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Abstract

We explore the paradigm of artifact-centric systems from a
knowledge-based perspective. We provide a semantics based
on interpreted-systems to interpret a first-order temporal-
epistemic language with identity in a multi-agent setting. We
consider the model checking problem for this language and
provide abstraction results. We isolate a natural subclass of
artifact-systems for which the model checking problem is de-
cidable. We give an upper bound on the complexity of the
model checking problem.

1 Introduction
Much of the work in the area of reasoning about knowl-
edge involves the development of formal techniques for the
representation and automatic deduction of epistemic prop-
erties of a system. The approaches based on modal logic
are often rooted in the seminal interpreted systems seman-
tics (Parikh and Ramanujam 1985) for the interpretation of
the standard multi-agent epistemic logic S5n. This approach
was thoroughly explored in the 1990s leading to the sig-
nificant body of work summarised in (Fagin et al. 1995).
While the emphasis is on epistemic properties resulting from
various forms of interaction, these are grounded on the AI
notion of agents interacting in a multi-agent system. In-
deed, some of the more recent work in this area (Gam-
mie and van der Meyden 2004; Kacprzak et al. 2008;
Lomuscio, Qu, and Raimondi 2009) has focused on the de-
velopment of automatic techniques, including model check-
ing (Clarke, Grumberg, and Peled 1999) for the verification
of the epistemic properties of multi-agent systems. This has
led to applications in a number of areas, traditionally outside
AI and knowledge representation, including security pro-
tocols (Boureanu, Cohen, and Lomuscio 2009) and cache-
coherence protocols (Baukus and van der Meyden 2004).

The ambition of the present paper is to begin to offer a
similar change of perspective in a growing topic in web-
services: artifact systems (Cohn and Hull 2009). Dif-
ferently from the standard process-based paradigm popu-
lar in web-services, in artifact systems data are given the
same prominence as processes. Implementations of arti-
fact systems involve the composition of several databases
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on which services operate. This emphasis on data makes
the automata-based formalisms commonly used to model
services generally insufficient: one really requires to ac-
count for the evolution of the first-order schemas represent-
ing the underlying databases. While this makes the resulting
verification problem for artifact systems undecidable, par-
tial solutions have been put forward (Deutsch et al. 2009;
Belardinelli, Lomuscio, and Patrizi 2011b; 2011a). These
techniques enable the verification of basic temporal proper-
ties of the artifact system when analysed under a number of
conditions.

While these results are valuable, they concern the veri-
fication of properties of the artifact system per se and do
not address the need of modelling and verifying the ac-
tions and information properties of the services acting on
or through the artifact system. But if artifact systems are
to be deployed in a range of information services as their
proponents recommend, it is paramount we can model what
actions specific participants are allowed and not allowed to
make, what knowledge they can and cannot derive in a sys-
tem run, what system state they can achieve in coordination
with their peers, etc. In other words, we need to verify the
epistemic properties of a multi-agent system in which arti-
facts are present, and not just the evolution of the artifacts
themselves.

In this paper we set about to explore the verification prob-
lem for artifact-centric multi-agent systems, i.e., systems of
agents interacting through artifact systems, by means of a
knowledge-based perspective. We operate in a first-order
setting with knowledge and branching time (FO-CTLK). We
first remark that the general problem is undecidable and then
proceed to give abstraction results that enable us, in a large
class of cases of practical interest, to be able to analyse
the model checking of finite approximations rather than the
plain infinite model with unbounded database schemas. We
stress the fact that all results are obtained for the full first-
order temporal epistemic logic FO-CTLK with identity. So,
we assume no restriction on the specification language.

The rest of the paper is as follows. In Section 2 we iden-
tify the problem, give a general semantics for artifact-centric
multi-agent systems (AC-MAS), as well as comment on the
undecidability of the model checking problem in the general
case. In Section 3 we explore abstraction results that enable
us to translate the problem to the model checking of finite



models. In Section 4 we take a step towards implementa-
tions and instantiate this semantics by means of artifact sys-
tem descriptions that are close to what used in practice. We
show that the setting complies with the conditions explored
in the previous section thereby enabling us to show results
for artifact-centric implementations. We conclude by pre-
senting complexity results for the model checking problem
and a discussion on related work.

2 Verification of AC-MAS
In this section we lay out the semantics of artifact-centric
multi-agent systems, we then define an interpretation for a
first-order temporal epistemic specification language, and
introduce the model checking problem for these systems.
We use basic definitions taken from (Belardinelli, Lomus-
cio, and Patrizi 2011b) to fix the notation used in the rest of
the paper. We refer to the cited work for more details.

Databases and First-Order Logic
We now introduce the syntax and semantics of our first-order
language. We also fix the terminology on databases that will
be used in the rest of the paper (Abiteboul, Hull, and Vianu
1995).

Definition 2.1 (Database schema) A (relational) database
schema is a set D = {P1/q1, . . . , Pn/qn} of relation sym-
bols Pi, each associated with its arity qi ∈ N.

The primed version of a database schemaD is the schema
D′ = {P ′1/q1, . . . , P

′
n/qn}, where each predicate symbol

Pi is (syntactically) replaced by its primed version P ′i . The
motivation forD′ will become apparent later on, asD andD′
are used to account for the evolution of the artifact system.

Definition 2.2 (Database interpretation) Given a
database schemaD, aD-interpretation (orD-instance) over
an interpretation domain U is a mapping D associating
each relation symbol Pi with a finite qi-ary relation over U ,
i.e., D(Pi) ⊆ Uqi .

The set of all D-interpretations over a domain U is de-
noted by D(U). The active domain of D, or ad(D), is the
set of all individuals in U occurring in some tuple of some
predicate interpretation D(Pi). Observe that, since D con-
tains a finite number of relation symbols and each D(Pi) is
finite, so is ad(D).

Definition 2.3 (FO-formulas over D) Given a set V ar of
individual variables and a set Con ⊆ U of individual con-
stants, the formulas ϕ in the first-order language LD overD
are defined in BNF as follows:

ϕ ::= t = t′ | Pi(~t) | ¬ϕ | ϕ→ ϕ | ∀xϕ

where ~t is a qi-tuple of terms, and t, t′ are terms, i.e., ele-
ments in V ar ∪ Con.

Notice that formulas in LD contain no function symbols
apart from constants. We use the standard abbreviations ∃,
>, ⊥, ∧, ∨, and 6=. Free and bound variables are defined as
standard. For a formula ϕ we denote the set of its variables
as var(ϕ), the set of its free variables as free(ϕ), and the

set of constants in ϕ as con(ϕ). We write ϕ(~x) to list ex-
plicitly in arbitrary order all the free variables x1, . . . , x` of
ϕ. By slight abuse of notation, we treat ~x as a set, thus we
write ~x = free(ϕ). A sentence is a formula with no free
variables.

An assignment is a function σ : V ar 7→ U . For an
assignment σ, we denote by σ

(
x
u

)
the assignment s.t. (i)

σ
(
x
u

)
(x) = u; and (ii) σ

(
x
u

)
(x′) = σ(x′) for every x′ ∈ V ar

different from x. We extend assignments to constants by as-
suming that σ(c) = c for all c ∈ Con.

Definition 2.4 (Semantics of FO-formulas) Given a D-
interpretation D, an assignment σ, and an FO-formula
ϕ ∈ LD, we inductively define whether D satisfies ϕ un-
der σ, written (D,σ) |= ϕ, as follows:

(D,σ) |= Pi(~t) iff 〈σ(t1), . . . , σ(tqi)〉 ∈ D(Pi)
(D,σ) |= t = t′ iff σ(t) = σ(t′)
(D,σ) |= ¬ϕ iff (D,σ) 6|= ϕ
(D,σ) |= ϕ→ ψ iff (D,σ) 6|= ϕ or (D,σ) |= ψ
(D,σ) |= ∀xϕ iff for all u ∈ ad(D), (D,σ

(
x
u

)
) |= ϕ

A formula ϕ is true in D, written D |= ϕ, iff (D,σ) |= ϕ
for all assignments σ.

Observe that we are adopting an active-domain semantics,
that is, quantified variables range over the active domain of
D. Also notice that, by definition of σ, constants are inter-
preted as themselves. Thus, two constants are equal iff they
are syntactically the same.

As an example of an FO-formula consider

φk ::= ∀x1, . . . , xk+1

∨
i 6=j

(xi = xj)

which intuitively says that there are at most k distinct ele-
ments. Such formula will be used in Sec. 5.

Finally, for technical purposes, we define the operator ⊕.
Definition 2.5 (⊕ Operator) Given two D-interpretations
D and D′, D ⊕ D′ is the (D ∪ D′)-interpretation s.t. D ⊕
D′(Pi) = D(Pi) and D ⊕D′(P ′i ) = D′(Pi).

The ⊕ operator will be used later in connection with the
transitions of artifact systems.

Artifact-Centric Multi-Agent Systems
We follow the construction in (Belardinelli, Lomuscio, and
Patrizi 2011a) to define an extension of interpreted systems
to first order, which allows us to reason in terms of the local
database schemas of agents. We refer to (Fagin et al. 1995)
for background on the interpreted systems semantics.

Definition 2.6 (Agent) An agent is a tuple i =
〈Di, Li, Acti, P ri〉 where:

• Di is the local database schema;
• Li ⊆ Di(U) is the set of local states;
• Acti is the set of local actions;
• Pri : Li 7→ 2Acti is the local protocol function.

Given a set Ag = {1, . . . , n} of agents, we define the global
database schema of Ag as D .= D1 ∪ · · · ∪ Dn, i.e., the
set of all relation symbols appearing in some local database



schema. Agents can be thought of as modules that can be
composed together to obtain artifact-centric multi-agent sys-
tems.

Definition 2.7 (AC-MAS) Given a set Ag of agents, an
artifact-centric multi-agent system is a tuple P =
〈S, U,D0, τ〉 where:

• S ⊆ L1 × · · · × Ln is the set of reachable global states;
• U is the interpretation domain;
• D0 ∈ S is the initial global state;
• τ : S ×Act 7→ 2S is the global transition function, where
Act = Act1× · · · ×Actn is the set of global actions, and
τ(〈l1, . . . , ln〉, 〈α1, . . . , αn〉) is defined iff αi ∈ Pri(li)
for every i ∈ Ag.

Given an AC-MAS P , we can interpret a global state
〈l1, . . . , ln〉 as theD-instanceD s.t.D(Pi) =

⋃
j∈Ag lj(Pi),

for all Pi ∈ D. Thus, the set S of global states can be seen
as a subset ofD(U). This is done for technical convenience,
so as to see each global state as a single database instance,
rather than a tuple. Notice that for each 〈l1, . . . , ln〉 there ex-
ists a unique D-instance D as above, however the converse
is not true in general. The way D has to be interpreted will
be clear from the context.

We define the global transition relation → on S × S
s.t. D → D′ if there exists ~α ∈ Act and D′ ∈ τ(D, ~α).
If D → D′, we say that D′ is a successor of D. A run r
from D ∈ S is an infinite sequence D0 → D1 → · · · , for
D0 = D. For n ∈ N, r(n) .= Dn. A state D′ is reachable
from D if there exists a run r from r(0) = D s.t. r(i) = D′

for some i ≥ 0. In what follows we assume that the relation
→ is serial, and that S is the set of states reachable fromD0.

We say that D,D′ are epistemically indistinguishable for
agent i, written D ∼i D′, if li(D) = li(D′), where li(D) .=
li for D = 〈l1, . . . , ln〉. This is consistent with the standard
definition of knowledge as identity of local states (Fagin et
al. 1995).

Model Checking
We now define the first-order temporal epistemic specifi-
cation language to be interpreted on AC-MAS. Differently
from (Belardinelli, Lomuscio, and Patrizi 2011b), we as-
sume no restriction on the interaction between quantifiers
and modalities.

Definition 2.8 (FO-CTLK) The first-order CTLK formulas
ϕ over a database schema D are inductively defined by the
following BNF:

ϕ ::= φ | ¬ϕ | ϕ→ ϕ | ∀xϕ | AXϕ | AϕUϕ | EϕUϕ | Kiϕ

where φ ∈ LD.

The notions of free and bound variables for FO-CTLK ex-
tend straightforwardly from LD, as well as functions var,
free, and con. We use the abbreviations EXϕ, AFϕ,
AGϕ, EFϕ, and EGϕ as standard.

Observe that free variables can occur in the scope of
modal operators, thus allowing for the unconstrained alter-
nation of quantifiers and modal operators. As the semantics
below shows, this makes our specification language strictly

more expressive than the one used in (Belardinelli, Lomus-
cio, and Patrizi 2011b), which, in turn, poses major tech-
nical challenges and requires non-trivial extensions of the
construction presented in (Belardinelli, Lomuscio, and Pa-
trizi 2011b) to generalize the decidability result.

Definition 2.9 (Semantics of FO-CTLK formulas)
Consider an AC-MAS P , an FO-CTLK formula ϕ, a state
D ∈ P , and an assignment σ. We inductively define
whether P satisfies ϕ in D under σ, written (P, D, σ) |= ϕ,
as follows:
(P, D, σ) |= ϕ iff (D,σ) |= ϕ and ϕ is an FO-formula
(P, D, σ) |= ¬ϕ iff (P, D, σ) 6|= ϕ
(P, D, σ) |= ϕ→ ϕ′ iff (P, D, σ) 6|= ϕ or (P, D, σ) |= ϕ′

(P, D, σ) |= ∀xϕ iff for all u ∈ ad(D), (P, D, σ
`

x
u

´
) |= ϕ

(P, D, σ) |= AXϕ iff for all r, if r(0) = D then (P, r(1), σ) |= ϕ
(P, D, σ) |= AϕUϕ′ iff for all r, if r(0) = D then there is k ≥ 0

s.t. (P, r(k), σ) |= ϕ′, and for all j,
0 ≤ j < k implies (P, r(j), σ) |= ϕ

(P, D, σ) |= EϕUϕ′ iff for some r, r(0) = D and there is k ≥ 0
s.t. (P, r(k), σ) |= ϕ′, and for all j,
0 ≤ j < k implies (P, r(j), σ) |= ϕ

(P, D, σ) |= Kiϕ iff D ∼i D
′ implies (P, D′, σ) |= ϕ

A formula ϕ is true at D, written (P, D) |= ϕ, if
(P, D, σ) |= ϕ for all σ; ϕ is true in P , written P |= ϕ,
if (P, D0) |= ϕ.

In the rest of the paper we explore model checking of AC-
MAS against first-order temporal epistemic specifications.
Formally, the problem can be stated as follows:

Given an AC-MASP and an FO-CTLK formulaϕ, find
an assignment σ such that (P, D0, σ) |= ϕ.

It was remarked in (Belardinelli, Lomuscio, and Patrizi
2011b) that, even in the context of a purely temporal lan-
guage, the problem is decidable whenever the domain U in
P is finite, and undecidable in general. Since we are here
operating on a strictly stronger language, the following im-
mediately follows.

Theorem 2.10 The model checking problem for AC-MAS is
undecidable.

The result above is obviously negative. However, in the fol-
lowing we identify a large class of AC-MAS, covering inter-
esting cases, for which model checking is decidable.

3 Abstraction of AC-MAS
In this section we present a technique for defining finite ab-
stractions of AC-MAS, so that the satisfaction of FO-CTLK
formulas is preserved. Unless differently stated, in the rest
of the paper we assume fixed a finite set C of constants, and
a countable interpretation domain U such that C ⊆ U . Fur-
ther, whenever we consider an FO-CTLK formula ϕ, we as-
sume that con(φ) ⊆ C. This can be always done w.l.o.g. by
extending C with the finitely many constants in ϕ. Finally,
the D-instances D1 and D2 are defined on the interpretation
domains U1, U2 ⊆ U .

Bisimulation
To show that abstractions of AC-MAS preserve FO-CTLK
formulas, we introduce a notion of bisimulation, which re-



fines the one presented in (Belardinelli, Lomuscio, and Pa-
trizi 2011b). First we define when two D-instances are iso-
morphic.
Definition 3.1 (Isomorphism) Two D-instances D1 and
D2 are isomorphic, written D1 ' D2, iff there exists a bi-
jection ι : ad(D1) ∪ C 7→ ad(D2) ∪ C s.t.

(i) ι is the identity on C;
(ii) for every Pj ∈ D, for every ~u ∈ ad(D1)qj , ~u ∈ D1(Pj)

iff ι(~u) ∈ D2(Pj).
Isomorphisms of D-instances preserve the constants in C

and the interpretation of the relation symbols in D. Any
function ι as above is a witness for D1 ' D2. The relation
' is obviously an equivalence relation. Given a function
f : U1 7→ U2 that is total on ad(D1), f(D1) denotes the
D-instance over U2 obtained from D1 by renaming each of
its elements u ∈ ad(D1) as f(u). Observe that if f is also
injective (thus invertible) on ad(D1), and is the identity on
C, then f(D1) ' D1.

Being isomorphic is not a sufficient condition for two D-
instances to satisfy the same first-order formulas, as we have
to take care also of free variable. Hence, we introduce the
following notion.
Definition 3.2 (Equivalent assignments) Let V ⊆ V ar be
a set of variables, and assume D1 ' D2. Two assignments
σ1 : V ar 7→ U1 and σ2 : V ar 7→ U2 are equivalent for V
(w.r.t. D1 and D2) iff there exists a bijection γ : ad(D1) ∪
C ∪ σ1(V ) 7→ ad(D2) ∪ C ∪ σ2(V ) s.t.

(i) γ|ad(D1)∪C is a witness for D1 ' D2;
(ii) σ2|V = γ ◦ σ1|V .

Intuitively, this definition captures the fact that σ1 and σ2

preserve all (in)equalities of values assigned to variables in
V , and the assignments are consistent with some witness
ι for D1 ' D2. We say that two assignments are equiv-
alent for a FO-CTLK formula ϕ if they are equivalent for
free(ϕ). We can now prove the following result on satis-
faction preservation.
Proposition 3.3 Given two isomorphicD-instancesD1 and
D2, an FO-formula ϕ, and two assignments σ1 and σ2

equivalent for ϕ, we have that

(D1, σ1) |= ϕ iff (D2, σ2) |= ϕ

Proof (sketch). By induction on the structure of ϕ.

Essentially, Prop. 3.3 says that isomorphic instances can-
not be distinguished by FO-formulas. We aim to generalise
this intuition, and define conditions that guarantee two AC-
MAS to be indistinguishable by FO-CTLK formulas. To do
so, we need the following central notions.
Definition 3.4 (Similarity) Given two AC-MAS P1 =
〈S1, U1, D10, τ1〉 and P2 = 〈S2, U2, D20, τ2〉, P2 simulates
P1, written P1 � P2, iff there exists a relationR ⊆ S1×S2,
called simulation relation, s.t. 〈D10, D20〉 ∈ R, and if
〈D1, D2〉 ∈ R then:

1. D1 ' D2;
2. for everyD′1, ifD1 → D′1 then there isD′2 s.t.D2 → D′2,
D1 ⊕D′1 ' D2 ⊕D′2, and 〈D′1, D′2〉 ∈ R;

3. for everyD′1, ifD1 ∼i D′1 then there isD′2 s.t.D2 ∼i D′2,
D1 ⊕D′1 ' D2 ⊕D′2, and 〈D′1, D′2〉 ∈ R.

Observe that R is well-defined as D1 ⊕D′1 ' D2 ⊕D′2 im-
plies D′1 ' D′2. When 〈D1, D2〉 ∈ R for some simulation
relation R, we say that D2 simulates D1, written D1 � D2.
It can be proved that � is the largest simulation relation,
w.r.t. set inclusion, and it is transitive.

Based on the notion of simulation, we can now define
when two AC-MAS are bisimilar.

Definition 3.5 (Bisimilarity) Two AC-MAS P1 and P2 are
bisimilar, written P1 ≈ P2, iff there exists a relation
B ⊆ S1 × S2, called bisimulation relation, s.t. both B and
B−1 = {〈D2, D1〉 | 〈D1, D2〉 ∈ B} are simulation rela-
tions between P1 and P2.

When 〈D1, D2〉 ∈ B for some bisimulation relation B,
we say that D1 and D2 are bisimilar, written D1 ≈ D2.
Obviously, if D1 ≈ D2 then D1 � D2 and D2 � D1.
However, the viceversa is not true. It can be easily proved
that ≈ is an equivalence relation.

Finally, we introduce the class of AC-MAS of our inter-
est, for which we prove invariance w.r.t. FO-CTLK formu-
las, and the main abstraction results.

Definition 3.6 (Uniformity) An AC-MAS P =
〈S, U,D0, τ〉 is uniform iff for every D,D′, D′′ ∈ S
and D′′′ ∈ D(U):

1. D → D′ and D ⊕D′ ' D′′ ⊕D′′′ imply D′′ → D′′′;
2. D ∼i D′ and D ⊕D′ ' D′′ ⊕D′′′ imply D′′ ∼i D′′′.
Intuitively, uniformity requires that the transition and epis-
temic relations do not depend on the actual data content of
each D-instance (apart from the constants in C). Put differ-
ently, the requirements above capture the fact that the system
is unable to distinguish among states containing the same
constants and having the same pattern of data.

In particular, we can prove that under specific assump-
tions req. 2 holds for any AC-MAS.

Proposition 3.7 If an AC-MAS P satisfies req. 1 in Def. 3.6
and ad(D0) ⊆ C, then req. 2 is also satisfied.

Proof (sketch). If D ⊕D′ ' D′′ ⊕D′′′, then there is a
witness ι : ad(D)∪ ad(D′)∪C 7→ ad(D′′)∪ ad(D′′′)∪C
that is the identity on C, hence also on ad(D0). Since D ∼i
D′, then li(D) = li(D′), and also li(D′′) = ι(li(D)) =
ι(li(D′)) = li(D′′′). Notice that this does not guarantee
that D′′ ∼i D′′′, as we need to prove that D′′′ ∈ S. This
can be done by showing that D′′′ is reachable from D0.

Prop. 3.7 identifies a sufficient condition for uniformity.
However, in general AC-MAS are not uniform. We will re-
turn to this point in Sec. 4.

The rest of this section is dedicated to proving that bisim-
ilarity together with uniformity are sufficient to preserve sat-
isfaction of FO-CTLK formulas. We start by exploring the
relationship between uniformity and bisimilarity.

Proposition 3.8 If an AC-MAS P is uniform, then for every
D1, D2 ∈ S, D1 ' D2 implies D1 ≈ D2.



Proof (sketch). The proof consists in showing that B =
{〈D1, D2〉 ∈ S × S | D1 ' D2} is a bisimulation.

The next results are aimed to show that if two bisimilar
AC-MAS contain enough individuals in their interpretation
domains, they satisfy the same FO-CTLK formulas.

Proposition 3.9 Consider two bisimilar uniform AC-MAS
P1 and P2, two D-instances D1 ∈ P1, D2 ∈ P2 s.t. D1 ≈
D2, and an FO-CTLK formula ϕ. For every assignments σ1

and σ2 equivalent for ϕ w.r.t. D1 and D2 we have that:

1. for everyD′1 s.t.D1 → D′1, if |U2| ≥ |ad(D1)∪ad(D′1)∪
C ∪σ1(free(ϕ))|, then there exists D′2 s.t. D2 → D′2,
D′1 ≈ D′2, and σ1 and σ2 are equivalent for ϕ w.r.t. D′1
and D′2.

2. for everyD′1 s.t.D1 ∼i D′1, if |U2| ≥ |ad(D1)∪ad(D′1)∪
C ∪σ2(free(ϕ))|, then there exists D′2 s.t. D2 ∼i D′2,
D′1 ≈ D′2, and σ1 and σ2 are equivalent for ϕ w.r.t. D′1
and D′2.

Proof. To prove 1, let γ be a bijection witnessing that σ1

and σ2 are equivalent for ϕ w.r.t. D1 and D2, as in Def. 3.2.
Consider D′1 s.t. D1 → D′1. Since D1 ≈ D2, there exists
a D′′2 ∈ S2 s.t. D2 → D′′2 , D1 ⊕ D′1 ' D2 ⊕ D′′2 , and
D′1 ≈ D′′2 . Define Dom(j) .= ad(D1) ∪ ad(D′1) ∪ C, and
partition it into:

• Dom(γ) .= ad(D1) ∪ C ∪ (ad(D′1) ∩ σ1(free(ϕ));

• Dom(ι′) .= ad(D′1) \Dom(γ);

and define the function j : Dom(j) 7→ U2 as follows:

j(u) =
{
γ(u), if u ∈ Dom(γ)
ι′(u), if u ∈ Dom(ι′)

where ι′ : Dom(i′) 7→ U2 \ Im(γ) is any in-
vertible (total) function It can be proved that
|U2| ≥ |ad(D1) ∪ ad(D′1) ∪ C ∪ σ1(free(ϕ))| implies
|U2 \ Im(γ)| ≥ |Dom(ι′)|, thus such a ι′ exists.

Obviously, j is invertible. Thus, j is a witness for D1 ⊕
D′1 ' D2 ⊕D′2, where D′2 = j(D′1). Then, because D1 ⊕
D′1 ' D2 ⊕D′′2 , and being ' an equivalence relation (thus
transitive),D2⊕D′2 ' D2⊕D′′2 . Finally, P2 being uniform,
D2 → D′2.

It can be seen that σ1 and σ2 are equivalent for ϕ w.r.t.D′1
and D′2. To see that D′1 ≈ D′2, observe that, since D′2 ' D′′2
and P2 is uniform, by Prop. 3.8, D′2 ≈ D′′2 . Thus, since
D′1 ≈ D′′2 and ≈ is transitive, D′1 ≈ D′2.

The proof for 2 is similar to 1, and is omitted.

To state next results, we require the following notion. A
temporal epistemic run r fromD ∈ S is an infinite sequence
D0 ; D1 ; . . . such thatDi → Di+1 orDi ∼k Di+1, for
some k ∈ Ag. For n ∈ N, r(n) .= Dn. A state D′ is said to
be t.e. reachable fromD iff there exists a temporal epistemic
run r from the initial global state r(0) = D such that r(i) =
D′, for some i ≥ 0. T.e. runs are not to be confused with the
(purely temporal) runs introduced in Sec. 2.

Prop. 3.9 generalizes to temporal epistemic runs.

Proposition 3.10 Consider two bisimilar uniform AC-MAS
P1 and P2, two D-instances D1 ∈ P1 and D2 ∈ P2

s.t. D1 ≈ D2, an FO-CTLK formula ϕ, and two assign-
ments σ1 and σ2 equivalent for ϕ w.r.t. D1 and D2.

For every t.e. run r1, if r1(0) = D1 and for all i ≥
0, |U2| ≥ |ad(r1(i)) ∪ ad(r1(i+ 1)) ∪ C ∪ σ1(free(ϕ))|,
then there exists a t.e. run r2 s.t. for all i ≥ 0:

(i) r2(0) = D2;
(ii) r1(i) ≈ r2(i);

(iii) σ1 and σ2 are equivalent for ϕ w.r.t. r1(i) and r2(i).
Proof (sketch). The proof is an application of Prop. 3.9.

We can now introduce the following key result.
Lemma 3.11 Consider two bisimilar uniform AC-MAS P1

and P2, two D-instances D1 ∈ P1 and D2 ∈ P2 s.t. D1 ≈
D2, an FO-CTLK formula ϕ, and two assignments σ1 and
σ2 equivalent for ϕ w.r.t D1 and D2. If

1. for every t.e. run r1 s.t. r1(0) = D1, for all k ≥ 0 we have
|U2| ≥ |ad(r1(k))∪ad(r1(k+1))∪C∪σ1(free(ϕ)))|+
|var(ϕ) \ free(ϕ)|;

2. for every t.e. run r2 s.t. r2(0) = D2, for all k ≥ 0 we have
|U1| ≥ |ad(r2(k))∪ad(r2(k+1))∪C ∪σ2(free(ϕ))|+
|var(ϕ) \ free(ϕ)|;

then

(P1, D1, σ1) |= ϕ iff (P2, D2, σ2) |= ϕ

Proof (sketch). By induction on the structure of ϕ, by using
Prop. 3.10. We prove selected cases for the ⇒ part. The
⇐ part is proved analogously, by swapping indexes 1 and 2,
and observing that the hypotheses are symmetric. The base
case follows from Proposition 3.3. The inductive cases for
propositional connectives are straightforward.

For ϕ ≡ ∀xψ, assume that x ∈ free(ψ) (otherwise
consider ψ), and no variable is quantified more than once
(otherwise rename variables). Let γ be a bijection wit-
nessing that σ1 and σ2 are equivalent for ϕ w.r.t. D1 and
D2. For each u ∈ ad(D1), consider the assignment
σ1

(
x
u

)
. By definition γ(u) ∈ ad(D2), and σ2

(
x

γ(u)

)
is

well-defined. By noticing that con(ψ) = con(ϕ) and
free(ψ) = free(ϕ) ∪ {x}, it is apparent that σ1

(
x
u

)
and

σ2

(
x

γ(u)

)
are equivalent for ψ w.r.t. D1 and D2. Moreover, it

can be seen that |σ1

(
x
u

)
(free(ψ))| ≤ |σ1(free(ϕ))| + 1,

as u may not occur in σ1(free(ϕ)). Similarly for σ2.
Further, |var(ψ) \ free(ψ)| = |var(ϕ) \ free(ϕ)| − 1,
as var(ψ) = var(ϕ), free(ψ) = free(ϕ) ∪ {x}, and
x /∈ free(ϕ). This enables the application of the induc-
tion hypothesis, thus obtaining: (P1, D1, σ1

(
x
u

)
) |= ψ iff

(P2, D2, σ2

(
x

γ(u)

)
) |= ψ. Since γ is a bijection, the thesis

easily follows.
For ϕ ≡ Kiψ, we assume for contradiction that

(P1, D1, σ1) |= ϕ and (P2, D2, σ2) 6|= ϕ. Then, there ex-
ists a D′2 s.t. D2 ∼i D′2 and (P2, D

′
2, σ2) 6|= ψ. Then,

by Prop. 3.10, there exists D′1 s.t. D′1 ≈ D′2, D1 ∼i D′1,
and σ1 and σ2 are equivalent for ψ w.r.t. D′1 and D′2.
Thus, we can apply the induction hypothesis, and we ob-
tain (P1, D

′
1, σ1) 6|= ψ. Hence (P1, D1, σ1) 6|= Kiψ, which

is a contradiction.



We can now state the main result of this section.
Theorem 3.12 Consider two bisimilar uniform AC-MASP1

and P2, and an FO-CTLK formula ϕ. If
1. for all t.e. run r1 s.t. r1(0) = D10, and for all k ≥ 0,
|U2| ≥ |ad(r1(k)) ∪ ad(r1(k + 1)) ∪ C|+ |var(ϕ)|

2. for all t.e. run r2 s.t. r2(0) = D20, and for all k ≥ 0,
|U1| ≥ |ad(r2(k)) ∪ ad(r2(k + 1)) ∪ C|+ |var(ϕ)|

then

P1 |= ϕ iff P2 |= ϕ

Proof. (sketch) The proof follows from Lemma 3.11 by
observing that hypotheses 1 and 2 imply, respectively, hy-
potheses 1 and 2 of Lemma 3.11.

In this section we proved that bisimilar AC-MAS satisfy-
ing assumptions 1 and 2 in Lemma 3.12 validate the same
FO-CTLK formulas. In the next section, we exploit this re-
sult to reduce, under some additional hypothesis, the veri-
fication of an infinite-state AC-MAS to that of a finite-state
one.

Finite Abstraction
We now proceed to define a notion of bound in AC-MAS
executions, and present abstraction results. In the rest of
the paper we assume without loss of generality that any AC-
MAS P is s.t. ad(D0) ⊆ C. If this is not the case, C can be
extended so as to include all the (finitely many) elements in
ad(D0).

Definition 3.13 (Bounded AC-MAS) An AC-MAS P is b-
bounded, for b ∈ N, if for all D ∈ S, |ad(D)| ≤ b.
Observe that the notion of boundedness imposes no require-
ment on the interpretation domain of P . As a consequence,
even though each state in P does not contain more than b
distinct elements, if the interpretation domain U is infinite,
so is in general the state space of P .

The aim of this section is to show that, although infinite-
state, uniform b-bounded systems can in principle be verified
by resorting to techniques for finite-state model checking ap-
plied to a particular AC-MAS that is a finite abstraction of
P .
Definition 3.14 (Finite Abstraction) Given a b-bounded
AC-MAS P1 = 〈S1, U1, D10, τ1〉 with U1 infinite, an AC-
MAS P2 = 〈S2, U2, D20, τ2〉 is a finite abstraction of P1, iff
U2 is finite, |U2| ≥ 2b+ |C|, and

(i) D20 = D10 ∈ S2;
(ii) for every D1 ∈ P1 and D2 ∈ P2 s.t. D1 ' D2 there

exists D′1 ∈ S1 s.t. D1 →1 D
′
1 iff there exists D′2 ∈ S2

s.t. D2 →2 D
′
2 and D1 ⊕D′1 ' D2 ⊕D′2.

We can show that boundedness and uniformity are suf-
ficient conditions for the existence of a bisimilar finite ab-
straction.

Lemma 3.15 Given a b-bounded uniform AC-MAS P1 over
an infinite U1, we have that:
1. there exists a finite abstraction P2 of P1;
2. every finite abstractionP2 ofP1 is uniform, andP1 ≈ P2.

Proof (sketch). For 1, build P2 as follows. First, let D20 =
D10. Next, for every D1, D

′
1 ∈ P1 s.t. D1 → D′1, and for

every D2 ∈ P2 s.t. D1 ' D2, consider all witnesses ι for
D1 ' D2. By the boundedness hypothesis and cardinality
considerations, each ι can be extended to ad(D1)∪ad(D′1)∪
C, so as to obtain a witness ι′ for D1 ⊕D′1 ' D2 ⊕ ι′(D′1).
Then we define D′2 = ι′(D′1) and τ2(D2, αD2,D′

2
) = {D′2}

where αD2,D′
2

is a fresh action. Thus, D′2 ∈ P2 and D2 →
D′2. It can be easily seen that P2 is a finite abstraction of P1

by construction.
For 2, we first note that any finite abstraction P2 is uni-

form. To see this, observe that by Prop. 3.7, it is sufficient
to prove req. 1 of Def. 3.6, which follows from the fact that
P1 is itself uniform and Def. 3.14. To prove that P1 ≈ P2,
consider the relation B ⊆ S1 × S2 s.t. 〈D1, D2〉 ∈ B iff
D1 ' D2. Obviously 〈D10, D20〉 ∈ B. Next assume
that, for D1, D

′
1 ∈ S1, and for some i, D1 ∼i D′1 and

〈D1, D2〉 ∈ B, for some D2 ∈ S2. Thus, D1 ' D2. We
can define D′2 s.t. D1 ⊕D′1 ' D2 ⊕D′2. This implies that
li(D2) = li(D′2) (because li(D1) = li(D′1)), andD′1 ' D′2.
Furthermore, we can prove that D′2 ∈ S2; thus D2 ∼i D′2
and 〈D′1, D′2〉 ∈ B.

Now we can prove the final result of this section.

Theorem 3.16 Given a b-bounded uniform AC-MAS P1

over an infinite U1 and an FO-CTLK formula ϕ, if P2 is
a finite abstraction of P1 s.t. |U2| ≥ 2b + |C| + |var(ϕ)|,
then

P1 |= ϕ iff P2 |= ϕ.

Proof (sketch). By Lemma 3.15, P2 is uniform and P1 ≈
P2. Since P1 is b-bounded and |U2| ≥ 2b+ |C|+ |var(ϕ)|,
Theorem 3.12 applies. Thus, P1 |= ϕ iff P2 |= ϕ.

This result states that by using a sufficient number of ele-
ments in P2, i.e., by appropriately tuning the cardinality of
U2, we can in principle reduce the verification of an infinite-
state AC-MAS to the verification of a finite-state one.

The theorem above does not give a procedure for the ac-
tual construction of P2. In the next section we introduce a
class of uniform systems for which a finite-state abstraction
can be easily derived.

4 Verification of Artifact System Programs
In this section we define a notion of artifact system (AS)
programs, and show that their execution produces AC-MAS
that are uniform. Together with the boundedness assump-
tion, this enables us to verify them by analysing the resulting
finite abstractions they generate.
Definition 4.1 (AS Program) An artifact system program
is a set AS = {Σ1, . . . ,Σn} of artifact specifications Σi =
〈Di, Di0,Ωi〉 where:
• Di is the local database schema;
• Di0 is the local initial state;
• Ωi is the set of local (parametric) operations, each of the

form ω(~x) .= 〈π(~y), ψ(~z)〉 s.t.
– ω(~x) is the operation signature and ~x = ~y ∪ ~z is the set

of operation parameters;



– π(~y) is the operation precondition, i.e., an FO-formula
over Di;

– ψ(~z) is the operation postcondition, i.e., an FO-
formula over D ∪D′.

Local database schemas were introduced in Def. 2.6. No-
tice that preconditions use relational symbols from the lo-
cal database only, while postconditions can use any sym-
bol from the whole D. For an operation ω(~x), we let
con(ω) = con(π) ∪ con(ψ), var(ω) = var(π) ∪ var(ψ),
and free(ω) = ~x. If ~x = ∅, ω is said to be ground. An
execution of ω(~x) with actual parameters ~u ∈ U |~x|, is the
ground operation ω(~u) = 〈π(~v), ψ(~w)〉, where ~v (resp. ~w)
is obtained by replacing each yi (resp. zi) with the value oc-
curring in ~u at the same position as yi (resp. zi) in ~x. Such
replacements make both π(~v) and ψ(~w) sentences. Finally,
we define the set CAS of all constants mentioned in AS as⋃n
i=1

(
ad(Di0) ∪

⋃
ω∈Ωi

con(ω)
)
.

The semantics of an AS program AS is given in terms of
the AC-MAS defined by the agents that AS induces.
Definition 4.2 (Induced Agents) Given an AS program
AS = {Σ1, . . . ,Σn} for Σi = 〈Di, Di0,Ωi〉, and an in-
terpretation domain U , the agents i = 〈Di, Li, Acti, Pi〉
induced by AS over U are defined as follows:
• Li ⊆ Di(U);
• Acti = {ω(~u) | ω(~x) ∈ Ωi and ~u ∈ U |~x|};
• ω(~u) ∈ Pri(li) iff li |= π(~v) for ω(~u) = 〈π(~v), ψ(~w)〉.
So, induced agents are obtained from Def. 2.6 by defining
the set of actions as the set of ground operations given by Ωi
over U .

Once agents are defined as above, we can compose them
into an AC-MAS following Def. 2.7.
Definition 4.3 (Induced AC-MAS) Given an AS program
AS, a domain U , and the set Ag = {1, . . . , n} of agents
induced by AS over U , the AC-MAS induced by AS over U
is the tuple PAS,U = 〈S, U,D0, τ〉 where:
• S is defined as in Def. 2.7;
• D0 = 〈D10, . . . , Dn0〉 is the initial global state;

• ~l′ ∈ τ(~l, 〈ω1(~u1), . . . , ωn(~un)〉) iff for ωi(~ui) =
〈πi(~vi), ψi(~wi)〉:
–
⋃
i∈Ag ad(l′i) ⊆

⋃
i∈Ag ad(li) ∪ ~wi ∪ con(ψi);

– D⊕D′ |= ψi(~wi), where D and D′ are obtained from
~l and ~l′ as discussed in Sec. 2.

In other words the AC-MAS induced by AS over U is the
execution of AS over U . Observe that AS programs can
be in general executed over different interpretation domains
thus resulting in different AC-MAS. Moreover, according to
Def. 2.7, τ(~l, 〈ω1(~u1), . . . , ωn(~un)〉) is defined iff ωi(~ui) ∈
Pri(li), i.e., li |= πi(~vi), for i ∈ Ag.

In the following we assume that any relation that does
not appear in the postcondition of an AS program is left
unchanged in a transition, and that every AS program in-
duces an AC-MAS whose transition relation is serial, i.e.,
AC-MAS states always have successors. These are basic re-
quirements that are easily fulfilled. In Sec. 5 we present an
example of one such AS program.

We have the following result on uniformity for AS pro-
grams.
Lemma 4.4 Given an AS program AS and a domain U , ev-
ery induced AC-MAS PAS,U is uniform for CAS .

Proof. By Prop. 3.7 it is sufficient to prove uniformity for
the temporal transition relation →, as ad(D0) ⊆ CAS . To
this end, consider D,D′, D′′ in S and D′′′ ∈ D(U) s.t. D⊕
D′ ' D′′ ⊕ D′′′ (recall that D = ~l, and similarly D′, D′′,
and D′′′). Also, assume that D → D′, i.e., there exists
~ω = 〈ω1(~u1), . . . , ωn(~un)〉 ∈ Act s.t. D′ ∈ τ(D, ~ω). We
have to prove that D′′ → D′′′ as well.

To do so, consider a witness ι for D ⊕D′ ' D′′ ⊕D′′′,
and extend it to an injective function ι′ on

⋃
i∈Ag ~ui. Notice

that U contains enough distinct elements for ι′ to exist. We
can then prove that D′′ → D′′′ as required

The notion of satisfaction of FO-CTLK formulas in an
AC-MAS can be naturally extended to AS programs.
Definition 4.5 Given an AS program AS, a FO-CTLK for-
mula ϕ, and an assignment σ, AS over U satisfies ϕ under
σ, written (AS,U, σ) |= ϕ, iff (PAS,U , D0, σ) |= ϕ.
So, the model checking problem for an AS program over
a domain U is defined in terms of the model checking of
induced AC-MAS PAS,U .

The following result allows us to reduce the verification
of AS programs inducing a b-bounded AC-MAS over an in-
finite U1 to the verification of an AS program executed over
a finite U2. Let NAS =

∑
i∈Ag maxω(~x)∈Ωi

{|~x|} be the
maximum number of different parameters that can occur in
a joint operation defined in the program AS.
Lemma 4.6 If the AC-MAS PAS,U1 induced by AS over an
infinite domain U1 is b-bounded, and the finite domain U2 is
s.t. |U2| ≥ 2b + |CAS | + NAS , then the induced AC-MAS
PAS,U2 is a finite abstraction of PAS,U1 .
Proof. Consider Def. 3.14. The following requirements are
obviously fulfilled: (i) U2 is finite; (ii) |U2| ≥ 2b + |CAS |;
and (iii) D10 = D20. For the remaining requirement, con-
sider D1 ∈ PAS,U1 and D2 ∈ PAS,U2 s.t. D1 ' D2,
and assume that D1 → D′1 for some D′1 ∈ PAS,U1 . We
show that here exists D′2 ∈ PAS,U2 s.t. D2 → D′2 and
D1 ⊕D′1 ' D2 ⊕D′2.

By definition of induced AC-MAS, if D1 → D′1 then
there is ~ω = 〈ω1(~u1), . . . , ωn(~un)〉 ∈ Act s.t. D′1 ∈
τ(D1, ~ω). Thus, for each ωi(~ui) = 〈πi(~vi), ψi(~wi)〉,
• ωi(~ui) ∈ Pri(li), that is, li(D1) |= πi(~vi);
• D1 ⊕D′1 |= ψi(~wi).

Since |U2| ≥ 2b + |CAS | + NAS ,
∑
i∈Ag |~ui| ≤ NAS ,

and |ad(D1) ∪ ad(D′1)| ≤ 2b, the isomorphism ι witness-
ing D1 ' D2 can be extended to an injective function
ι′ : ad(D1) ∪ ad(D′1) ∪ CAS ∪

⋃
i∈Ag ~ui 7→ U2. Now,

let D′2 = ι′(D′1). By the way ι′ has been defined, it
can be seen that D1 ⊕ D′1 ' D2 ⊕ D′2. In addition, we
have that ~vi and ι′(~vi) define equivalent assignments for
πi w.r.t. li(D1) and li(D2), and similarly ~wi and ι′(~wi)
for ψi, w.r.t. D1 ⊕ D′1 and D2 ⊕ D′2. Thus, by Prop 3.3,
li(D1) |= πi(~vi) iff li(D2) |= πi(ι′(~vi)), and D1 ⊕ D′1 |=



ψi(~wi) iff D2 ⊕ D′2 |= ψi(ι′(~wi)). Finally, by the defini-
tion of induced AC-MAS we have thatD′2 ∈ τ2(D2, ~ω

′), for
~ω′ = 〈ω1(ι′(~u1)), . . . , ωn(ι′(~un))〉, that is, D2 → D′2. In a
similar way we can prove that, if D2 → D′2 then D1 → D′1.
Thus, PAS,U2 is a finite abstraction of PAS,U1 .

Intuitively, Lemma 4.6 says that the following diagram
commutes.

AS
Def. 4.3 //

Def. 4.3 ''PPPPPPPPPPPPP PAS,U1

Def. 3.14
��

PAS,U2

The following result is a consequence of Theorem 3.16
and Lemma 4.6

Theorem 4.7 If the AC-MAS PAS,U1 induced by AS over
an infinite U1 is b-bounded, and the finite domain U2 is
s.t. |U2| ≥ 2b+ |CAS |+ max{NAS , |var(ϕ)|}, then

(AS,U1) |= ϕ iff (AS,U2) |= ϕ,

for every FO-CTLK formula ϕ.

Proof (sketch). By Lemma 4.6 PAS,U2 is a finite ab-
straction of PAS,U1 . Moreover, |U2| ≥ 2b + |CAS | +
max{NAS , |var(ϕ)|} implies |U2| ≥ 2b+|CAS |+|var(ϕ)|.
Hence, we can apply Theorem 3.16 and the result follows.

Thus, under the boundedness assumption, we can verify
whether or not an FO-CTLK specification is satisfied by an
AS program by model checking its finite abstraction.

Observe that the finite abstraction considered above, in
particular the abstract interpretation domain U2, depends on
the number of distinct variables the specification ϕ contains.
Thus, in principle, to check the same AS program against
a different specification ϕ′, one should construct a new ab-
straction PAS,U ′

2
using a different interpretation domain U ′2,

and then check ϕ′ against it. However, it can be seen that if
the number of distinct variables of ϕ′ does not exceed that of
ϕ, the abstraction PAS,U2 , used to check ϕ, can be re-used
for ϕ′. Formally, let FO-CTLKk be the set of all FO-CTLK
formulas containing at most k distinct variables. We have
the following corollary to Theorem 4.7.
Corollary 4.8 If |U2| ≥ 2b + |CAS | + max{NAS , k},
then, for every FO-CTLKk formula ϕ, (AS,U1) |= ϕ iff
(AS,U2) |= ϕ.

This result holds in particular for k = NAS ; thus for FO-
CTLKNAS

formulas, we have an abstraction procedure that
is specification-independent.

The Complexity of Model Checking FO-CTLK
We now briefly analyse the complexity of the model check-
ing problem for finite AC-MAS w.r.t. the specification lan-
guage FO-CTLK. This is tantamount to, given an AC-MAS
P on a finite domain U and an FO-CTLK formula ϕ, find-
ing an assigment σ such that (P, D0, σ) |= ϕ. Hereafter
we follow (Grohe 2001) for the setting of our investiga-
tion. We encode AC-MAS by listing the elements in the

domain U , the states in S, and all the tuples of all re-
lations. The length of the encoding of the AC-MAS P
is denoted by ||P||. For a database schema D we have
||P|| = Θ(|U |+ |S|+

∑
Pi∈D,D∈S |D(Pi)|), where f(n) =

Θ(g(n)) means that there exist n0, k1, k2 ∈ N such that
k1 · g(n) ≤ f(n) ≤ k2 · g(n) for all n ≥ n0. Further,
the length of the encoding of ϕ is denoted by ||ϕ||. We now
state the following complexity result.

Theorem 4.9 The complexity of the model checking prob-
lem for finite AC-MAS w.r.t. the language FO-CTLK is
PSPACE-complete.

Proof (sketch). This result is obtained by combining the
complexity for model checking the first-order fragment of
FO-CTLK and the temporal epistemic fragment. PSPACE-
hardness follows by reduction to first-order model checking.

To show that the problem is in PSPACE, we briefly
describe an algorithm which works in NPSPACE. Since
NPSPACE = PSPACE, the result follows. Given an AC-
MAS P and an FO-CTLK formula ϕ, guess an assignment
σ and check if (P, D0, σ) |= ϕ. This can be done according
to the structure of ϕ. If ϕ is atomic, this check can be done
in PSPACE. If ϕ is of the form ∀xψ, then we can apply the
algorithm for model checking first-order (non-modal) logic,
which works in PSPACE. Finally, if the main operator in ϕ
is either a temporal or epistemic modality, then we can apply
the algorithm to model check propositional CTLK, which is
in P. As a result, the total complexity is in PSPACE.

In this section we studied the model checking problem
for AC-MAS. Even if it is of interest to us, we do not con-
sider here the implicit model checking problem (Schnoebe-
len 2002) defined directly on AS programs. We do remark
though that Theorem 4.9 is nonetheless a notable result as it
shows that for AC-MAS the complexity of model checking
FO-CTLK formulas is better than the complexity of check-
ing the propositionalisation ϕ′ of a FO-CTLK formula ϕ, as
ϕ′ is usually exponential in the size of ϕ (Hallé et al. 2007).

5 Example: the Order-to-Cash Scenario
We now briefly apply the methodology above to the order-
to-cash artifact system, a business scenario inspired by an
IBM user case (Hull et al. 2011b). This scenario includes
two agents: a manufacturer m and a customer c. The cus-
tomer prepares a purchase order (PO), i.e., a list of products
the customer needs, and submits it to the manufacturer. The
manufacturer can either accept it or reject it. In the former
case he prepares a work order (WO); in the latter he notifies
the customer.

We can encode the order-to-cash business process as an
artifact system program AS, where the artifact data models
are represented as database schemata, and its evolution is
characterised by an appropriate set of operations.

The database schema Di for each agent i is given by:

• Customer c:
Products(prod code, budget)
PO(id, prod code, offer, status)



• Manufacturer m:
Materials(mat code, cost)
WO(id, po id, price, status)

The relations Products and Materials, as well as PO and
WO are self-explanatory. Notice the attribute status, which
accounts for the evolution of each artifact. We consider the
infinite set U of alphanumeric strings as the interpretation
domain. Products and Materials are the only non-empty re-
lations in the initial database instance D0.

The operations in Ωc and Ωm for the customer c and man-
ufacturerm capture the admissible actions on the underlying
databases. We discuss only the operation createWO for the
manufacturer. Others can be done similarly. Variables v and
constants c are distinguished by the font.

• createWO(cpo id, price) =
〈π(cpo id, price), ψ(cpo id, price)〉, where:

- π(cpo id, price) ≡
∃p, o (CPO(cpo id, p, o, prepared)∧
∃cost Materials(p, cost) ∧ cost ≤ o ≤ price)

- ψ(cpo id, price) ≡
∃id (WO′(id, cpo id, price, preparation)∧
∀id′, c, p, s (WO(id′, c, p, s)→ id 6= id′))

where φk, for k ∈ N, is the FO-formula defined in Sec-
tion 2, which guarantees that the bound b is not violated.

The operation createWO requires that the po id is the
identifier of some existing PO, and the product p appears in
the Materials database. Its postcondition states that, upon
execution, the WO contains one additional tuple with the
identifier attribute univocally set to id and the attribute sta-
tus set to preparation. Moreover, by using formulas such
as φb, we can guarantee that the AS program in question
is bounded and is therefore amenable to the abstraction
methodology of Section 4.

We can now investigate properties of this AS program.
For instance, the following formula specifies that the manu-
facturer m knows that each WO has to match a correspond-
ing PO:

ϕmatch = AG ∀po id(∃id, p, s WO(id, po id, p, s)→
→ Km∃p′, o, s′PO(po id, p′, o, s′))

Other specifications describing properties of the artifact-
system and the agents operating in it can be similarly for-
malised in FO-CTLK. By the results in Section 4 we can
now reduce the problem of verifying AS against ϕmatch
to an instance of finite-state model checking. Suppose
we are given an initial state D0 and consider the maxi-
mum number max of parameters and the constants CΩ in
the operations in Ωc and Ωm. Since our AS program is
bounded by b, we can consider a finite domain U ′ such that
D0∪CΩ∪con(ϕmatch) ⊆ U ′ and |U ′| ≥ 2b+|D0|+|CΩ|+
|con(ϕmatch)|+max. Given that U ′ satisfies the condition
of Theorem 4.7, it follows that the AS program AS over U
satisfies ϕmatch if and only if AS over U ′ does. But the
latter is a finite-state, decidable instance of model checking
which can be solved through traditional techniques.

6 Conclusions and Future Work
In this paper we put forward a methodology for verifying
epistemic properties of artifact-centric systems. We pro-
posed AC-MAS, a semantics for artifact systems, on which a
first-order version of CTLK can be interpreted. We observed
that the model checking problem for this logic is undecid-
able on these systems, and proceeded to study the class of
uniform systems. We showed that, under large conditions,
these systems admit finite, provably bisimilar abstractions,
hence satisfy exactly the same FO-CTLK formulas. While
the result is of significant theoretical importance, it falls
short of providing an algorithm for the construction of such
finite abstraction. This is the subject of Section 4, where we
give a modular description of agent programs implementing
an artifact-centric system, and show that they admit finite
abstractions. This is a result of significant interest to us,
as it opens the way for model-checking finite models ob-
tained from systems originally defined on infinite domains.
We exemplified this technique manually on a small example
in Section 5. Our current direction of work involves im-
plementing the technique reported on top of a state-of-the-
art model checker and interfacing this with GSM, a novel,
declarative language for specifying artifact-systems (Hull et
al. 2011a). We remark that our definition of artifact system
program, notably the first-order, declarative syntax for pre-
and post-conditions is deliberately aligned to GSM, to facil-
itate this task.

Related Work: The bounded-abstraction approach here
presented is of course inspired to a large body of work in for-
mal verification concerning data abstraction (Wolper 1986).
However, none of these tackle web-services from a multi-
agent perspective as here, nor, as far as we are aware, share
the methodology here presented if not in general terms.

Much closer to the work presented here is (Belar-
dinelli, Lomuscio, and Patrizi 2011b), where a data-bounded
methodology for artifact-systems is put forward. Similarly
to the one used here, the semantics considered by the authors
is also a first-order extension of interpreted systems. How-
ever, the results presented there are considerably more lim-
ited than those in this paper. Specifically, (Belardinelli, Lo-
muscio, and Patrizi 2011a) only deals with a restricted ver-
sion of quantified temporal logic, where no temporal modal-
ity can occur within the scope of a quantifiers. By contrast,
our results here deal with the full first-order version of CTLK
and, through bisimulations, show that, for the large classes
of AC-MAS here identified, abstract and concrete models
satisfy precisely the same specifications. Also differently
from (Belardinelli, Lomuscio, and Patrizi 2011b), here we
reason in terms of modular program description of artifact
systems, which are closely related to GSM, a declarative
programming language for artifact systems, and not in terms
of abstract models.

An analysis of abstraction methodologies for artifact-
systems was also discussed in (Belardinelli, Lomuscio, and
Patrizi 2011a). However, their contribution is mostly con-
cerned to a semantics for artifact-systems and existential
abstraction results linking quotient models to the concrete
ones. Differently from the present paper, no concrete
methodology is put forward there to obtain finite abstrac-



tions, nor is it possible to operate on operational descriptions
as the artifact-centric programs here analysed.

More broadly in the space of artifact-centric research we
highlight (Deutsch et al. 2009; Cangialosi et al. 2010), which
explore decidable fragments by limiting the syntax of the
program descriptions of artifacts. However these approaches
do not take a MAS perspective (no actors are modelled) and
suffer from severe constraints in the specification language
they support.
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