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ABSTRACT
We investigate quantified interpreted systems, a semantics
for multi-agent systems in which agents can reason about
individuals, their properties, and the relationships among
them. We analyse a first-order epistemic language inter-
preted on this semantics and show soundness and complete-
ness of Q.S5n, an axiomatisation for these structures.

1. INTRODUCTION
Modal epistemic logic has been widely studied to rea-

son about multi-agent systems (MAS), often in combina-
tion with temporal modalities. The typical language extends
propositional logic by adding n modalities Ki representing
the knowledge of agent i, as well as other modalities rep-
resenting various mental states (explicit knowledge, beliefs,
etc) and/or the flow of time. The use of modal propositional
logic as a specification language requires little justification:
it is a rather expressive language, well-understood from a
theoretical point of view.

Still, it is hard to counterargue the remark, often raised
from practitioners in Software Engineering, that quantifica-
tion in specifications is so natural and convenient that it
really should be brought explicitly into the language. Even
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when working with finite domains of individuals, without
quantification one is forced to introduce ad-hoc propositions
to emulate basic relations between individuals (as to express
specifications like “the child of process p can send a message
to all the processes that are allowed to invoke p”). In open
MAS individuals may appear and disappear in the system
at run-time, making the case for quantification even more
compelling. Additionally, in a quantified modal language
epistemic operators may be combined with quantifiers to
express concepts such as de re/de dicto knowledge.

However, the use of first-order modal logic in MAS spec-
ifications is normally frown upon by theoreticians. Why
should we use an undecidable language when a decidable one
does the job already? Is the price that quantification brings
in justified? While these objections are certainly sensible,
we believe their strength has been increasingly weakened by
recent progress in the area of MAS verification [8, 12, 13] by
model checking. In the model checking approach [1] we do
not check whether a formula representing a specification is
satisfiable in some model based on the completeness class,
but simply whether a formula is true on the model represent-
ing all possible evolutions of the system. While the former
problem is undecidable for first-order modal logic (see [7]),
the latter is decidable at least for some suitable fragments.

This paper takes inspiration from the considerations above
and aims at making progress on the subject of first-order
epistemic logic. The main contribution is the sound and
complete axiomatisation of quantified interpreted systems
(QIS) in Section 5. QIS are an extension to first order of
Interpreted Systems semantics, the usual formalism for epis-
temic logic in MAS [4]. While we are not aware of complete-
ness results of this nature on the subject, quantified modal
logic (QML) has been discussed in MAS settings before. In
[4] QML and its Kripke semantics are briefly discussed. In
[10] the authors introduce a quantified logic of belief with
doxastic modalities indexed to terms of a first-order lan-
guage. In [14] a quantified temporal epistemic logic is dis-
cussed. On related subjects, in [2, 3] Cohen and Levesque
develop a first-order logic of belief and action with quantifi-
cation over agents, although the semantics is not given in
terms of computationally grounded structures [15].

In all works above completeness is not tackled. This may
be due to the technical difficulties associated with QML and
the relatively poor status of the metatheoretical investiga-
tion in comparison with the propositional case. We hope
the present contribution will be the first in a line of work in
which a systematic analysis of these logics is provided.



2. SYSTEMS OF GLOBAL STATES
This paper is primarily concerned with the representation

of knowledge in MAS, not their temporal evolution. Given
this, we adopt the “static” perspective on the systems of
global states [11], rather than their “dynamic” version [4].
More formally, consider a set Li of local states li, l

′
i, . . ., for

each agent i ∈ A, and a set Le containing the states of the
environment le, l

′
e, . . .; then define a system of global states

as follows:

Definition 1. A system of global states S - or SGS in
short - is a pair 〈S,D〉 such that S ⊆ Le×L1× . . .×Ln and
D is a non-empty domain of individuals.

For s = 〈le, l1, . . . , ln〉 ∈ S, si is equal to li, for i ∈ A. We
denote by SGS the class of the systems of global states.

Remarks: This definition of SGS is grounded on two as-
sumptions. First, the domain D of individuals is the same
for every agent i, so all the agents reason about the same
objects. This choice is justified by the external account of
knowledge adopted in the framework of interpreted systems.
Second, the domain D is assumed to be the same for every
global state, i.e. no individual appears nor disappears in
moving from one state to another. Again, this is also con-
sistent with the external account of knowledge. We discuss
further options in Section 6. Finally, note that it can be the
case that A ⊆ D. This means that the agents can reason
about themselves, their properties and relationships.

3. SYNTAX AND SEMANTICS
First-order multi-modal formulas are defined on an alpha-

bet containing the variables x1, x2, . . ., the n-ary functors
fn
1 , f

n
2 , . . ., and the n-ary predicative constants Pn

1 , P
n
2 , . . .,

for n ∈ N, the identity =, the propositional connectives ¬
and →, the universal quantifier ∀ and the epistemic opera-
torsKi, for every i ∈ A. Terms and formulas in the language
Ln are defined as follows:

t ::= x | fk(t1, . . . , tk)
φ ::= P k(t1, . . . , tk) | t = t′ | ¬φ | φ→ ψ | Kiφ | ∀xφ

Remarks: The symbols ⊥, ∧, ∨, ↔ and ∃ are defined
in the standard way. By t[~y/~t] (resp. φ[~y/~t]) we denote
the term (resp. formula) obtained by simultaneously sub-
stituting some, possibly all, free occurrences of y1, . . . , yn in
t (resp. φ) with t1, . . . , tn, renaming bounded variables if
necessary. By V ar we denote the set of variables in Ln.

We interpret the language Ln on a system of global states
S by means of a function I mapping the syntactic features
of Ln to the elements of S.

Definition 2. Given an SGS S, a quantified interpreted
system - or QIS in short - is a pair P = 〈S, I〉 such that
I(fk) is a k-ary function from Dk to D; for every s ∈ S,
I(P k, s) is a subset of Dk and I(=, s) is the equality on D.

Note that functors are interpreted rigidly. Let σ be an
assignment, i.e. any function from V ar to D, the valuation
Iσ(t) of a term t is inductively defined as follows:

Iσ(y) = σ(y)
Iσ(fk(t1, . . . , tk)) = I(fk)(Iσ(t1), . . . , I

σ(tk))

A variant σ
`

x
a

´
of an assignment σ differs from σ at most on

x and assigns element a ∈ D to x.

Definition 3 (Satisfaction). The satisfaction relation
|= for φ ∈ Ln, s ∈ P and assignment σ is defined as follows:

(Pσ, s) |= P k(t1, . . . , tk) iff 〈Iσ(t1), . . . , I
σ(tk)〉 ∈ I(P k, s)

(Pσ, s) |= t = t′ iff Iσ(t) = Iσ(t′)
(Pσ, s) |= ¬ψ iff (Pσ, s) 6|= ψ
(Pσ, s) |= φ→ ψ iff (Pσ, s) 6|= φ or (Pσ, s) |= ψ
(Pσ, s) |= Kiψ iff si = s′

i implies (Pσ, s′) |= ψ

(Pσ, s) |= ∀xψ iff for every a ∈ D, (Pσ(x
a), s) |= ψ

The truth conditions for formulas containing ⊥, ∧, ∨, ↔, ∃
are defined as usual. A formula φ in Ln is true at a state s
iff it is satisfied at s by every assignment σ; φ is valid on a
QIS P iff it is true at every state in P; φ is valid on a SGS
S iff it is valid on every QIS on S; φ is valid on a class C of
SGS iff it is valid on every SGS in C.

4. EXPRESSIVENESS
Note that in the language Ln we can express an agent’s

knowledge of properties and relationships among individu-
als. Consider the following specifications:

1. agent a knows that for every process x, agent b knows
that there exists a precondition y, which has to be
fulfilled in order for x to start.

2. agent a knows that there exists an input x for which
agent b does not know that every computation y on
input x fails.

3. agent c knows that not every agent is identical to d; in
particular, she knows that she is not identical to d.

These statements can be formalised as follows:

1. Ka∀x(Proc(x) → Kb∃y(Pre(y) ∧ (St(x) → Fulfil(y))))

2. Ka∃x(Input(x) ∧ ¬Kb∀y(Comp(y) → Fails(x, y)))

3. Kc¬∀x(Ag(x) → x = agent-d)∧Kc(agent-c 6= agent-d)

Clearly, in this framework one can model the knowledge
agents have about themselves. In addition, we retain all the
expressive power of propositional epistemic logic. Further-
more, we can now express the de re/de dicto distinction,
that is, the difference between knowing something of some-
one and knowing that someone is something. For instance,
when we use an informal specification to say that, as far as
a security controller is concerned, every user is authorised to
access the site, one could interpret this as (hence implement
it!) either de dicto, i.e. descriptively:

a) the security controller knows that every user is autho-
rised to access the site,

or de re, i.e. prescriptively:

b) for every user, the security controller knows that he is
authorised to access the site.

These two readings express different concepts. While these
cannot be easily separated by means of a propositional lan-
guage, in Ln this is succintly done as follows:

a) KSecCont∀x(Auth-user(x) → Access(x))

b) ∀x(Auth-user(x) → KSecContAccess(x))



The difference in meaning between the two specifications
is clear. For instance, the security controller not granting
access to an authorised user u is a violation of (b), but not
of (a), if he does not regard u to be an authorised user.

5. AXIOMATISATION
The system Q.S5n on the language Ln is a first-order

multi-modal version of the normal propositional system S5.
Hereafter we list its axioms; note that ⇒ is the inference
relation between formulas.

Definition 4. The system Q.S5n on Ln contains the fol-
lowing schemes of axioms and inference rules:

Taut every classic propositional tautology
Dist Ki(φ→ ψ) → (Kiφ→ Kiψ)
T Kiφ→ φ
4 Kiφ→ KiKiφ
5 ¬Kiφ→ Ki¬Kiφ
MP φ→ ψ, φ⇒ ψ
Nec φ⇒ Kiφ
Ex ∀xφ→ φ[x/t]
Gen φ→ ψ[x/t] ⇒ φ→ ∀xψ, x not free in φ
Id t = t
Func t = t′ → (t′′[x/t] = t′′[x/t′])
Subst t = t′ → (φ[x/t] → φ[x/t′])

It is easy to check that every axiom in Q.S5n is valid
on any system of global states and its rules preserve valid-
ity. We can also show that the axioms and inference rules
in Q.S5n are sufficient to prove all the validities on SGS.
This result is obtained by extending the completeness proofs
for first-order modal logic in [6, 9]. By combining together
soundness and completeness we obtain the main result of
this paper.

Theorem 1. A formula φ is valid on the class SGS of
systems of global states iff φ is provable in Q.S5n.

6. CONCLUSIONS
It is clear that first-order modal formalisms offer expres-

sivity advantages over propositional modal ones. However,
the specialised literature has so far fallen short of a deep
and systematic analysis of the machinery, even in the case
of static epistemic logic.

In this paper we believe we have made a first attempt
in this direction: the axiomatisation presented shows that
the popular system S5n extends naturally to the first-order
case. In carrying out this exercise we tried to remain as
close as possible to the original epistemic logic’s semantics
of interpreted systems, so that fine grained specifications of
MAS can be expressed as recent work on model checking
interpreted systems demonstrates [5, 13].

Different extensions of the present framework seem pursu-
ing. First of all, it seems interesting to relax the assumption
on the domain of quantification and admit a different do-
main D(s), for every state s. Further, we could assume a
different domain of quantification Di(s) for every agent i in
a state s. It would also be of interest to explore the com-
pleteness issues resulting from term-indexing of the epis-
temic operators [10]. In an orthogonal dimension to the
above another significant extension would be to add tem-
poral operators to the formalism. This would pave the way

for an exploration of axiomatisations for temporal/epistemic
logic for MAS.

7. REFERENCES
[1] E. Clarke, O. Grumberg, and D. Peled. Model

Checking. MIT Press, Cambridge, Massachusetts,
1999.

[2] P. Cohen and H. Levesque. Intention is choice with
commitment. Artificial Intelligence, 42:213–261, 1990.

[3] P. R. Cohen and H. J. Levesque. Rational interaction
as the basis for communication. In P. R. Cohen,
J. Morgan, and M. E. Pollack, editors, Intentions in
Communication. MIT Press, Cambridge, MA, 1990.

[4] R. Fagin, J. Halpern, Y. Moses, and M. Vardi.
Reasoning about Knowledge. MIT Press, Cambridge,
1995.

[5] P. Gammie and R. van der Meyden. Mck: Model
checking the logic of knowledge. In R. Alur and
D. Peled, editors, CAV, volume 3114 of Lecture Notes
in Computer Science, pages 479–483. Springer, 2004.

[6] J. Garson. Quantification in modal logic. In Handbook
of Philosophical Logic, volume 2, pages 249–307. D.
Gabbay and F. Guenthner Eds., 1984.

[7] I. M. Hodkinson, F. Wolter, and M. Zakharyaschev.
Decidable fragment of first-order temporal logics.
Ann. Pure Appl. Logic, 106(1-3):85–134, 2000.

[8] W. Hoek and M. Wooldridge. Tractable multiagent
planning for epistemic goals. In M. Gini, T. Ishida,
C. Castelfranchi, and W. L. Johnson, editors,
Proceedings of AAMAS’02, pages 1167–1174. ACM
Press, 2002.

[9] G. E. Hughes and M. J. Cresswell. A New Introduction
to Modal Logic. Routledge, New York, 1996.

[10] A. Lomuscio and M. Colombetti. QLB: a quantified
logic for belief. In J. Müller, M. Wooldridge, and
N. Jennings, editors, Proceedings of ATAL-96, volume
1193 of Lecture Notes in AI. Springer-Verlag,
Heidelberg, 1996.

[11] A. Lomuscio and M. Ryan. On the relation between
interpreted systems and kripke models. In Springer
lecture notes in AI, volume 1441, 1997.

[12] J.-J. C. Meyer and W. Hoek. Epistemic Logic for AI
and Computer Science, volume 41 of Cambridge
Tracts in Theoretical Computer Science. Cambridge
University Press, 1995.

[13] F. Raimondi and A. Lomuscio. Automatic verification
of multi-agent systems by model checking via OBDDs.
Journal of Applied Logic, 2005. To appear in Special
issue on Logic-based agent verification.

[14] M. Wooldridge. The logical modelling of computational
multi-agent systems. PhD thesis, University of
Manchester, Faculy of Technology, 1992.

[15] M. Wooldridge. Computationally grounded theories of
agency. In E. Durfee, editor, Proceedings of ICMAS,
International Conference of Multi-Agent Systems,
pages 13–22. IEEE Press, 2000.


