
Fundamenta Informaticae XXI (2006) 1–20 1

IOS Press

Comparing BDD and SAT based techniques for model checking
Chaum’s Dining Cryptographers Protocol

Magdalena Kacprzak∗†

Białystok University of Technology, PL, email: mdkacprzak@wp.pl

Alessio Lomuscio‡

University College London, UK, email: a.lomuscio@cs.ucl.ac.uk

Artur Niewiadomski †

Podlasie Academy, PL, email: artur@iis.ap.siedlce.pl

Wojciech Penczek§

Institute of Computer Science, PAS, and Podlasie Academy, PL, email: penczek@ipipan.waw.pl

Franco Raimondi‡

University College London, UK, email: f.raimondi@cs.ucl.ac.uk

Maciej Szreter†

Institute of Computer Science, PAS, PL, email: mszreter@ipipan.waw.pl

Abstract. We analyse different versions of the Dining Cryptographersprotocol by means of auto-
matic verification via model checking. Specifically we modelthe protocol in terms of a network
of communicating automata and verify that the protocol meets the anonymity requirements speci-
fied. Two different model checking techniques (ordered binary decision diagrams and SAT-based
bounded model checking) are evaluated and compared to verify the protocols.

Keywords: verification, Dining Cryptographers Protocol, bounded model checking, binary deci-
sion diagrams, SAT-solver

∗The author acknowledges support from Ministry of Science and Education under Bialystok University of Technology (grant
W/IMF/2/04).
†The authors acknowledge support from Ministry of Science and Education (grant 3T11C01128).
‡The authors acknowledge support from EPSRC (grants CN04/04and GR/S49353/01) and the Royal Society.
§The author acknowledges support from Ministry of Science and Education (grant 3T11C01128) and the Royal Society.

2 Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . .

1. Introduction

A key interest in the analysis of security protocols concerns being able to verify formally and automati-
cally that a protocol meets its intended specifications. This approach differs from the other main stream
of research in computer security, namely cryptanalysis, inthat it assumes perfect (i.e., unbreakable) cryp-
tographic algorithms and focuses on the properties that a protocol achieves. Formal analysis of security
protocols has permitted to find bugs in a variety of security protocols, including the Wide Mouthed Frog
Protocol [15].

The technique of model checking [5] has recently been used with considerable success [3, 1, 23] to
verify properties such as authentication, integrity, secrecy, anonymity, etc., of particular security proto-
cols. Typically, security protocols are analysed in terms of reachability and, occasionally, in terms of full
temporal logic. While this is adequate in many instances, the validation of particular properties, such as
anonymity, benefits from richer approaches. In particular,the protocol of the dining cryptographers [4]
has been successfully analysed [16, 22] by considering a temporal and epistemic language. In this paper
we intend to make two contributions in this line. First, we suggest an alternative, often more efficient,
formalisation of the Dining Cryptographer problem in termsof a network of communicating automata.
Second, we compare experimental results for variants of this protocol when analysed by two different
model checking techniques: ordered binary decision diagrams and SAT-based bounded model checking.
This comparison provides insight into different model checking technologies for the verification of the
security protocol under consideration.

From a technical point of view, we will be working on networksof communicating automata to model
the protocol (Section 2). These will generate a branching time semantics on which temporal, epistemic,
and correctness modal operators will be interpreted [13], as in Section 3. This syntax will be used as
specification language for the properties to be checked in Section 5, by means of VerICS [6, 17] and
MCMAS [12], two model checkers for deontic interpreted systems [13], based respectively on bounded
model checking (BMC) and ordered-binary decision diagrams(OBDD), techniques briefly summarised
in Section 4.

2. Semantics

This paper is concerned with the verification of the protocolof the Dining Cryptographers. This protocol
was modelled for verification purposes by R. van der Meyden and K. Su in [16] by using synchronous
interpreted systems [9] with perfect recall. In [22] the protocol was extended to deontic interpreted
systems [13] to reason about (deliberate or otherwise) violations in the execution of the protocol by
some participants.

In the present work we employ an automata-based approach. Specifically, we interpret formulae
of a logic to reason about time, knowledge, and correct behaviour on traces generated by networks of
automata. Our choice is motivated by two reasons:

1. We show that an automata-based approach provides a more efficient (i.e., faster) framework for the
verification of protocols, as it can be seen by comparing the results in Section 5.3 with the results
presented in [22].

Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . . 3

2. It provides a common ground for the comparison of experimental results obtained using different
model checkers.

Notice that there are formulae that are satisfied in this alternative encoding but not in the former one,
especially when reasoning about the temporal evolution of automata. Nevertheless, thekey epistemic
properties of the protocolare satisfied in both the encodings. A formal proof of the above statement is
not presented here as it is not essential for our task.

Formally, we proceed as follows. Since our aim is to analyse variants of the Dining Cryptographers
protocols where some participants may cheat, in line with [13, 22], we define a notion ofdeonticautomata
by colouring the states as eitherred or green; we refer to [13] and related papers for an exploration of
these concepts. We assume that each agent in the system is formalised by considering a number of
automata.

Definition 2.1. (Deontic automaton)
A deontic automaton is a tupleA = (Act, L, s0, T), where

• Act is a finite set of actions,

• L = LG ∪ LR is a finite set of states, which is divided into two disjoint sets of greenLG and red
LR states,

• s0 ∈ L is the initial state,

• T ⊆ L × Act × L is a transition relation.

A set of automata, called anetwork of automata, can be composed into theproduct automatonby a
standard multi-synchronisation approach: the transitions that do not correspond to a shared action are in-
terleaved, whereas the transitions labelled by a shared action are synchronised. A synchronised transition
is enabled if it is enabled in all the synchronising automata. Additionally, two or more unsynchronised
transitions cannot be executed at the same time.

Definition 2.2. (Product automaton)
Given a network{A1, . . . ,An} of deontic automata, whereAi = (Acti, Li, s0

i , Ti) for 1 ≤ i ≤ n, the
product automatonof the network is defined as a four-tupleA = (Act,G, s0, T), where

• Act =
⋃n

i=1 Acti is a finite set of actions,

• G = GG ∪ GR is a finite set of global states composed by two disjoint sets of green states
GG = LG

1 × · · · × LG
n and of red statesGR = (L1 × · · · × Ln) \ GG ,

• s0 = (s0
1, . . . , s

0
n) ∈ G is the initial state,

• T ⊆ G×Act×G is a transition relation such that((l1, . . . , ln), a, (l′1, . . . , l
′
n)) ∈ T iff (∀i ∈ A(a))

(li, a, l′i) ∈ Ti and(∀i ∈ {1, . . . , n}\A(a)) li = l′i, whereA(a) = {1 ≤ i ≤ n | a ∈ Acti}.

A global state is coloured green if it consists of green localstates only. All the other global states are
coloured red. Moreover, a global state(l′1, . . . , l

′
n) is the result of executing an actiona at a global state

(l1, . . . , ln) iff for every automatonAi whose set of actions containsa, we have(li, a, l′i) ∈ Ti, and for
all the remaining automata we havel′j = lj .

4 Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . .

In what follows letIx (A) = {1, . . . , n} be the set of the automata indices ofA. The product au-
tomaton extended with a labelling function is used as a modelfor interpreting our specification language,
although we note that it will only be built symbolically during the verification. In order to reason about
multi-agent systems we assume that automata of the network represent agents. However, we do not
require a one to one correspondence between automata and agents. Instead, we assume that the be-
haviour of an agent can be modelled by several automata of thenetwork or, equivalently, by the product
automaton of these automata.

Now, letAgt = {1, . . . , k} be a set of indices of agents. We define a functionObs : Agt → 2Ix(A),
which assigns to each agent the indices of the automata ofA that represent its behaviour. Letloci : G →
∏

j∈Obs(i) Lj , for i = 1, . . . , k, be a function which for each global states of G returns the local state
of s for the agenti, i.e., projectss on the components ofObs(i). Notice that a single automaton ofA
may be used for representing a part of the behaviour of several agents. Intuitively, this means that agents
can observe and change the same fragments of a world. In such acase, to avoid the agents losing their
autonomy, we could require that they are represented by duplicated automata whose appropriate actions
are synchronised; we do not insist on this for efficiency reasons.

Interpreted systems [9] are commonly used to interpret temporal and epistemic modalities. Their
deontic extensions incorporate the idea of a correct functioning behaviour of some or all the components
of systems examined. Following these ideas we define the notion of a model.

Definition 2.3. (Model)
Let Agt = {1, . . . , k} be a set of indices of agents,A = (Act,G, s0, T) be a product automaton. A
(deontic) modelis a tupleM = (G,W, s0, TR,∼,∼O,Obs ,V), where:

• TR ⊆ G × G is a binary relation onG such that(s, s′) ∈ TR iff there existsa ∈ Act such that
(s, a, s′) ∈ T ,

• W is a set ofreachable global statesfrom s0, i.e.,W = {s ∈ G | (s0, s) ∈ TR∗}1,

• Obs : Agt → 2Ix (A) is a function that assigns a nonempty set of indices of automata to every
agent,

• ∼ = {∼i}i∈Agt, where∼i ⊆ W ×W is anepistemic accessibility relationfor each agenti ∈ Agt

defined by:s ∼i s′ iff loci(s
′) = loci(s),

• ∼O= {∼O
i }i∈Agt, where∼O

i ⊆ W ×W is adeontic accessibility relationfor each agenti ∈ Agt

defined by:s ∼O
i s′ iff lij ∈ LG

ij
for everylij of loci(s

′) = (li1 , . . . , lit),

• V : G −→ 2PV is avaluation functionfor a set of propositional variablesPV such thattrue ∈
V(s) for all s ∈ G. V assigns to each state a set of propositional variables that are assumed to be
true at that state.

Epistemic relations. Let Γ ⊆ Agt. The union ofΓ’s accessibility relations is defined as∼E
Γ =

⋃

i∈Γ ∼i. By ∼C
Γ we denote the transitive closure of∼E

Γ , whereas∼D
Γ =

⋂

i∈Γ ∼i. The above relations
are used to give semantics to the “everyone knows”, “common knowledge”, and “distributed knowledge”
modalities of the logic presented in [9].

1TR∗ denotes the reflexive and transitive closure ofTR.

Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . . 5

Computations paths. A computationin M is a maximal sequenceπ = (s0, s1, . . .) of states such that
(si, si+1) ∈ TR for eachi < |π| − 12, where|π| denotes the length ofπ defined as|π| = ∞ if π is
infinite and|π| = k + 1 if sk is the last state ofπ.

A k-computationis a prefix of lengthk of a computation. For a computationπ = (s0, s1, . . .), let
π(k) = sk, andπk = (s0, . . . , sk), for eachk ∈ IN. By Π(s) we denote the set of all computations
starting ats in M, whereas byΠk(s) a set of all thek-computations starting ats. Moreover, letIN+ =
IN\{0}.

3. The LogicCTLKD

We use the logic CTLKD to express properties of protocols. This logic is an extension ofComputational
Tree Logic(CTL) [8], introduced by Emerson and Clarke, enriched with standard epistemic operators [9]
and correctness operators [13]. This language enables us torepresent temporal flows of time, knowledge
of the agents, and what properties hold following the correct execution of prescribed behaviour. We refer
to [14] for a detailed example on the use of this formalism.

Definition 3.1. (Syntax ofCTLKD)
The set of CTLKD formulaeFORM is defined as follows:

α ::= p | ¬α | α ∨ α | EXα | EGα | E(αUα) | Piα | K
j
iα | Kiα | DΓα | CΓα | EΓα

wherep ∈ PV , i, j ∈ {1, . . . , k}, andΓ ⊆ {1, . . . , k}.

Other modalities are derived as follows:

• EFα
def
= E(trueUα), AFα

def
= ¬EG¬α, A(αRβ)

def
= ¬E(¬αU¬β),

• AXα
def
= ¬EX¬α, Oiα

def
= ¬Pi¬α, K̂j

iα
def
= ¬K

j

i¬α, Kiα
def
= ¬Ki¬α,

• DΓα
def
= ¬DΓ¬α, CΓα

def
= ¬CΓ¬α, EΓα

def
= ¬EΓ¬α.

The remaining boolean connectives are defined in the standard way. Moreover,false
def
= ¬true. The

formula Piα stands for ”there exists a state where agenti is functioning correctly andα holds”. As
customary the operatorsX,G stand for “at the next step”, and “forever in the future” respectively. The
Until operatorU, preciselyαUβ, expresses thatβ occurs eventually andα holds continuously until
then. The operatorsKi, DΓ, andCΓ denote knowledge of the agenti, distributed knowledge, common
knowledge, and ”everyone knows” in groupΓ resp. A formulaOiα represents the fact that following all
correct executions of agenti α holds. Moreover, the operator̂Kj

i expresses knowledge the agenti has
on the assumption that the agentj is functioning correctly. A formal interpretation of theseformulae is
given below.

Definition 3.2. (Interpretation of CTLKD)
Let M = (G,W, s0, TR,∼,∼O,Obs ,V) be a model,s ∈ W a state,π a computation, andα, β formulae
of CTLKD. M, s |= α denotes thatα is true at the states in the modelM. M is omitted, if it is implicitly
understood. The relation|= is defined inductively as follows:

2By ∞− 1 we mean∞.

6 Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . .

s |= EXα iff ∃π ∈ Π(s) π(1) |= α,

s |= EGα iff ∃π ∈ Π(s) ∀0 ≤ m < |π| π(m) |= α,

s |= E(αUβ) iff ∃π ∈ Π(s) (∃0 ≤ m <|π| [π(m) |= β and ∀j<m π(j) |= α]),

s |= Piα iff ∃s′ ∈ W (s ∼O
i s′ and s′ |= α),

s |= K
j

iα iff ∃s′ ∈ W (s ∼i s′ and s ∼O
j s′ and s′ |= α),

s |= Kiα iff ∃s′ ∈ W (s ∼i s′ and s′ |= α),

s |= DΓα iff ∃s′ ∈ W (s ∼D
Γ s′ and s′ |= α),

s |= EΓα iff ∃s′ ∈ W (s ∼E
Γ s′ and s′ |= α),

s |= CΓα iff ∃s′ ∈ W (s ∼C
Γ s′ and s′ |= α).

For propositions and the boolean connectives the relation|= is defined in the standard manner.

Definition 3.3. (Validity) A CTLKD formula ϕ is valid inM (denotedM |= ϕ) iff M, s0 |= ϕ, i.e.,ϕ
is true at the initial state of the modelM .

The logicECTLKD is the existential restriction of CTLKD such that the negation can be applied only
to elements ofPV , i.e.,¬α is replaced by¬p in the Definition 3.1. The logicACTLKD is the universal
restriction of CTLKD such that its language is defined as{¬ϕ | ϕ ∈ ECTLKD}.

4. Symbolic verification ofCTLKD

In this section we present two symbolic methods for the verification of properties of systems and proto-
cols. The first one uses SAT techniques; the second is based onordered binary decision diagrams.

4.1. Bounded Model Checking

Bounded Model Checking (BMC) was originally introduced forverification of the existential fragment
of the logicCTL [19], and then extended to ECTLK [18] and further toECTLKD [24]. BMC is based
on the observation that some properties of a system can be checked over a part of its model only. In the
simplest case of reachability analysis, the approach consists in an iterative encoding of a finite symbolic
computation as a propositional formula. The satisfiabilityof the resulting propositional formula is then
checked using an external SAT-solver. We present here the main definitions of BMC forECTLKD, but
refer the reader to the literature cited above for more details. In order to restrict the semantics to a part
of the model we definek-models.

Definition 4.1. (k−model)
Let M = (G,W, s0, TR,∼,∼O,Obs,V) be a model andk ∈ IN+. Thek−model forM is defined as
a structureMk = (W, s0, Pk,∼,∼O,Obs ,V ′), wherePk is the set of all thek-computations ofM over
W , i.e.,Pk =

⋃

s∈W Πk(s), andV ′ = V|W .

We define the functionloop : Pk → 2IN as: loop(π) = {l | 0 ≤ l ≤ k and (π(k), π(l)) ∈ TR},
which returns the set of indicesl of π for which there is a transition fromπ(k) to π(l).

Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . . 7

Definition 4.2. (Bounded semantics)
Let Mk be ak−model andα, β beECTLKD formulae. Mk, s |= α denotes thatα is true at the state
s of Mk. Mk is omitted if it is clear from the context. The relation|= for modal operators is defined
inductively as follows:

s |= EXα iff (∃π ∈ Pk(s)) π(1) |= α,

s |= EGα iff (∃π ∈ Pk(s))(∀0 ≤ j ≤ k)(π(j) |= α andloop(π) 6= ∅),

s |= E(αUβ) iff (∃π ∈ Pk(s))(∃0 ≤ j ≤ k)
(

π(j) |= β and(∀0 ≤ i < j)π(i) |= α
)

,

s |= K
l

iα iff (∃π ∈ Pk(s
0))(∃0 ≤ j ≤ k)

(

π(j) |= α ands ∼i π(j) ands ∼O
l π(j)

)

,

s |= Y α iff (∃π ∈ Pk(s
0))(∃0 ≤ j ≤ k)

(

π(j) |= α ands ∼ π(j)
)

,

whereY ∈ {Pi,Ki,DΓ,EΓ, CΓ} and∼∈ {∼O
i ,∼i,∼

D
Γ ,∼E

Γ ,∼C
Γ } resp.

Model checking over models can be reduced to model checking over k-models. The main idea of BMC
for ECTLKD is that we can checkϕ overMk by checking the satisfiability of the propositional formula
[M,ϕ]k := [Mϕ,s0

]k ∧ [ϕ]Mk
, where the first conjunct represents (a part of) the model under consider-

ation and the second a number of constraints that must be satisfied onMk for ϕ to be satisfied. Once
this translation is defined, checking satisfiability of anECTLKD formula can be done by means of a
SAT-checker. Typically, we start withk := 1, test satisfiability for the translation, and increasek by one
until either[Mϕ,s0

]k ∧ [ϕ]Mk
becomes satisfiable, ork reaches the maximal depth ofM3.

We provide here some details of the translation. We begin with the encoding of the transitions in the
system under consideration. We assumeLi = LG

i ∪ LR
i ⊆ {0, 1}ki , whereki = ⌈log2(|Li|)⌉ and we

takek1 + . . . + kn = m. Moreover, letIxi be an<-ordered set of the indices of the bits of the local
states of each agenti of the global states, i.e.,Ix1 = {1, . . . , k1}, . . . , Ixn = {m − kn + 1, . . . ,m}.
Then, each global states = (s1, . . . , sm) can be represented byw = (w[1], . . . , w[m]) (which we shall
call aglobal state variable), where eachw[i] for i = 1, . . . ,m is a propositional variable. A sequence
w0,j, . . . , wk,j of global state variables is called a symbolick-computationj.

The propositional formula[Mϕ,s0

]k, representing thek-computations in thek-model, is defined as
follows:

[Mϕ,s0

]k := Is0(w0,0) ∧

fk(ϕ)
∧

j=1

k−1
∧

i=0

TR(wi,j, wi+1,j),

wherew0,0 andwi,j for 0 ≤ i ≤ k and1 ≤ j ≤ fk(ϕ) are global state variables, andTR(wi,j, wi+1,j)

is a formula encoding the transition relationTR. [Mϕ,s0

]k encodes the initial states0 by w0,0 and
constrains thefk(ϕ)4 symbolick-computations to be validk-computations inMk.

The next step of the algorithm consists in translating anECTLKD formula ϕ into a propositional
formula. Letw, v be global state variables. We need the following propositional formulae for the encod-
ing:

- p(w) encodes a propositionp of ECTLKD.
- H(w, v) represents logical equivalence between global state encodings
(i.e., representing the same global state).

3The upper limit is|W |.
4The functionfk determines the number ofk-computations sufficient for checking anECTLKD formula, see [24] for more
details.

8 Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . .

- HPi(w, v) encodes the set all global states in which agenti is running correctly.
- HKi(w, v) represents logical equivalence betweeni-local state encodings,
(i.e., representing the samei-local state).
- Lk,j(l) encodes a backward loop connecting thek-th state to thel-th state in the symbolic
k−computationj, for 0 ≤ l ≤ k.

The translation ofϕ at statewm,n into the propositional formula[ϕ]
[m,n]
k is as follows (we give the

translation of selected formulas only):

[EXα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧ [α]
[1,i]
k

)

,

[EGα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧ (
∨k

l=0 Lk,i(l)) ∧
∧k

j=0[α]
[j,i]
k

)

,

[E(αUβ)]
[m,n]
k :=

∨fk(ϕ)
i=1

(

H(wm,n, w0,i) ∧
∨k

j=0

(

[β]
[j,i]
k ∧

∧j−1
t=0 [α]

[t,i]
k

)

)

,

[Plα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

Is0(w0,i) ∧
∨k

j=0

(

[α]
[j,i]
k ∧ HPl(wm,n, wj,i)

)

)

,

[K
t

lα]
[m,n]

k :=
∨fk(ϕ)

i=1

(

Is0(w0,i) ∧
∨k

j=0

(

[α]
[j,i]
k ∧ HKl(wm,n, wj,i) ∧

HPt(wm,n, wj,i)
)

)

,

[Klα]
[m,n]
k :=

∨fk(ϕ)
i=1

(

Is0(w0,i) ∧
∨k

j=0

(

[α]
[j,i]
k ∧ HKl(wm,n, wj,i)

)

)

.

Given the translations above, we can now checkϕ overMk by checking the satisfiability of the proposi-
tional formula[Mϕ,s0

]k ∧ [ϕ]Mk
, where[ϕ]Mk

= [ϕ]
[0,0]
k . The translation above is shown in [24] to be

correct and complete.

4.2. Verification via ordered binary decision diagrams

Boolean formulae may be manipulated efficiently using ordered binary decision diagrams (OBDDs). To
understand the idea behind boolean formulae manipulation using OBDDs, consider the boolean function
a ∧ (b ∨ c). Representing this boolean function using a truth table would require 8 lines. Using a differ-
ent approach, the truth value of this function may be represented by a directed graph, as exemplified in
Figure 1 (a). Under certain assumptions (most notably, by fixing the order of the variables in the graph),
this graph can be simplified into the graph pictured on Figure1 (b). This “reduced” representation is
called theOBDD of the boolean function. Besides offering a compact representation of boolean func-
tions, OBDDs of different functions can be composed efficiently. In [2] algorithms are provided for the
manipulation and composition ofOBDDs and their complexity is investigated.

OBDDs are routinely used in the model checking of systems specified by means of formulae of CTL,
a logic used to reason about branching time [11]. Here statesof the model and relations are represented
by means of propositional formulae. A CTL formula is identified with a set of states: the states of the
model satisfying the formula. As a set of states can be represented as a propositional formula, each CTL
formula can be characterized by a propositional formula. Bycomparing this set with the set of reachable
states (or with the set of initial states) represented as a boolean function, it is possible to establish whether
or not a formula holds in a given model. Thus, the problem of model checking for CTL is reduced to the
comparison of propositional formulae which, in turn, are represented usingOBDDs. The computation
of these boolean formulae operates by composingOBDDs, or by computing fix-points of operators on
OBDDs; we refer to [11] for the details.

We summarise below the algorithm for the verification of temporal, epistemic, and correctness
modalities for MAS presented in [22], which extends the traditional model checking techniques for the

Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . . 9

000 0 0 1 1 1

(a) (b)

a

b

c c c c

b

10

a

b

c

0

0

0

1

10

0 1 1 10 0 1

110

0 1

0
1

Figure 1. OBDD representation fora ∧ (b ∨ c)

logic CTL. To reduce the problem of model checking for these modalities to a comparison of boolean
formulae we proceed as follows. The numbernv(i) of propositional variables required to encode the
local states of an agenti is nv(i) = ⌈log2|Li|⌉. Similarly, to encode the agent actions, the number
na(i) of propositional variableswi required isna(i) = ⌈log2|Acti|⌉. Thus, a global states can be en-
coded as a propositional vector(v1, . . . , vN), whereN =

∑

i

nv(i). An actiona ∈ Act can be encoded

as a propositional vector(w1, . . . , wM), whereM =
∑

i

na(i). In turn, a propositional vector can be

identified with a propositional formula, represented by a conjunction of literals, i.e., a conjunction of
propositional variables or their negation. In this way, a set of global states (or actions) can be expressed
as the disjunction of the propositional formulae encoding each global state in the set. Having encoded
local states, global states, and actions by means of propositional formulae, all the remaining parame-
ters can be expressed as boolean functions, too. Indeed, thetransition relation can be translated into
propositional formulae. The set of initial states is easilytranslated, too. In addition to the parameters
presented above, the algorithm for model checking presented below requires the definition ofn boolean
functionsRK

i (s, s′) (one for each agent) representing the epistemic accessibility relation, the definition
of n boolean functionsRO

i (s, s′) representing the accessibility relations for the correctness operator, and
the definition of a boolean functionRt(s, s

′) representing the temporal transitions. The boolean function
Rt(s, s

′) can be obtained from the transition relationTR by quantifying over actions. This quantifica-
tion can be translated into a propositional formula using a disjunction (see [5] for a similar approach to
boolean quantification). The set ofreachablestates is also needed by the algorithm: the setW of reach-
able global states can be expressed symbolically by a propositional formula, and it can be computed as
the fix-point of the operatorτ(Q) = I(s) ∨ ∃s′(Rt(s

′, s) ∧ Q(s′)). The fix-point ofτ can be computed
by iterating fromτ(∅) as standard (see [5]).

The algorithmSAT (ϕ) presented below computes the set of global states (expressed as a proposi-
tional formula) in which a formulaϕ holds, denoted by[[ϕ]]. The following are input parameters for the
algorithm:

- the propositional variables(v1, . . . , vN) and(w1, . . . , wM) for states and actions;
- the functionV(p) returning the set of global states in whichp holds.
- the set of initial statesI, encoded as a propositional formula;
- the set of reachable statesW , encoded as a propositional formula;
- the boolean functionRt encoding the temporal transition;

10 Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . .

- n boolean functions encoding the accessibility relations∼i;
- n boolean functions encoding the accessibility relations∼O

i .
The algorithm is as follows:

SAT (ϕ) {

ϕ is a proposition: returnV(ϕ);

ϕ is¬ϕ1: returnG \ SAT (ϕ1);

ϕ is ϕ1 ∧ ϕ2: returnSAT (ϕ1) ∩ SAT (ϕ2);

ϕ is EXϕ1: returnSATEX(ϕ1);

ϕ is E(ϕ1Uϕ2): returnSATEU(ϕ1, ϕ2);

ϕ is EGϕ1: returnSATEG(ϕ1);

ϕ is Kiϕ1: returnSATK(ϕ1, i);

ϕ is K̂j

iϕ1: returnSATKH(ϕ1, i, j);

ϕ isOiϕ1: returnSATO(ϕ1, i);

ϕ is EΓϕ1: returnSATE(ϕ1, Γ);

ϕ is DΓϕ1: returnSATD(ϕ1, Γ);

ϕ is CΓϕ1: returnSATC(ϕ1, Γ);

}

In the algorithm above,SATEX, SATEG, SATEU are the standard procedures for CTL model check-
ing [11], in which the temporal relation isRt and, instead of temporal states, global states are consid-
ered. We refer to [21] for the definition of the proceduresSATK(ϕ, i), SATKH(ϕ1, i, j), SATO(ϕ, i),
SATE(ϕ,Γ), SATD(ϕ,Γ), andSATC(ϕ,Γ). The algorithmSAT can be used to verify whether or not
a formulaϕ holds in a model by comparing two sets of states: the setSAT (ϕ) and the set of reachable
statesW . As sets of states are expressed asOBDDs, verification in a model is reduced to the comparison
of theOBDDs forSAT (ϕ) and forW .

5. Dining Cryptographers: modelling, encoding and experimental results

5.1. Protocol description

Anonymous broadcasting of information is an important issue in security. The Dining Cryptographers
(DC) protocol is a protocol to maintain anonymity in broadcasted information. It was introduced by
D. Chaum. The original wording from [4] is reported below.

”Three cryptographers are sitting down to dinner at their favorite three-star restaurant. Their waiter
informs them that arrangements have been made with the maitre d’hotel for the bill to be paid anony-
mously. One of the cryptographers might be paying for dinner, or it might have been NSA (U.S. National
Security Agency). The three cryptographers respect each other’s right to make an anonymous payment,
but they wonder if NSA is paying. They resolve their uncertainty fairly by carrying out the following
protocol:

Each cryptographer flips an unbiased coin behind his menu, between him and the cryptographer
on his right, so that only the two of them can see the outcome. Each cryptographer then states aloud
whether the two coins he can see–the one he flipped and the one his left-hand neighbor flipped–fell on

Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . . 11

the same side or on different sides. If one of the cryptographers is the payer, he states the opposite
of what he sees. An odd number of differences uttered at the table indicates that a cryptographer is
paying; an even number indicates that NSA is paying (assuming that dinner was paid for only once). Yet
if a cryptographer is paying, neither of the other two learnsanything from the utterances about which
cryptographer it is.”

The same protocol can be run also for a number of cryptographers greater than three (see [4]). In
line with literature in security here we consider a variation of the protocol in which we assume that some
cryptographers may be faulty (or may deliberately be tryingto break the protocol). In particular, we
allow them to say the opposite of what they are supposed to, i.e., they can choose to behave correctly or
to cheat when announcing the values of the coins they see. Thenew protocol is called Cheating Dining
Cryptographers (CDC) protocol. In the next section we discuss encoding and verification of this protocol.

5.2. Encoding of the CDC protocol

In this section we model the protocol differently from what presented in [16, 10, 22]. While the for-
malism of interpreted systems is used there, here we decouple the transitions to a finer level, and use
asynchronously communicating automata. This descriptionis more convoluted and less intuitive, but as
we show below it offers considerable advantages in terms of efficiency. It further allows to present a
comparison of different approaches for its verification.

To formalise the protocol we assume that all the events such as coin tosses, determining who is
paying and the utterances of the cryptographers can occur inturn, rather then simultaneously. Moreover,
instead of enumerating all the possible outcomes of coins tosses, etc., we generate these implicitly using
automata that execute independently, and finally synchronizing in order to communicate the result. The
aim of the DC protocol is to assure that at the end of the run every cryptographer knows whether it was
the NSA or one of cryptographers who paid for dinner. Furthermore, if a cryptographer paid, then none
of the other cryptographers knows who it was. In the case of CDC protocol we add an assumption that
the above properties hold only when all agents behave correctly.

Concretely, we proceed as follows. In the general case, there aren1 andn2 automata modelling
cheating and honest cryptographers, respectively. An automaton for the honest cryptographerAi (i =
n1 + 1, . . . , n1 + n2) has5 states with the meaning intuitively explained by their labels: 0 (the initial
state),seeEquali, seeDifferenti, saidEquali, and saidDifferenti . If the cryptographer can cheat, then
the automatonAi (i = 1, . . . , n1) has two additional states:lieEquali and lieDifferenti. The above
mentioned automata model what every cryptographer says depending on the coins he sees.

Moreover, there aren = n1 + n2 automataAi (i = n + 1, . . . , 2n) determining who is paying for
the dinner. Each of them has three states:0 (the initial state),paidi−n, andnotPaidi−n. These automata
synchronize in order to select at most one cryptographer whopays: this automaton moves to the state
paid, whereas the remaining automata reach the statenotPaid. In particular, if the NSA is paying, all
the automataAi (i = n + 1 . . . , 2n) reach the statenotPaidi−n. After determining who pays, every
automaton communicates the outcome to the respective cryptographer.

Furthermore, we introducen automataAi (i = 2n + 1, . . . , 3n) that model flipping coins. Each
of them has three states:0 (the initial state),headi−2n, and taili−2n. These automata first determine
the result of the flipping, independently of other automata,and next they synchronise with the appro-
priate automata what corresponds to communicating the outcome to cryptographers – as a result, every
cryptographer enters the stateseeEqualor seeDifferent.

12 Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . .

Finally, we have one automatonA3n+1 which models the counter of “different” among the utterances.
This automaton also starts from the initial state0 and then in turn registers what the cryptographers said
and how many differences currently there are. In order to do this, it synchronises with the automata
modelling cryptographers; it terminates either in the state evenor odd.

The total number of the automata is3n + 1. We set all the states of automata to be green with the
exception of the stateslieEquali andlieDifferenti (i = 1, . . . , n1).

An instance of the protocol with two honest and one cheating cryptographer is pictured in Figures
2–6. The network consists of10 automata: three representing which coins cryptographers can see and
what they say (Fig. 4 and 5), three determining who pays (Fig.2), three modelling the tosses (Fig.
3), and one playing the role of the counter of “different” in utterances (Fig. 6). The above automata
are composed into the product automatonA with the initial states0 = 〈0, 0, 0, 0, 0, 0, 0, 0, 0, 0〉. The
global actions, the global states, and the transition relation are built according to Definition 2.2. The
automatonA is turned into the modelM with a valuation functionV defined over a set of the propositions
PV = {paid1, paid2, paid3, even, odd} as follows:

• paidi ∈ V((l1, . . . , l10)) iff l3+i = paidi, for i = 1, 2, 3,

• even ∈ V((l1, . . . , l10)) iff l10 = even,

• odd ∈ V((l1, . . . , l10)) iff l10 = odd.

Furthermore, we introduce a set of three agentsAgt = {1, 2, 3} representing the three cryptographers:
one cheating and two honest. The behaviour of every agent (cryptographer) is modelled by the following
automata: one determining what he can see and say, one determining whether he pays, two modelling
tosses, and one modelling the counter. So, the functionObs is defined as follows:

• Obs(1) = {1, 4, 7, 8, 10},

• Obs(2) = {2, 5, 8, 9, 10},

• Obs(3) = {3, 6, 7, 9, 10}.

We now present a possible computation of the system. At the beginning, the automata modelling tosses
execute the actionsh1, h2, h3 in turn. These actions set the random results of coin tosses.Therefore, after
three steps the global states3 = 〈0, 0, 0, 0, 0, 0, head1 , head2, head3, 0〉 is reached. Next, the automata
determining who pays for dinner execute the synchronised action s0 indicating that the agency pays, so
the global state of the model iss4 = 〈0, 0, 0, notPaid1 , notPaid2, notPaid3, head1, head2, head3, 0〉.
Next, the cryptographers see the results of coin tosses and each of them says whether he sees equal or dif-
ferent sides of coins. Finally, the counter counts the number of differences. Assuming that the cheating
cryptographer does not cheat in this run, the final state of this scenario, after executing13 transitions, is
〈saidEqual1, saidEqual2, saidEqual3, notPaid1, notPaid2, notPaid3, head1, head2, head3, even〉.
In the general case ofn cryptographers, the maximum number of fired transitions is equal to4n + 1.
This number is calledthe maximal depth of the model.

Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . . 13

Figure 2. The automataA4, A5, A6 determining
who pays for dinner Figure 3. The automataA7,A8,A9 modelling tosses

Figure 4. The automataA2, A3 modelling what the honest cryptographers can see and say

Figure 5. The automatonA1 modelling what the cheating
cryptographer can see and say

Figure 6. The automatonA10 modelling the
counter of differences in the utterances

14 Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . .

Symbol Formula Model Valid

Form1 AG(odd ∧ ¬paid1 ⇒ K1(
∨

i=2,...,n paidi)) MDCn Yes

Form2 AG(odd ∧ ¬paid1 ⇒
∨

i=2,...,n K1(paidi)) MDCn No

Form3 AG(¬paid1 ⇒ K1(
∨

i=2,...,n paidi)) MDCn No

Form4 AG(even ⇒K̂1
n(

∧

i=1,...,n ¬paidi)) M1
CDCn

Yes

Table 1. The tested formulae

5.3. Experimental results

In this section we present the verification results for several properties of the protocols DC and CDC
– for n agents. The models are denotedMDCn andM1

CDCn
respectively, the latter including only one

cheating cryptographer. The presented tests were performed on a workstation equipped with the AMD
Athlon XP+ 2400 MHz processor and 2 GB RAM running under Fedora Linux.

5.3.1. BMC: Verifying CDC with Ver ICS

The verification system VerICS has been used to perform the experiments with BMC. VerICS [6, 17]
is a verification tool for real-time and multi-agent systems. It offers three complementary methods of
model checking: SAT-based Bounded Model Checking (BMC), SAT-based Unbounded Model Checking
(UMC), and an on-the-fly verification while constructing abstract models of systems. The theoretical
background for its implementation has been presented in several papers [7, 19, 25].

All the tested formulae are listed in Table 1. In order to provide a better intuition behind the properties
they express, the formulas are given in the universal form. However, notice that BMC handles universal
formulae indirectly by looking for counterexamples to their negations (i.e., the existential formulae). The
results of verification are presented in Table 2 where the number of cryptographers (n), the length of the
symbolic paths (k), the time and the memory used for BMC translations (BMC[sec], BMC[MB]) and
the time of SAT verification (SAT[sec]) as well as the number of the generated variables (Vars) and the
clauses (Clauses) are given.

The first three properties are checked for the DC protocol, i.e., without cheating cryptographers. The
formula Form1 expresses Chaum’s property which states that always when the number of differences
is odd and the first cryptographer has not paid for the dinner,then he knows that another cryptographer
paid for dinner. The formula¬Form1 has been tested over two symbolic paths.

The formulaForm2 states that always when the number of differences is odd and the first cryptog-
rapher has not paid for dinner, then he knows the cryptographer who paid for dinner. This formula is
obviously not true in the model because, following the protocol, none of the cryptographers can possess
such an information. Ifodd holds, then the first cryptographer knows that one of the cryptographers has
paid but he does not know which one. In this case the number of symbolic paths is equal ton.

The formulaForm3 states that it is always true that if the first cryptographer has not paid for dinner,
then he knows that some other cryptographer pays. Since thisproperty is true only if the number of
differences is odd, the formula is not true in the model. In this case one symbolic path suffices to check
that the formula¬Form3 is true. Moreover this property can be checked on a very smalldepth of the
symbolic path. This example shows that BMC is very powerful in such cases.

Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . . 15

Formula n k BMC[sec] BMC[MB] SAT[sec] Vars Clauses

3 13 0.69 7.06 267.67 21922 67855

Form1 4 17 1.33 9.80 3010.89 40107 60200

5 21 2.11 13.45 19729.38 62637 194244

6 25 3.08 19.25 87224.75 90959 281919

3 13 1.5 10.53 84.98 44450 140017

Form2 4 17 5.19 26.41 730.72 139015 442119

5 21 13.59 58.18 4019.71 335877 1070691

6 25 31.1 123.00 31675.79 706087 2250907

100 1 3.75 22.17 0.12 96561 284528

Form3 500 1 109.16 436.09 3.98 2082111 6220764

1000 1 499.20 1889.8 19.34 8164166 24441422

3 13 0.72 7.19 1602.18 23050 71323

Form4 4 17 1.40 10.56 30979.78 41815 129693

5 21 2.19 14.14 106624.84 65038 201664

Table 2. The results of verification of DC and CDC using VerICS

The formulaForm4 says that then-th cryptographer knows that always when the first cryptographer
behaves correctly and the number of differences is even, then none of the cryptographers is a payer.
Unlike the other properties it is verified in the model with one cheating cryptographer. Observe that
in such a model the formulaAG(even ⇒ Kn(

∧

i=1,...,n ¬paidi)) is not valid since the even number

of differences does not ensure that NSA paid for dinner. Therefore, the operator̂K1
n is used instead of

Kn in Form4. Now, the formulaK̂1
n(

∧

i=1,...,n ¬paidi) expresses that agentn knows that none of the
cryptographers paid provided the agent1 does not cheat. This change makes the whole property true.
The formula¬Form4 has been tested on two symbolic paths of the maximal length (i.e., equal to the
maximal depth of the model).

We should underline that BMC method is usually applied to checking satisfiability of existential
formulae, i.e., for checking that a universal formula does not hold. In the present case, however, since all
the computations of CDC model are finite, checking validity of universal formulae is also possible. But,
such tests must be performed on the whole model (in particular on the paths of maximal length), thereby
invalidating the main BMC idea of finding counter-examples without exploring the whole model. This
is the main cause of a longer time of verification for the givenproperties.

5.3.2. OBDD: Verifying CDC with MCMAS

Now, we present the experimental results obtained withMCMAS – a tool that implements the OBDD-
based algorithms presented in Subsection 4.2.MCMAS is released under the terms of the GNU General
Public License (GPL) and it is available for download [20].

In MCMAS, multi-agent systems are described using the language ISPL(Interpreted Systems Pro-

16 Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . .

Agent SampleAgent

Lstate = {s0,s1,s2,s3};

Lgreen = {s0,s1,s2};

Action = {a1,a2,a3};

Protocol:

s0: {a1};

s1: {a2};

s2: {a1,a3};

s3: {a2,a3};

end Protocol

Ev:

s2 if ((AnotherAgent.Action=a7);

s3 if Lstate=s2;

end Ev

end Agent

Figure 7. ISPL example

gramming Language). Figure 7 gives a short example of this language. We refer to the files available
online [20] for the full syntax of ISPL. Formulae to be checked are provided at the end of the specification
file, using an intuitive syntax.

A given network of communicating automata can be encoded using the language ISPL by associating
each automaton to an agent (in the sense ofMCMAS); synchronisation is achieved inMCMAS using the
appropriate evolution function for the agents.MCMAS can implement the functionObs for a network of
automata by taking the distributed knowledge of a set of automata (encoded as agents). The encoding
of the protocol of the dining Cryptographers using a networkof automata, as presented in the previous
Section, is available for download [20].

Following standard conventions, we define the size of a system as|W | + |R|, where|W | is the size
of the state space and|R| is the size of the relations. In our case, we define|W | as the number all the
possible combinations of local states and actions.

Experimental results for the verification ofM1
CDCn

are reported in Table 3. Differently from the
SAT-based Bounded Model Checking techniques presented above, time results for model checking using
OBDDs are not affected by the structure of a formula being verified. Typically, the time required to
execute the algorithm presented in Figure 4.2 is a fraction (in the order of 0.1% - 0.5%) of the time
required for the construction of theOBDDs representing the temporal and epistemic relations, the set of
reachable states, etc. For this reason no formula is indicated in the performance results of Table 3 — the
statistics reported refer to the verification of all formulas in Table 1. Further, we verified the following:

AG((odd ∧ ¬paid1) → AF(K1(paid2 ∨ paid3) ∧ ¬K1(paid2) ∧ ¬K1(paid3)))

This formula expresses the idea that, if the first cryptographer did not pay for dinner and the number
of “different” utterances is odd, then eventually the first cryptographer knows that either the second or
the third cryptographer paid for dinner; moreover, in this case, the first cryptographer does not know
which of these two is the payer (notice that this formula holds when the first cryptographer is behaving
correctly). Intuitively this entirely captures the specification of the protocol.

Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . . 17

N. Time[sec] Memory[bytes] BDD[vars] |W|

3 1 5281140 53 1.91E+07

4 4 6524788 69 1.48E+09

5 6 7229988 85 1.01E+11

6 424 56056516 101 6.48E+12

7 78 22589412 117 3.92E+14

8 8101 134174996 133 2.29E+16

9 508 39823892 149 1.29E+18

10 4841 60021380 165 7.15E+19

11 991 57448372 181 3.88E+21

Table 3. Experimental results withMCMAS

5.4. Discussion and comparison with existing work

As mentioned at the beginning of Section 2, the protocol of the Dining Cryptographers has been mod-
elled in different ways by other authors [16, 22]. In particular, [16] presents anOBDD-based algorithm
for the verification of a particular class of interpreted systems (synchronous with perfect recall). The
properties are specified in linear time temporal logic extended with knowledge modalities. Their algo-
rithm accepts the class of formulae of the formXk(Kip), whereXk denotes a sequence ofk temporal
next step operatorsX andp is a propositional variable. Meyden and Su show that the problem of model
checking this class of formulae can be reduced to the verification of the equivalence of Boolean formulae,
manipulated usingOBDDs. This methodology is applied to the verification of the protocol of the Dining
Cryptographers. However, the modelling appearing in [16] differs substantially from the modelling pre-
sented in our paper: indeed, in synchronous systems with perfect recall all the information about coin
tosses, utterances, etc., is stored in a special agent, called the environment. The remaining agents do not
have “local” states, but they are only allowed toobservethe environment, and to perform actions based
on their observations. This restriction, together with limiting verification to a particular class of formu-
lae, results in a much smaller encoding. No tool is presentedin [16], but partial experimental results are
provided for the verification of formulae in examples with upto 20 cryptographers.

The toolMCMAS is used in [22] to verify the protocol of the Dining Cryptographers, but exploiting
a different encoding of the example. That encoding models each cryptographer by a single agent, with
an additional agent for the environment. Such an encoding isless efficient than the one we present here,
in that various parameters are repeated for each agent. For instance, the number of utterances is stored
separately in each agent, while the present approach encodes this information with a single automaton
representing the counter. It is clear that while [22] follows the formalism of interpreted systems to
the letter, the efficient decoupling presented here offers speed advantages. This fact is reflected in the
experimental results ofMCMAS: as shown in Table 3, we verified scenarios with up to11 cryptographers,
while the encoding proposed in [22] allowed for the verification of 8 cryptographers only.

The differences with the other approaches can be also discussed at the level of the paper motivation.
While [16] and [22] show that the model checking of multi-agent systems is feasible, in this paper we

18 Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . .

focused on efficiency considerations. The semantics of asynchronous transition systems communicating
via shared actions enforces locality and thus reduces the state spaces. Further, locality enables an efficient
encoding, because Boolean formulas can compactly describecomponents that do not execute shared
actions.

6. Conclusions and future work

In this paper we have presented a scenario of modelling and model checking of the Dining Cryptogra-
phers protocol, in the presence of cheaters. In particular we have compared the performance ofMCMAS

and VerICS using a common representation based on a network of automata.
Our experimental results, summarised in Tables 2 and 3, paint the following picture: first, both

checkers were able to verify a variety of complex formulae correctly and efficiently. Specifically,MCMAS

calculates the (symbolic representation of the) whole model before actually performing the checks. It
proves to be faster for many formulae and enables the verification of the full CTLKD syntax. On the
other hand, the experiments with VerICS confirmed that BMC is in general not complete and performs
best when finding shallow counterexamples. In this case, it can handle really large models. The overall
conclusion coincides with the usual considerations in thatthe OBDD and BMC techniques complement
each other very well.

The presented approach could be further optimised if required: for instance one could reduce the
state space by enforcing a fixed order in the coin tosses. We would expect the experimental results to
benefit from this and from any further optimisation added to the model checkers themselves

While our results are limited to these two model checkers andeach checker may benefit from ad-
ditional optimisation techniques, it seems to us that theseresults may be generalised to the techniques
behind the checkers, i.e., BMC for VerICS andOBDD for MCMAS.

In other words, what we have found is that depending on the model in hand one technique may be
more efficient than the other. To check satisfaction on models up to a size of about1020 it seems that
MCMAS has an advantage. Checking satisfiability ofECTLKD formulae only on large models is clearly
better handled by VerICS.

A further novelty of this paper lies in the analysis of the protocol in terms of deontic, epistemic and
temporal properties (as opposed to temporal properties only). This allows to represent violations (i.e.,
cheating) in the behaviour of the cryptographers in a natural way. When comparing our approaches to
other available in the literature, we find that this considerably simplifies the specifications to be checked
against, while still maintaining the feasibility of the model checking approach. We plan to continue
evaluating this approach by means of other protocols of interest and to pursue ideas resulting from the
novel formalisation of the DC protocol presented here when modelling other security protocols so that
possible efficiency advantages may be replicated.

References

[1] Biere, A., Clarke, E., Raimi, R., Zhu, Y.: Verifying Safety Properties of a PowerPC Microprocessor Using
Symbolic Model Checking without BDDs,Proc. of the 11th Int. Conf. on Computer Aided Verification
(CAV’99), 1633, Springer-Verlag, 1999.

Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . . 19

[2] Bryant, R. E.: Graph-Based Algorithms for Boolean Function Manipulation,IEEE Transactions on Comput-
ers, 35(8), August 1986, 677–691.

[3] Burch, J. R., Clarke, E. M., McMillan, K. L., Dill, D. L., Hwang, L. J.: Symbolic Model Checking:1020

States and Beyond,Information and Computation, 98(2), June 1992, 142–170.

[4] Chaum, D.: The Dining Cryptographers Problem: Unconditional Sender and Recipient Untraceability,Jour-
nal of Cryptology, 1(1), 1988, 65–75.

[5] Clarke, E. M., Grumberg, O., Peled, D.:Model Checking, MIT Press, 1999.

[6] Dembiński, P., Janowska, A., Janowski, P., Penczek, W., Półrola, A., Szreter, M., Woźna, B., Zbrzezny, A.:
VerICS: A Tool for Verifying Timed Automata and Estelle Specifications,Proc. of the 9th Int. Conf. on Tools
and Algorithms for the Construction and Analysis of Systems(TACAS’03), 2619, Springer-Verlag, 2003.

[7] Doroś, A., Janowska, A., Janowski, P.: From Specification Languages to Timed Automata,Proc. of CS&P the
Int. Workshop on Concurrency, Specification and Programming (CS&P’02), 161(1), Humboldt University,
2002.

[8] Emerson, E. A., Clarke, E. M.: Using Branching-Time Temporal Logic to Synthesize Synchronization Skele-
tons,Science of Computer Programming, 2(3), 1982, 241–266.

[9] Fagin, R., Halpern, J. Y., Moses, Y., Vardi, M. Y.:Reasoning about Knowledge, MIT Press, Cambridge,
1995, ISBN 0-262-06162-7.

[10] van der Hoek, W., Wooldridge, M., van Otterloo, S.: Model Checking Knowledge and Time via Local
Propositions: Cooperative and Adversarial Systems, 2004,Submitted.

[11] Huth, M. R. A., Ryan, M. D.:Logic in Computer Science: Modelling and Reasoning about Systems, Cam-
bridge University Press, Cambridge, England, 2000, ISBN Hardback: ISBN 0-521-65200-6, Paperback:
ISBN 0-521-65602-8.

[12] Lomuscio, A., Raimondi, F.: MCMAS: A model checker for multi-agent systems.,Proceedings of TACAS06,
Springer Verlag, March 2006, To appear.

[13] Lomuscio, A., Sergot, M.: Deontic Interpreted Systems, Studia Logica, 75(1), 2003, 63–92.

[14] Lomuscio, A., Sergot, M.: A formalisation of violation, error recovery, and enforcement in the bit transmis-
sion problem,Journal of Applied Logic, 2(1), March 2004, 93–116.

[15] Lowe, G., Roscoe, A. W.: Using CSP to Detect Errors in theTMN Protocol,Software Engineering, 23(10),
1997, 659–669.

[16] van der Meyden, R., Su, K.: Symbolic Model Checking the Knowledge of the Dining Cryptographers,17th
IEEE Computer Security Foundations Workshop, 2004.

[17] W. Nabiałek, A. Niewiadomski, W. Penczek, A. Półrola,and M. Szreter. VerICS 2004: A model checker
for real time and multi-agent systems. InProc. of the Int. Workshop on Concurrency, Specification and
Programming (CS&P’04), volume 170(1) ofInformatik-Berichte, pages 88–99. Humboldt University, 2004.

[18] Penczek, W., Lomuscio, A.: Verifying Epistemic Properties of Multi-Agent Systems via Bounded Model
Checking,Proc. of the 2nd Int. Conf. on Autonomous Agents and Multi-Agent Systems (AAMAS’03), ACM,
July 2003.

[19] Penczek, W., Woźna, B., Zbrzezny, A.: Bounded Model Checking for the Universal Fragment of CTL,
Fundamenta Informaticae, 51(1-2), 2002, 135–156.

[20] Raimondi, F., Lomuscio, A.: MCMAS - A tool for verification of multi-agent systems,
http://www.cs.ucl.ac.uk/staff/f.raimondi/MCMAS/.

20 Kacprzak, Lomuscio, Niewiadomski, Penczek, Raimondi, Szreter / Comparing BDD and SAT based techniques. . .

[21] Raimondi, F., Lomuscio, A.: Verification of multiagentsystems via ordered binary decision diagrams: an
algorithm and its implementation,Proceedings of the Third International Joint Conference onAutonomous
Agents and Multiagent Systems (AAMAS’04)(N. R. Jennings, C. Sierra, L. Sonenberg, M. Tambe, Eds.), II,
ACM, July 2004.

[22] Raimondi, F., Lomuscio, A.: Automatic verification of multi-agent systems by model checking via OBDDs,
Journal of Applied Logic, 2005, To appear in Special issue on Logic-based agent verification.

[23] Visser, W., Havelund, K., Brat, G., Park, S.: Model Checking Programs,Proc. of the 15th IEEE Int. Conf. on
Automated Software Engineering (ASE’00), IEEE Computer Society, 2000.

[24] Woźna, B., Lomuscio, A., Penczek, W.: Bounded Model Checking for Deontic Interpreted Systems,Proc. of
the 2nd Workshop on Logic and Communication in Multi-Agent Systems (LCMAS’04), 126, Elsevier, 2004.

[25] Woźna, B., Penczek, W., Zbrzezny, A.: Reachability for Timed Systems Based on SAT-Solvers,Proc. of the
Int. Workshop on Concurrency, Specification and Programming (CS&P’02), 161(2), Humboldt University,
2002.

