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1. Introduction

Logic and formal methods can play a useful role to reason about security protocols.
In this context logic can be adopted as a non ambiguous language to express properties
of protocols. Formal methods, especially theorem proving and model checking, can be
employed as semi-automatic methodologies to attempt to verify that security protocols
meet their specifications.

Currently specifications of security protocols (authentication, non-repudiation, etc.)
are most often given in terms of reachability properties only, or, in more advanced
approaches, in linear temporal logic, e.g., (Corin et al., 2006). It has long been recog-
nised though, including in the security literature, that richer specification languages
would enable more expressive and intuitive specifications. The seminal work in se-
curity on BAN logics (Burrows et al., 1990), where the case for the use of logics for
knowledge and related concepts was put forward, is a case in point. Indeed, certain
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security specifications, such as anonymity (Syverson et al., 1999), seem only appro-
priately expressed in terms of knowledge (or lack of it) of protocol participants and
intruders. Secrecy and other concepts such as authentication seem also naturally ex-
pressed by means of temporal epistemic specifications.

While epistemic, i.e., knowledge-based, specifications in the original BAN ap-
proach lacked a concrete semantics, this was rectified in later research (Fagin et al.,
1995; Abadi et al., 1991; Cohen et al., 2007). This has enabled several well-founded
theoretical approaches employing epistemic logic in a security setting to be put for-
ward (Halpern et al., 2004; Halpern et al., 2002; Pucella et al., 2002). In parallel to this
there has been considerable progress (Kacprzak et al., 2008; Meyden et al., 2004a; Lo-
muscio et al., 2009) in solving efficiently the model checking problem for temporal-
epistemic logics. This makes it possible, at least in principle, to develop symbolic
model checking toolkits, based on temporal-epistemic formalisms and optimised for
the verification of security protocols.

Of course model checking (Clarke et al., 1999) of security protocols is an active
area of research in security verification with a wealth of considerable results (Armando
et al., 2005; Basin et al., 2005; Lowe, 1998). However, the traditional analysis typi-
cally focuses only on either reachability or trace properties of the protocols. Instead,
in this line of work, our aim is to provide techniques and tools for the automatic veri-
fication of rich, epistemic-based specifications of security protocols.

Model checking of epistemic security requirements has been investigated before
(Meyden et al., 2004b; Lomuscio et al., 2007; Lomuscio et al., 2009). However, the
consequent state space explosion was not studied there, thus making the approaches
not viable for general deployment. Also, these works analysed specific protocols in
an ad-hoc way by modelling them in existing model checkers, and no general method-
ology was put forward. Closer to our line of work is (Lomuscio et al., 2008) where
an optimised, trace-based semantics for temporal-epistemic logic based on interpreted
systems (Fagin et al., 1995) was put forward and a basic bounded model checking
algorithm presented. However, no details were given for the automatic generation of
the models to be checked, thereby limiting its possible impact.

This paper attempts to provide a fully-automatic methodology for checking au-
thentication protocols given in CAPSL (Common Authentication Protocol Specifica-
tion Language) by means of temporal epistemic specifications. Our main contribu-
tion is a mapping and a compiler from protocol descriptions given in CAPSL into
ISPL (Interpreted Systems Programming Language), the input language for MCMAS
(Lomuscio et al., 2009), a BDD-based model checker for multi-agent systems sup-
porting temporal-epistemic specifications. The translation is especially optimised to
limit the state explosion and benefit from MCMAS’s various optimisations. In line
with most security verification formalisms and tools (Armando et al., 2005; Basin
et al., 2005; Lowe, 1998; Blanchet, 2004; Boreale, 2001; Corin et al., 2006; Mead-
ows, 1996; Paulson, 1999), the methodology we present assumes a bounded number
of concurrent protocol sessions instantiated to run concurrently.
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The rest of the paper is organised as follows. In Section 2 we present background
concepts and introduce the notation used in the rest of the paper. Section 3 presents
the core principles of the translation from CAPSL security protocols descriptions into
the semantics for temporal-epistemic logic that we employ here. In Section 4 we give
details of the compilation from security requirements expressed as CAPSL goals into
temporal-epistemic specifications. In Section 5 we present the implementation of the
toolkit and discuss the experimental results obtained for some well known authentica-
tion and key-establishment protocols. We conclude in Section 6 by discussing related
work and future research.

2. Preliminaries

In this section we introduce the necessary background material and fix the notation
used in the rest of the paper. Specifically, we first recall some basic notions for high-
level protocol description languages, security goals, and protocol scenarios. We then
summarise basic notions in temporal-epistemic logic and model checking.

2.1. High Level Descriptions of Security Protocols

A security protocol, or a cryptographic protocol, is a communication protocol re-
quired to ensure certain security-sensitive properties. Such requirements are usually
referred to as security protocol goals or, simply, goals. Security protocols can be
classified according to the goals they aim to establish. In this paper, we will only be
concerned with authentication and key-establishment protocols (Clark et al., 1999).

Over the last decade, several high-level description languages for security proto-
cols, e.g., HLPSL (Oheimb, 2005), CAPSL (Millen, 2001), etc., have been designed
and employed in protocol analysis. These languages provide a formal methodology
for describing protocols by specifying the participants behaviour, the data exchanged,
the communication flow, and the security goals to be achieved. Such high-level spec-
ifications are usually called protocol descriptions or, simply, descriptions. Over the
years, repositories and libraries of protocol descriptions have been created (Clark
et al., 1997; Laboratoire Spécification et Vérification ENS Cachan, 2003; AVISPA-
project, 2005).

CAPSL (Common Authentication Protocol Specification Language) (Millen, 2001)
is a widely-employed high-level protocol description language. We illustrate the basic
CAPSL features by means of the Needham-Schroeder Public Key (NSPK) security
protocol (Needham et al., 1978).

EXAMPLE 1 (NEEDHAM-SCHROEDER PUBLIC KEY DESCRIPTION IN CAPSL). —

PROTOCOL Needham-Schroeder Public Key;

VARIABLES

A, B: Principal;
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Na, Nb: Nonce;

Ka, Kb: Skey;

DENOTES

Ka = pk(A); Kb = pk(B);

ASSUMPTIONS

HOLDS A: Na; HOLDS B: Nb;

MESSAGES

1. A -> B: {A,Na}Kb;

2. B -> A: {Na,Nb}Ka;

3. A -> B: {Nb}Kb;

GOALS

PRECEDES A: B | Na; PRECEDES B: A | Nb;

AGREE A,B : Na,Nb,A,B;

SECRET Na;

SECRET Nb;

END;
�

In a CAPSL description the VARIABLES section denotes the data used in the com-
munication together with their cryptographic type: here, Ka and Kb are public en-
cryption keys, A and B are generic parties engaged in the protocol, and Na, Nb are
nonces. The DENOTES and ASSUMPTIONS sections encode the initial knowledge of the
principals. In the example above A knows the nonce Na, B knows the nonce Nb,
A knows B’s public key Kb, and B knows A’s public key Ka. The MESSAGES sec-
tion specifies the rules of the protocol, i.e., the stream of messages to be exchanged.
Specifically, the sender of each message is encoded together with its intended receiver
and the step in the protocol execution at which the communication should take place.
For instance, at step 1 A sends to B a message containing her identity and her nonce
Na, all encrypted with B’s public key. The GOALS section encodes the security goals.
For the case under analysis A should hold Na before B learns it, B should hold Nb
before A learns it, both should agree upon these values and upon their identities, and
both Na and Nb should always remain secret to any other party.

2.2. Security Goals in CAPSL

The security goals in the GOALS section of a CAPSL protocol description are spec-
ified in a simple, high-level language built from atomic facts and belief and knowledge
constructs. For the purposes of this paper we analyse the following CAPSL subset.

The atomic facts are defined by:

α ::= agreeA : B : Var | holdsA : Var | secret : Var

where A and B are CAPSL variables of type Principal and Var is a list of CAPSL
variables. Informally, agreeA : B : Var expresses that A agrees with B on Var, i.e.,
A and B have the same values for the variables in Var. The atomic goal holdsA :
Var states that A has the values for the variables in Var. Finally, the atomic goal
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secret : Var represents the situation where the values of the variables in Var are not
in possession of any unintended party.

Complex goals in CAPSL are formed with belief and knowledge operators:

γ ::= α | KnowsA : γ | BelievesA : γ

where α is an atomic fact as above. Informally, the goal KnowsA : γ expresses
that A knows that γ holds, and the goal BelievesA : γ states that A is justified in
believing that γ holds. The CAPSL documentation does not provide a full description
of the precise meaning of the belief and knowledge operators. However the following
example may serve as a guideline.

EXAMPLE 2 (DOXASTIC GOAL). — The goal

BelievesB : holdsA : K (1)

is interpreted in (Denker et al., 2000), page 3, as “if the B-session completes, B is
justified in believing that A holds K. The belief assertion means that holdsA : K is
interpreted in the context of B’s values for A and K.” . �

EXAMPLE 3 (ACKNOWLEDGED AUTHENTICATION). — In repeated authentication
protocols, e.g. KSL (Kehne et al., 1992), the ISO standard requires the acknowledge-
ment of the other party’s knowledge. This can be translated into CAPSL goals with
two levels of nesting for the knowledge operators, as in:

KnowsA : KnowsB : holdsA : Ma (2)

which expresses that if A terminates its run of the protocol, then it knows that B knows
that A has the value of Ma. �

EXAMPLE 4 (BAN GOAL). — The CAPSL language supports BAN logic specifica-
tions with several levels of nested knowledge and belief operators. As an illustration,
according to the analysis in (Burrows et al., 1990), if protocol parties are honest, the
NSPK protocol establishes that B believes that A believes that B believes that the nonce
Nb is secret. In CAPSL this is expressed by means of the following goal.

BelievesB : BelievesA : BelievesB : secret : Nb

�

2.3. Protocol Scenarios

A CAPSL protocol description specifies the messages exchanged during a protocol
session. The description implicitly associates each variable A of type Principal to
a protocol role, denoted as A–role, specifying the messages A sends and receives in
the protocol.
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A protocol participant is an entity (e.g., a user, or a long-term process, such as a
server) having an identity (e.g., alice) and some security related data such as public
keys, long-term symmetric keys etc. While a participant may take different roles in
different concurrent or sequential sessions, the public keys and identity she employs
are the same across sessions. A role instance, or simply an instance, is a process
that follows the steps of some specific protocol role; each such instance represents a
particular protocol participant, i.e., uses the name of the participant as her identity,
and uses the passwords, cryptographic keys, etc., belonging to that participant. We
write (alice,A–role) to represent an instance of participant alice playing an A–role.
In general, we may have more than one instance of (alice,A–role); in these cases we
use labels to indicate which instance we refer to.

A role instance can be viewed as an instantiated protocol role; an instantiation is a
function mapping variables in the protocol description to concrete values over domains
(i.e., mapping principal variables to participant identities alice, bob, etc., and nonce
variables to numbers, etc.). Instantiations are homomorphically extended to messages,
rules and protocol roles.

In line with the Dolev-Yao threat model (Dolev et al., 1983) we model an intruder
(or “attacker”) as a further participant in the communication exchange. In addition to
the capabilities of any principal, the intruder is assumed to be able to eavesdrop all
communication, compose and replay messages into any protocol session, and perform
cryptographic operations when in possession of the correct keys. We assume the in-
truder has a public identity (with associated public and private keys) trusted by the
honest principals, and may use these to communicate with other principals.

For most classes of protocols, checking (secrecy) goals in the presence of an at-
tacker and under an unbounded number of role instances is an undecidable problem
(Ramanujam et al., 2003b). In practice, therefore, one usually verifies only a spe-
cific protocol scenario, given as a finite set of role instances. For instance, a possible
scenario for Example 1 is the collection of instances {(alice,A–role), (bob,B–role),
(alice,B–role)}, where the participant alice is engaged in a session as an A–role
instance and in another session as a B–role, while another participant named bob is
part of a session as a B–role instance. Experience has shown that, in most cases, if
an attack exists on a protocol, the attack can be found in a small protocol scenario,
comprising only a few instances (Lowe, 1998).

2.4. Temporal-epistemic logic and model checking with MCMAS

We here fix the notation on some basic notions related to temporal-epistemic logic
and symbolic model checking which constitute the building blocks of our framework.

The interpreted systems (IS) formalism (Parikh et al., 1985; Fagin et al., 1995)
describes a multi-agent system as follows. We assume a setAg = {1, . . . , n} of agents
and a special agent called the Environment, abbreviated E. We associate to each agent
i ∈ Ag, a setLi of possible local states, a setActi of local actions, and a local protocol
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Pi : Li → 2Acti . In the following, we assume that any action performed by an agent
in a state is enabled, i.e., that it follows its local protocol. For the environment we
associate similar sets: LE , ActE , and a protocol function PE . The transition relation
for agent i is defined by the evolution function ti : Li×Act1× . . .×Actn×ActE →
Li returning the resulting local state for agent i given the actions performed by all
agents at the present round. The evolution function tE of the environment is defined
in a similar way. To describe the evolution of the whole system we consider a set of
possible points or global states G ⊆

∏
1≤i≤n Li × LE , a set of joint actions Act =

Act1 × . . . × Actn × ActE , a joint protocol P = (P1, . . . , Pn, PE), and a global
evolution function t = (t1, . . . , tn, tE) operating on global states by composing the
n + 1 local evolution functions. A path π = (g0, g1, . . .) is an infinite sequence of
global states such that t(gk, actk) = gk+1, where actk ∈ Act is a joint action whose
components are all enabled, for each k ≥ 0. For a path π = (g0, g1, . . .), we take
π(k) = gk. By Π(g) we denote the set of all the paths starting at g ∈ G.

Given the above, an interpreted systems is a tuple I = (G, I0, t,∼1, . . . ,∼n, V ),
where G is the set of the global states reachable from any initial global state in I0
via the evolution function t; ∼i⊆ G × G, i ∈ Ag, are epistemic relations for agent
i defined by g ∼i g

′ iff li(g) = li(g′), where li : G → Li returns the local state of
agent i given a global state; and V : G × PV → {true, false} is an interpretation
for the propositional variables PV in the language.

Interpreted systems are a standard semantics for branching time temporal-epistemic
logic. The language we will use is defined by the following BNF syntax:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | Kiϕ | DΓϕ | AXϕ | AGϕ | A(ϕUϕ)

where p ∈ PV, i ∈ Ag,Γ ⊆ Ag.

As a simplification we will often refer to the language above as CTLK (Computa-
tional Tree Logic for Knowledge) even if it contains a distributed knowledge modality.
The readings of the modalities above are as usual. Specifically, AXϕ stands for at all
possible next steps ϕ holds, AGφ represents that in all possible computational paths φ
always holds, and A(ϕUψ) expresses that in all possible computational paths at some
point ψ holds and ϕ holds at all states before then from the present state. The formula
Kiϕ stands for the knowledge of agent i with respect to ϕ and DΓφ represents that
the agents in the group Γ ⊆ Ag have distributed knowledge of ϕ. We refer to (Fagin
et al., 1995) for more details.

Satisfactions for the language above is defined inductively on interpreted systems
at a global point as follows. Let I be an interpreted system, g = (l1, . . . , ln, lE) a
global state, and ϕ,ψ formulas:

(I, g) |= p iff V (g, p) = true,
(I, g) |= ¬ϕ iff it is not the case that (I, g) |= ϕ,
(I, g) |= ϕ ∧ ψ iff (I, g) |= ϕ and (I, g) |= ψ,
(I, g) |= Kiφ iff for all g′ ∈ G if g ∼i g

′, then (I, g′) |= φ,
(I, g) |= DΓφ iff for all g′ ∈ G, g ∼i g

′ for all i ∈ Γ, implies that (I, g′) |= φ,
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(I, g) |= AXφ iff for all π ∈ Π(g) we have (I, π(1)) |= φ,
(I, g) |= AGφ iff for all π ∈ Π(g) and for all k ≥ 0 we have (I, π(k)) |= φ,
(I, g) |= A(φUψ) iff for all π ∈ Π(g)) there exists a k ≥ 0 such that

(I, π(k)) |= ψ and for all 0 ≤ j < k we have (I, π(j)) |= φ.

Temporal-epistemic logic is a well-explored subject in applied logic. We refer to
the references above for a survey on existing results.

MCMAS (Lomuscio et al., 2009) is a BDD-based symbolic model checker for
the verification of epistemic and ATL properties on systems described by means of
variants of interpreted systems. MCMAS takes as input systems descriptions given in
ISPL (Interpreted Systems Programming Language), a set of CTLK specifications to
be checked, and returns whether or not the specifications are satisfied, giving, in most
cases, a counter-model if they are not. An ISPL file uniquely denotes an interpreted
system. In Example 5 an excerpt of an ISPL file is reproduced, denoting an agent of
an interpreted system.

EXAMPLE 5 (SAMPLE ISPL CODE FOR AN AGENT). —

Agent sample_agent

Vars:

state : {val1,val2,val3,val4};

end Vars

...

Actions = {action1,action2};

Protocol:

(state=val1 or state=val4) : {action1};

(state=val2): {action2};

end Protocol

Evolution:

...

(state=val3)

if

(Action=action2) and (Environment.Action=action-e);

...

end Evolution

end Agent

�

The above sample_agent has four possible local states corresponding to the vari-
able state (more complex types are supported). The possible actions of sample_agent
are action1 and action2, the former is enabled in states where state=val1 and
state=val4, the latter when state=val2. The agent moves to the local state state=val3
when the action action2 is performed locally together with action action-e for
the environment. Several other functionalities are offered. We refer the reader to
(Lomuscio et al., 2009) for further details.
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3. From protocol scenarios to interpreted systems

In this section we map authentication and key-establishment protocol scenarios
into interpreted systems. We operate under some restrictions. Specifically, we assume
that the runs generated by the protocols have a predetermined maximum number of
interleaved sessions, the length of any message generated is bounded, and so are the
initial data types considered (nonces, keys, etc).

Given a protocol scenario, our starting point is to map each role instance in the
protocol scenario into an agent of an interpreted system and the intruder role into the
environment agent. We assume a typed signature and a (free) term algebra formalising
the cryptographic data in the protocol description underlying the scenario. We begin
by describing how we obtain the local states, local actions and local protocol of an
agent agA, the mapping of an A–role instance. We will sometimes refer to such a
generic agent agA as an A-agent.

Local States of agent agA.

An instantaneous possible local state of agent agA is a pair (nr, viewagA
), where

nr is a counter for the number of protocol steps executed by the agent and viewagA

is the view the agent has of its protocol session, i.e., an instantiation of some of the
protocol variables for the session. Formally, viewagA

is a type-respecting map from
variables in a store to cryptographic data; the store is an ordered list of (typed) protocol
variables appearing in the A–role, mapped to agent agA.

EXAMPLE 6. — In the NSPK protocol description in Example 1, the A–role and
B–role include the same variables. So, the store is the same for an A–agent and a
B–agent: (A : Node,B : Node, kA : Skey, kB : Skey, na : Nonce, nb : Nonce). �

EXAMPLE 7. — A possible view for the NSPK store of an A–agent in the example
above is the following assignment: (A = alice,B = bob, kA = pvkalice, kB =
pbkbob, nA = r1, nb = ⊥), where nb is unassigned at the time. If the context is clear,
we omit the variables and write simply (alice, bob, pvkalice, pbkbob, r1,⊥) for the A–
agent view. Note that although several agents may have the same store, in general their
views of the stores are different. �

Actions of agent agA.

The actions available to agent agA are: sendM , receive T and the empty action ε,
whereM is an instantiated message and T is a symbolic (i.e., uninstantiated) message.
Informally, the action sendM represents dispatching the message M to the network,
while the action receive T means waiting for an incoming message of the form T .
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Local Protocol of agent agA.

The local protocol of agent agA formalises the moves described in the role instance
which is mapped into this agent agA. Thus, for each protocol step numbered nr
specified for A, we have: PagA

((nr, viewagA
)) = {sendM}, if “nr.A → Y : M”

is a rule1 in the role instance mapped into agA. The local protocol is implemented
similarly for receiving actions. If there is no rule in the A–role with step nr, the agent
agA is silent at step nr, i.e., PagA

((nr, viewagA
)) = {ε}.

The local evolution function of the agent agA will be defined below, once we have
mapped the intruder role into the environment agent E of the interpreted systems.

Local state of the environment agent.

An instantaneous possible local state of the environment agent is a pair (X,h),
whereX is a set of cryptographic data observed and deduced in the protocol execution
and h is list representing the history of observed actions.

EXAMPLE 8. — In an execution of the NSPK protocol, the intruder might ac-
quire the knowledge set X = { {A,na}kB

= {alice, r1}pbkbob
, {A,na}kB

=
{joe, r2}pbkgreg

, A = alice,A = joe,B = bob,DATA = {n3, n5, charlie, . . .}}
�

Knowledge sets can be considered extensions of agents’ views in that they may
contain any data of a complex cryptographic type not only values of atomic variables
from the protocol description. Notice also that, unlike in the case of views, knowledge-
sets may contain data from several (concurrent) sessions of the protocol. For instance,
the knowledge set in Example 8 contains two different instances of {A,na}kB

corre-
sponding to the different sessions the intruder participated in.

In line with the Dolev-Yao model, we assume that the intruder records every send-
action performed by any agent.

EXAMPLE 9. — In an execution of the NSPK protocol, the intruder might have
recorded the history h = [agA.send {alice, r1}pbkbob

, agB .send {r1, r2}pbkalice
, . . .].

�

Actions of the environment agent.

The actions available to the environment agent are: interceptM and transmitM ,
where M are instantiated messages. Informally, the action interceptM reflects the
Dolev-Yao surveillance of the network: every action sendM performed by an honest
agent synchronises with an interceptM from the Environment. The action transmitM
represents the intruder inserting M into the network.

Local Protocol of environment agent.

The local protocol is defined such that when the intruder has message M , i.e., M
is an entry in the current knowledge set X , the corresponding action transmitM is

1. Y is an arbitrary principal in the description.
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potentially triggered. At any local state, the Environment agent can perform the action
interceptM , reflecting the continuous Dolev-Yao surveillance of the network.

Local Evolution Function of the environment agent.

The Environment’s local evolution function formalises the interception of mes-
sages, decomposing, composing and sending of messages. Specifically, when the
environment intercepts a message M from an agent agA, the environment records
the observed transmit action in the history H , adds M to its knowledge set X , and
then closes the set X under decompositions (decryption, unpairing) and compositions
(encryption, pairing). Formally, if ãE = interceptM and ãagA

= sendM , then
tE((X,H), ã) = (X ∪M ∪ {M ′| {X ∪M} `M ′} , H ∪ agA.sendM), where ` is
the standard Dolev-Yao message inference. The notation X ` M represents that the
messageM can be obtained from the setX of messages by successive decompositions
and compositions. Given our systems are finite and bounded, X `M is decidable and
the procedure for closing the set under ` terminates.

Local Evolution Function of agent agA.

Having provided the actions of the environment, we can now describe the local
evolution function for an arbitrary agent agA. We adopt the “matching receive” se-
mantics used in other security protocols models, e.g. (Ramanujam et al., 2003a; Rusi-
nowitch et al., 2001; Lomuscio et al., 2008). Recall that the local view of agA reflects
the protocol execution for agA so far. Informally, when the agent agA performs the
action receive T , the agent awaits for an instantiation M for the symbolic message T ,
compares the atomic parts of M to her local state and accepts or drops M depending
on whether the match is successful. More precisely, when the environment transmits
a message M , obtained by instantiating the variables X ′ in T , the agent checks if the
values of the variables X ⊆ X ′ in her local view viewagA

agree with the values of
X in the message M , i.e., viewagA

.X = M.X , abbreviated out_match(X). If they
match, then the agent accepts the message, i.e., increments her counter nr and and sets
the yet unassigned variables in X to their values in M . We write set(X, viewagA

) for
the result of setting the unassigned variable X in the local view viewagA

of the agent.

To illustrate the resulting local evolution function, consider an agent agA in the
local state (1, viewagA

), where the local view viewagA
is as in Example 7. Assume

a joint action ã, in which the environment action is ãE = transmit({r′1, r2}pbkalice
)

and the action of the agent agA is ãagA
= receive({na, nb}KA

). Then, assum-
ing that out_match(na) holds, i.e., r1 = r′1, we have that tagA

((1, viewagA
), ã) =

(2, set(nb, viewagA
)) = (2, (A = alice,B = bob, kA = pvkalice, kB = pbkbob, na =

r1, nb = r2) However, if out_match(na) fails, we get tagA
((1, viewagA

), ã) =
(1, viewagA

).

Initial states.

The initial states of the system are given by instantiating stores into views. The
instantiation reflects the initial conditions for the agents to engage in the protocol,
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including their choice of communication partners. Some variables in the local states
can be initially left unassigned, or, equivalently, assigned to ⊥ (cf. Example 7).

The environment’s variables representing the intruder are initialised similarly.

This concludes our translation from scenarios to interpreted systems. We will de-
scribe an implementation of this in Section 5.

4. From CAPSL security goals to CTLK specifications

In this section we provide a translation ρ from the security goals (Subsection 2.2)
found in a CAPSL protocol description to the corresponding CTLK property in the
mapped IS.

Recall from Section 2.2 that a CAPSL atomic goal agree A : B : VAR refers
to principals A and B sharing the value of the variables in VAR. To account for the
inherent multi-session instantiation of the goal, we formalise this with a specification
stating that any A-agent i needs to agree with some B-agent j on the variables in VAR.
Intuitively, given this is the goal of the protocol, the agreement may not happen before
the A-agent i has terminated its protocol run. Given the above, and also in light of
existing CAPSL examples, we translate the CAPSL agree goal above as:

ρ(agree A : B : VAR) =
∧
i∈A

AG(end(i)→
∨
j∈B

agree(i, j, VAR))

where i ranges over A-agents, i.e., mappings of A–role instances, j ranges over B-
agents, i.e., mappings of B–role instances, agree(i, j, VAR) and end(i) are helper
predicates generated in the IS in order to express the final formula, agree(i, j, VAR)
abbreviates

∧
V ar∈VAR

(i.V ar = j.V ar) with i.V ar (respectively j.V ar) denoting vari-

able V ar of agent i (respectively agent j), and end(i) abbreviates i.Nr = n, where
Nr is agent i’s variable referring to its current protocol step and n is the number of
steps for role A in the given protocol description. Other atomic goals are translated
similarly.

Recall from Section 2.2 that an epistemic goal Knows A : γ states that the A-
agent knows that γ holds. Following the consideration above we represent this in
CTLK as:

ρ(Knows A : γ) =
∧
i∈A

AG(end(i)→ Ki ρ
i(γ))

where ρi(γ) is an appropriate translation of γ from the perspective of agent i, i.e., in
the context of agent i’s values for the variables appearing in γ (cf. Example 2).
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More precisely, the relativised translation function ρi is defined inductively by:

ρi(holds A :VAR) =
∨
j∈A

(i.PartnerA = j.Id ∧ agree(i, j, VAR)) (3)

ρi(Knows A : γ) =
∨
j∈A

(i.PartnerA = j.Id ∧Kj ρ
j(γ)) (4)

and similarly for other atomic sub-formulae. In (3) and (4), j.Id is the identity of the
participant that agent j represents, and i.PartnerA is the identity of the participant
that agent i regards as having the A–role in the current session. In detail, here j.Id

stands for j.A, since any A–agent j stores its identity in the variable j.A. Similarly,
i.PartnerA stands for i.A, as agent i stores the identity of the communication partner
of an A–role in his local variable A. Thus, according to (3), ρi(holds A : VAR)
states that there is some A-agent j, representing participant i.PartnerA, who agrees
with agent i on the variables VAR. According to (4), ρi(Knows A : γ) states that
there is some A-agent j, representing participant i.PartnerA, who knows ρj(γ). We
translate CAPSL’s belief goals in the same way as we do for the epistemic ones. This is
a reasonable approximation, since belief in CAPSL is introduced to refer to “justified
belief” (Denker et al., 2000).

ρ(Believes A : γ) =
∧
i∈A

AG(end(i)→ Ki ρ
i(γ))

ρi(Believes A : γ) =
∨
j∈A

(i.PartnerA = j.Id ∧Kj ρ
j(γ))

EXAMPLE 10 (ATOMIC GOAL). — According to the inductive definition given above
the NSPK CAPSL goal:

agree A : B : B,Na

translates into:∧
i∈A

AG(i.Nr = 3→
∨
j∈B

(i.PartnerB = j.Id ∧ i.Na = j.Na))

stating that whenever an A-agent i has completed three protocol steps, participant
i.PartnerB is represented by some B-agent j who agrees with i on the variable Na.

�

EXAMPLE 11 (COMPLEX GOAL). — Consider the goal (1) from Example 2. Apply-
ing ρ on (1) yields:∧

i∈B

AG(i.Nr = 3→ Ki ρ
i(holds A : K))

In turn, ρi(holds A : K) is rewritten as:∨
j∈A

(i.PartnerA = j.Id ∧ i.K = j.K)
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Thus, the goal (1) translates to:∧
i∈B

AG(i.Nr = 3→ Ki

∨
j∈A

(i.PartnerA = j.Id ∧ i.K = j.K))

stating that whenever a B-agent i, e.g., representing a participant bob, has completed
three protocol steps, agent i knows that the participant i.PartnerA, e.g., alice, is
represented by some A-agent j which agrees with i on the variable K. �

EXAMPLE 12 (ACKNOWLEDGED AUTHENTICATION). — The acknowledged au-
thentication goal (2) from Example 3 translates into:∧

i∈A

AG(end(i)→ Ki ρ
i(Knows B: holds A: Nb))

where ρi(Knows B: holds A: Nb) in turn expands to:∨
j∈B

(i.PartnerB = j.Id ∧Kj

∨
k∈A

(j.PartnerA = k.Id ∧ j.Nb = k.Nb))

Thus, the CTLK translation of goal (2) states that whenever an A-agent i terminates
its protocol run, she knows that participant i.PartnerB is represented by some B-
agent j who knows that participant j.PartnerA is represented by some A-agent k
who agrees with agent j on Nb. �

In the above, in line with much of the security literature, we focused on the prop-
erties of individual agents representing protocol participants (alice, bob, etc.). This
is useful as agents are the actual parties in the protocol runs. However, even if this
is normally not tackled in the mainstream security literature, it also seems of inter-
est to attempt to analyse the epistemic properties of the participants themselves. The
epistemic setting employed here makes this particularly straightforward. If we assume
that, in as far as protocol information is concerned, participants have at their disposal
all and only the information acquired by the agents representing them, the participant’s
knowledge is then the combined information of all agents representing her. The rele-
vant epistemic notion here is the one of distributed knowledge of the group of agents
representing a certain participant (see Section 2).

If we map the identity of the epistemic concepts in CAPSL goals to the actual
participants we obtain:

ρ(Knows A : γ) =
∧
i∈A

AG(end(i)→ Ki.Id ρ
i(γ))

ρi(Knows A : γ) =
∨
j∈A

(i.PartnerA = j.Id ∧Kj.Id ρ
j(γ))

where Ki.Id (respectively Kj.Id) is an epistemic modality referring to participant i.Id
(j.Id respectively). Since all information available to the participant i.Id, e.g., alice,
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is information coming from the various agents representing i.Id, i.e. information from
all sessions that alice participates in, we interpret Ki.Idϕ as DΓϕ where Γ is the set
of all agents representing i.Id.

EXAMPLE 13. — Returning to Example 11, the alternative mapping ρ translates the
CAPSL goal (1) into:∧

i∈B

AG(i.Nr = 3→ Ki.Id

∨
j∈A

(i.PartnerA = j.Id ∧ i.K = j.K))

stating that whenever a B-agent i has completed three protocol steps, participant i.Id
knows that participant i.PartnerA is represented by some A-agent j which agrees
with i on the variable K. �

In this section we have provided a direct map from CAPSL goals to CTLK spec-
ifications. We stress that the translations provided here are simply one of the many
that may be given depending on the interpretation of CAPSL’s primitives. Indeed,
the security literature displays a multitude of subtly different interpretations of atomic
goals. We do not take a view in this paper on which is the “correct” interpretation, if
one exists. Instead we aim to support several so that the user can choose the one he
or she finds most appropriate. For this reason the tool presented in the next section
produces a relatively large number of CTLK translations for each goal supplied in the
CAPSL file.

5. Automatic Compilation of Protocol Scenarios into Interpreted Systems

In this section we give details of an implementation of the translations described
in earlier sections. Specifically, we present PD2IS (Protocol Descriptions to Inter-
preted Systems), an automatic compiler from CAPSL protocol descriptions to ISPL
programs. We evaluate the methodology by discussing experimental results obtained
for the verification of formulas specifying secrecy and authentication properties.

5.1. Implementation details

PD2IS implements the translations described in Section 3 and Section 4. PD2IS
takes as input a CAPSL protocol description and some user-defined parameters. These
describe part of the instantiation (e.g., participant names for instantiating the princi-
pals, etc.) and bounds on the size of the scenarios to be considered (e.g., the maximum
number of A–agents, etc.). With these parameters PD2IS generates all complete in-
stantiations and then either produces the ISPL programs corresponding to the different
possible scenarios up to the user-defined bounds, or just a particular ISPL file if this is
fully described by the input parameters. For each such instantiated system PD2IS gen-
erates a set of ad-hoc propositions and uses these to construct the temporal-epistemic
translations for the CAPSL goals. MCMAS is called for each ISPL file produced by
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PD2IS. MCMAS returns the calls either by certifying that the specifications are sat-
isfied or by returning detailed counterexamples. These are used by PD2IS to report
details of the attack found on the protocol (i.e., the failure of one or more of the goals).
PD2IS is open-source and coded in JAVA (Boureanu et al., 2009).

From an architectural point of view PD2IS comprises four modules: utils, parser,
unmarshaller and producer (see Figure 5.1).

The module utils is composed of two submodules: the description submodule and
the scenario-generator submodule. The description submodule consists of a collec-
tion of XML schemas that encode the protocol signature and the term algebra as given
in Section 3 (i.e., variables and their ranges, untyped messages and typed messages
principals, and goals). The routines in the scenario-generator submodule scan part
of the description file and input parameters and generate the data structures for the
scenarios and the formulas to be checked. The parser module parses the CAPSL de-
scription and populates it in the context of the data structures provided by the scenario-
generator. The parser outputs XML files describing the previously generated scenar-
ios and the specifications to be checked. The unmarshaller module then converts
these XML files into JAVA objects and populates the data structures describing the
interpreted system. Finally, the producer module processes the structures created by
the unmarshaller module into several ISPL files.

Note we use XML as an intermediate language to describe the interpreted systems
under generation. Thus, PD2IS is designed as an expandable platform: by implement-
ing another producer module we can compile into other languages.

We illustrate below ISPL code snippets generated by PD2IS from an NSPK proto-
col scenario. The first code sample is a simplified and commented version of the code
generated for an A-agent. It can be seen that agents’ local variables encode views;
the agents’ actions and local protocols contain instantiated send and receive actions;
the agents’ local evolutions are described by appropriate matching preconditions, and
setting postconditions. The actual ISPL files produced by PD2IS are less intuitive than
the ones presented below as they are heavily optimised to reduce the state-space of the
generated model.

EXAMPLE 14. — Simplified ISPL code for an A-agent

Agent ag_A -- Encodes an NSPK instance (alice, A-role)

Vars: --Encodes <VIEWS>

-- The Id of the agent ag_A is stored in A:

A: {alice};

--The communication partner B is fixed:

B: {bob}

Na, Nb: {r1,r2,...};

Step: {0,1,2,3};

end Vars

Protocol: --Encodes <A-role>

--Step 0:
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Figure 1. PD2IS’s compilation workflow.

Na=X and Step=0: {send_enc_alice_X_pubkey_bob};

--A rule as above for each X in the nonce range {r1,r2,...}

--Step 1:

Step=1: {receive_enc_Na_Nb_pubkey_A};

--Step 2:

Na=X and Nb=Y and Step=2: {send_enc_X_Y_pubkey_bob};

--A rule as above for all X,Y in the nonce range {r1,r2,...}

--Step 3:

Step=3: {donothing};

end Protocol

Evolution:

--Step 0 and step 2:

Step=Step+1

if

Action=send_X and Env.Action=intercept_X;
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--A rule as above for each message X

--Step 1:

Step=Step+1 and

Nb=Y --<SET> assigns nonce Y to X

if

Action=receive_enc_Na_Nb_pubkey_A and

Env.Action=transmit_enc_X_Y_pubkey_alice and

Na=X; --<OUT_MATCH> checks the consistency of Na

--A rule as above for all X,Y in the nonce range {r1,r2,...}

--Step 3

-- No update to local state

end Evolution

�

The local variables of the Environment agent encode all the actions that the intruder
can eavesdrop and execute as well as the messages and parts of messages deduced by
him, i.e., the action history H , and the knowledge set X described in Section 3. The
Environment’s protocol section and evolution section encode the Dolev-Yao deduc-
tions described in in Section 3 by means of the ` relation. We give below a simplified
version of an ISPL code snippet for the Environment section in a generated NSPK
scenario.

EXAMPLE 15. — A simplified fragment for the Environment agent in ISPL

Vars:

knows_X:boolean; -- Represents whether nonce X is in the knowledge set

--A line as above for each X in the nonce range {r1,r2,...}

...

end Vars

Protocol:

--Transmit actions enabled when nonce X is in the knowledge-set:

knows_X: {transmit_enc_alice_X_pubkey_bob};

--A rule as above for each X in the nonce range {r1,r2,...}

...

end Protocol

Evolution:

--DY decomposition upon intercept of enc_A_Na_pubkey_B:

knows_X = true

if

Action=intercept_enc_alice_X_pubkey_intruder and

ag_A.Action=send_enc_alice_X_pubkey_intruder

--A rule as above for each X in the nonce range {r1, r2, ...}

--and for each A-agent ag_A

...

end Evolution
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�

In summary, from CAPSL files the toolkit produces optimised ISPL code ready to
be verified by MCMAS.

5.2. Experimental Results

To evaluate the tool PD2IS in a systematic way, we ran tests on protocol descrip-
tions from the CAPSL-version of the Clark-Jacob’s library (Clark et al., 1999) and
the SPORE library (Laboratoire Spécification et Vérification ENS Cachan, 2003). In
addition to the atomic CAPSL goals considered by other tools, we added a number
of complex CAPSL goals to each CAPSL input file. Specifically, we included com-
plex authentication goals with up to two levels of nesting of knowledge operators (see
Example 2 and Example 3). Table 1 reports the experimental results.

Table 1. Experimental results

Protocol Learn Attacks Avg. time (secs) Total time (secs)

ISO1PUCCF off none 1 23
on 1 1 3

ISO2PUCCF off none 2 42
on 2 2 6

ISOSK1PU off none 2 46
on 1 1 2

ISOSK2PU off none 3 63
on 2 2 8

ISOSK3PM off none 4 80
on 4 3 13

AndrewRPC - 2 4 60
NSPK - 1 1 19
WideMouthFrog - 1 7 56
KSL1 - 1 5 55
KSL2 - 1 10 170

The first column in the table specifies the protocol being checked; KSL1 and KSL2
stand for the protocols described in (Kehne et al., 1992) and (Lowe, 1996) respectively.
The second column indicates whether we assume that keys can be broken (“learned”)
by the intruder. The third reports the number of atomic CAPSL goals for which MC-
MAS found an attack. The forth gives the average verification time that MCMAS took
to verify a single ISPL file while searching for possible attacks. Differently from other
approaches, in this approach we systematically generate ISPL files corresponding to
each protocol scenario considered. In this case we asked PD2IS to generate scenar-
ios with up to 3 agents per protocol role and passed MCMAS the files one at a time
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until either an attack on an atomic goal was found or all the generated files had been
checked. The last column reports the total time used by PD2IS and MCMAS while
performing these checks sequentially. Note that in principle the various ISPL files
could be checked in parallel thereby reducing the total verification time.

Observe that the recorded verification times are not too dissimilar to those pro-
duced by leading toolkits. Indeed, verification results in the literature are most often
reported only for one scenario for each given protocol. We believe the promising
results are due to a combination of factors, including the underlying efficiency of MC-
MAS, the efficient translation optimised for immediate decoding by the receiver of
messages with one level of encryption, and the generation of ISPL code in which
variable types and ranges are optimised for MCMAS.

Lastly, while we do not employ full-typing, we assume some of the tagging schemes
in (Heather et al., 2003), which also help by limiting the size of the DY inference sys-
tem.

Irrespective of the attractive verification results for atomic goals, as previously
remarked, the methodology presented focuses on verifying specifications containing
knowledge operators resulting from what are perceived as being natural epistemic
translations of complex CAPSL goals. To illustrate this point, Table 2 presents the
results for two NSPK scenarios checked against the epistemic CAPSL goals in Ex-
ample 2 and Example 3. As reported in the table, the epistemic CAPSL goals both
hold unless the scenario includes a “corrupt insider”, i.e., unless the intruder initially
knows the private key of some principal whom other principals trust. This is of course
in line with our intuition. The two epistemic CAPSL goals considered are automati-
cally compiled into temporal-epistemic specifications as described in Example 11 and
Example 12 respectively.

Also note that adding further levels of nesting of knowledge modalities may falsify
an initially true CAPSL goal. For example, the experiments confirm that in the case of
the ISO1PUCCF protocol while the first-level epistemic goal from Table 2 holds, the
second-level goal from Table 2 fails.

Table 2. Verification results for NSPK

Insider KnowsB : holdsA : Na KnowsA : KnowsB : holdsA : Na

No
True True

Yes
False False

6. Conclusions and related work

In this paper we presented a methodology for verifying temporal-epistemic prop-
erties of cryptographic protocols. Specifically we defined a map from protocol sce-
narios into interpreted systems, a mainstream semantics for temporal-epistemic logic.
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The translation has been implemented into the PD2IS toolkit that transforms a CAPSL
protocol description into an ISPL program to be checked by MCMAS. In addition to
translating the models, PD2IS also compiles CAPSL goals into a range of temporal-
epistemic specifications corresponding to different readings of the goals. To evaluate
the efficiency of the technique we tested several protocols in the Clark-Jacobs and
SPORE libraries. The performance of the toolkit proved to be satisfactory. The ob-
jective in this article was not to analyse these specific protocols but to develop an
automatic translation and test its implementation. We are not aware of another exist-
ing toolkit that enables the seamless verification of temporal-epistemic properties of
any protocol described in a mainstream security protocol description language.

Any model checking approach to the verification of security protocols requires a
careful handling of the state-explosion problem. The work described in this article is
no exception and a number of assumptions have been made. Most notably we em-
ployed a “matching receive” semantics, we limited the analysis to a fixed number of
interleaved sessions, and the messages generated have finite-length.

This works follows (Lomuscio et al., 2008), where a framework for specifying se-
curity protocols as interpreted systems was described. (Lomuscio et al., 2008) put for-
ward LDYIS (Lazy Dolev-Yao Interpreted Systems) that included several abstraction
features to reduce the state space. However (Lomuscio et al., 2008) used a SAT-based
bounded model checking method for the verification back-end. A further point of dif-
ference is that while LDYIS deals with authentication of origin here we focus on entity
authentication; to achieve this we relax slightly the tight matched send-receive condi-
tions prescribed in (Lomuscio et al., 2008). In addition to the above while (Lomuscio
et al., 2008) focuses on the abstract semantics and deals with an ad-hoc example,
here a map and a compiler is defined that in principle can be applied to any protocol
description.

While we are not aware of other automatic translations into interpreted systems in
the literature, epistemic logic has of course been put forward before as a specification
language. Many of these approaches, starting from the well-known BAN logics line
(Burrows et al., 1990) either focus on the resulting expressivity (Syverson et al., 2000)
to model particular protocols, or integrate it within theorem provers. More recently
the specific protocols have been analysed in an ad-hoc basis by means of temporal-
epistemic model checkers (Meyden et al., 2004a; Lomuscio et al., 2007; Kacprzak et
al., 2008) with anonymity protocols such as Chaum’s dining cryptographers (Chaum,
1988) receiving considerable attention (Kacprzak et al., 2006; Meyden et al., 2004b).
These radically differ from the one presented here in that no general translation method
is defined.

The technique presented only deals with a restricted version of CAPSL. For in-
stance, we do not handle the case of all types of nesting within deeply encrypted mes-
sages. It would be of interest to extend it to support more complex protocols displaying
this and other features. Also, while the compiler currently only supports CAPSL, it
seems possible in principle to devise compilations from other protocol languages.
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