean variables . The
intended meaning should be clear from the context. The boolean function Rt(g, g

′)
can be obtained from the evolution functions ti by quantifying over actions. This
quantification can be translated into a propositional formula using a disjunction

1 In this translation process the environment is treated as a standard agent.

7

(see [3] for a similar approach to boolean quantification):

Rt(g, g
′) =

∨

a∈Act

[(t(g, a, g′) ∧ P (g, a)]

where P (g, a) is a boolean formula imposing that each component of the joint ac-
tion a is consistent with the agents’ protocols in the global state g. The above gives
the desired boolean relation between global states. The set of reachable states is
also needed by the algorithm: the set G of reachable global states can be expressed
symbolically by a boolean formula, and it can be computed as the fix-point of the
operator

τ(Q) = (I(g) ∨ ∃g′(Rt(g
′, g) ∧Q(g′))

The fix-point of τ can be computed by iterating from τ(∅) as standard (see [3]).

We now have all the ingredients in place to present the algorithm SAT (ϕ) to com-
pute the set of global states (expressed as a boolean formula) in which a formula ϕ
holds, denoted by [[ϕ]]. The following are input parameters for the algorithm:

• the boolean variables (v1, . . . , vN) and (w1, . . . , wM) encoding global states and
joint actions;

• the boolean functions Pi(v1, . . . , vN , w1, . . . , wM) encoding the protocols of the
agents;

• the function h(p) returning the set of global states in which the atomic proposi-
tion p holds. We assume that the global states are returned encoded as a boolean
function of the variables (v1, . . . , vN);

• the set of initial states I , encoded as a boolean formula;
• the set of reachable states G, encoded as a boolean formula.
• the boolean function Rt encoding the temporal transition;
• n boolean functions encoding the accessibility relations RK

i ;
• n boolean functions encoding the accessibility relations RO

i .

The algorithm is as follows:

8

SAT (ϕ) {

ϕ is an atomic formula: return h(ϕ);

ϕ is ¬ϕ1: return G \ SAT (ϕ1);

ϕ is ϕ1 ∧ ϕ2: return SAT (ϕ1) ∩ SAT (ϕ2);

ϕ is EXϕ1: return SATEX(ϕ1);

ϕ is E(ϕ1Uϕ2): return SATEU (ϕ1, ϕ2);

ϕ is EGϕ1: return SATEG(ϕ1);

ϕ is Kiϕ1: return SATK(ϕ1, i);

ϕ is Oiϕ1: return SATO(ϕ1, i);

ϕ is K̂Γ
i ϕ1: return SATKH(ϕ1, i,Γ);

ϕ is EΓϕ1: return SATE(ϕ1,Γ);

ϕ is DΓϕ1: return SATD(ϕ1,Γ);

ϕ is CΓϕ1: return SATC(ϕ1,Γ);

}

In the algorithm above, SATEX , SATEG, SATEU are the standard procedures for
CTL model checking [13], in which the temporal relation is Rt and, instead of tem-
poral states, global states are considered. The procedures SATK(ϕ, i), SATO(ϕ, i),
SATKH(ϕ, i,Γ), SATE(ϕ,Γ), SATD(ϕ,Γ), and SATC(ϕ,Γ) are defined using the
appropriate accessibility relation. These procedures are presented below.

SATK(ϕ, i) {

X = SAT (¬ϕ);

Y = {g ∈ G | ∃g′ ∈ X s.t. RK
i (g, g′)}

return ¬Y ∩G;

}

SATO(ϕ, i) {

X = SAT (¬ϕ);

Y = {g ∈ G | ∃g′ ∈ X s.t. RO
i (g, g′)}

return ¬Y ∩G;

}

9

SATKH(ϕ, i,Γ) {

X = SAT (¬ϕ);

Y = {g ∈ G | ∃g′ ∈ X s.t. RK
i (g, g′) and RO

j (g, g′) for all j ∈ Γ}

return ¬Y ∩G;

}

SATE(ϕ,Γ) {

X = SAT (¬ϕ);

Y = {g ∈ G | ∃g′ ∈ X s.t. RE
Γ (g, g′)}

return ¬Y ∩G;

}

SATD(ϕ,Γ) {

X = SAT (¬ϕ);

Y = {g ∈ G | ∃g′ ∈ X s.t. RD
Γ (g, g′)}

return ¬Y ∩G;

}

SATC(ϕ,Γ) {

X = SAT (ϕ);

Y = G;

while (X != Y) {

X = Y;

Y = {g ∈ G|∃g′ ∈ G s.t. g′ ∈ SAT (ϕ) and g′ ∈ X and RE
Γ (g, g′)}

}

return Y;

}

The procedure SATK(ϕ, i) operates by computing the set of global states X , cor-

10

responding the set of states in which the negation of ϕ holds. Then, the proce-
dure computes the pre-image of this set with respect to the epistemic relation ∼i

and returns the complement of this set with respect to the set of reachable states
(this algorithm is based on the efficient implementation of the procedure to com-
pute existential boolean quantifications; see [16,17]). The procedures SATO(ϕ, i),
SATKH(ϕ, i,Γ), SATE(ϕ,Γ), and SATD(ϕ,Γ) implement a similar algorithm for
the modalities Oi, K̂

Γ
i , EΓ, and DΓ.

The procedure SATC(ϕ,Γ) is based on the equivalence [7]

CΓϕ⇔ EΓ(ϕ ∧ CΓϕ)

which implies that [[CΓϕ]] is the fix-point of the (monotonic) operator τ(Q) =
[[EΓ(ϕ ∧ (Q))]]. Hence, [[CΓϕ]] can be obtained by iterating τ(G).

Notice that all the parameters can be encoded as OBDDs. Moreover, all the opera-
tions inside the algorithms can be performed on OBDDs.

The algorithm presented here computes the set of states in which a formula holds,
but we are usually interested in checking whether or not a formula holds in the
whole model. SAT can be used to verify whether or not a formula ϕ holds in
a model by comparing two set of states: the set SAT (ϕ) and the set of reachable
statesG. As sets of states are expressed as OBDDs, verification in a model is reduced
to the comparison of the OBDDs for SAT (ϕ) and for G.

4 Implementation

In this section we introduce MCMAS, a tool that implements the algorithms pre-
sented in Section 3. MCMAS is released under the terms of the GNU General Public
License (GPL); the implementation is available for download [18].

In MCMAS, deontic interpreted systems are described by using the language ISPL
(Interpreted Systems Programming Language). Figure 2 gives a short example of
this language. We refer to the files available online [18] for the full syntax of ISPL.
Formulae to be checked are provided at the end of the specification file, using an
intuitive syntax.

Figure 3 lists the main components of MCMAS. Steps 2 to 6, inside the dashed box,
are performed automatically upon invocation of the tool. These steps are coded
mainly in C++. and can be summarised as follows:

• In step 2, the input ISPL file is parsed using standard tools. In this step various
parameters are stored in temporary lists; such parameters include agents’ names,

11

Agent SampleAgent
Lstate = {s0,s1,s2,s3};
Lgreen = {s0,s1,s2};
Action = {a1,a2,a3};
Protocol:
s0: {a1};
s1: {a2};
s2: {a1,a3};
s3: {a2,a3};

end Protocol
Ev:
s2 if ((AnotherAgent.Action=a7);
s3 if Lstate=s2;

end Ev
end Agent

Fig. 2. ISPL example

Specify an interpreted system

Parse the input

Build OBDDs for the parameters

Parse the formulae to check

Compute the set of states in which
a formula holds

Compare with the set of reachable states

1.

2.

3.

4.

5.

6.

7.

Lex and Yacc parser

Any text editor

C++ code and CUDD

C++ code and CUDD

C++ code and CUDD

C++ code and CUDD

TRUE in the model FALSE in the model

Fig. 3. Software structure

local states, actions, protocols, etc.
• In step 3, the lists obtained in step 2 are traversed to build the OBDDs for the

verification algorithm. OBDDs are created and manipulated using the CUDD li-
brary [17]. In this step the number of variables needed to represent local states
and actions are computed; following this, all the OBDDs are built by translating
the boolean formulae for protocols, evolution functions, valuation, etc. Also, the
set of reachable states is computed using the operator τ presented in Section 3.

• In step 4, the formulae to be checked are read from a text file, and parsed appro-

12

priately.
• In step 5, verification is performed by running the algorithm of Section 3. At the

end of step 5, an OBDD representing the set of states in which a formula holds is
computed.

• In step 6, the OBDD for the set of reachable states is compared with the OBDD
corresponding to each formula. If the two are equivalent, the formula holds in
the model and the tools produce a positive output. If the two are not equivalent,
the tool produces a negative output.

MCMAS can be run from the command line, and accepts various options to modify
verbosity, to inspect OBDDs statistics and memory usage, to enable variable re-
ordering in the OBDDs (see [17]), etc. These options can be used to determine the
“critical” points, and to fine tune the performance of the tool.

MCMAS is written in C/C++ and it has been successfully compiled on various plat-
forms, including PowerPC (Mac OS X 10.2 and 10.3), Intel (various Pentium ver-
sions using Linux 2.4 and 2.6), and SPARC (SunOS 5.8 and 5.9). The source code
has been compiled with gcc/g++ from version 2.95 till version 3.4.

5 Examples

In this section we exemplify and evaluate MCMAS by means of two examples: the
bit transmission problem and the protocol of the dining cryptographers.

5.1 The bit transmission problem with faults

In the bit-transmission problem [7] a sender S wants to send the value of a bit
to a receiver R, by using an unreliable communication channel. In this example,
the channel may drop messages, but cannot tamper messages. One protocol for
achieve communication is as follows. S immediately starts sending the bit toR, and
continues to do so until it receives an acknowledgement from R. R does nothing
until it receives the bit; from then on, it sends messages acknowledging the receipt
to S. S stops sending the bit to R when it receives the first acknowledgement from
R.

This scenario is extended in [8] to deal with failures. In particular, here we assume
that R may fail to behave as intended. There are different kinds of faults that we
can consider for R. Following [8], we discuss two examples; in the first, R may fail
to send acknowledgements when it receives a message. In the second, R may send
acknowledgements even if it has not received any message.

13

5.1.1 Deontic interpreted systems for the bit transmission problem

It is possible to represent the scenario described above by means of the formalism
of deontic interpreted systems to reason about the correct behaviour of the compo-
nents, as presented in [8]. To this end, a third agent agent called E (environment)
is introduced to model the unreliable communication channel. The local states of
the environment record the possible combinations of messages that have been sent
in a round, either by S or R. Hence, four possible local states are taken for the
environment: LE = {(., .), (sendbit, .), (., sendack), (sendbit, sendack)}, where
‘.’ represents configurations in which no message has been sent by the correspond-
ing agent. The actions ActE for the environment correspond to the transmission of
messages between S andR on the unreliable communication channel. It is assumed
that the communication channel can transmit messages in both directions simulta-
neously, and that a message travelling in one direction can get through while a
message travelling in the opposite direction is lost. The set of actions ActE for the
environment can be taken as ActE = {S−R, S→, ←R, −}. The action S−R rep-
resents the action in which the channel transmits any message successfully in both
directions. The action S→ represents a successful communication from S to R but
unsuccessful from R to S. The action←R represents a successful communication
from R to S but unsuccessful from S to R. Finally, the action − represents the en-
vironment stopping messages in either direction. We assume the following constant
function for the protocol of the environment PE:

PE(lE) = ActE = {S−R, S→, ←R, −}, for all lE ∈ LE.

The evolution function for E records simply the actions of Sender and Receiver.

We model sender S by considering the setLS = {0, 1, (0, ack), (1, ack)} consisting
of four possible local states. They represent the value of the bit S is attempting to
transmit, and whether or not S has received an acknowledgement from R.

The set of actions ActS for S can be taken as ActS = {sendbit(0), sendbit(1), λ};
they represent the action of sending a bit of value 0, the action of sending a bit of
value 1, and the null action.

The protocol for S is defined as follows:

PS(0) = sendbit(0), PS(1) = sendbit(1),

PS((0, ack)) = PS((1, ack)) = λ.

The transition conditions for S are listed in Table 1.

We now consider two possible faulty behaviours for R.

14

Final state Transition condition

(0, ack) (LS = 0 and ActR = sendack and ActE = S−R) or

(LS = 0 and ActR = sendack and ActE =←R)

(1, ack) (LS = 1 and ActR = sendack and ActE = S−R) or

(LS = 1 and ActR = sendack and ActE =←R)
Table 1
Transition conditions for S.

Final state Transition condition

0 (ActS = sendbit(0) and LR = ε and ActE = S−R) or

(ActS = sendbit(0) and LR = ε and ActE = S→)

1 (ActS = sendbit(1) and LR = ε and ActE = S−R) or

(ActS = sendbit(1) and LR = ε and ActE = S→)

(0, f) LR = 0 and ActR = ε

(1, f) LR = 1 and ActR = ε

Table 2
Transition conditions for R.

Faulty receiver – 1: In this case we assume that R may fail to send acknowledge-
ments when it is supposed to. To this end, we introduce the following local states
for R: L′

R = {0, 1, ε, (0, f), (1, f)}. The state ε is used to record the fact that in the
run R has not received any message from S yet; 0 and 1 denote the value of the bit
received. The local states (i, f) (i = {0, 1}) are faulty or red states denoting that, at
some point in the past, R received a bit but failed to send an acknowledgement.

We model the set of allowed actions forR asActR = {sendack , λ} and its protocol
for R as:

P ′
R(ε) = λ, P ′

R(0) = P ′
R(1) = {sendack, λ},

P ′
R((0, f)) = P ′

R((1, f)) = {sendack, λ}.

The transition conditions for R are listed in Table 2.

Faulty receiver – 2: In this second case we assume that R may send acknowledge-
ments without having received a bit first. We model this scenario with the following
set of local states L′′

R for R:

L′′
R = {0, 1, ε, (0, f), (1, f), (ε, f)}.

15

The meaning of the local states ε, 0, 1, (0, f) and (1, f) is as above; (ε, f) is a further
faulty state corresponding to the fact that, at some point in the past, R sent an
acknowledgement without having received a bit first. The actions allowed are the
same as in the previous example. The protocol is defined as follows:

P ′′
R(ε) = {sendack , λ},

P ′′
R(0) = P ′′

R(1) = sendack ,

P ′′
R((0, f)) = P ′′

R((1, f)) = P ′′
R((ε, f)) = {sendack , λ}.

The evolution function is a simple extension of Table 2.

For more details of both cases we refer to [8].

For both examples, we introduce the following atomic propositions:AP = {bit = 0,
bit = 1, recbit, recack}. Correspondingly, we introduce the following valuation
function:

h(bit = 0) = {g ∈ G | either lS(g) = 0 or lS(g) = (0, ack)}

h(bit = 1) = {g ∈ G | either lS(g) = 1 or lS(g) = (1, ack)}

h(recbit) = {g ∈ G | either lR(g) = 1, or lR(g) = 0,

or lR(g) = (0, f) or lR(g) = (1, f)}

h(recack) = {g ∈ G | lS(g) = (1, ack) or lS(g) = (0, ack)}

The parameters above describe two deontic interpreted systems, one for each faulty
behaviour of R; we refer to these deontic interpreted systems with DISBTP1 and
DISBTP2.

Given the setAP above, we can evaluate various properties of DISBTP1 and DISBTP2

hold. For example, consider the following temporal and epistemic specifications:

AG(recack→ (KS(KR (bit = 0) ∨KR (bit = 1)))) (1)
AG(recack→ (K̂R

S (KR (bit = 0) ∨KR (bit = 1)))) (2)

Formula 1 captures the fact that it is always true that, upon receipt of an acknowl-
edgement, S knows thatR knows the value of the bit. Formula 2 expresses a similar
concept, but by using knowledge under the assumption of correct behaviour. In Sec-
tion 5.3 we will verify in an automatic way that Formula 1 holds in DISBTP1 but not
in DISBTP2. This means that the faulty behaviour of R in DISBTP1 does not affect
the key property of the system. On the contrary, Formula 2 holds in both DIS BTP1

16

and DISBTP2; hence, a particular form of knowledge is retained irrespective of the
fault under consideration.

5.2 The protocol of the dining cryptographers

The protocol of the dining cryptographers was introduced in [19], and model check-
ing of its properties was discussed in [20]. We report the original wording from [19].

“Three cryptographers are sitting down to dinner at their favourite three-star restau-
rant. Their waiter informs them that arrangements have been made with the maitre
d’hotel for the bill to be paid anonymously. One of the cryptographers might be
paying for the dinner, or it might have been NSA (U.S. National Security Agency).
The three cryptographers respect each other’s right to make an anonymous pay-
ment, but they wonder if NSA is paying. They resolve their uncertainty fairly by
carrying out the following protocol:

Each cryptographer flips an unbiased coin behind his menu, between him and the
cryptographer on his right, so that only the two of them can see the outcome. Each
cryptographer then states aloud whether the two coins he can see – the one he
flipped and the one his left-hand neighbour flipped – fell on the same side or on
different sides. If one of the cryptographers is the payer, he states the opposite of
what he sees. An odd number of differences uttered at the table indicates that a
cryptographer is paying; an even number indicates that NSA is paying (assuming
that the dinner was paid for only once). Yet if a cryptographer is paying, neither
of the other two learns anything from the utterances about which cryptographer it
is.”[19]

The aim of this protocol is to allow anonymous broadcasting of messages. Notice
that the same protocol works for any number of cryptographers greater or equal to
three (see [19]).

For the purposes of this paper, we consider a variation of the protocol in which we
assume that the first cryptographer may be faulty.

5.2.1 Deontic interpreted system for the dining cryptographers

We introduce three agents Ci (i = {1, 2, 3}) to model the three cryptographers,
and one agent E for the environment. In our representation the environment is used
to select non-deterministically the identity of the payer and the results of the coin
tosses. This makes a total of 32 possible local states for the environment. We as-
sume that the environment can perform only one action, the null action. Therefore,
the protocol is simply mapping every local state to the null action. Also, there is no
evolution of the local states for the environment. We model the local states of the

17

cryptographers as a string containing three parameters representing, respectively,
whether or not the coins that a cryptographer can see are equal, whether or not the
cryptographer is the payer, and the number of “different” utterances reported. Con-
sidering that all these parameters are not initialised at the beginning of the run, there
are 27 possible combinations of these, hence 27 possible local states are required
for every agent. For each cryptographer, the actions allowed are “say nothing”, “say
equal”, “say different”, and these actions are performed in compliance with the pro-
tocol stated above. We refer to the ISPL code available online for the details of the
protocol and of the evolution function.

We define the following set of atomic propositions to reason about this scenario:
AP = {paid1,paid2,paid3, even, odd} and consider the following valuation
function:

h(paid1) = {g ∈ G | lC1
(g) = 〈∗Paid∗〉}

h(paid2) = {g ∈ G | lC2
(g) = 〈∗Paid∗〉}

h(paid3) = {g ∈ G | lC2
(g) = 〈∗Paid∗〉}

h(even) = {g ∈ G | lCi
(g) = 〈∗Even∗〉 for every i}

h(odd) = {g ∈ G | lCi
(g) = 〈∗Odd∗〉 for every i}

〈∗Paid∗〉 denotes a local state in which the string contains the value Paid (i.e. the
cryptographer paid for dinner). 〈∗Even∗〉 and 〈∗Odd∗〉 are defined similarly. We
can now express formally various properties of this deontic interpreted system,
denoted with DISDC1. For example:

DISDC1 |= (odd ∧ ¬paid1)→ AX(KC1(paid2 ∨ paid3) ∧ ¬KC1(paid2)

∧¬KC1(paid3))

This formula expresses the claim made at the beginning of this section: if the first
cryptographer did not pay for dinner and the number of “different” utterances is
odd, then the first cryptographer knows that either the second or the third cryp-
tographer paid for dinner; moreover, in this case, the first cryptographer does not
know which of these two is the payer. Analogously, it is possible to check that, if
a cryptographer paid for dinner, then there will be an odd number of “different”
utterances, that is:

DISDC1 |= (paid1 ∨ paid2 ∨ paid3)→ AF (odd)

Consider now the group Γ of the three cryptographers. An interesting property to

18

check is the following:

DISDC1 |= even→ AX(CΓ(¬paid1 ∧ ¬paid2 ∧ ¬paid3))

This formula expresses the fact that, in presence of an even number of “different”
utterances, it is common knowledge that none of the cryptographers paid for the
dinner. Hence, in this protocol common knowledge can be achieved anonymously.

Finally, we consider the case where C1 may not follow its protocol, and say the
opposite of what he should. This faulty behaviour may be described by another
deontic interpreted system, denoted with DISDC2. We do not give the description
of DISDC2 explicitly; it is similar, in spirit, to DISBTP2 and the code is available
online. In this case we have that:

DISDC2 6|= (odd ∧ paid2)→ AX(K2(paid1 ∨ paid3) ∧ ¬K2(paid1) ∧ ¬K2(paid3))

However, ifC2 assumes thatC1 andC3 are working correctly, the following formula
is true:

DISDC2 |= (odd ∧ paid2)→ AX(K̂
{1,3}
2 (paid1 ∨ paid3) ∧ ¬ K̂

{1,3}
2 (paid1)

∧¬ K̂
{1,3}
2 (paid3))

All the above formulae were correctly verified by the tool.

5.3 Experimental results

In this section we present the experimental results obtained with MCMAS for the
verification of the examples in Section 5.1 and 5.2. To evaluate the performance of
the tool, we analyse space and time requirements. Following standard conventions,
we define the size of a deontic interpreted system as |DIS | = |S|+|R|, where |S| is
the size of the state space and |R| is the size of the relations. In our case, we define
|S| as the number all the possible combinations of local states and actions.

5.3.1 Experimental results for the bit transmission problem

We have encoded the deontic interpreted systems and the formulae introduced in
Section 5.1 in ISPL. Appendix 1 reports a coding of DISBTP1 in ISPL. MCMAS
correctly reported DISBTP1 as satisfying both formulae, and DISBTP2 as not sat-
isfying Formula (1), while satisfying Formula (2).

19

|M | OBDDs nodes Memory (MBytes)

≈ 4 · 106 ≈ 103 ≈ 4.5

Table 3
Memory requirements for the bit transmission problem.

Model construction Verification Total

0.045sec <0.01sec 0.05sec
Table 4
Running time (for one formula) for the bit transmission problem.

In this example there are 4 local states and 3 actions for S, 5 (or 6) local states
and 2 actions for R, and 4 local states and 4 actions for E. In total, we have |S| ≈
2·103. To define |R| consider the sum of the temporal, the epistemic and the deontic
relations. We approximate |R| as |S|2, hence |M | = |S|+ |R| ≈ |S|2 ≈ 4 · 106.

To quantify the memory requirements we consider the maximum number of nodes
allocated to the OBDDs. Notice that this figure over-estimates the number of nodes
required to encode the state space and the relations. Further, we report the to-
tal memory used by the tool (in MBytes). The formulae of both DISBTP1 and
DISBTP2 required a similar amount of memory and nodes. The average experi-
mental results are reported in Table 3.

In addition to space requirements, we carried out some tests on time requirements.
The running time is the sum of the time required for building all the OBDDs for the
parameters and the actual running time for the verification. We ran the tool on a 1.2
GHz AMD Athlon with 256 MBytes of RAM, running Debian Linux with kernel
2.4.20. The average results are listed in Table 4.

5.3.2 Experimental results for the protocol of the dining cryptographers

We have encoded the interpreted systems introduced in Section 5.2 in ISPL (a copy
of the code is included in the downlodable files). It is not difficult to extend the
description of the system to a number of cryptographers greater than three. In this
section we take advantage of this fact to perform an evaluation of the scalability of
MCMAS.

Similarly to the previous section, we define the size of the model as |M | = |S| +
|R|. We tested the formulae presented in Section 5.2.1 (more tests can be found
in [18]); they were all correctly verified. The experimental results for memory and
time requirements are reported in Tables 5 and 6.

20

N.Crypt. |M | OBDDs nodes Memory (MBytes)

3 ≈ 7 · 1013(46) ≈ 104 ≈ 4.4

4 ≈ 2 · 1018(62) ≈ 6 · 104 ≈ 5.2

5 ≈ 2 · 7.522(76) ≈ 8 · 104 ≈ 5.6

6 ≈ 1.2 · 1027(90) ≈ 1.6 · 105 ≈ 7.1

7 ≈ 2 · 1031(104) ≈ 1.7 · 105 ≈ 7.5

8 ≈ 1.3 · 1036(120) ≈ 1.2 · 107 ≈ 230

Table 5
Memory requirements for the protocol of the dining cryptographers.

N.Crypt. Model construction Verification Total

3 1.1sec 0.1sec 1.2sec

4 5.1 0.1 5.2

5 18.7 0.1 18.8

6 125.9 0.2 126.2

7 649 0.1 649

8 9643 1 9644
Table 6
Running time (for one formula) for the protocol of the dining cryptographers.

6 Related work and discussion

Various ideas have previously been put forward to verify MAS. In [21], M. Wooldridge
et al. present the MABLE language for the specification of MAS. In this work, non-
temporal modalities are translated into nested data structures (in the spirit of [22]).
A similar approach can be found in Bordini et al. [23]: in this work, a modified
version of the AgentSpeak(L) language [24] is used to specify agents and to exploit
existing model checkers. Both the works of M. Wooldridge et al. and of Bordini et
al. use the temporal model checker SPIN to perform an automatic verification.

The works of van der Meyden and Shilov [25], and van der Meyden and Su [20],
are concerned with verification of interpreted systems. They consider the verifica-
tion of a particular class of interpreted systems, namely the class of synchronous
systems with perfect recall. An algorithm for model checking is introduced in the
first paper using automata, and [20] suggests the use of ordered binary decision dia-
grams (OBDDs) for this approach. Recently, the tool MCK [26] has been developed
to implement the techniques of [20].

Another line of research is concerned with SAT-based techniques for the verifi-

21

cation of multi-modal logics that model MAS. An algorithm for bounded model
checking a subset of CTLK (a logic that augments the standard CTL with epis-
temic modalities) is introduced in [27] and an implementation is provided in [28],
while [29] extends [27] by considering modalities to reason about the “correct be-
haviour” of agents in the formalism of deontic interpreted systems. An algorithm
for unbounded model checking of the full language of CTLK is introduced in [30].

This paper differs from the works above in various respects. Differently from [21,23],
instead of relying on existing model checkers, we extend the algorithms that ap-
peared in [9] and we present an implementation of the algorithms to verify prop-
erties of MAS that is self-contained. We argue that it is more natural to express
properties such as knowledge and correct behaviour directly, instead of translating
a MAS system (and its properties) into temporal structures.

Our implementation uses OBDDs and, in this respect, our work differs from all the
SAT-based approaches. Although [26] does use OBDDs, it restricts the verification
to a particular class of interpreted systems, and does not consider operators to rea-
son about the “correct behaviour” of agents, as we do here.

Unfortunately, due to the difference in semantics for MAS, it is currently impossi-
ble to compare MCMAS’s performance with other model checkers for MAS (such as
MCK [26] and Verics [28,31]) on common examples. Conventional model check-
ers for temporal logics have been employed to verify MAS scenarios, by translating
MAS specifications into pure-temporal specifications [21]. Performance compar-
isons between MCMAS and other temporal-only model checkers is thus limited to
simple examples, such as the bit transmission problem, for which it is possible to
provide a “temporal” translation. However, the small size of the example does not
allow for meaningful results. The translation of the protocol of the dining cryp-
tographer (with a number of cryptographers greater than 5) would allow for better
comparisons, but its feasibility is limited by the huge size of the temporal descrip-
tion for such examples.

Though we lack meaningful comparisons, the results presented in Section 5.3 show
that MCMAS allows for the verification on examples whose size would be intractable
with non-symbolic model checkers. For the case of the dining cryptographers, the
difference in performance between 7 and 8 cryptographers shown in Table 6 is
caused by the failure of the OBDD library in finding a compact order for the boolean
variables in a reasonable time. This, in turn, causes MCMAS to store larger data
structures, which consume considerably more processing time.

22

7 Conclusion

In this paper we have extended a major verification technique for reactive systems
— symbolic model checking via OBDDs — to verify non-temporal properties of
multi-agent systems. We presented an OBDD-based technique for the verification
of MAS modelled in the formalism of deontic interpreted systems, a programming
language for deontic interpreted systems (ISPL), and a tool implementing these
ideas (MCMAS).

We tested our implementation by means of two examples: the bit transmission
problem with faults and the protocol of the dining cryptographers. These exam-
ples suggested that our framework can be employed successfully in the analysis of
communication and security protocols.

The scalability results from the second examples are encouraging, and we believe
that this verification methodology may be applied in various real-life scenarios.

References

[1] M. Wooldridge, Reasoning about Rational Agents, MIT Press, 2000.

[2] M. Wooldridge, An introduction to multi-agent systems, John Wiley, England, 2002.

[3] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, The MIT Press,
Cambridge, Massachusetts, 1999.

[4] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, L. J. Hwang, Symbolic model
checking: 1020 states and beyond, Information and Computation 98 (2) (1992) 142–
170.

[5] G. J. Holzmann, The model checker SPIN, IEEE transaction on software engineering
23 (5).

[6] A. Cimatti, E. M. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore, M. Roveri,
R. Sebastiani, A. Tacchella, NUSMV2: An open-source tool for symbolic model
checking, in: Proceedings of the 14th International Conference on Computer Aided
Verification (CAV’02), Vol. 2404 of LNCS, Springer-Verlag, 2002, pp. 359–364.

[7] R. Fagin, J. Y. Halpern, Y. Moses, M. Y. Vardi, Reasoning about Knowledge, MIT
Press, Cambridge, 1995.

[8] A. Lomuscio, M. Sergot, A formalisation of violation, error recovery, and enforcement
in the bit transmission problem, Journal of Applied Logic 2 (1) (2004) 93–116.

[9] F. Raimondi, A. Lomuscio, Automatic verification of deontic interpreted systems by
model checking via OBDDs, in: Proceedings of the Sixteenth European Conference
on Artificial Intelligence (ECAI04), IOS PRESS, 2004, pp. 53–57.

23

[10] A. Lomuscio, M. Sergot, Deontic interpreted systems, Studia Logica 75 (1) (2003)
63–92.

[11] B. Woźna, A. Lomuscio, W.Penczek, Bounded model checking for knowledge and
real time, in: Proceedings of the 4th International Joint Conference on Autonomous
Agents and Multi-agent systems (AAMAS’05), ACM Press, 2005.

[12] A. Lomuscio, Knowledge sharing among ideal agents, Ph.D. thesis, School of
Computer Science, University of Birmingham, Birmingham, UK (June 1999).

[13] M. R. A. Huth, M. D. Ryan, Logic in Computer Science: Modelling and Reasoning
about Systems, Cambridge University Press, Cambridge, England, 2000.

[14] K. L. McMillan, Symbolic Model Checking, Kluwer Academic Publishers, 1993.

[15] A. Biere, A. Cimatti, E. Clarke, Y. Zhu, Symbolic model checking without BDDs, in:
Proc. of TACAS’99, Vol. 1579 of LNCS, Springer-Verlag, 1999, pp. 193–207.

[16] R. E. Bryant, Graph-based algorithms for boolean function manipulation, IEEE
Transactions on Computers 35 (8) (1986) 677–691.
URL http://www.cs.cmu.edu/ bryant/pubdir/ieeetc86.ps

[17] F. Somenzi, CUDD: CU decision diagram package - release 2.4.0, http://
vlsi.colorado.edu/∼fabio/CUDD/cuddIntro.html.

[18] F. Raimondi, A. Lomuscio, MCMAS - A tool for verification of multi-agent systems,
http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/.

[19] D. Chaum, The dining cryptographers problem: Unconditional sender and recipient
untraceability, Journal of Cryptology 1(1) (1988) 65–75.

[20] R. van der Meyden, K. Su, Symbolic model checking the knowledge of the dining
cryptographers, in: 17th IEEE Computer Security Foundations Workshop, 2004, pp.
280–291.

[21] M. Wooldridge, M. Fisher, M. Huget, S. Parsons, Model checking multiagent systems
with MABLE, in: Proceedings of the First International Conference on Autonomous
Agents and Multiagent Systems (AAMAS-02), Bologna, Italy, 2002.

[22] M. Benerecetti, F. Giunchiglia, L. Serafini, Model checking multiagent systems,
Journal of Logic and Computation 8 (3) (1998) 401–423.

[23] R. H. Bordini, M. Fisher, C. Pardavila, M. Wooldridge, Model checking AgentSpeak,
in: J. S. Rosenschein, T. Sandholm, W. Michael, M. Yokoo (Eds.), Proceedings of
the Second International Joint Conference on Autonomous Agents and Multi-agent
systems (AAMAS-03), ACM Press, 2003, pp. 409–416.

[24] A. S. Rao, Decision procedures for propositional linear-time Belief-Desire-Intention
logics, in: M. Wooldridge, J. P. Müller, M. Tambe (Eds.), Intelligent Agents II (LNAI
1037), Springer-Verlag: Heidelberg, Germany, 1996, pp. 33–48.

[25] R. v. Meyden, H. Shilov., Model checking knowledge and time in systems with perfect
recall., in: Proceedings of Proc. of FST&TCS, Vol. 1738 of Lecture Notes in Computer
Science, Hyderabad, India, 1999, pp. 432–445.

24

[26] P. Gammie, R. van der Meyden, Mck: Model checking the logic of knowledge,
in: Proceedings of 16th International Conference on Computer Aided Verification
(CAV’04), Vol. 3114 of LNCS, Springer-Verlag, 2004, pp. 479–483.

[27] W. Penczek, A. Lomuscio, Verifying epistemic properties of multi-agent systems via
bounded model checking, Fundamenta Informaticae 55 (2) (2003) 167–185.

[28] VerICS, http://www.ipipan.waw.pl/staff/w.penczek/abmpw/index-ang.htm.

[29] B. Woźna, A. Lomuscio, W. Penczek, Bounded model checking for deontic interpreted
systems, in: Proc. of the 2nd Workshop on Logic and Communication in Multi-Agent
Systems (LCMAS’04), Vol. 126 of ENTCS, Elsevier, 2004, pp. 93–114.
URL http://www.sciencedirect.com/science/journal/15710661

[30] M. Kacprzak, A. Lomuscio, W. Penczek, From bounded to unbounded model checking
for temporal epistemic logic, Fundamenta Informaticae 63 (2,3) (2004) 221–240.

[31] A. Lomuscio, T. Łasica, W. Penczek, Bounded model checking for interpreted
systems: preliminary experimental results, in: M. Hinchey (Ed.), Proceedings of
FAABS II, Vol. 2699 of LNCS, Springer Verlag, 2003.

25

Appendix 1: ISPL code for DISBTP1

Agent Sender
Lstate = {s0,s1,s0ack,s1ack};
Lgreen = {s0,s1,s0ack,s1ack};
Action = {sb0,sb1,nothing};
Protocol:

s0: {sb0};
s1: {sb1};
s0ack: {nothing};
s1ack: {nothing};

end Protocol

Ev:
s0ack if (((Lstate=s0) and (Receiver.Action=sendack) and [...]

or ((Lstate=s0) and (Receiver.Action=sendack) [...]));
s1ack if (((Lstate=s1) and (Receiver.Action=sendack) and [...]

[...]
end Ev
end Agent

Agent Receiver
Lstate = {empty,r0,r1,r0f,r1f};
Lgreen = {empty,r0,r1};
Action = {nothing,sendack};
Protocol:
empty: {nothing};
r0: {sendack,nothing};
r1: {sendack,nothing};
r0f: {sendack,nothing};
r1f: {sendack,nothing};
end Protocol
Ev:

r0 if (((Sender.Action=sb0) and (Lstate=empty) and [...]
r1 if (((Sender.Action=sb1) and (Lstate=empty) and [...]

r0f if ((Lstate = r0) and (Action=nothing));
r1f if ((Lstate = r1) and (Action=nothing));

end Ev
end Agent

Agent Environment
Lstate = {S,R,SR,none};

Lgreen = {S,R,SR,none};
Action = {S,SR,R,none};
Protocol:

S: {S,SR,R,none};
R: {S,SR,R,none};
SR: {S,SR,R,none};
none: {S,SR,R,none};

end Protocol
Ev:

S if (((Sender.Action=sb0) or (Sender.Action=sb1)) and
(Receiver.Action=nothing));

SR if [...]
[...]

end Ev
end Agent

Evaluation
recbit if ((Receiver.Lstate=r0) or (Receiver.Lstate=r1) or

(Receiver.Lstate=r0f) or (Receiver.Lstate=r1f));
recack if ((Sender.Lstate=s0ack) or (Sender.Lstate=s1ack));
bit0 if ((Sender.Lstate=s0) or (Sender.Lstate=s0ack));
bit1 if ((Sender.Lstate=s1) or (Sender.Lstate=s1ack));

end Evaluation

26

InitStates
((Sender.Lstate=s0) or (Sender.Lstate=s1)) and
(Receiver.Lstate=empty) and
(Environment.Lstate=none);
end InitStates

Groups
g1 = {Sender,Receiver};
end Groups

Formulae
AG(recack -> (K(Sender,K(Receiver,bit0) or K(Receiver,bit1))));
AG(recack -> (KH(Sender,Receiver,K(Receiver,bit0) or K(Receiver,bit1))));

end Formulae

27

