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Abstract—Business artifacts allow to manage operations
of business processes by capturing the key concepts and
relevant information to guide their work flow. The Guard-Stage-
Milestone (GSM) meta-model is a novel formalism for designing
business artifacts that features declarative description of the
intended behaviour without requiring an explicit specification
of the control flow. Its concept of hierarchical structures of
stages and explicit rules for the fulfilment of their guards and
milestones supports the designing process but poses a challenge
for formal verification. We show here how to approach the
verification problem by developing a symbolic representation
amenable to model checking. The feasibility of the approach
is demonstrated by presenting a case study on the direct
verification of a GSM model using a tool implementation.

Keywords-Business Artifacts; Formal Verification; Model
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I. INTRODUCTION

Business artifacts are a growing topic in web-services [1],
[2], [3]. Differently from the standard process-based paradigm
popular in web-services, in artifact systems data is given the
same prominence as processes. One such approach, Business
Artifacts with Guard-Stage-Milestone Lifecycles (GSM), was
recently introduced as a declarative method for specification
of artifact lifecycles [4], [5], [6]. The main advantage of this
formalism is that it closely follows the intuitive way in which
stakeholders think about their business. While much of the
work is focused on the design, deployment and maintenance
of GSM models, the verification of this formalism has not
been tackled yet.

The key components of a business artifact are the infor-
mation model that captures the data and the lifecycle model
that controls the possible behaviour. A GSM artifact system
consists of a set of artifact instances that communicate with
the environment via events. Unlike most of the previous work
on business artifacts, which modelled lifecycles as state ma-
chines, GSM allows for a declarative way of modelling using
a hierarchical structure of stages. Each stage is equipped
with a set of guards to control its activation, milestones to
determine when its goals are achieved, and, optionally, sub-
stages that provide direct support of parallelism within an
instance. Guards and milestones are controlled by conditions
that depend on data from the information model and are
triggered by events. An important feature of the framework
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is that an occurrence of a single event may lead to a
chain of changes in the artifact system, such as activation
and inactivation of stages or achieving and invalidating
milestones.

The declarative description of the model supports the
natural way of thinking about the different stages of a working
process and the necessary milestones towards achieving a
certain goal. However, a complex artifact system supports
a large number of services involving many stakeholders,
making it difficult to asses whether the system will behave
as intended once deployed. It is therefore desirable to have a
mechanism in place to ensure the validity of the design. Of
course, verification of services is an active field of research
(e.g., see [7], [8]). The automatic verification of business
artifacts was investigated in [9]; however, the lifecycles of
artifacts were based on finite-state machines, which does not
correspond to the GSM model. To the best of our knowledge,
no solution currently exists for this declarative approach.
This paper presents such a solution.

Specifically, we introduce a methodology to apply sym-
bolic model checking [10], [11] on GSM and present an
implementation, called GSM Checker (GSMC), that enables
us to verify properties of models produced by Barcelona [5], a
web-based engine developed by IBM Watson that supports the
execution of GSM models. The verification is done directly
on Barcelona models without the need for translating them
into another modelling language. To verify the behaviour
of an artifact system, we transform the GSM model into a
finite-state machine and systematically examine all possible
behaviours of the new model against specifications. The key
aspect is the construction of a transition relation using rules
that are derived from lifecycle models of artifacts.

We introduce GSM and symbolic model checking in
Section II. Details on encoding of GSM, generation of the
transition relation, and verification are given in Section III.
The implementation is described in Section IV before we
present a detailed case study in Section V. We conclude the
paper and give some directions for future work in Section VI.

II. PRELIMINARIES

We first present GSM and its semantics, followed by a
brief introduction to model checking and the temporal logic
CTL, which is used for the specification of properties.



A. Business Artifacts with Guard-Stage-Milestone Lifecycles

This paper follows the formal definition of GSM presented
in [5]. We define a GSM model Γ as a set of all artifact
instances in the system and use the context variable x that
ranges over the instances of artifact type R.

At the core of the lifecycle model is the notion of a stage,
which consists of three following concepts. A milestone
represents an operational objective that can be achieved or
invalidated and corresponds to one of the ways in which a
stage might reach completion. A stage body is a hierarchical
cluster of activity intended to achieve a milestone, where each
stage is parent of either a set of sub-stages, or a task. A stage
becomes inactive when one of its milestones is achieved. A
guard controls entry into the stage body, in which case the
stage becomes active.

The information model keeps track of business relevant
information in data attributes, as well as status attributes
of stages and milestones. In particular, each stage S of an
artifact instance x has associated a status variable x.activeS
that reflects if the stage is active or inactive. Similarly, x.m
reflects if milestone m is achieved. The communication
between artifact instances and the environment is performed
in form of incoming and generated events, which can be either
a 1-way message, a 2-way service call, or an instance creation
request. Generated events are created by tasks contained in
atomic stages, i.e., stages without sub-stages. Both milestones
and guards are controlled in a declarative manner by a
condition χ(x) with a triggering event “on ξ(x)” or an
expression on data “if ϕ(x)”.

A pre-snapshot is an assignment to the variables in the
information model, while a snapshot is a pre-snapshot that
satisfies the following three GSM Invariants: all milestones
of an active stage are false; all sub-stages of an inactive
stage are inactive; at most one milestone of a stage can be
achieved at any time.

The operational semantics of a GSM model Γ is based on
the notion of a Business step (B-step), which corresponds to
the impact of a single incoming event e on a snapshot Σ, and
is considered the smallest unit of relevant change that occurs
in the system. The impact of e is gradually constructed from
1) the immediate effect of the event, which can assign payload
to data attributes and 2) a re-evaluation of the conditions in
Γ by Prerequisite-Antecedent-Consequent (PAC) rules that
can lead to changes in guards and milestones.

The abstract PAC rules are listed in Table I. Each PAC
rule consists of the following three parts: the prerequisite
(P ) determines whether the rule is relevant to the previous
snapshot Σ; the antecedent (A) contains a user-defined
condition χ(x) and is evaluated relative to the next snapshot
Σ′; the consequent (C) specifies the change to the value of a
status attribute in the next snapshot Σ′ if the rule is relevant
and if A holds in Σ′. The first three PAC rules in the table
are concerned with updating the status attributes on certain

Table I
PAC RULE TEMPLATES.

Rule Prerequisite Antecedent Consequent
PAC-1 ¬x.activeS χ(x) ∧ x.activeS∗ +x.activeS

PAC-2 x.activeS χ(x) +x.m
PAC-3 x.m χ(x) −x.m
PAC-4 x.m on +x.activeS −x.m
PAC-5 x.activeS on +x.m −x.activeS

PAC-6 x.activeS on −x.activeS∗ −x.activeS

events, and the last three rules preserve invariants of the
model. More specifically, PAC-1 governs activation of stage
S if its guard χ(x) holds and its parent S∗ is active; PAC-2
determines achieving milestone m if its corresponding stage
S is active and its condition χ(x) holds; PAC-3 controls
invalidating milestone m if it was achieved before and its
invalidating condition χ(x) is true; PAC-4 directs invalidating
milestone m when its corresponding stage S becomes active;
PAC-5 governs inactivation of stage S when its milestone
m is achieved; and PAC-6 induces inactivating of stage S
when its parent S∗ becomes inactive.

The incoming event e triggers a sequence of pre-snapshots
Σ0,Σ1, . . . ,Σn with Σo = Σ, Σ1 = ImmEffecte(Σ0), and
Σn = Σ′. The transition between pre-snapshots Σi and
Σi+1 is called a micro-step, whilst the B-step constitutes
the transition from snapshot Σ to Σ′. The PAC rules are
sequentially applied to Σi until a fixed-point is reached.1 Each
micro-step can generate an outgoing event if its associated
atomic stage becomes active. These events are collected and
sent to the environment in the last micro-step.

The Toggle-once Principle, that states that each status
attribute can change its value at most once through the
application of PAC rules, guarantees that the application of
PAC rules terminates since there is a finite number of PAC
rules. To ensure that the rules adhere to the principle, circular
dependencies among PAC rules are not allowed, i.e., there
must not be a set of rules where each C of a rule changes a
status attribute required in A of another rule. A suitable order
of the PAC rules is achieved via pre-determined topological
sort of the dependency graph DG(Γ) associated with the
GSM model Γ. The graph contains nodes for all guards,
stages and milestones for each artifact type R in Γ. The set
of edges represents dependencies between individual nodes
and it is based on ground PAC rules for Γ. If DG(Γ) satisfies
the acyclicity condition the model Γ is well-formed.

A web-based application that supports GSM models, called
Barcelona, has been implemented by IBM Watson [5]. Users
can model business artifacts with GSM lifecycles using a
design editor and then immediately deploy these models
on an execution engine. We present a motivating scenario
modelled using Barcelona in Section V. More details on
GSM can be found in [4], [5].

1PAC rules have three equivalent formulations [6]. We discuss only the
incremental formulation, on which our approach is based.



B. Model Checking

Model checking [10] is an automated verification method
that systematically explores all possible behaviour of a
system under examination. The technology is widely used
in verification, including the area of choreography and
orchestration of web services [8]. It recently received much
attention with the presentation of the 2007 Turing Award
to E. M. Clarke, E. A. Emerson and J. Sifakis for their
achievements in this area.

To apply model checking, we introduce the notion of
a state s as a particular evaluation of the data and status
attributes. Snapshots and pre-snapshots are both states in that
sense. We will use the terms interchangeably when a further
classification is not relevant or is clear from the context.
The allowed changes of variable evaluations are captured by
transitions between states.

Symbolic model checking [11] uses formulas to represent
sets of states and their possible transitions in a transition
system M = {S, δ, I, AP}, where S is set of all possible
states, δ ⊆ S × S is the transition relation that captures all
allowed transitions, I ⊆ S is the set of initial states, and
AP is a set of atomic propositions defined on the states. We
write δ(s) = {s′ | (s, s′) ∈ δ} to denote all successors of s.
A run π of the system is a sequence of states s0, s1, ... such
that s0 ∈ I and ∀i≥0si+1 ∈ δ(si). We denote the ith state of
a run as π[i], write AP (s) for the propositions that hold at a
given state, and use the temporal logic CTL [12] to specify
properties on these propositions. CTL is a branching-time
logic that allows to express properties about execution paths
of a system. The syntax of a CTL formula ϕ is given as

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | EXϕ | AGϕ | E (ϕUϕ)

The semantics is defined inductively, where πs denotes all
runs starting from a set of states s. We say that a system M
with s is a model of formula ϕ (given as (M, s) |= ϕ) if:

(M, s) |= p iff p ∈ AP (s)
(M, s) |= ¬ϕ iff (M, s) 6|= ϕ

(M, s) |= ϕ1 ∧ ϕ2 iff (M, s) |= ϕ1 and (M, s) |= ϕ2

(M, s) |= EXϕ iff ∃π∈πs
: (M,π[1]) |= ϕ

(M, s) |= AGϕ iff ∀π∈πs
∀i≥0 : (M,π[i]) |= ϕ

(M, s) |= E(ϕUψ) iff ∃π∈πs
∃k≥0 : (M,π[k]) |= ψ∧

∀j<k(M,π(j)) |= ϕ

Additional operators can be constructed by combination of
the ones given above (e.g., EFϕ := ¬AG¬ϕ, ϕ → ψ :=
¬ϕ ∨ ψ). Intuitively, Xϕ, Gϕ, Fϕ, are path formulas that
hold if ϕ evaluates to true in the next state, in all states, or
eventually in some state of the path. Similarly, ϕUψ holds if
ϕ holds until ψ holds. The prefixes to path formulas A and E
denote that a formula holds in a state if the formula holds for
all paths (A) or at least one path (E) starting from the current
state. A system M satisfies a formula ϕ if (M, I) |= ϕ.

Σ
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Figure 1. B-steps and micro steps of GSM.

Given a CTL formula, a model checker computes the states
in which the formula holds. This can be done effectively using
BDDs [11] as data structure to store states and transition
relation.

III. METHODOLOGY

In the following we present a novel methodology to verify
the behaviour of artifacts in terms of their possible sequences
of B-steps. Note that GSM is not directly amenable to
symbolic model checking as its semantics does not provide
a transition system. Instead, a B-step is constructed from a
number of micro-steps that apply changes in a sequence
of updates until a fixed point is reached. Developing a
transition relation from this declarative semantics requires
further analysis of the process performing a B-step. We
recall the three phases of the generation of a new snapshot
in Figure 1:
• process incoming events 1 : Each B-step processes one

event that is selected from a set of pending events. The
execution of the event may cause updates to the local
data or perform structural actions like creating a new
instance of an artifact.

• application of PAC rules 2 : Effects from 1 may
change the conditions of guards or milestones and thus
trigger a PAC rule that updates the status attributes or
issues events. These changes may lead to the execution
of further PAC rules, resulting in a sequence of rule
executions.

• send new events 3 : To finalise a B-step, the executed
event is removed from the set of pending events, and
newly raised events from the PAC rule executions are
added.

In the remainder of this section we show how to translate the
GSM semantics to a transition system. We start with giving
a suitable encoding for a state, followed by the definition of
a transition relation from the three phases given above.

A. Encoding

To perform verification, we need to capture the current state
of an artifact system with some additional information about



its environment. A snapshot Σ consists of status attributes and
additional space for business data, which we support in form
of Boolean, bounded integer and enumeration data types. In
addition, a special status attribute “exist” for each artifact
instance determines if it is active. This is used for obtaining a
finite encoding by provisioning space for a bounded number
of instances, which are activated upon reception of the new
event. In the following we use a vector of variables x to
subsume all artifact related data of a (pre-)snapshot along
with possible user inputs for an event. A vector of variables
e encodes the events that are pending at a certain snapshot
Σ. For other pre-snapshots Σi only one e ∈ e is true and
signifies the currently executed event.

We write x e to denote the set of states spanned by the
possible evaluations of the variables in these vectors. As the
micro-steps operate on different states, we use three sets
of variables to encode the transition relations: x e for the
previous snapshot Σ, x′e′ for the current pre-snapshot Σi,
and x′′e′′ for the next pre-snapshot Σi+1. We use indices to
access single elements in a vector.

B. Transition Relation

Using the encoding above, we build a symbolic transition
relation δ ⊆ Σ× Σ for a direct computation of B-steps. To
this end, we build the transition relations δ 1 , δ 2 , and δ 3

for the different phases from Figure 1 and concatenate them
into δ = δ 1 ◦ δ 2 ◦ δ 3 to be able to compute δ(Σ) in a
single step. To compute the successors for a set of states Σ̂
with δ, we build the conjunction with the transition relation,
remove the current state variables and replace them by the
next states Σ̂′ = δ(Σ̂) = (∃x eΣ̂∧δ)[x e/x′e′]. Concatenation
of transition relations can be done similarly; but requires
the introduction of an intermediate state and in our case the
conversion between snapshots and pre-snapshots.

1) Execution of an Event: Phase 1 generates the first
pre-snapshot by picking a pending event ei and assigning
the result of its execution to the attributes x′. The effect
of ei is given by δei below, where ei = true states that
ei is pending in the snapshot, ei(x) returns the results of
executing ei using the current data, and all event variables
in the resulting pre-snapshot except the one for event i are
false:

δei
= {x e x′e′ | ei = true ∧ x′ = ei(x) ∧ e′i

∧
j 6=i

¬e′j}

The event ei changes attributes according to its type and the
current values of x, which also contains user input. The new
event is executed by initialising the data of a corresponding
artifact type and setting its exist flag to true. In a snapshot
with several pending events one of them is selected non-
deterministically. In the transition relation, this is expressed
by disjunction of the possible choices:

δ 1 =
∨
ei∈e

δei

The resulting transition relation produces all possible initial
pre-snapshots Σ1 for any set of snapshots Σ.

2) Execution of the PAC Rules: The main challenge in
computing the updates to status attributes within a B-step is
the inter-dependency of the PAC rules. This leads to different
sequences of pre-snapshots depending on the executed event
and state of the system. The key property of the semantics
that enables us to combine the different steps in 2 into a
single transition relation is the requirement that dependencies
among PAC rules are not circular, i.e., that no consequent
of a rule changes the variables needed in an antecedent
of an earlier one. This allows us to find a single order of
PAC rules that covers all permitted sequences of micro-steps.
The transitions for PAC rules that are not applicable for a
certain state are implemented such that all attributes are kept
constant. The order is computed using the dependency graph
DG(Γ) before computing the transition relation.

To incorporate the changes in the pre-snapshot that are
introduced by a PAC rule i, we have to take into account the
prerequisite (P), the antecedent (A), and the consequent (C).
The prerequisite checks a value on the last snapshot Σ. The
antecedent is an expression over Σ and the next snapshot Σ′.
Recall, though, that the ordering of the PAC rules ensures
that none of the variables in A is changed during or after
execution of the current rule, which allows us to operate on
Σ and the pre-snapshot Σi. If A matches, the consequent
updates the values for the next pre-snapshot while the values
not touched by C remain as in Σi. The transitions generated
by PAC rule i with the unprimed variables for Σ, primed for
Σi and double primed for Σi+1 are given as:

δri
= {x e x′e′x′′e′′ |Pri

(x) = true ∧Ari
(x e x′e′)∧

x′′e′′ = Cri
(x′e′)

∨ Pri
(x) = false ∧ x′′e′′ = x′e′}

The transition relation gives a new pre-snapshot Σi+1 for
a given snapshot Σ and pre-snapshot Σi. If we build the
conjunction of δr1 with δ 1 , we get a formula that describes
the first and second pre-snapshots following any snapshot
Σ. Because we are only interested in the latest pre-snapshot,
we remove the middle state as follows:

δ 1 ◦ δr1 = ∃x′e′δ 1 ∧ δr1 [x′′e′′/x′e′]

The result is again a formula in x e and x′e′ and gives us
the pre-snapshots that can be generated by Σ in two steps.
To complete δ 1 ◦ δ 2 we repeat this step for all PAC rules
in the pre-computed order.

Note that, while P only accesses a single variable, expres-
sions for A are more complex and may contain specialised
operators. For example, StageActive(y) is true if a status
variable corresponding to the stage y is true, independently
of whether it was activated during the current micro step



computation, or during some previous B-step. The truth
value of this operator can be determined by accessing a
status variable in x′. By contrast, StageActivatedOnEvent(y)
is only true if the stage just has been activated. Such an
expression requires access to the previous snapshot Σ. If the
corresponding flag was false there, and is true in x′, then
the stage was activated in the current B-step computation
and the StageActivatedOnEvent(y) is true. Similarly, there is
an expression that is true if and only if the current B-step
computation was set off by event ei, which requires access
to e′. Access to e allows us to reason about pending events.

3) Creating a new B-Step: The final phase 3 computes
the resulting new snapshot Σ′ from Σ and the last pre-
snapshot Σn by computing a new set of pending events and
holding the data from Σn−1 constant. An event is pending
if it either was pending before the last B-step but was not
executed, or it was created in the last B-step. Computing the
remaining events is simply done by selecting all events from
Σ that are not in Σn:

δrem = {x e x′e′x′′e′′ | x′′ = x′ ∧
∧

0≤i<m

e′′i = ei ∧ ¬e′i}

An events is created when an atomic stage is activated
during a B-step execution, i.e., the respective state attribute
is set in Σn−1 but not in Σ. For simplicity we denote the set
of events that are issued by newly activated atomic stages
as E . The transition to issue the newly generated events is
now given as:

δE = {x e x′e′x′′e′′ | x′′ = x′ ∧
∧

0≤j<m

e′′j = (e′′j ∈ E ∨ e′j)}

The final transition relation is now given as δ = δ 1 ◦ δ 2 ◦
δrem ◦ δE where the concatenation of δrem and δE is done
analogously to δri .

C. Verification

The transition relation computed above describes the
behaviour of the system while executing events but does
not create any incoming events from the environment. To
fully check the system, we need to add these incoming events
and cover every possible behaviour of the artifact system.
To this end, we introduce a default agent that provides input
to the artifact system. Intuitively, the role of this agent is to
generate all possible interactions with the system that any
arbitrary agent communicating with the system could trigger.
This is done by allowing it to non-deterministically enable
any event and user input before the artifact system reacts to
these events. More formally, we give the transition relation
of the agent δa as:

δa = {x e x′e′ |
∧

0≤i<m

ei → e′i ∧ x′ = chguser(x)}

where chguser(x) sets arbitrary user input and keeps all
other attributes in x constant.

Parse Input

Process PAC Rules

Build BDDs

Verify Formulas

True False

G
SM

C

Specification FileXML + XSD Files

Fail

Figure 2. Architecture of GSMC.

When verifying the model, we consider all sequences
consisting of alternating steps of agent and artifact system,
starting from a single initial state s0 with all data and events
being zero.

IV. IMPLEMENTATION: GSMC

We have implemented the methodology in C++ using the
CUDD library [13] for BDD operations. An important feature
of GSMC is that it operates directly on Barcelona models
designed in the Barcelona editor. A model of an artifact
system is generated in XML format and can be deployed on
the Barcelona engine after the verification. The properties
are given as a plain text file containing formulas in the
specification language. The output contains the result of the
evaluation of the properties.

The internal architecture of GSMC is illustrated in Figure 2.
The tool reads the inputs by using two parsers. The XML
parser transforms the GSM model into an internal repre-
sentation of the system, which consists of a set of objects
representing instances of all artifact types in the system. The
specification parser creates parse trees of the formulas.

Next, the pre-processor generates grounded PAC rules
associated with the artifact system, constructs the dependency
graph, and performs a topological sort on this graph. If the
model is not a well-formed GSM model, the verification is
halted and a cycle that violates the acyclicity condition is
produced. After that, BDD variables are assigned to attributes
and events and the BDD representations of PAC rules are
constructed. The BDD for the transition relation of the
artifact system and the agent are built following the procedure
described in Section III.

Finally, the properties of the model are verified one by
one. The BDD representation of the set of states in which a
formula holds is computed using the transition relations. If
the set contains the initial state then the formula is true in
the model and false otherwise. GSMC implements standard
algorithms to compute the set for CTL formulas [11].

The toolkit currently supports enumeration, bounded
integer, and Boolean data types. All other types of data are
coarsely abstracted as these. For example, string constants in
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the model are enumerated and can be compared for equality
but concatenation is not supported. We also allow for at
most one instance per artifact type in the system, attempts
to create more result in the overflow flag being raised.

V. CASE STUDY

A. Fixed Price Scenario

The Fixed Price contracting scenario [4] is based on a
real-world application to facilitate purchasing of services
or goods at fixed, predetermined prices. The application
manages the interaction between a requester who wants to
acquire a product, a buyer who manages the purchasing
process, a number of optional reviewers who evaluate the
order, and the actual suppliers of the product.

This scenario is modelled with two artifact types. Figure 3
gives an overview of the most important stages of the two
types called Fixed Price Request (FPR) and Supplier Re-
sponse (SR). An FPR instance is created when the requester
makes the initial draft of the order in the ‘Drafting’ stage.
Depending on the specifics, the buyer may initiate a reviewing
process in the ‘Reviewing’ stage that may lead to redrafting.
If the conditions are met, the ‘Launching Responses’ stage
is activated where SR instances are automatically created.
For each supplier, there is one SR instance, which manages
the particular response. After a supplier responds to the
request in the ‘Responding’ stage, the requester, the buyer,
and possibly one or more reviewers evaluate the bid in the
‘Evaluating’ stage of the SR instance. The FPR instance
manages these evaluations for each SR instance in the
‘Tracking of Evaluations’ stage and eventually checks with
the buyer to select a winner who will be offered the contract
for the order.

This is only a portion of the actual artifact system. The full
model has 28 stages and 37 milestones in both artifact types
together. We here evaluate the case where the order is sent
just to a single supplier. However, we take into consideration
the whole Barcelona model, which was supplied by IBM

Tracking Of Evaluations

Winner 
Selected

Evaluating

Explicitly 
Rejected
Implicitly 
Rejected

Selected 
As Winner

on `Selected As Winner'

Assigning Winner
Winner 
Assigned

on `Manually Close Tracking'

Figure 4. Structure of ‘Evaluating’ and ‘Tracking Of Evaluations’ stages.

Watson. For more details we refer to Figures 4 and 5, where
� represents guards, ◦ represents milestones, and the arrows
represent dependencies between them. Labels on arrows
express additional conditions on a guard or milestone.

B. Verification

We checked a number of properties directly on the
Barcelona model of the Fixed Price scenario. We discuss
four of the more interesting specifications below, where
the formulas are slightly simplified to contain only relevant
concepts from the stages explained above. The full model
also contains, e.g., different styles of how a supplier can
respond to the request. By using GSMC, we were able to
identify two previously undiscovered bugs in the Barcelona
model. We present the specifications that we found not to
hold and explain why this is the case.

The first requirement concerns the reachability of mile-
stones. It is reasonable to assume that all milestones of an
artifact instance can be achieved at some point. This does not
mean that all are achieved during a particular run but rather
that at least one sequence of events leads to the achievement
of any milestone. An unachievable milestone signifies that
either the milestone is superfluous or that the system does not
behave as expected. The following CTL formula specifies this
requirement for the milestone ‘Drafted’ of the FPR artifact
instance:

EF MilestoneAchieved(′Drafted′)

There are 37 milestones and by using GSMC we could
verify that all the milestones, with the exception of ‘Implicitly
Rejected’ milestone of the ‘Evaluating’ stage of the SR
instance, can be achieved. The reason for this failure is that
an SR instance becomes implicitly rejected only if another
SR instance is selected as winner. This cannot happen in our
model since we allow for at most one instance per artifact
type.

The second specification, illustrated by Figure 4, says that
whenever the ‘Selected As Winner’ milestone of the SR
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instance is achieved, then the ‘Winner Assigned’ milestone
of the FPR instance can be eventually achieved. This is
formally specified as follows:

AG (MilestoneAchieved(′SelectedAsWinner′)
→ EF MilestoneAchieved(′WinnerAssigned′)))

This formula holds in the model as expected. Note that
we checked that the ‘Winner Assigned’ milestone always
can be achieved (AG EF) rather than that it always will
be achieved (AG AF). This is because ‘Winner Assigned’
requires interaction from the buyer to perform an ‘Assign
Winner’ event. Since we check the artifact system for
interactions with arbitrary agents, this event can be delayed
forever. However, no matter what the user of the system
does, the milestone can always be achieved when the event
is executed.

The third specification we verified is similar to the previous
one and is also illustrated by Figure 4. This time, though, we
require that whenever the ‘Winner Assigned’ milestone of
the FPR instance is achieved, then the ‘Selected As Winner’
milestone of the corresponding SR instance is achieved as
well. In other words, the winner cannot be assigned within
the FPR instance without the SR instance being selected as
the winner. This property is expressed by the following CTL
formula:

AG (MilestoneAchieved(′WinnerAssigned′)
→MilestoneAchieved(′SelectedAsWinner′))

As it turns out, this formula is false in the model. This is
because an agent can send a ‘Manually Close Tracking’ event
to activate the ‘Assigning Winner’ stage manually. This causes
the ‘Winner Assigned’ milestone to be reached without the
milestone of the ‘Evaluating’ stage being updated. This means
that the current implementation of the ‘Evaluating’ stage does

not handle manual intervention of the agent properly. The
problem can be fixed by adding another atomic sub-stage to
the ‘Tracking Of Evaluations’ stage that deals with cancelling
the tracking.

The last requirement we identify, shown in Figure 5, relates
to the inner consistency of the ‘Preparing FPR’ stage. A
requester may bypass the ‘Reviewing’ stage by sending an
event to cause the ‘Requester Ready Submit’ milestone to be
achieved, which activates the ‘Launching Responses’ stage
directly. Since the latter sends the request to the suppliers,
the ‘Drafting’ stage must not be reactivated since this would
allow for changes to the already sent order. This can be
specified as follows:

AG (MilestoneAchieved(′RequesterReadySubmit′)
→ ¬EF StageActive(′Drafting′))

We verified this formula using GSMC but found it to be
false. Close inspection of the model shows that the problem
occurs when a draft is reviewed and rejected at first, and then
submitted without a second review via the ‘Requester Ready
Submit’ milestone. In such a scenario, the second guard of
the ‘Drafting’ stage, “on ‘Rework FPR’ & ‘Rejected’”, does
not behave properly. Since the ‘Rejected’ milestone remains
achieved from the initial review, an agent may activate the
‘Drafting’ stage at any time by sending the ‘Rework FPR’
event. Now the data attributes of the FPR instance can be
significantly changed whilst the SR instances are being sent
to suppliers. This may lead to unexpected consequences.
The error can be corrected by changing the guards of the
‘Drafting’ stage such that they do not allow activation once
the ‘Launching Responses’ stage is active.

The presented results demonstrate that GSMC provides
invaluable assistance in modelling by identifying cases in
which the system behaves as expected, and reporting cases
that need more attention.



Table II
PERFORMANCE RESULTS.

Operation Result Memory Time
Computation of Tr. Relation X 72MB 3.76s
Milestones can be Achieved X 100MB 129.21s
Winner can be Assigned X 112MB 26.52s
Winner Assignment Consistent 7 84MB 9.10s
Order Consistent 7 73MB 3.72s

C. Toolkit Evaluation

We conclude this section with a short discussion on the
performance of GSMC. A pre-snapshot of the FP scenario is
encoded by the model checker into BDD using 116 Boolean
variables. Therefore, the state space of the model spans over
approximately 8× 1034 pre-snapshots. The construction of
the transition relation, which is reused for the evaluation of
all the specifications, requires three distinct sets of Boolean
variables (348 in total).

We verified the properties on a 64-bit Fedora 16 Linux
machine with a 3.47GHz Intel R© CoreTM i5 processor and
8GB RAM. Table II shows the results for the memory and
CPU usage of the individual operations undertaken by GSMC.
The first row reports the construction of the transition relation;
the remaining rows give the performance for the properties
verified in this section. Note, that the first specification
consists of 37 separate formulas. These results suggest that
the verification time and memory requirements of the tool
are small even for a realistic scenario with a large model.

VI. CONCLUSION AND FUTURE WORK

We presented a methodology to model check declarative
models of artifact systems by translating GSM artifact
systems into a symbolic transition system used for symbolic
model checking. A notable feature of our approach is that it is
completely automatic. The GSMC toolkit takes files from the
web-based GSM engine Barcelona as input. It has shown to
be capable of handling large scenarios. We demonstrated the
applicability using an example from a real-world application,
proved the correctness of several properties, and identified
two errors in the original model.

The tool has already proven to be very helpful for
validating GSM models, but it is currently not sound or
complete for general GSM models due to the limitations we
impose on data types and the restriction to one instance per
artifact type. For future versions of GSMC, we investigate
the implementation of abstraction techniques [14] to improve
data handling. We also work on the support of multiple
instances per artifact type. A further interesting question is
to check how an overall system may behave in presence
of different agents. This gives rise to questions about the
relationship between agents and the knowledge they have
about the system and each other. Properties of this kind can
be handled by extensions of CTL to epistemic logic [15].
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