
Verifying Emergent Properties of Swarms

Panagiotis Kouvaros and Alessio Lomuscio
Department of Computing, Imperial College London, UK

{p.kouvaros, a.lomuscio}@imperial.ac.uk

Abstract
We investigate the general problem of establish-
ing whether a swarm satisfies an emergent property.
We put forward a formal model for swarms that ac-
counts for their nature of unbounded collections of
agents following simple local protocols. We for-
mally define the decision problem of determining
whether a swarm satisfies an emergent property.
We introduce a sound and complete procedure for
solving the problem. We illustrate the technique by
applying it to the Beta aggregation algorithm.

1 Introduction
Robot swarms have been put forward as an alternative to
single-robot systems for a wide variety of applications includ-
ing search and rescue, de-mining, and surveillance. Robots
in a swarm are behaviourally identical agents interacting with
each other and the environment by following relatively simple
protocols [Bonabeau et al., 1999]. Due to their nature, indi-
vidual agents in a swarm can interact in subtle ways, thereby
displaying global properties for the swarm system that are
difficult to predict. Yet, for robot swarms to be deployed in
key applications, guarantees about their behaviours need to
be provided.

Recent research has begun to address the problem of veri-
fying that robot swarms behave according to their specifica-
tions. This is a challenging problem because, in contrast to
traditional systems, swarms are typically deployed in vary-
ing number of units. It is tolerated, expected even, that some
units may develop a fault while the swarm is operating, or that
a swarm may be deployed in varying number of components
depending on the domain. So for validation purposes it is not
sufficient to verify that a swarm satisfies a given property of
interest for a determined number of components; instead, we
are required to ascertain that the property is satisfied for any
number of agents in the swarm. This entails verifying an un-
bounded number of systems and leads to a problem that is
undecidable in general [Apt and Kozen, 1986].

In this paper we address a related yet different problem,
namely when it is the case that a swarm displays an emergent
behaviour. While no commonly accepted formal definition
exists, by global or emergent behaviour it is often meant a
configuration, or a characteristic property of the swarm as a

whole, that may be difficult to predict with certainty when
analysing the behaviours of the individual agents [Bonabeau
et al., 1999]. A notable characteristic of flocking, shoaling
and herd behaviour is that the emergent behaviour may be
exhibited only when some conditions on the number of agents
present is met.

In this paper we aim to develop the foundations for estab-
lishing that, given the individual description of the agents, a
certain emergent behaviour will be displayed by the system.
We are interested in establishing a lower bound on the num-
ber of agents to be present for a given emergent property to
be displayed. The methodology that we put forward is sound
and complete; so if the swarm admits the emergent behaviour,
then this fact will be established. In this case the method also
guarantees that any swarm composed of any number of agents
greater than the bound will exhibit the behaviour.

Related Work. We are not aware of previous work ad-
dressing the question above. Traditional research in verifi-
cation of swarm systems involves the application of model
checking techniques to particular instances of known swarm
algorithms [Dixon et al., 2012; Brambilla et al., 2014;
Kloetzer and Belta, 2007]. Systems over a certain size be-
come quickly intractable; hence, while a property can be
shown to be satisfied, no consideration on emergent be-
haviour can be drawn. Much closer to our work are the
techniques described in [Kouvaros and Lomuscio, 2013b;
2015] where methods for the parameterised verification of
interleaved interpreted systems are put forward. These, how-
ever, cannot be used to verify emergence as we do here, as
they are tailored to establishing that a system meets its specifi-
cations irrespective of the number of components considered.
In contrast, here we identify whether population thresholds
exist for the swarm to display an emergent behaviour. While
the abstract models we introduce below resemble the ones
used in [Kouvaros and Lomuscio, 2015], the semantics and
the notion of simulation we develop here are radically differ-
ent, including all the procedures which, crucially, depend on
the property under examination.

2 Swarm Systems
Swarm systems are typically composed of an arbitrary num-
ber of simple and identical robotic agents interacting with the
environment. In line with common theoretical assumptions
made in the literature [Sahin, 2005; Brambilla et al., 2013] we

here assume that each agent operates on a two-dimensional
arena and communicates with its peers and the environment
by means of a wireless sensor of limited range. The frame-
work we present can be extended for agents operating in three
dimensions, such as flying machines, but the assumed arena
will make our presentation more concise. We consider the
arena to be finite and we allow it to wrap around, similarly to a
sphere, i.e., for an α×α arena, the cell (1, 1) is one position to
the right of the cell (1, α). We also assume that the robots up-
date their state with high frequency; so we can model them by
assuming synchronicity even if at any instance some robots
may be idle [Dixon et al., 2012]. To model dynamic swarms
we introduce a variant of interpreted systems [Fagin et al.,
2003], the standard semantics for multi-agent systems, and
extend it to agent templates [Kouvaros and Lomuscio, 2015].

Models for swarms. We represent robots in a swarm
by means of agents modelled by a generic template agent
R(α, β) = (L, I,Act, P, t) operating in an α × α ∈ N × N
arena with localised communication capabilities of a limited
range β ∈ N. A template agent R(α, β) comprises a set of
local states L = Loc × S representing the Cartesian product
between the set Loc = {1, . . . , α} × {1, . . . , α} of the arena
square cells and the set S of private local states. The private
states represent internal configurations of the agent, whereas
Loc represents the position of the agent in the arena. Given
a local state l = (x, y, s), a local state l′ = (x′, y′, s′) with
min(|x−x′|, α−|x−x′|) ≤ β,min(|y−y′|, α−|y−y′|) ≤ β
is said to be in the communication range for the agent when
in l, or, equivalently, in its neighbourhood. We denote this by
l n l′. For an agent i in state l, an agent j in state l′ is said to
be in agent i’s neighbourhood, denoted by in j, if ln l′. Fur-
thermore, R(α, β) is defined by considering a set I ⊆ L of
initial local states and a nonempty set Act of (local) actions.
When α, β are assumed to be given, we simply write R for
R(α, β). The framework can accommodate a finite number
of template agents; for simplicity we do not pursue this here.

The template agent’s actions are performed in compliance
with a protocol P : L → P(Act) that defines which ac-
tions may be performed at a given local state. The evolution
of the agent is characterised by a (local) transition function
t : L × LE × Act × P(Act) × ActE → L. The transition
function returns the next agent’s local state given the current
agent’s local state, the environment’s state (see below), the
agent’s action, the set of actions performed by the agents in
its neighbourhood, and the environment’s action.

The template environment E = (LE , IE , ActE , PE , tE) is
defined by a nonempty set of states LE , a nonempty set of
initial states IE ⊆ LE , and a nonempty set of actions ActE .
E also includes a protocol PE : LE → P(ActE), and a tran-
sition function tE : LE × ActE × P(Act) → LE returning
the environment’s next local state given its current state, its
action, and the set of actions performed by all the agents in
the swarm.

We define a swarm system (SS) as a tuple S = 〈R, E ,V〉,
where R is a template agent, E is a template environment
and V : L × LE → P(AP) is a labelling function on the
Cartesian product of the template agent’s states and the envi-
ronment’s states for a set AP of atomic propositions. S gives
an abstract description of an unbounded collection of con-

crete swarm systems, each one obtained by instantiating the
SS with the number of actual agents in the system. So, differ-
ently from the generic SS S = 〈R, E ,V〉, given an n ≥ 1 the
concrete swarm S(n) will encode precisely n agents interact-
ing with the environment.

Let {1, . . . , n} denote the set of the concrete agents in
S(n). For any i ∈ {1, . . . , n}, the i-th concrete agent Ri =
(Li, Ii, Acti, Pi, ti) is defined as follows: Li = L × {i};
Ii = I × {i}; Acti = Act; Pi is given by a ∈ Pi((l, i)) iff
a ∈ P (l); and ti is given by ti((l, i), lE , a, A, aE) = (l′, i)
iff t(l, aE , a, A, aE) = l′. So, each local state of a concrete
agent is made of the template local states indexed by the name
of the agent in question and inherits from its template the ac-
tions, the protocols and the transition function.

A global state g = (l1, . . . , ln, lE) is a tuple of local states
for all the agents in the system and the environment; it rep-
resents a snapshot of the system at a particular instant of
time. Given a global state g we write g.i to denote the lo-
cal state of agent i in g. Given an agent i ∈ {1, . . . , n}, we
let N(g, i) = {j ∈ {1, . . . , n} | i n j} to denote the set of
agents in the neighbourhood of i when at a global state g.

ConsiderACT (n) = Act1× . . . Actn×ActE to be the set
of all possible joint actions that may be performed in S(n).
Given ā ∈ ACT (n), let ā.i denote the action of agent i in
ā. The agents’ local protocols and local evolution functions
determine the temporal evolution of the system’s global states
via a sequence of joint actions as defined below.
Definition 1 (Global transition relation). The global transi-
tion relation T (n) ⊆ G(n)×ACT (n)×G(n) on a set G(n)
of concrete global states of a concrete system S(n) is defined
as (g, ā, g′) ∈ T (n) iff the following hold.

1. ā.E ∈ PE(g.E) and tE(g.E, ā.E,A) = g′.E, where
A = {ā.i | i ∈ {1, . . . , n}};

2. For all i ∈ {1, . . . , n}, we have ā.i ∈ Pi(g.i) and
ti(g.i, g.E, ā.i, A, a.E) = g′.i, where A = {ā.j | j ∈
N(g, i)}.

So, for S(n) to transition from a global state g to a global
state g′ via a joint action ā, the following is required: the
origin and target states and actions for the environment are
in compliance with the environment’s protocol and transition
function; the origin and target local states and actions of each
participant are in compliance with their respective concrete
protocols and transition functions; finally, for every agent i,
the set of actions performed by the agents in i’s neighbour-
hood is in compliance with i’s transition function. Thus, the
global transition relation reflects the localised, interactive na-
ture of swarms.

A path is a finite or infinite sequence π = g1ā1g2ā2g3 . . .
with (gi, āi, gi+1) ∈ T (n), for every i ≥ 1 whenever appli-
cable. Given a path π, we write π(i) for the i-th state in π.
The set of all paths originating from a state g is denoted by
Π(g). A global state g is said to be reachable from a global
state g1 if there is a path π ∈ Π(g1) such that π(i) = g, for
some i ≥ 1.

We now have all the ingredients to define our concrete se-
mantics, i.e., the notion of concrete swarm system.
Definition 2 (Concrete swarm system). Given a swarm sys-
tem S = 〈R, E ,V〉 and n ≥ 1, the concrete swarm system

(CSS) S(n) is a tuple S(n) = 〈G(n), I(n), T (n),V(n)〉,
where G(n) ⊆ L1× . . .×Ln×LE is the set of global states
reachable via T (n) from the initial global states I(n) =
I1×. . .×In×IE , and V(n) : G(n)→ P(AP×{1, . . . , n}) is
a labelling function for a set AP×{1, . . . , n} of local atomic
propositions such that (p, i) ∈ V(n)(g) iff p ∈ V(g.i, g.E).

Hence a swarm system S is a concise description of an
unbounded collection {S(n) | n ≥ 1} of concrete swarm
systems, each made of a different number of identical agents.

Swarm properties. We adopt the temporal-epistemic logic
CTLK [Penczek and Lomuscio, 2003] as a specification lan-
guage for robot swarms. By means of CTLK we can express
properties of the agents as well as their states of knowledge
over time. Given a set of agents {1, . . . , n} and a set of local
atomic propositions AP × {1, . . . , n}, the CTLK formulae
are defined by the following BNF grammar:

φ ::= p | ¬φ | φ ∨ φ | EXφ | E[φUφ] | EGφ | Kiφ.

where p ∈ AP × {1, . . . , n} and i ∈ {1, . . . , n}. The epis-
temic modality Kiφ represents “agent i knows that φ” [Fa-
gin et al., 2003]. The temporal formula EXφ stands for
“there is a path such that φ holds at the next step”; E[φUψ]
denotes “there is a path such that at some point ψ holds
and before then φ is true along the path”; and EGφ means
“there is a path such that φ is globally true”. Dual tem-
poral modalities prefixed by the path quantifier A (“for all
paths”) can be defined as standard [Huth and Ryan, 2004].
The interpretation of CTLK formulae on a CSS S(n) =
〈G(n), I(n), T (n),V(n)〉 is given as usual [Clarke et al.,
1999; Fagin et al., 2003]: the temporal modalities are inter-
preted by means of the global transition relation, and the epis-
temic modalities are interpreted by the epistemic possibility
relations ∼i∈{1,...,n}= {(g, g′) ∈ G(n)× G(n) | g.i = g′.i}.
We write (S(n), g) |= φ to denote that the formula φ is true
at state g in S(n). We refer to [Penczek and Lomuscio, 2003]
for the usual definition of the satisfaction relation |=. A for-
mula φ is said to be true in S(n), denoted S(n) |= φ, if
(S(n), ι) |= φ for every ι ∈ I(n).

As it is typical in the analysis of unbounded sys-
tems [Clarke et al., 1989], we consider specifications that
reflect the parametric nature of swarms. To do this, we
use propositional variables to index the atomic propositions
and epistemic modalities appearing in a specification. We
write φ({v1, . . . , vm}) to indicate that each of the variables
v1, . . . , vm appears in an atomic proposition or epistemic
modality in φ. We verify SS against properties of the form
∀v1 . . . ∀vm

(∧
i,j∈{1,...,m}¬(vi = vj)→ φ({v1, . . . , vm})

)
where ∀ is a universal quantifier over the variables. We de-
note such a formula as ∀V φ(V), where V = {v1, . . . , vm},
and we say that ∀V φ(V) is an m-indexed formula if
|V | = m. In other words, when evaluated on a concrete
system S(n), the formula ∀V φ(V) denotes a CTLK formula
expressing the conjunction of all its ground instantiations
under any assignment for V from the domain {1, . . . , n}.
For example, assume a foraging scenario [Liu et al.,
2007], and suppose that we want to express the following
property: “whenever a robot starts searching for food, it
knows that it will eventually deposit food in the nest”.

We can express this property with the 1-indexed formula
∀{i}AG(si → Ki(AFdi)), where s (search) and d (deposit)
are atomic propositions that hold in the appropriate states,
and AFφ , A[>Uφ]. When evaluated on S(2), the formula
denotes AG(s1 → K1(AFd1)) ∧AG(s2 → K2(AFd2)).

Following the symmetric nature of ∀V (φV), the formula
can be evaluated by considering only the ground instantiation
obtained by assigning pairwise distinct values to the variables
in V from the domain {1, . . . ,m} [Kouvaros and Lomus-
cio, 2013a]. For example, the above formula can be evalu-
ated simply by considering its ground instantiationAG(s1 →
K1(AFd1)). For the rest of the paper, an m-indexed formula
equivalently refers to its aforementioned ground instantiation.

Identification of emergent behaviour. Swarm robots are
typically designed to achieve a global behaviour [Bonabeau
et al., 1999]. Often, properties of interest displayed during
the agents’ interactions are referred to as emergent behaviour.
The formal analysis of emergent behaviour has been mainly
studied on predefined number of participants [Brambilla et
al., 2014; Dixon et al., 2012]. However, no technique based
on fixed numbers of participants can ensure the robustness of
a swarm with respect to a global behaviour. When the number
of participants varies the overall behaviour may change. For
instance a simple local protocol might ensure that 10 flying
robots remain in a flocking formation, only for this pattern
to break down by adding a further robot to the swarm. This
is an issue that does not arise in single robot systems and
presents a severe difficulty for the swarm approach [Bram-
billa et al., 2013]. One approach recently put forward aims to
establish that a specification holds on a swarm for any num-
ber of agents in the system [Kouvaros and Lomuscio, 2015].
However, the method addresses a related, but different issue;
moreover it suffers from constraints in terms of which swarms
can be modelled, essentially forcing every pair of concrete
systems to be behaviourally identical. In contrast here we
aim to obtain the threshold over which an emergent property
holds, irrespective of the behaviours displayed by the swarm
instances under the boundary condition.

To do this we begin by defining emergent behaviour for-
mally. Intuitively the emergent behaviour is displayed by the
swarm only when the swarm is sufficiently populated.
Definition 3 (Emergent behaviour). Given an SS S, an m-
indexed formula φ is said to be an emergent behaviour exhib-
ited by S if there is an emergence threshold t ∈ N such that
for all t′ ≥ t we have S(t′) |= φ.

Thus, differently from the standard treatment of un-
bounded systems concerning the satisfaction of a formula by
all concrete systems [Emerson and Kahlon, 2000], we are
here interested in whether or not an emergence threshold ex-
ists. The definition above immediately gives raise to the fol-
lowing decision problem.
Definition 4 (Emergence identification problem). The emer-
gence identification problem (EIP) takes as input an m-
indexed formula φ and an SS S and returns as output the
threshold t ∈ {0,m,m + 1, . . . } for φ and S. If t = 0, then
S admits no threshold for φ.

We do not present the problem above as outputting true and
false, but this can be done without loss of generality.

The definition of threshold above is related to the previ-
ously adopted, but stronger definition of cutoffs in [Kou-
varos and Lomuscio, 2015], which refer to the number of
agents that is sufficient to consider when evaluating any for-
mula on the system. We stress the two notions are different
and require a separate technical treatment. While procedures
for solving the parameterised verification problem are typi-
cally incomplete, as we show in the next section, by giving a
specification-dependent procedure we can obtain a sound and
complete procedure to solve the EIP.

3 Emergence Identification Procedure
We now put a formal technique to solve the EIP defined
above. Clearly we cannot solve the EIP by generating all the
swarm concrete instances, as the number of systems to con-
sider is unbounded. Instead, we identify an emergence thresh-
old for either the property in question or its negation. Note
that if the system does not admit any emergent behaviour,
we can still use the notion of threshold above to establish the
negation of the property under consideration. Also observe
that we do not assume the threshold to be minimal; so if an
SS admits an emergence threshold for a given emergent prop-
erty φ, then it admits infinitely many.

Cycle-Stuttering Simulation. We begin by defining the
degree of temporal depth for a CTLK formula by counting
the temporal operators nested in a formula. We then define
a simulation relation that preserves CTLK formulas up to a
level of depth. In the following, we fix an m-indexed for-
mula φ and two CSS S(n) = 〈G(n), I(n), T (n),V(n)〉 and
S(n′) = 〈G(n′), I(n′), T (n′),V(n′)〉, where n, n′ ≥ m.

Definition 5. The temporal depth td(φ) of φ is inductively
defined as follows.

td(p) , 0, td(φ ∧ ψ) , max(td(φ), td(ψ)),

td(¬φ) , td(φ), td(EXφ) , td(φ) + 1,

td(Kiφ) , td(φ), td(EGφ) , td(φ) + 1,

td(E[φUψ]) , max(td(φ), td(ψ)) + 1.

where φ, ψ are CTLK formulae and i ∈ {1, . . . ,m}.
The notion of temporal depth finds a correspondence in

the cycle-stuttering simulation equivalence that we now in-
troduce. Intuitively, S(n) and S(n′) are cycle-stuttering sim-
ulation equivalent if they are behaviourally identical modulo
stuttering of cyclic behaviours. To formally define this equiv-
alence, we first introduce some preliminary definitions.

A substring δ = π(i), . . . , π(j) of a concrete path π in
S(n) is said to be a cycle if V(n)(π(i)) = V(n)(π(j)).
A cycle δ′ in π corresponds to the x-th repetition of δ
if δ′ = δx, e.g., δ′ = abababa = (aba)3. A cyclic-
decomposition of π is an inductive partition of π into alter-
nating non-cyclic and cyclic blocks. Each non-cyclic block is
a finite sequence of states in π without repetitions, whereas
each cyclic block corresponds to a (possibly infinite) repe-
tition of a cycle in π and it can be further partitioned into
cyclic and non-cyclic blocks. For example, consider the path
π = abcbcbdabcbcbda. The partition [[a][bcb]2[da]]2 is a
cyclic decomposition of π, where [[a][bcb]2[da]]2 is a cyclic

block, [a], [da] are non-cyclic blocks, and [bcb]2 is a cyclic
block; the partition [a][bcb]2[da][bcb]2[da] is also a cyclic de-
composition of π. Given a non-cyclic block C, we write C(i)
for the i-th state inC, and |C| for the sequence’s length. For a
cyclic block Cx, we write Cx[i] for the sequence of states cor-
responding to the i-th repetition of the cycle associated with
Cx. If Cx cannot be decomposed further, then we treat each
Cx[i] as a non-cyclic block, otherwise we treat it as a cyclic
decomposition.
Definition 6. The relations ≈d⊆ G(n) × G(n′) and ∼=d⊆
S(n)× S(n′) are defined as follows.

We start by defining two states g and g′ to be ≈0-related
if V(n)(g) = V(n′)(g′). Then, for all d ≥ 0, we de-
fine ∼=d as follows. Two paths π and π′ (either both finite
or both infinite) are ∼=d-related if there is a cyclic decom-
position C1C

x1
1 C2C

x2
2 . . . of π and a cyclic decomposition

C ′1C
′x

′
1

1 C
′
2C
′x

′
2

2 . . . of π′ such that for all i ≥ 1, Ci ∝d C ′i
and Cxi

i ∝d C′
x′
i
i , where

• Ci ∝d C ′i if: (i) |Ci| = |C ′i|; (ii) for each 1 ≤ j ≤ |Ci|,
we have Ci(j) ≈d C ′i(j).

• Cxi
i ∝d C′

x′
i
i if: (i) either xi = x′i or xi > d + 1, x′i >

d + 1; (ii) for every pair Cxi
i [z],C′

x′
i
i [z′] of repetitions

of Cxi
i and C′

x′
i
i , we have Cxi

i [z] ∝d′ C′
x′
i
i [z′], where

d′ = min(d+ 1, xi − z, x′i − z′)− 1.

So, Ci ∝d C ′i if: (i) the blocks have the same length;
and (ii) each pair (Ci(j), C

′
i(j)) of states is ≈d-related. Two

blocks Cxi
i and C′

x′
i
i are ∝d-related if: (i) the blocks agree

up to d + 1 on the number of repetitions of their associated
cycles; and (ii) each pair of repetitions (Cxi

i [z],C′
x′
i
i [z′]) is

∝d′ -related, where d′ + 1 is the greatest number of repeti-
tions in {1, . . . , d+ 1} such that Cxi

i [z] and C′
x′
i
i [z′] can both

“see” d′ + 1 repetitions ahead in their blocks.
Finally, we define ≈d+1 as follows. Two states g and g′

are ≈d+1-related if: i) for every path π ∈ Π(g) there is a
path π′ ∈ Π(g′) such that π ∼=d π

′; and ii) for every path
π′ ∈ Π(g′) there is a path π ∈ Π(g) such that π′ ∼=d π.
Definition 7. We say that S(n) and S(n′) are cycle-stuttering
simulation equivalent, denoted by S(n) ≡d S(n′), if ι ≈d ι′
for every pair (ι, ι′) of initial states in I(n)× I(n′).

The following proposition can easily be established.
Proposition 1. Let π ∼=d π′. Then for each state π(i),
there is a state π′(i′) such that π(i) ≈d π′(i′). Further, for
each state π(j) in π(1), . . . , π(i), there is a state π′(j′) in
π′(1), . . . , π′(i′) such that π(j) ≈d π′(j′).

Formulas with temporal nesting up to d are preserved by
cycle-stuttering simulation of degree d.
Theorem 1. If S(n) ≡d S(n′) and td(φ) ≤ d, then S(n) |=
φ iff S(n′) |= φ.

Proof sketch. The proof is by induction on d in which each
case is shown by structural induction on φ. The φ = EXψ
case follows by observing that the successor states of two≈d-
related states are ≈d−1-related. The cases of EG[ψ1Uψ2]

and EGψ are shown using Proposition 1. The case for Kiψ
(i ∈ {1, . . . ,m}) is shown as follows. Let g ≈d g′. If g |=
Kiψ, then g1 |= ψ for all g1 with g ∼i g1. Assume g′1 such
that g′ ∼i g′1. By Proposition 1, there is a state g2 in G(n)
with g′1 ≈d g2; therefore g ∼i g2, hence g2 |= ψ. So, the
inductive hypothesis gives g′1 |= ψ, hence g′ |= Kiψ.

Emergence Threshold Identification Procedure. We
can now give an emergence threshold identification proce-
dure (ETIP) for solving the emergence identification prob-
lem. ETIP takes as input an SS S and an m-indexed formula
φ, and returns an integer t ≥ m representing an emergence
threshold for S and φ. If ETIP returns t = 0, then φ is not an
emergent property for S.

ETIP first calls an auxilliary potential threshold identifi-
cation procedure (PTIP). PTIP takes as input S and φ and
returns an integer t′ corresponding to either an emergence
threshold for φ on S, or an emergence threshold for ¬φ on
S. Then, following the potential threshold computation, ETIP
employs standard model checking algorithms for CTLK, e.g.,
those implemented by MCMAS [Lomuscio et al., 2009], to
check whether S(t′) |= φ. If the latter is the case, then t′ is
an emergence threshold and thus φ is an emergent behaviour
exhibited by S. In this case ETIP returns t = t′; if S(t′) 6|= φ,
ETIP returns returns t = 0.

We now describe the PTIP, which returns an integer t′ >
m such that S(n) ≡td(φ) S(n′), for every n, n′ ≥ t′. By
Theorem 1, the latter implies that t′ is an emergence threshold
for either φ or ¬φ. PTIP operates by means of three steps.

Step 1: Construction of the Abstract Model. In the first
step, an abstract model Ŝ(m) is built. Ŝ(m) is an abstraction
of any concrete system from S of arbitrary size. Its defini-
tion is inspired by models used in [Emerson and Namjoshi,
1996], but modified to represent the current semantics. Ŝ(m)

is defined as the tuple Ŝ(m) = 〈 ˆG(m), ˆI(m), T̂ (m)〉, where
Ĝ(m) ⊆ L1× . . .×Lm× (P(L)\{∅})×LE is the set of ab-
stract states; Î(m) = I1× . . .×Im×(P(I)\{∅})×IE is the
set of initial abstract states; and T̂ (m) ⊆ Ĝ(m)× Λ× Ĝ(m)
is the abstract transition relation for a set of labels Λ =
P(L×Act× P(Act)× L) \ {∅}.

An abstract state γ = (l1, . . . , lm, X, lE) consists of a con-
crete component γ.c = (l1, . . . , lm, lE) and an abstract com-
ponent γ.â = X . γ represents any concrete state g in S(n),
n > m, in which: (i) the environment is at local state lE ;
(ii) the agents 1, . . . ,m are at local states l1, . . . , lm, respec-
tively; (iii) X = {g.i | i ∈ {m+ 1, . . . , n}} is the set of
local states of the agents m+ 1, . . . , n. Thus γ.c encodes the
atomic propositions on which φ is built, and γ.â encodes how
an arbitrary number of agents may interfere with the state of
γ.c. To see this, consider a transition (γ,Ξ, γ′) ∈ T̂ (m),
representing a set of transitions between the concrete states
represented by γ and γ′. The label Ξ indicates the template
transitions enabling the agents to participate in a global tran-
sition. In other words, a tuple (l, a, A, l′) ∈ Ξ indicates that
in a global transition at least one agent is in state l; this agent
performs action a, its neighbours perform the set of actions
A, and the agent moves to state l′.

For a set Ξ ⊆ Λ, let Act(Ξ) = {a | ∃l, l′, A. (l, a, A, l′) ∈

Ξ} to be the set of actions performed by Ξ. Given a template
state l ∈ L, consider N̂(Ξ, l) = {a | ∃l′, l′′, A. (l′, a, A, l′′) ∈
Ξ and l n l′} to be the set of actions performed by Ξ in the
neighbourhood of l. The construction of Ŝ(m) is completed
by defining T̂ (m) as follows: (γ,Ξ, γ′) iff there is a joint
action ā ∈ Act1 × . . .×Actm ×ActE such that:

1. The transition is valid for the environment: ā.E ∈
PE(γ.c.E) and tE(γ.c.E, ā.E,A) = γ′.c.E, where
A = Act(Ξ) ∪ {ā.i | i ∈ {1, . . . ,m}};

2. The transition is valid for a concrete agent: for all
i ∈ {1, . . . ,m}, we have ā.i ∈ Pi(γ.c.i) and
ti(γ.c.i, γ.c.E, ā.i, A, ā.E) = γ′.c.i, where A =

N̂(Ξ, γ.c.i) ∪ {ā.j | j ∈ N(γ.c, i)};
3. The transition is valid for the agents represented by γ.â:

For all (l, a, A, l′) ∈ Ξ, we have l ∈ γ.â, l′ ∈ γ′.â,
a ∈ P (l), t(l, γ.c.E, a,A, ā.E) = l′, andA = N̂(Ξ, l)∪
{ā.i | i ∈ {1, . . . ,m} and l n γ.c.i};

4. For every l ∈ γ.â, there is a transition label in Ξ to a state
l′ ∈ γ′.â, and for every l′ ∈ γ′.â, there is a transition
label in Ξ from a state l ∈ γ.â.

A path in Ŝ(m) is either a finite or infinite se-
quence γ1Ξ1γ2, . . . with (γi,Ξi, γi+1) ∈ T̂ (m), for
every i ≥ 1 whenever applicable. We now estab-
lish a correspondence between any CSS S(n), n >

m, and Ŝ(m) as follows. Define δn to map concrete
states from S(n) to abstract states in Ŝ(m) as δn(g) =
(g.1, . . . , g.m, {g.j | j ∈ {m+ 1, . . . , n}}, g.E). Assume
ζn to map tuples in T (n) to tuples in Λ by ζn(g, ā, g′) =
{(l, a, A, l′) | ∃i ∈ {m+ 1, . . . , n} s.t. g.i = l, ā.i =
a,A = {ā.j | j ∈ N(g, i)}, and g′.i = l′}. Fi-
nally, define θn to map paths in S(n) to paths in Ŝ(m) by
θn(g1ā1g2 . . .) = δn(g1)ζn(g1, ā1, g2)δn(g2)

Lemma 1. For a path π in S(n), θn(π) is a path in Ŝ(m).

The above gives the correspondence between Ŝ(m) and a
CSS S(n). Following this, the covering lemma from [Emer-
son and Namjoshi, 1996] can be adapted here to show that
for every path π in S(n) and for every n′ > n, there is a
path π′ in S(n′) such that θn(π) = θn′(π′). Thus S can only
exhibit additional behaviour as the number of agents grows.
This gives rise to the completeness of our procedure as it im-
plies an emergence threshold for either φ or its negation. The
threshold corresponds to a t′ ≥ m with S(n) ≡td(φ) S(n′),
for every n, n′ ≥ t′. We now proceed to compute it by count-
ing the sufficient number of agents to enable every behaviour
(modulo cyclic-stuttering) in Ŝ(m). To do this, we do not
consider infinite paths as they may require an infinite number
of concrete agents. In other words, we first prune the compu-
tation tree of Ŝ(m).

Step 2: Pruning. We now build the computation tree of
Ŝ(m) by including all and only the paths in Ŝ(m) that do
not contain any cyclic repetition for td(φ) + 1 times. More
precisely, for a state γ ∈ Ĝ(m), we associate a labelled com-
putation tree T(γ) rooted at γ that is inductively defined as
follows.

• T0(γ) consists of exactly one node with label γ.

• Tn+1(γ) consists of root node r with label γ, and for ev-
ery transition (γ,Ξ, γ′) ∈ T̂ (m), r has a subtree Tn(γ′)
with edge label Ξ iff there is no path in Tn+1(γ) con-
taining a cycle with td(φ) + 1 repetitions.

It is easy to see that there is a k ∈ N such that Tk(γ) is
isomorphic to every Tk

′
(γ) with k′ ≥ k. We write T(γ) to

denote this tree. Note that T(γ) is finite. A path B in T(γ)
is a sequence r1Ξ1 . . .Ξx−1rx such that r1 is the root, rx is
a leaf, and for every 1 ≤ i ≤ x − 1, Ξi is the label for the
edge between ri and ri+1. We write B(i) for the i-th node in
B, B(i,Λ) for the i-th label in B, and |B| for the number of
nodes in B.

Step 3: Counting. Consider a path B in T(γ).
Define B(0,Λ) = ∅, and B(i,Λ) = ∅ whenever B(i)
is a leaf node. Then, given a template state l, de-
fine in(B(i), l) = |{l′ | (l′, a, A, l) ∈ B(i− 1,Λ)}|, and
out(B(i), l) = |{l′ | (l, a, A, l′) ∈ B(i,Λ)}|. So, in any
concrete transition (γ, ā, γ′) that corresponds to (B(i −
1),Ξ,B(i)), out(B(i − 1), l) is the least number of agents
that need to transition from l in γ, and in(B(i), l) is
the least number of agents that need to transition to l
in γ′. Thus, let et(B(i), l) = max(0, out(B(i)) −
in(B(i))). Then, define et(B(i)) =

∑
l∈L et(B(i), l)

and et(B) =
∑
i∈|B| et(B(i)). Finally, let et(T(γ)) =

max(et(B) | B is a path in T(γ)) and et(Ŝ(m)) =

max(et(T(ι)) | ι ∈ Î(m)) +m. We obtain the following.

Theorem 2. et(Ŝ(m)) corresponds to exactly one of the fol-
lowing: (i) an emergence threshold for S and φ; or (ii) an
emergence threshold for S and ¬φ.

Proof sketch. The thesis follows by showing that
S(n) ≡td(φ) S(n′), for any n, n′ ≥ et(Ŝ(m)).

The above concludes the analysis of the ETIP. The pro-
cedure first constructs the abstract model Ŝ(m) for the SS
S in question. Then, for a formula φ under analysis, it
prunes the computation tree of Ŝ(m) to include only td(φ)
cyclic repetitions. Finally, the procedure counts the number
t′ = et(Ŝ(m)) of agents required for a CSS to include ev-
ery behaviour of said tree. By Theorem 2, t′ corresponds to
an emergence threshold either for φ or for ¬φ. Since t′ is
computable, the procedure is complete. This is because an
emergence threshold for ¬φ implies that there is no emer-
gence threshold for φ. In other words, if S(t′) |= φ, then t′ is
an emergence threshold for φ, and therefore φ is an emergent
behaviour. Otherwise, t′ is an emergence threshold for ¬φ,
and thus φ is not an emergent behaviour.

4 Verifying the Beta Aggregation Algorithm
We exemplify the methodology described so far on the Beta
aggregation algorithm [Nembrini, 2005] (here described in a
simplified manner), a protocol used to aggregate robots some-
where on a grid. To begin, given a robot i, define a lost robot
j to be a robot satisfying i n j in the previous time step but
not in the current step. Each robot i obeys two simple rules.

The first rule concerns the number of i’s neighbours that can
observe a lost robot in their neighbourhoods. If this number
is less than a predefined threshold β for at least one lost robot,
then robot i performs a 180◦ turn. The second rule concerns
the number of i’s neighbours. If the first rule does not apply
and the number of i’s neighbours increases during a time step,
then the robot performs a random 90◦ turn. If neither rule can
be applied, the robot moves forward one cell.

Fix a 5×5 arena, assume a communication range of 1, and
let β = 0. We can easily encode the Beta algorithm as an SS
S consisting of a template agentR(5, 1) that reflects the rules
above for the action selection and state evolution. The state
encodes (among other concepts) the set Z of occupied cells
of the agent’s neighbours’ neighbourhoods (See [Beta, 2015]
for the full encoding).

We say that a robot i is connected to a robot j if j is in
the transitive closure of i’s neighbours. Note that, given the
size of the arena and the communication range, i and j are
connected in a global state iff they agree on the sets Z of
cells encoded in their local state. Thus, associate a fresh
atomic proposition q for each set Q of cells and assign q
to each template state with Z = Q. Consider the formula
φ = ∀{v,u}KvAFAG

∨
Q(qv ∧ qu) expressing “every robot

knows that eventually it will be forever connected to every
other robot”. This means that not only the whole swarm will
be connected in a single cluster, but everyone will know to be
connected. We are interested to check whether φ emerges in
S as the number of robots increases in the system. Follow-
ing the procedure of the previous section, we can compute
an emergence threshold of 16 (the full calculation is reported
in [Beta, 2015]). Thus, we conclude that φ is an emergent
behaviour iff S(16) |= φ. The latter query can be solved
by any epistemic model checker, which would return false,
thereby establishing that ¬φ is satisfied by every S(n), for
n ≥ 16. So the robots will not eventually congregate into a
stable cluster.

We conclude that the property above is not an emergent
property of the Beta protocol. We emphasise that the above
result cannot be obtained with traditional model checking nor
simulation techniques since an unbounded number of systems
would have to be considered.

5 Conclusions and Further Work
We have introduced a technique for determining automati-
cally whether a swarm will display an emergent behaviour
irrespective of the number of agents present. The technique
is provably sound and complete. While we have put forward
a fully automatic methodology, our methodology can also be
used to complement simulations for fast prototyping. Specif-
ically, if early simulations on small populations show a par-
ticular behaviour to emerge, we can then use the technique
here described to check whether this behaviour will still be
displayed by larger systems. In future work we intend to im-
plement the technique here presented into a toolkit that can be
paired to well-established simulation toolkits to achieve this.

Acknowledgements. The research described in this paper
was supported by the EPSRC Research Project Trusted Au-
tonomous Systems (grant No. EP/I00520X/1).

References
[Apt and Kozen, 1986] K.R. Apt and D.C. Kozen. Limits for

automatic verification of finite-state concurrent systems.
Information Processing Letters, 22(6):307–309, 1986.

[Beta, 2015] Beta. The model for the Beta algo-
rithm. http://vas.doc.ic.ac.uk/software/
extensions/, 2015.

[Bonabeau et al., 1999] E. Bonabeau, M. Dorigo, and
G. Theraulaz. Swarm intelligence: from natural to arti-
ficial systems. Oxford university press, 1999.

[Brambilla et al., 2013] M. Brambilla, E. Ferrante, M. Bi-
rattari, and M. Dorigo. Swarm robotics: a review from
the swarm engineering perspective. Swarm Intelligence,
7(1):1–41, 2013.

[Brambilla et al., 2014] M. Brambilla, A. Brutschy,
M. Dorigo, and M. Birattari. Property-driven design
for robot swarms: A design method based on prescriptive
modeling and model checking. ACM Transactions on
Autonomous and Adaptive Systems, 9(4):17, 2014.

[Clarke et al., 1989] E.M. Clarke, O. Grumberg, and M.C.
Browne. Reasoning about networks with many identi-
cal finite state processes. Information and Computation,
81(1):13–31, 1989.

[Clarke et al., 1999] E.M. Clarke, O. Grumberg, and D.A.
Peled. Model Checking. The MIT Press, 1999.

[Dixon et al., 2012] C. Dixon, A. Winfield, M. Fisher, and
C. Zeng. Towards temporal verification of swarm
robotic systems. Robotics and Autonomous Systems,
60(11):1429–1441, 2012.

[Emerson and Kahlon, 2000] E. Emerson and V. Kahlon.
Reducing model checking of the many to the few. In Pro-
ceedings of CADE’00, volume 2421 of LNCS, pages 236–
254. Springer, 2000.

[Emerson and Namjoshi, 1996] E. Emerson and
K. Namjoshi. Automatic verification of parameter-
ized synchronous systems. In Proceedings of CAV’96,
volume 1102 of LNCS, pages 87–98. Springer, 1996.

[Fagin et al., 2003] R. Fagin, Y. Moses, J. Y. Halpern, and
M. Y. Vardi. Reasoning about knowledge. The MIT Press,
2003.

[Huth and Ryan, 2004] M. R. A. Huth and M. D. Ryan.
Logic in Computer Science: Modelling and Reasoning
about Systems (2nd edition). Cambridge University Press,
2004.

[Kloetzer and Belta, 2007] M. Kloetzer and C. Belta. Tem-
poral logic planning and control of robotic swarms by hi-
erarchical abstractions. Robotics, IEEE Transactions on,
23(2):320–330, 2007.

[Kouvaros and Lomuscio, 2013a] P. Kouvaros and A. Lo-
muscio. Automatic verification of parameterised inter-
leaved multi-agent systems. In Proceedings of AAMAS’13,
pages 861–868. IFAAMAS, 2013.

[Kouvaros and Lomuscio, 2013b] P. Kouvaros and A. Lo-
muscio. A cutoff technique for the verification of param-
eterised interpreted systems with parameterised environ-
ments. In Proceedings of IJCAI’13, pages 2013–2019.
AAAI Press, 2013.

[Kouvaros and Lomuscio, 2015] P. Kouvaros and A. Lomus-
cio. A counter abstraction technique for the verification of
robot swarms. In Proceedings of AAAI’15. AAAI Press,
2015.

[Liu et al., 2007] W. Liu, A. Winfield, J. S, J.Chen, and
L. Dou. Strategies for energy optimisation in a swarm of
foraging robots. In Swarm robotics, LNCS, pages 14–26.
Springer, 2007.

[Lomuscio et al., 2009] A. Lomuscio, H. Qu, and F. Rai-
mondi. MCMAS: A model checker for the verification of
multi-agent systems. In Proceedings of CAV’09, volume
5643 of LNCS, pages 682–688. Springer, 2009.

[Nembrini, 2005] J. Nembrini. Minimalist Coherent Swarm-
ing of Wireless Networked Autonomous Mobile Robots.
PhD thesis, University of the West of England, 2005.

[Penczek and Lomuscio, 2003] W. Penczek and A. Lomus-
cio. Verifying epistemic properties of multi-agent systems
via bounded model checking. Fundamenta Informaticae,
55(2):167–185, 2003.

[Sahin, 2005] E. Sahin. Swarm robotics: From sources of
inspiration to domains of application. In Swarm Robotics,
volume 3342 of LNCS, pages 10–20. Springer, 2005.

