
Towards verifying contract regulated service composition

Alessio Lomuscio, Hongyang Qu, Monika Solanki

Department of Computing, Imperial College London

{a.lomuscio, hongyang.qu, m.solanki}@imperial.ac.uk

Abstract

We report on a novel approach to (semi-)automatically

compile and verify contract-regulated service compositions.

We specify web services and the contracts governing them

as WSBPEL behaviours. We compile WSBPEL behaviours

into the specialised system description language ISPL, to be

used with the model checker MCMAS to verify behaviours

automatically. We use the formalism of temporal-epistemic

logic suitably extended to deal with compliance/violations

of contracts. We illustrate these concepts using a motivat-

ing example whose state space is approximately 106 and

discuss experimental results.

1 Introduction

Web services (WS) are now considered one of the key

technologies for building new generations of digital busi-

ness systems. Industrial strength distributed applications

can be built across organisational boundaries using services

as basic building blocks. When services are combined,

a significant challenge is to regulate the business interac-

tions between them. In an environment where previously

unknown services are dynamically discovered and binded,

their composition is usually underpinned by binding agree-

ments or “contracts”. Should a contract be broken by one of

the parties, “legal remedies” may be applicable in the form

of penalties, additional rights to some party, and, possibly,

additional penalties with respect to third parties.

Conventionally, contracts have been defined and inter-

preted using natural languages. In electronic business en-

vironments, new formal models and tools are needed to

enable the successful enforcement of dynamic contractual

agreements between services. While designing a contract-

regulated composition, an important aspect is the rigorous

analysis of possible execution behaviours of individual ser-

vices as well as the overall behaviour of the composition.

A system made of few localised services may only inter-

act in a small number of ways governed by a limited set of

contract clauses. However when several subsystems coordi-

nate in an open environment, the contracts binding them are

non-trivial and complex, making it difficult to forsee all the

possible executions. Additionally, while trying to comply

to their respective contractually defined behaviours, certain

components may fail, some may be incapacitated to pro-

vide the services in the expected timeline, and others still

may have to prioritise certain requests.

In this paper, we propose a novel approach towards the

verification of services, where transactions are controlled by

binding electronic contracts. Verification of WS is an active

topic of research (e.g., see [16, 18]). However it has so far

been concerned with checking safety and liveness proper-

ties only. Our proposed framework, builds upon existing

work in the domain of multi agent systems (MAS) [17, 1].

We take the view that a web service can be modelled as an

“agent” [5]. When WS are phrased as a contract-regulated

MAS, several properties become worth studying, including

various notions of correctness and violations of the con-

tracts during a run, the evolution of the agents’ knowledge

about themselves, the contracts and the expected peers’ be-

haviours, etc.

The specification and analysis of agent behaviour in a

MAS has been widely explored. Several formal models

have been investigated to specify formally and unambigu-

ously the behaviour of the system. Many of these are based

on modal logic, including temporal, epistemic, and deotic

logic. Developments in verification of MAS via model

checking techniques [15, 4, 9] has kept pace with the ad-

vancement in the specification techniques. Along with tem-

poral languages, it is now also possible to verify a variety

of modalities describing the informational and intentional

state of the agents.

The above leads us to explore the verification of contract-

based WS implemented by means of MAS model checkers.

To this end, we propose a verification methodology where

services or “contract parties” (CP) are specified using WS-

BPEL [13]. The contractually correct behaviours for every

CP are also specified in WSBPEL. In our approach, a com-

piler of our design takes as input both these behaviour de-

scriptions, and generates an ISPL program, which is fed to

the symbolic model checker MCMAS for verification.

1

The rest of the paper is organised as follows. In Sec-

tion 2 we briefly introduce WSBPEL, ISPL and MCMAS.

Section 3 introduces a motivating example and some of its

key properties. Section 4 presents our proposed framework.

Section 5 discusses the implementation of the compiler and

Section 6 gives experimental results from verification. We

conclude in Section 7.

2 Preliminaries

2.1 MCMAS and ISPL

MCMAS [11] is a specialised model checker for the veri-

fication of multi-agent systems. It builds on symbolic model

checking via OBDDs as its underlying technique, and sup-

ports CTL, epistemic and deontic logic. The current version

of MCMAS [10] has the following features: (1) Support for

variables of the following types: Boolean, enumeration and

bounded integer. Arithmetic operations can be performed

on bounded integers. (2) Counterexample/witness genera-

tion for quick and efficient display of traces falsifying/satis-

fying properties. (3) Support for fairness constraints. This

is useful in eliminating unrealistic behaviours. (4) Support

for interactive execution mode. This allows users to step

through the execution of their model.

MCMAS uses ISPL as its input language. A system en-

coded in ISPL is composed of the environment e and a set of

agents A = {1, . . . , n}. Each agent i ∈ A has a set of local

states Li and a set of local actions Acti. The protocol func-

tion of agent i, Pi : Li → 2Acti , defines for each local state

li ∈ Li the set of actions that are allowed to be executed in

li. Similarly, the environment has its local states Le, local

actions Acte and protocol function Pe. The transition rela-

tion among local states of agent i is defined by the evolution

function Evi : Li × Act1 × · · · × Actn × Acte → Li. The

definition of Evi suggests that the local actions of an agent

can be observed by other agents. The evolution function

Eve of the environment is defined in the same way.

To reason about the behaviours of agent i with respect to

correctness [12], Li is further partitioned into two disjoint

sets: a non-empty set Gi of allowed (“green”) states and a

set Ri of disallowed (“red”) states. In this paper, we use

green states to denote the behaviours in compliance with

contracts and red states to denote violations, by means of

temporal epistemic properties.

ISPL allows user defined atomic propositions over

global states of the system. A global state is composed of a

local state from every agent and the environment. The logic

formulae to be checked by MCMAS are defined over the

atomic propositions.

2.2 WSBPEL

WSBPEL [13] is a popular and de facto industrial stan-

dard for describing service composition. The specification

has been elaborately explained in several web service based

literature [13]. is highly recommended.

WSBPEL defines a model and an XML based gram-

mar for the orchestration of executable and abstract busi-

ness processes. A BPEL process defines the interaction be-

tween partners. The specification provides the control logic

to coordinate arbitrarily complex web services, defined in

WSDL. A BPEL process can interact synchronously or

asynchronously with its partners, i.e., its clients, and with

the services the process orchestrates.

The building blocks for a BPEL process are the descrip-

tions of the parties participating in the process, the data that

flows through the process and the activities performed dur-

ing the execution of the process. Some examples of activ-

ities include “receive”, “reply”, “assign”, “sequence” and

“wait”. WSBPEL also introduces systematic mechanisms

for dealing with business exceptions and processing faults.

Moreover,WSBPEL introduces a mechanism to define how

individual or composite activities within a unit of work are

to be compensated in cases where exceptions occur or a

partner requests reversal.

3 A Motivating Case Study

In this section we present a composition of services, reg-

ulated as a pre-defined contract. The case study was first

presented in earlier work on verifying service composition

with MCMAS [1]. Here, we focus on the automatic compi-

lation of services from WSBPEL into ISPL.

In the example, the participating contract parties, as

illustrated in Figure 1, comprise: a principal software

provider (PSP), a software provider (SP), a software

client (C), an insurance company (I), a testing agency (T),

a hardware supplier (H), and a technical expert (E). The

high-level workflow of the composition is defined as fol-

lows: Client C wants to get a software developed and de-

ployed on hardware supplied by H . To deploy the soft-

ware, the technical expert E is needed. Components of the

software are provided by different software providers. We

consider two software providers here: PSP and SP . The

components need to be integrated by the providers before

the software is delivered to C.

The software integration is carried out by PSP , when

SP delivers its component. PSP and SP twice update

each other and C about the progress of the software devel-

opment. Should the client like any changes in the software,

he can request them before the second round of updates.

Any change suggested by the client after the second update

is considered a violation and the client is charged a penalty.

2

Figure 1. Interaction between various part-

ners in the composition.

PSP ’s obligations:

1. Update SP and C twice about the progress of the software.

2. Integrate the components and send them to T for testing.

3. If components fail, integrate the revised software and send them for

testing.

4. Make payment to SP after successful deployment of software.

C’s obligations:

1. Request changes before the second round of updates.

2. Pay penalty if changes are requested after second round of updates.

3. Make payment to the PSP after every update.

Figure 2. Obligations of Contract parties

The client can recover from this violation by paying the

penalty or by withdrawing the request for changes. If PSP

and SP do not send their updates as per schedule, this is

also considered a violation and they are charged a penalty.

Every update is followed by a payment in part by the client

C to the PSP . Payment to SP is handled by PSP and is

done once the software is deployed successfully.

PSP integrates the components and sends the integrated

component to T for testing. Results from testing are made

available to all the parties, i.e., PSP , SP , and C. If the

integration test fails, the components are revised and tested

again. Components can be revised twice. If the third test

fails, C cancels the contract with PSP . If the testing suc-

ceeds, C invokes I to get the software insured. C then in-

vokes H to order the hardware. Finally C invokes E to

get the software deployed. If the software cannot be de-

ployed then the hardware and the components have to be

re-evaluated. Components can be revised twice. If the third

test fails C always cancels the contract with PSP and H .

Figure 2 illustrates the obligations of the PSP and C.

From the above scenario it can be seen that contracts be-

tween services can be usefully employed to illustrate the no-

tion of correctness in behaviour. Any deviation from the be-

Agent Violation condition Recovery

1 PSP - does not send messages

to SP and/or C in the

first and/or second run of

update.

pay penalty charge

2 - does not send payment

to SP .

no

3 SP - does not send update

messages to PSP or C.

pay penalty charge

4 - does not send its com-

ponents to PSP .

no

5 C - request changes after

second update.

pay penalty charge or

withdraw changes

6 - does not send the pay-

ment to PSP .

no

7 T - does not send the test-

ing report to C, PSP

and/or SP .

no

8 H - does not deliver the

hardware system to C.

no

9 - ignores the deployment

failure.

no

10 E - does not deploy the

software on the hardware

system.

no

11 I - does not process the

claim of C.

no

Figure 3. Agents and their violation condi-

tions.

haviour identified in the contract is considered a violation.

The contract might in some cases also specify mechanisms

for recovering from violations.

The contract between various parties can be violated in

many ways. Figure 3 illustrates informally some of the con-

ditions under which some local violations may occur.

4 Verification framework

In this section we discuss our framework for the verifi-

cation of contracts. Figure 4 illustrates the proposed archi-

tecture. Our approach targets two levels of verification:

• conformance of the behaviour of an individual contract

party to its contractually correct behaviour.

• conformance of the combined behaviour of all the con-

tract parties to the overall contract.

For the sake of clarity in the figure and the paper, we elab-

orate on the components of the architecture and the verifi-

cation methodology, only for contract party C1. Note that a

similar mechanism would be replicated for all the contract

parties in the composition.

1. Natural language contracts: Conventionally con-

tracts are specified in a natural language. A contract

3

Figure 4. Verification architecture

stipulates the obligations of parties entering the con-

tract. It defines behaviours that are considered to be

violation of some obligations, and may outline penal-

ties and/or recovery actions from the violations. For

verification, a conventional contract is encoded as an

e-contract in WSBPEL.

2. Contract party: A contract party (CP) is a service,

that is a first class citizen of the contract regulated

composition. The behaviour of a CP is governed by

the rights, obligations and violations stipulated in the

contract, and agreed to by the CP. The overall fulfill-

ment of a contract depends on the adherence of each

CP in the composition to its specified behaviour. In our

framework, each contract party is an agent with well

defined green and red states corresponding to states

of compliance and violation respectively. Our pro-

posed methodology aims to verify the adherence of

each agent’s behaviour to what has been specified as

contractually correct behavior for the agent.

3. Contract party/agent behaviour: The behaviour of

an agent can be defined in terms of a two-part be-

haviour: all possible behaviours and contractually cor-

rect behaviours. In order to automate the verification,

we encode both these behaviours in BPEL. Note that it

is possible to describe contractually correct behaviours

using a specification language, tailor-made for describ-

ing contracts e.g., [14]. However, keeping both these

behaviours at the same level of abstraction, provides

the system designer with the flexibility needed to com-

bine and compile the behaviours into a model suitable

for verification.

For an agent, we refer to its all possible behaviours

as BPEL-behaviour and the contractually correct be-

haviours as its BPEL-contract. Note that both the be-

haviours are inter-dependent and replicate information

such as variable and action description for the agent, in

their specification.

4. Compiler: The compiler is a novel and integral com-

ponent of our architecture. The compiler takes as in-

put the BPEL-behaviour and the BPEL-contract for an

agent and combines them to generate an ISPL pro-

gram. The compiler parses the BPEL-behaviour to

generate a partial model that enumerates the local

states but abstracts from defining red and green states.

The BPEL-contract is then parsed to enumerate the

green/red states for the agent. The internal details of

the compiler are illustrated in Section 5.

5. ISPL and MCMAS: The ISPL program compiled

semi-automatically from the BPEL specification, en-

codes the overall and desired behaviour of an agent.

The program is fed to MCMAS for verification of the

agent’s behaviour.

5 Implementation

The core component of our framewrok is the compiler

that translates a WSBPEL specification into an ISPL pro-

gram. It generates basic atomic propositions and properties

automatically for verification. The internal architecture of

the compiler is illustrated in Figure 5.

Figure 5. Internal architecture of the compiler

4

Given the two specifications (BPEL-behaviours and

BPEL-contracts), we propose a three step methodology to

generate the corresponding ISPL program:

1. We represent a BPEL process by an automaton. The

BPEL-behaviour is first read into memory, followed by

the BPEL-contract. Both behaviours are translated into

automata. We use behaviour automata to denote the

automata representing the BPEL-behaviour and con-

tract automata for the BPEL-contract.

2. For each state in the contract automata, we look for its

counterpart in the behaviour automata and label it as

green. We then label all other states in the behaviour

automata as red. Based on these labels, basic prop-

erties specified in temporal-epistemic logic are gener-

ated.

3. The labelled behaviour automata and the properties are

written to the ISPL file input to the checker.

In what follows, we discuss the methodology in detail.

5.1 Translating BPEL programs into au-
tomata

The compiler uses the following rules to do the transla-

tion.

• “Assign”, “receive”, “invoke” and “empty” activities

are translated into transitions connecting the respective

source state and target state. A “sequence” activity is

translated into a sequence of transitions.

• An “if” activity is translated into two sequences of

transitions, one for the if-branch and another for the

else-branch. The first transition in the if-branch uses

the condition in the “if” activity as its guard, while the

first transition in the else-branch uses the negation of

the condition as the guard. A “while” activity is trans-

lated in the same way as an “if” activity except that the

target state of the last transition and the source state of

the first transition in the if-branch are the same.

• “OnMessage” activities and “onAlarm” activities in a

“pick” activity are translated into transitions with a

common source state.

• A branch in a “flow” activity is translated into a sepa-

rate automaton. The beginning and the end of these au-

tomata are synchronised with the automaton represent-

ing the BPEL process. In doing so, we differ from [8],

where a “flow” is translated such that: all branches are

executed sequentially and all possible permutations are

represented as a single automaton.

The automata generated from “if”, “while”, “pick” and

“flow” activities are illustrated in Figure 6.

Figure 6. Translated automaton

• Fault handlers and exceptions are translated into tran-

sitions as well. The latter transition assigns a specific

value to a variable and the guard of the former transi-

tion tests if the variable has this value. Other kinds of

handlers are dealt with in the same way. Theoretically,

in every state where an exception could happen a copy

of the exception/handler transition is produced using

this state as its source state (note that these copies have

the same target state). Thus one transition would be

replicated many times. In practice, however, we have

a succinct way to implement it due to the flexibility of

ISPL, as discussed later.

As remarked in the literature review, much work has

been appeared on translating BPEL into model checkers’

input languages, e.g., [8, 7, 2]. However, only few of them

can process all BPEL structures. A detailed discussion can

be found in [2].

5.2 Colouring the model

We use the green and red of labelling in ISPL code

to differentiate between contractually correct and incorrect

behaviours, as shown in Figure 7. This is possible be-

Figure 7. Labelling behaviours

5

cause the BPEL-contract specification defines behaviours

included also in the BPEL-behaviour specification. La-

belling the states in the behaviour automata is done as fol-

lows:

1. The initial state of a behaviour automaton is labelled

as green.

2. For every transition in the contract automata, we find

the same transition in the behaviour automata and label

its target state as green.

3. For all states that are not green, we label them as red.

We do not look for matched states directly because the

states are named in a numerical way and, therefore, the

same state in the behaviour automata and the contract au-

tomata might have different names. However, transitions

get their name from the BPEL activities, each of which has

a unique name.

After the labelling process finishes, the compiler encodes

three kinds of atomic propositions, which are used to define

basic formulae to be checked in the following way. For each

BPEL process p, we define

• an atomic proposition pgreen holding in all green states

of the process;

• an atomic proposition pend holding in the last state of

process p;

• an atomic proposition predi
holding in the correspond-

ing red state i.

Two kinds of basic properties are generated based on the
atomic properties. For each BPEL process p, define

E (pgreen U pend). (1)

This property specifies that p has a way to conduct a whole
run in compliance with its contract obligations. For each
atomic proposition pred ∈ {pred0, pred1, . . .}, define

EF pred. (2)

This property represents a test to check whether a agent

may violate its contractual behaviours.

The above properties verify the basic behaviours of con-

tract parties. More properties can be manually added to the

automatically generated ISPL code in order to test other in-

teresting behaviours (see below).

5.3 Generating an ISPL program

Once the behaviour automatas are labelled, they are

ready to be written to an ISPL file for verification. Each

automaton is mapped to an agent in the file. Let A =
{1, . . . , n} be the set of automata and A = {1, . . . , n} the

set of agents. Here we only enumerate the key steps to gen-

erate an agent i ∈ A from an automatonAi ∈ A.

1. Local states generation. A local state l ∈ Li is a val-
uation for the set of local variables V ari. Thus, the
generation of Li is performed through the generation
of V ari. If Ai is generated from a BPEL process p,
then

V ari = V arp ∪ {state},

where V arp is the set of variables defined in p and
state is an additional enumeration variable. Each
value of state represents a unique state of Ai. If Ai

is a “flow” branch in p, then

V ari = V ar
′

p ∪ {state},

where V ar′p ⊆ V arp is the set of variables used by

Ai. In order to reduce the agent’s state space, the com-

piler monitors the usage of every variable v ∈ V arp.

If v is never read by any transitions in Ai, then it is

discarded.

2. Local actions generation. Acti is obtained from the

transitions of Ai. Each transition is mapped into an

action; additionally if two transitions have the same

name, they are mapped into the same action.

3. Protocol generation. Let l(state) be the value of vari-
able state in state l ∈ Li and El the set of allowed ac-

tions in l. For any transition twhose source state is rep-

resented by l(state), the action to which t is mapped

is included in El. Obviously, two states l1, l2 ∈ Li

have the same set of allowed actions if l1(state) =
l2(state).

4. Evolution function generation. Each transition in Ai

is translated to an evolution item. For a transition t
with source state s1, target state s2, and guard c, the
evolution item is defined to be of the following form:

state=s2 if state=s1 and c and Action=t.

This item means that if in the current state, the variable
state has value s1 and the guard c is satisfied, the exe-
cution of t makes agent i move to a state where state
has value s2. If t is synchronised with another transi-
tion t′ in the automaton Aj ∈ A, then the evolution
item is

state=s2 if state=s1 and c and Action=t and Aj .Action=t’.

If t assigns a value expr to a variable v, the assignment
is translated on the left side of “if”, i.e.

state=s2 and v=expr if · · · .

If there are multiple copies of t, e.g., t represents a
fault handler, we use the following form to specify an
evolution item for all copies:

6

state=s if (state=s1 or state=s2 or . . .) and c and Action=t

and · · · ,

where s1 and s2 are the source states of these copies
and s is their target state. If t is allowed in all states,
the above form can be simplified to

state=s if c and Action=t and · · · .

6 Experimental Analysis

We evaluated the compilation and verification mecha-

nism on the case study illustrated in Section 3. We rep-

resented the composition in terms of a WSBPEL orches-

tration. The following BPEL code represents the full be-

haviour of the client C, when receiving updates from PSP

and SP . Note that for brevity, only essential information is

shown. The BPEL-contract is the same as BPEL-behaviour

except that it defines only contractually correct and there-

fore limited behaviours.

<pick name="Update1">

<onMessage partnerLink="PSP_C"

operation="recPSP" portType="ns1:recMsg"

variable="RecPSPIn">

<empty name="Empty1"/>

</onMessage>

<onMessage partnerLink="PSP_C_int"

operation="recPSP" portType="ns1:recMoney"

variable="SendSPIn1">

<receive name="recUpdate1"

createInstance="no" partnerLink="PSP_C1"

operation="recPSP" portType="ns1:recMsg"

variable="RecPSPIn">

</receive>

</onMessage>

<onMessage partnerLink="PSP_NoC"

operation="recNoPSP" portType="ns1:recMsg"

variable="RecPSPIn">

<exit name="Exit347"/>

</onMessage>

</pick>

The translation generates the following ISPL program

for the client.

Agent Client

Vars:

state : { Client_0, Client_1, ...};

count : 0 .. 3;

...

end Vars

Actions={Client_Upd1_0, Client_Upd1_1,...};

Protocol :

state=Client_0:{Client_Upd1_0, Client_Upd1_1,

Client_Upd1_2, Client_While1};

state=Client_1:{Client_Empty1};

...

end Protocol

Evolution :

state=Client_0 and count=count+1 if

state=Client_24 and Action=Client_Assign375;

state=Client_1 if state = Client_0 and

count<2 and Action = Client_Upd1_0 and

PSP.Action = PSP_updateClient;

...

end Evolution

end Agent

The following listing gives an example about how to de-
fine atomic propositions and properties in ISPL.

Evaluation

Client_green if Client.state = Client_0 or

Client.state = Client_1 or ...;

Client_end if Client.state = Client_51;

Client_red0 if Client.state = Client_11;

...

end Evaluation

Formulae

E (Client_green U Client_end);

EF Client_red0;

...

end Formulae

In addition to the basic properties automatically gen-

erated by the compiler, we manually added a few more

complex properties to the model. Those properties were

also studied in [1]. Some atomic propositions, e.g., “re-

ceiveSoftware” and “softwareTested”, are also added to the

ISPL code manually. In particular, we considered the fol-

lowing:

• Whenever PSP is in a compliance state, he knows the
contract can be eventually fulfilled successfully.

AG(PSP green → KPSP EF (PSP end))

• There exists a path where C is always in compliance
with the contract until he eventually receives the soft-
ware.

E(C green U receiveSoftware)

• PSP knows that it is possible that PSP , SP , C, I ,
H , T and E are all in compliance until the software is
delivered.

KPSP E(all green U softwareDelivered),

where all green represents PSP green ∧
SP green ∧ C green ∧ T Green ∧ H green ∧
E green ∧ I green.

• There is a trace in which the client is always in contract
compliant states until the software is delivered (while
the client remains compliant) before the client enters a
violation.

E(C green U

E((C green ∧ softwareDeployed) U ¬C green))

The generated ISPL model was encoded automatically

by MCMAS by using 134 BDD variables: 49 BDD vari-

ables for local states (the same number of BDD variables

are constructed for the transition relation) and 36 for local

actions. The total number of global states is approximately

7

106. On a machine running Linux Fedora 8 x86 64 version

(kernel 2.6.24.3-50) on Intel Core 2 Duo E4500 2.2GHz

with 4GB memory, it took about 24 seconds with 34 MB

memory space for MCMAS to verify 25 properties.

In this example, all basic properties hold on the model,

which means not only all parties can fulfil their contrac-

tual obligations successfully, but also that all the violations

shown in Figure 3 can actually happen. Amongst the manu-

ally added properties, the first one does not hold. The reason

is that even though PSP fulfills its contractual obligations,

the software might not pass testing hence not be deployed.

For a similar reason, the third one does not hold either.

7 Conclusions

In this paper we presented a novel technique for the ver-

ification of contract-regulated service compositions. In our

approach, services and contracts are specified as WSBPEL

behaviours. We showed how these behaviours could be

semi-automatically compiled into ISPL, and then verified

using the symbolic model checker MCMAS. The salient

feature of the approach is the possibility of checking agent

compliance with respect to contracts and the potential of

compiling a fairly large subset of BPEL constructs to ISPL.

We illustrated the methodology using a realistic case study

with a reasonably large state space.

It is worth mentioning that there are two limitations in

the current framework: (1) Since MCMAS cannot handle

real-time systems, some BPEL constructs such as dead-

line and timeout have to be translated into non-deterministic

behaviours. For real-time properties, a secondary model

checker, such as UPPAAL [3] or Verics[6], can be integrated

into the framework. (2) The contracts that can be dealt with

are written in natural languages and translated into BPEL

code manually. Nowadays, some contracting languages,

e.g., [14], have been proposed in order to construct elec-

tronic contracts to be processed by computers. Currently,

we are working on compiling electronic contracts into ISPL

to allow more automation.

Acknowledgements. The research described in this pa-

per is partly supported by the European Commission

Framework 6 funded project CONTRACT (IST Project

Number 034418).

References

[1] A. Lomuscio and H. Qu and M. Solanki. Towards verify-

ing compliance in agent-based web service compositions. In

Proceedings of The Seventh International Joint Conference

on Autonomous Agents and Multi-agent systems (AAMAS-

08). ACM Press, 2008.

[2] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P. Spo-

letini. Validation of web service compositions. IET Softw.,

1(6):219–232, December 2007.
[3] J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, W. Yi, and

C. Weise. New generation of UPPAAL. In Proceedings of the

International Workshop on Software Tools for Technology

Transfer, 1998.
[4] R. Bordini, M. Fisher, C. Pardavila, W. Visser, and

M. Wooldridge. Model checking multi-agent programs with

CASP. In CAV’03, volume LNCS 2725, pages 110–113.

Springer-Verlag, 2003.
[5] D Booth, H Haas, F McCabe, E Newcomer, M Cham-

pion, C Ferris and D Orchard. Web service architec-

ture. W3c working group note 11 february 2004, 2004.

http://www.w3.org/TR/ws-arch/.
[6] P. Dembiński, A. Janowska, P. Janowski, W. Penczek,

A. Pólrola, M. Szreter, B. Woźna, and A. Zbrzezny. VerICS:

A tool for verifying Timed Automata and Estelle specifica-

tions. In Proc. of the 9th Int. Conf. on Tools and Algorithms

for the Construction and Analysis of Systems (TACAS’03),

volume 2619 of LNCS, pages 278–283. Springer-Verlag,

2003.
[7] H. Foster, S. Uchitel, J. Magee, and J. Kramer. Model-based

verification of web service compositions. In Proceedings of

the 10th IEEE International Conference on Automated Soft-

ware Engineering. IEEE Press, 2003.
[8] X. Fu, T. Bultan, and J. Su. Analysis of interacting BPEL

web services. In 13th international conference on World

Wide Web, pages 621–630. ACM Press, 2004.
[9] P. Gammie and R. van der Meyden. MCK: Model checking

the logic of knowledge. In Proceedings of 16th International

Conference on Computer Aided Verification (CAV’04), vol-

ume 3114 of LNCS, pages 479–483. Springer-Verlag, 2004.
[10] A. Lomuscio, H. Qu, and F. Raimondi. Mcmas 0.9 alpha.

http://sourceforge.net/projects/ist-contract/, 2008.
[11] A. Lomuscio and F. Raimondi. MCMAS: A model checker

for multi-agent systems. In Proceedings of TACAS 2006,

volume 3920, pages 450–454. Springer Verlag, 2006.
[12] A. Lomuscio and M. Sergot. Deontic interpreted systems.

Studia Logica, 75(1):63–92, 2003.
[13] OASIS Web service Business Process Execution Language

(WSBPEL) TC. Web service Business Process Execution

Language Version 2.0, 2007.
[14] S. Panagiotidi, J. Vazquez-Salceda, S. Alvarez-Napagao,

S. Ortega-Martorell, S. Willmott, and P. S. R. Confalonieri.

Contracting agent language. In Symposium on Behaviour

Regulation in Multi-Agent Systems, 2008.
[15] W. Penczek and A. Lomuscio. Verifying epistemic prop-

erties of multi-agent systems via bounded model checking.

Fundamenta Informaticae, 55(2):167–185, 2003.
[16] M. Pistore, F. Barbon, P. Bertoli, D. Shaparau, and

P. Traverso. Planning and monitoring web service composi-

tion. In AIMSA, pages 106–115, 2004.
[17] M. Wooldridge. An introduction to multi-agent systems.

John Wiley, England, 2002.
[18] X. Fu T. Bultan and J. Su. Conversation Protocols: A For-

malism for Specification and Verification of Reactive Elec-

tronic Services. In CIAA, volume LNCS 2759, pages 188–

200. Springer-Verlag, 2003.

8

