
Verifying Strategic Abilities of Neural-symbolic Multi-agent Systems

Michael E. Akintunde, Elena Botoeva, Panagiotis Kouvaros, Alessio Lomuscio
Imperial College London, UK

{michael.akintunde13, e.botoeva, p.kouvaros, a.lomuscio}@imperial.ac.uk

Abstract
We investigate the problem of verifying the strategic proper-
ties of multi-agent systems equipped with machine learning-
based perception units. We introduce a novel model of agents
comprising both a perception system implemented via feed-
forward neural networks and an action selection mechanism
implemented via traditional control logic. We define the ver-
ification problem for these systems against a bounded frag-
ment of alternating-time temporal logic. We translate the ver-
ification problem on bounded traces into the feasibility prob-
lem of mixed integer linear programs and show the soundness
and completeness of the translation. We show that the lower
bound of the verification problem is PSPACE and the upper
bound is coNEXPTIME. We present a tool implementing the
compilation and evaluate the experimental results obtained on
a complex scenario of multiple aircraft operating a recently
proposed prototype for air-traffic collision avoidance.

1 Introduction
In the area of multi-agent systems (MAS) there is a long-
standing interest in analysing the outcomes resulting from
the strategic interplay among the agents. A variety of in-
creasingly expressive logics have been put forward over the
years to express strategic properties. These range from
coalition logic (Pauly 2002), to alternating-time temporal
logic (Alur, Henzinger, and Kupferman 2002), coordination
logic, strategy logic (Mogavero, Murano, and Vardi 2010;
Chatterjee, Henzinger, and Piterman 2007), as well as logics
for equilibrium analysis (Gutierrez et al. 2018) and resource-
bounded versions (Alechina et al. 2015) of these.

A key object of study in this line of research is the result-
ing verification problem, normally formulated as the model
checking problem, i.e., to decide whether, given a system S
and a specification ϕ, it is the case that S ⊧ ϕ. In addi-
tion to the expressiveness of the specification language, the
complexity of the model checking problem also depends on
a number of modelling factors, including whether the actors
are assumed to have complete or incomplete information and
whether or not they have perfect recall. In a MAS setting,
agents are normally assumed to have incomplete informa-
tion, which, even without perfect recall, makes the resulting
model checking problem at least EXPTIME for frequently
used specification languages such as ATL∗ or strategy logic.

In all these approaches, the MAS is modelled either as a
concurrent game structure (Alur, Henzinger, and Kupferman

2002) or as an interpreted system (Halpern and Fagin 1985),
by providing the states, the possible actions, and the transi-
tions for the agents and the system as a whole. These mod-
els, also used in knowledge representation (Halpern and Fa-
gin 1985), are well suited to encode traditional MAS where
the agents are directly realised by programmers.

An emerging generation of MAS applications, ranging
from autonomous systems, swarm robotics and beyond, can-
not, however, be modelled via traditional formalisms as
above. These are MAS in which the agents’ perception sys-
tem is synthesised from data via machine learning methods
and implemented via neural networks (NNs). No formalism,
nor verification method exists to conduct an analysis of the
possible strategic interplay arising in such systems. The aim
of this paper is to make a first contribution in this area.

We introduce a novel formalisation of MAS in which the
agents are endowed with a perception mechanism realised
via NNs combined with a symbolic action selection mecha-
nism. We call these neural-symbolic agents in line with re-
cent proposals in the area (Lamb et al. 2020). We introduce
the verification problem for these systems against a bounded
version of alternating-time temporal logic. The usefulness
of bounded fragments has previously been shown in the
context of knowledge representation and agent-environment
systems (Akintunde et al. 2018). We develop and solve the
resulting verification problem via a mixed-integer linear pro-
gramming (MILP) formulation, present a tool developed for
this task and evaluate the approach on an avionics advisory
system for collision avoidance.

Related Work. There is a rich literature on verification
of strategic properties of MAS. In addition the field has re-
leased open-source tools (Alur et al. 1998; Dembiński et
al. 2003; Lomuscio, Qu, and Raimondi 2017; Hinton et al.
2006; Gutierrez et al. 2018) that can be used to verify MAS
prototypes. While these lines adopt similar specification lan-
guages to the one here pursued, they do not support MAS in
which part of the architecture is realised via NNs.

Over the past three years numerous methods have
emerged to verify NNs. Most of these address ReLU-based
activation functions, which also equip the agents’ percep-
tion systems that we study here. Complete approaches dif-
fer in the underlying methods, whether based on optimi-
sation (Dvijotham et al. 2018), SAT (Katz et al. 2019),
search (Wang et al. 2018), or MILP (Lomuscio and Maganti



2017). Incomplete, abstraction-based approaches have also
been put forward (Singh et al. 2019; Gehr et al. 2018). These
approaches differ on the precision and scalability of the net-
works that they can analyse. While the literature on this sub-
ject is growing rapidly and is supported by dedicated events,
all these approaches differ from ours in that they study NNs
in isolation and not as part of a closed-loop system.

The area of computer vision has also seen an increased
interest in the development of methods to assess the cor-
rectness and resilience of perception systems based on NNs.
This has followed the original interest in adversarial at-
tacks (Goodfellow, Shlens, and Szegedy 2014), which ex-
ploit the fragility of neural classifiers. Approaches to pro-
vide verification methods for convolutional NNs (Kouvaros
and Lomuscio 2018) have been proposed and counterexam-
ples have been used for learning (Dreossi et al. 2018). Dif-
ferently from the present contribution, this body of work fo-
cuses on the resilience of the classifier against input noise
and does not address the combination of these with decision
making or control, nor indeed closed-loop MAS.

More related to the topic of the present investigations
are recent contributions in which closed-loop systems with
neural network controllers are analysed. (Dutta, Chen, and
Sankaranarayanan 2019; Xiang et al. 2018; Sun, Khedr, and
Shoukry 2019; Huang et al. 2019) report approaches based
on reachable set estimation methods; (Ivanov et al. 2019)
presents a method based on hybrid system analysis. These
and other similar approaches deal with closed-loop systems
in which the controller (the agent in our terminology) is re-
alised entirely via a NN, and so does not combine neural-
symbolic elements as we do here. The emphasis of the above
works are on safety and not on strategic reasoning, which is
our objective. Close to this work is our own previous work
on the subject, in which we put forward models for neu-
ral agent-environment systems of (Akintunde et al. 2018;
2020a), which are then verified via MILP as we do here.
The present article presents several advances over previous
material. Firstly, at the modelling level, we here present a
novel loosely coupled neural-symbolic architecture which
enables us to capture perception systems realised via neural
classifiers paired with logic-based decision mechanisms. We
are not aware of other proposals in this context. Secondly,
we develop the first available treatment for verifying strate-
gic properties of MAS which include neural components.
Thirdly, we provide the same lower and upper bounds for the
verification problem as those studied for the less expressive
specifications (bounded CTL) and agent models presented
in (Akintunde et al. 2020a). Lastly, the implementation pro-
vided is the first tool for the verification of strategic proper-
ties in MAS as we show in a real-life avionics application.

2 Background
In this section we summarise and fix the notation on some
of the key notions used later in the paper.

Piecewise-linear functions. A function f(x1, . . . , xm) is
said to be linear if f = ∑i cixi+b for (c1, . . . , cm) ∈ Rm, b ∈
R. A piecewise-linear (PWL) function is a function whose
domain can be partitioned into a collection of intervals such
that the function is linear on each interval.

Piecewise-linear feed-forward neural networks. A
feed-forward neural network (FFNN) is a vector-valued
function f ∶Rm → Rn defined as follows. The function f
is defined by composing a sequence of layers, f1, . . . , fk,
where each layer fi is the composition of a weighted sum
and a non-linear activation function. That is, fi(xi) ≜
act i(Wifi−1(xi−1) + bi), where xi is the input to the i-th
layer, act i is the activation function of the i-th layer and
Wifi−1 + bi is the weighted sum of the previous layer’s out-
put for a weight matrix Wi and a bias vector bi. A FFNN
is said to be piecewise-linear if it contains only PWL acti-
vation functions. One of the most popular PWL activation
functions (and activation functions in general) is the Recti-
fied Linear Unit (ReLU), defined as ReLU(x) ≜ max(0, x),
which is widely used in supervised learning tasks because of
its effectiveness in training (Nair and Hinton 2010).

Reachability problem. Given a PWL FFNN f ∶Rm →
Rn and a set Out ⊆ Rn, the reachability problem concerns
establishing whether there is an input x ∈ Rm such that
f(x) ∈ Out . In the context of MILP-based verification of
FFNNs, the reachability problem is addressed by transform-
ing it into the feasibility problem of a MILP program.

Mixed Integer Linear Programming. An expression
f(x) ◻ b is said to be a linear constraint if f(x) is a linear
function, ◻ ∈ {≤,=,≥}, b ∈ R and variables x take values
from R. An expression of the form x ∈ Z is said to be an
integrality constraint. In this paper we are only interested
in the feasibility problem of linear programs, hence, we de-
fine a linear program to be simply a finite set of linear con-
straints1. A mixed integer linear program (MILP) is a linear
program whose set of constraints includes integrality con-
straints. The feasibility problem of a MILP answers to the
question whether there exists a feasible solution to the pro-
gram, that is, an assignment to the variables that satisfies all
constraints. A set S ⊆ Rn is said to be linearly definable if
there exists a linear program CS such that S is the feasible
region (the set of all possible feasible solutions) of CS .

MILP formulation of the reachability problem. The
reachability problem has an exact MILP representation: the
corresponding MILP program is feasible iff the answer
to the verification problem is yes (Lomuscio and Maganti
2017). In the MILP representation, the linear components
of the problem are given as linear constraints. Its piecewise-
linear components are given as a set of implication clauses,
one for each linear interval, which are expressed using the
big-M method (Griva, Nash, and Sofer 2009). In particular,
each implication clause h(x) ≤ 0⇒ g(x) ≤ 0 (where h(x),
g(x) are linear expressions) can be encoded with the follow-
ing MILP constraints:

h(x) ≥ −Mδ; g(x) ≤M(1 − δ).
Above δ is a binary variable and M is a sufficiently large
constant. So, if h(x) ≤ 0, then δ = 1 by the first clause,
which gives g(x) ≤ 0 by the second clause. Often the
tighter the over-estimation of the actual bounds of h(x) and
g(x) by M , the more efficiently the resulting MILP can be

1Defined in the standard way, a linear program is an optimisa-
tion problem whereby a linear objective function is sought to be
maximised subject to a set of linear constraints.



solved. Given this state-of-the-art approaches carry out anal-
yses based on interval arithmetic to derive tight bounds for
each of the linear functions composing the FFNN in ques-
tion (Botoeva et al. 2020; Tjeng, Xiao, and Tedrake 2019).

3 Neural Interpreted Systems
We here present a novel semantics for neural MAS called
neural interpreted systems (NIS). NIS extend interpreted
systems (IS) (Fagin et al. 1995), a standard semantics for
MAS, previously used to reason about the strategic inter-
play in MAS (Lomuscio, Qu, and Raimondi 2017). Dif-
ferently from IS, which assume purely symbolic agents,
NIS uniquely combine connectionist with symbolic mod-
els; agents are endowed with a neural-based perception
unit, used to gather information from the environment, and
act upon their observations via traditional symbolic control
logic. NIS allow for the natural modelling of hybrid archi-
tectures combining traditionally programmed control units
with perception units synthesised from data. Autonomous
vehicles, for instance, use this architecture to neurally in-
terpret the images from their cameras and symbolically de-
cide the required steering angle of the vehicle on the basis of
said interpretation (Dreossi, Donzé, and Seshia 2019). They
can be seen as a loosely-coupled neural-symbolic agent
model (Garcez, Lamb, and Gabbay 2009).

We begin with a MAS composed of K neural-symbolic
agents Agt = {1, . . . ,K} acting in an environment E. We
often treat the environment as a special agent thereby con-
sidering a MAS as composed of the set Agt ∪{E} of agents.
Each agent a ∈ Agt is described by the following.
Definition 1 (Neural-symbolic Agent). A neural-symbolic
agent, or agent, is a tuple a = (La,obsa,Acta,prota, tra),
where
• La = Prva × Pera is a nonempty (possibly infinite) set

of local states. A local state is a pair (prva,pera) of a
private state prva ∈ Prva and a percept pera ∈ Pera
storing the state of the environment observed by the agent.

• obsa∶La × LE → Pera is an observation function map-
ping pairs of local states La ⊆ Rh ×Rn and environment
states LE ⊆ Rm to percepts Pera ⊆ Rn and is imple-
mented via a PWL FFNN2 fa∶Rh+n+m → Rn .

• Acta is a nonempty finite set of actions,
• prota∶La → 2Acta∖{∅} is a local protocol function defin-

ing the actions the agent can perform in a local state.
• tra∶La×Act1×⋅ ⋅ ⋅×ActK ×ActE → Prva is a local tran-

sition function determining the next private state given a
local state and a tuple of actions performed by all agents.
The environment’s description is similar to the agents’ de-

scriptions but has no percepts and observation function.
Definition 2 (Environment). The environment is a tupleE =
(LE ,ActE ,protE , trE), where LE ⊆ Rm is a nonempty
(possibly infinite) set of local states, ActE is a finite set of
actions, protE ∶ LE → 2ActE ∖ {∅} is a protocol function
and trE ∶ LE ×Act1 × . . . ×ActK ×ActE → LE is a local
transition function.

2Note that in practice the observation function may be imple-
mented via a PWL combination of a number of PWL FFNNs.

Similarly to IS, the agents in a NIS are only aware of their
local state. Previous proposals have used perception mod-
ules (Wooldridge and Lomuscio 1999) implemented sym-
bolically. Here instead the agents in a NIS observe the state
of the environment via the neural observation function de-
scribed above. As a FFNN is a real vector-valued function,
we encode the environment’s set of states and the agents’
sets of percepts as subsets of Rm and Rn . The agents’ pri-
vate states and percepts encapsulate all the information ac-
cessible to the agents’ decision making process; we call a
pair of a private state and a percept a local state. In par-
ticular, given the current local state `a = (prva,pera) for
each a ∈ Agt and the current local state `E of the envi-
ronment, the operational cycle of the agents is described
as follows. First, every agent and the environment chooses
a protocol-compliant action αa, i.e., αa ∈ prota(`a) for
a ∈ Agt ∪ {E}. The agents synchronously perform the se-
lected actions. Then, every agent a ∈ Agt updates the private
part of its local state according to its local transition function
to prv ′a = tra(`a, α1, . . . , αK , αE) producing intermediate
local state `′a = (prv ′a,pera). Similarly, the environment
updates its local state to `′E = trE(`E , α1, . . . , αK , αE).
Finally, every agent a ∈ Agt observes the updated state of
the environment and with the information stored in its up-
dated local state generates a percept per ′a = obsa(`′a, `′E)
with which it updates the perception part obtaining the new
local state `′′a = (prv ′a,per ′a).

We hereafter assume that the local transition functions can
be expressed as PWL functions. Note that this does not pre-
vent NIS from modelling a wide spectrum of real-world use
cases: if the transition function has a degree of nonlinearity,
it can be approximated by a PWL FFNN to an arbitrary level
of precision (D’Ambrosio, Lodi, and Martello 2010).

We now proceed to define the NIS comprising both the
agents and the environment, and their associated tempo-
ral models. For the definitions we will require the no-
tions of global states and joint actions. A global state
q = (`1, . . . , `K , `E) is a tuple of local states for all the
agents in the system; it describes the system at a particu-
lar instant of time. Given `a = (prva,pera) for a ∈ Agt , a
global state q = (`1, . . . , `K , `E) and an agent a, we write
lprva(q), lpera(q) and loca(q) to denote the private part
lprva(q) = prva and the perception part lpera(q) = pera
of the local state loca(q) = `a of agent a in q. For a global
state q and a local protocol prota we often write prota(q)
to mean the set of actions that can be performed by agent a
at q, i.e., prota(loca(q)). The set G = L1 ×⋯×LK ×LE of
possible global states is the Cartesian product of the agents’
sets of local states. A joint action α = (α1, . . . , αK , αE)
is a tuple of local actions for all the agents in the system.
The set ACT = Act1 × ⋯ × ActK × ActE of all possible
joint actions is the Cartesian product of the agents’ sets of
local actions. The local transition functions induce a global
transition function tr ∶ G × ACT → G where, for q ∈ G,
(α1, . . . , αK , αE) ∈ ACT , tr(q,α1, . . . , αK , αE) = q′ iff
• αE ∈ protE(q) and trE(locE(q), α1, . . . , αK , αE) =
locE(q′); i.e., the environment’s action is protocol com-
pliant and its local state is updated as per its local transi-
tion function.



• αa ∈ prota(q), tra(loca(q), α1, . . . , αK , αE) = lprva(q′)
and obsa((lprva(q′), lpera(q)), locE(q′)) = lpera(q′)
for every agent a ∈ Agt ; i.e., the agent’s action is protocol
compliant, the private part of its local state is updated as
per its local transition function and the perception part of
its local state is updated as per its observation function.

Definition 3 (Neural Interpreted System). Given a set of
agents Agt , an environment E and a set of atomic propo-
sitions AP , a neural interpreted system (NIS) is a tuple
S = (Agt ∪ {E}, I,V ), where:
• I ⊆ G is a linearly definable set of initial global states.
• V ∶AP → 2G is a labelling function specifying the atomic

propositions that are true in each global state.
The labelling function in a NIS is hereafter assumed to

be expressible as a PWL function. In particular, for each
p ∈ AP , V (p) returns a description of a subset of G that is
expressible as a Boolean PWL function.
Example 1. Consider as a running example two pilots op-
erating two aircraft each equipped with an airborne traffic
collision avoidance system (CAS) implemented via PWL
FFNNs. Each CAS at every second will issue an advisory
to the respective ownship and intruder pilots. The pilot is re-
quired to respond to the advisory by applying an acceleration
to the aircraft in order to have the aircraft’s climbrate com-
pliant with the issued advisory. Each pilot can be modelled
as a neural-symbolic agent a, where the pilot’s acceleration
response is modelled as non-deterministic choice defined in
a protocol function prota, and local states La encode infor-
mation relevant to each pilot – the aircraft’s climbrate as its
private state and the previous advisory issued by the CAS
as its percept. The remaining physical transition dynamics
of the system are modelled in an environment agent E. We
provide a full formalisation of this example in Section 6.

NIS are (uniquely) associated with temporal models
which can be used to interpret our specification language.
These are defined as follows.
Definition 4 (Model). Given a NIS S = (Agt ∪ {E}, I,V ),
the induced model of S, or simply the model, is a tuple
MS = (G,ACT , T,V ), where:
• G is the set of global states and ACT is the set of joint

actions of S .
• T ⊆ G × ACT × G is the transition relation defined as

(q,α, q′) ∈ T iff tr(q,α) = q′.
• V is a labelling function as in Definition 3.

A path in a model MS = (G,ACT , T,V ) is an infi-
nite sequence of global states and joint actions q0α0q1α1 . . .
such that for every i ≥ 0, (qi, αi, qi+1) ∈ T .

We verify NIS against a bounded variant of a restricted
subset of ATL∗ (Alur, Henzinger, and Kupferman 2002),
drawing inspiration from Real Time Computation Tree
Logic (RTCTL) (Emerson et al. 1992). The satisfaction sta-
tus of the formulae expressible in our language depends only
on paths of a bounded length. This has been shown to be
practically relevant by enabling the efficient identification
of shallow bugs in a system’s execution (Biere et al. 2003;
Penczek, Woźna, and Zbrzezny 2002). In addition to this

practical consideration, our restriction to a bounded frag-
ment of ATL∗ follows the undecidability of the verification
problem for unbounded formulae (Akintunde et al. 2020a).
Definition 5 (Bounded ATL∗). Given a set of agents Agt ,
an environment E and a set of atomic propositions AP , we
define the specification language bATL∗ with the following
BNF:

ϕ ∶∶= p ∣ ϕ ∨ ϕ ∣ ϕ ∧ ϕ ∣ ⟪Γ⟫Xkϕ ∣ JΓKXkϕ,

where p ∈ AP , k ∈ N and Γ ⊆ Agt ∪ {E}.

The formula ⟪Γ⟫Xkϕ is read as “the group of agents Γ
can bring about ϕ at the k-th step”. The formula JΓKXkϕ is
read as “irrespective of the actions of the agents in group Γ,
ϕ will hold at the k-th time step.” We inductively abbreviate
bounded until ⟪Γ⟫(ϕUkψ) as

⟪Γ⟫(ϕU1ψ) ≜ ψ ∨ (ϕ ∧ ⟪Γ⟫Xψ);
⟪Γ⟫(ϕUkψ) ≜ ψ ∨ (φ ∧ ⟪Γ⟫X(⟪Γ⟫(φUk−1ψ)),

with the meaning of “the group of agents Γ can bring about
ψ at some point in the k following steps and ϕ holds until
then”; the formula JΓK(ϕUkψ) can be defined analogously.
Example 2. For our collision avoidance example we can
specify a property expressing that the ownship agent has
a strategy to ensure that the two aircraft are safe from a
collision after k steps. Given two neural-symbolic agents
Agt = {own, int} referring to the ownship and intruder de-
fined in Example 1 and taking Γ = {own}, we can define
such a property as ϕk = ⟪own⟫Xk safe, where safe is an
atomic proposition representing a safe region.

We now proceed to define the satisfaction relation for
bATL∗ specifications on NIS-induced models. This uses the
notion of a strategy.
Definition 6. A strategy for an agent a ∈ Agt∪{E} is a func-
tion sa∶La → 2Acta s.t. if α ∈ sa(`a), then α ∈ prota(`a).

The strategies defined above follow the memoryless, in-
complete information and non-uniform setting from (Lo-
muscio, Qu, and Raimondi 2017) as implemented in the
toolkit MCMAS. We can combine a collection of strategies
to define a joint strategy for a coalition of agents.
Definition 7 (Joint Strategy). Let Γ ⊆ Agt ∪ {E} be
a coalition of agents. A joint strategy is a tuple sΓ =
(s1, s2, . . . , s∣Γ∣) of strategies sa for each agent a ∈ Γ.

We can now define the evaluation of bATL∗ formulae on
NIS-induced models. Given a set of agents Γ and a global
state q, we write qΓ for the tuple of local states in q restricted
to the agents in Γ. Similarly, for a joint action αΓ, we write
αΓ for the tuple of local actions in α restricted to the agents
in Γ. We write (MS , q) ⊧ ϕ to mean the bATL∗ formula ϕ
is satisfied at state q inMS ; this is often abbreviated q ⊧ ϕ.
Definition 8 (Satisfaction). For a model MS =
(G,ACT , T,V ), a global state q0, and a bATL∗ for-
mula ϕ, the satisfaction of ϕ at q0, denoted q0 ⊧ ϕ, is
defined as follows:

q0 ⊧ p iff q0 ∈ V (p), for p ∈ AP ;
q0 ⊧ ϕ ∨ ψ iff q0 ⊧ ϕ or q0 ⊧ ψ;



q0 ⊧ ϕ ∧ ψ iff q0 ⊧ ϕ and q0 ⊧ ψ;
q0 ⊧ ⟪Γ⟫Xkϕ iff there is a joint strategy sΓ and an action
α0

Γ ∈ sΓ(q0
Γ) such that all states q1 with (q0, α0, q1) ∈ T

are such that there is an action α1
Γ ∈ sΓ(q1

Γ) such that all
states q2 with (q1, α1, q2) ∈ T are such that, etc., up to
state qk, and we have that qk ⊧ ϕ;

q0 ⊧ JΓKXkϕ iff for all joint strategies sΓ and actions α0
Γ ∈

sΓ(q0
Γ) there is a state q1 with (q0, α0, q1) ∈ T such

that for all actions α1
Γ ∈ sΓ(q1

Γ) there is a state q2 with
(q1, α1, q2) ∈ T , etc., up to k, and we have that qk ⊧ ϕ.

A specification ϕ is said to be satisfied by a NIS S, de-
noted S ⊧ ϕ, iff (MS , q) ⊧ ϕ for every q ∈ I . This forms
the basis of the following verification problem:
Definition 9 (Verification Problem). Given a NIS S and a
specification ϕ ∈ bATL∗, determine whether S ⊧ ϕ.

4 Verification of Neural Interpreted Systems
We here develop decision procedures for the verification
problem of Definition 9. These extend the procedures de-
vised for a neural (non-symbolic) agent operating on a
non-deterministic environment system (NANES) against a
bounded fragment of CTL (Akintunde et al. 2020a). As in
previous work the approach is based on recasting the ver-
ification problem as the feasibility problem of a particular
mixed-integer linear program; this is possible due to the fact
that NIS are based on PWL functions. Differently from pre-
vious work, however, we here need to deal with strategy
quantifications, and agent architectures that include neural
and symbolic components. We start by observing a logical
equivalence that applies to bATL∗.

Normal form of specifications. We show that specifica-
tions in bATL∗ can be rewritten using ⟪Γ⟫X and JΓKX only.
Lemma 1. Given a NIS S, its induced modelMS , a state
q ∈ G, and a formula ϕ ∈ bATL∗, we have that:

q ⊧ ⟪Γ⟫Xkϕ iff q ⊧ ⟪Γ⟫X⋯⟪Γ⟫X
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

k repetitions

ϕ (1)

q ⊧ JΓKXkϕ iff q ⊧ JΓKX⋯JΓKX
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
k repetitions

ϕ (2)

Proof. We prove clause (1), clause (2) can be proved simi-
larly. Let q0 = q. We have that q0 ⊧ ⟪Γ⟫Xkϕ iff there is
a joint strategy sΓ and an action α0

Γ ∈ sΓ(q0
Γ) such that all

states q1 with (q0, α0, q1) ∈ T are such that there is an ac-
tion α2

Γ ∈ sΓ(q1
Γ) such that all states q2 with (q1, α1, q2) ∈ T

are such that, etc., up to state qk, and we have that qk ⊧ ϕ.
This is iff there is a joint strategy s0

Γ with s0
Γ(q0) = {α0}

such that all states q1 with (q0, α0, q1) ∈ T are such that
there is a joint strategy s1

Γ(q1) with s1
Γ(q1) = {α1} such

that all states q2 with (q1, α1, q2) are such that, etc., up
to state qk, and we have that qk ⊧ ϕ. The latter holds iff
q0 ⊧ ⟪Γ⟫X⋯⟪Γ⟫Xϕ.

Due to Lemma 1, in the following we assume that any
specification is written by using ⟪Γ⟫X and JΓKX only.

Notation. A variable assignment a for a MILP π is a
function a∶ vars(π) → R that assigns a value to each vari-
able in π. An assignment a satisfies π, denoted a ⊧ π, if
a(δ) ∈ {0,1} for each binary variable δ, a(ι) ∈ Z for each
integer variable ι, and all constraints in π are satisfied.

When encoding disjunctive cases, it is convenient to use
so-called indicator constraints. These are constraints of
the form (δ = v)⇒ c, where δ is a binary variable and
v ∈ {0,1}, stating that whenever the value of δ is v, the
linear constraint c should hold. For instance, the two indi-
cator constraints (δ1 = 1) ⇒ x = 3 and (δ2 = 1) ⇒ x = 5
with the constraint δ1 + δ2 = 1 impose that the value of x is
either 3 or 5. Given a binary variable δ and a set of MILP
constraints π, we write (δ = v)⇒ π for the set of constraints
{(δ = v)⇒ c ∣ c ∈ π}.

Without loss of generality, we assume below that for each
agent index a ∈ {1, . . . ,K,E}, there is a natural number
ba such that for each global state q ∈ G, the cardinality of
prota(q) is ba (in practice, we can take ba to be the maxi-
mum cardinality of prota(q) for q ∈ G). We refer to ba as
the action choice factor (ACF) for agent a. We may assume
that prota is given as ba PWL functions prot1

a, . . . ,prot
ba
a

mapping G to Acta.
For a natural number n, we hereafter denote by [n] the

set {1, . . . , n}, and for a finite set S, denote by ∣S∣ the car-
dinality of S. Given a set of agents Γ ⊆ Agt ∪ {E}, denote
by Γ = Agt ∪ {E} ∖ Γ the complement of Γ with respect to
Agt ∪ {E}. Further, denote by IndΓ the Cartesian product
of all [ba] with a ∈ Γ and {0} for a ∈ Γ. Therefore, each el-
ement of IndΓ is a tuple σ = (σ1, . . . , σK , σE) of action in-
dices that are non-negative integers, where σa ∈ [ba] if a ∈ Γ

and 0 if a ∈ Γ. IndΓ represents all distinct joint actions
of the agents in Γ and each element in IndΓ encodes one
such joint action. As a consequence, ∣IndΓ∣ is the number
of all possible joint actions for the agents in Γ. We assume
a natural (lexicographic) ordering of the elements of IndΓ,
and denote by ΣiΓ the element number i in IndΓ. Given two
tuples of integers σ1 and σ2 of the same length, denote by
σ1 ∪ σ2 the tuple σ such that σa = max(σ1

a, σ
2
a).

Boldface letters (x, y, etc) denote tuples of real-
valued MILP variables representing a global state and
we call them state variables. Given a (K + 1)-
tuple σ of natural numbers, Cσ(x,y) denotes the set
of MILP constraints encoding the global transition y =
tr(x,protσ1

1 (x), . . . ,protσK

K (x),protσE

E (x)); this is ad-
missible since tr and protσa

a are PWL. For a literal l, V(l,x)
denotes the set of MILP constraints over the state variables x
that encode the set of global states at which l holds. For an
atomic proposition p, V(p,x) expresses the set V (p) and
V(¬p,x) expresses the set G ∖ V (p) as MILP constraints
on x. We rely on Cσ(x,y) as building blocks for encod-
ing the temporal evolution of the system and on V(l,x) for
encoding the states of the system at which we stop the ex-
ploration. The former is formalised in the lemma below that
follows from the fact that PWL functions can be represented
by the feasible regions of MILPs.

Lemma 2. Let Cσ(x,y) be a MILP program correspond-
ing to y = tr(x,protσ1

1 (x), . . . ,protσK

K (x),protσE

E (x)).



πS,l(x) = V(l,x)
πS,ϕ1∨ϕ2(x) = (δ = 1)⇒ πS,ϕ1(x) ∪ (δ = 0)⇒ πS,ϕ2(x)
πS,ϕ1∧ϕ2(x) = πS,ϕ1(x) ∪ πS,ϕ2(x)

πS,⟪Γ⟫Xϕ(x) =
∣IndΓ∣

⋃
i=1

(δi = 1)⇒
⎛
⎝

∣Ind
Γ
∣

⋃
j=1

CΣi
Γ
∪Σj

Γ

(x,yj)
⎞
⎠
∪
∣IndΓ∣

∑
i=1

δi = 1 ∪
∣Ind

Γ
∣

⋃
j=1

πS,ϕ(yj)

πS,JΓKXϕ(x) =
∣IndΓ∣

⋃
i=1

⎛
⎝

∣Ind
Γ
∣

⋃
j=1

(δij = 1)⇒ CΣi
Γ
∪Σj

Γ

(x,yi) ∪
∣Ind

Γ
∣

∑
j=1

δij = 1 ∪ πS,ϕ(yi)
⎞
⎠

where the binary variables
δ, δi, δij , the state variables
yj ,yi and all auxiliary vari-
ables in CΣi

Γ
∪Σj

Γ

are fresh

Figure 1: Monolithic encoding πS,ϕ for ϕ ∈ bATL∗.

Given two states q and q′ in MS , we have that q′ =
tr(q,protσ1

1 (q), . . . ,protσK

K (q),protσE

E (q)) iff there is an
assignment a to vars(Cσ(x,y)) such that s = a(x), s′ =
a(y), and a ⊧ Cσ(x,y).

We present the encodings for the verification problem.

Monolithic Encoding. We begin with an encoding which
befits a verification procedure where only a single sequence
of instructions is executed. Given a NIS S and a formula
ϕ ∈ bATL∗, we construct a MILP πS,ϕ, whose feasibility
corresponds to the satisfaction of ϕ by a state inMS .
Definition 10. The monolithic MILP encoding for a NIS S
and a specification ϕ ∈ bATL∗, denoted πS,ϕ, is built in-
ductively as the MILP πS,ϕ(x), for a tuple of fresh state
variables x, according to the rules in Figure 1.

The encoding of the literals in Figure 1 is V(l,x). The
disjunction and conjunction are encoded similarly to the cor-
responding cases for bCTLR≤ in (Akintunde et al. 2020a).
The encoding of the coalitional operators closely follows
the semantics of alternating existential and universal quan-
tification of strategies. Existential quantification is encoded
via disjunctions, while universal quantifications via conjunc-
tions. N -ary disjunction is captured by using N binary
variables δ1, . . . , δN such that their sum amounts to 1 (and
hence, only one can be true) and by employing indicator
constraints enforcing that when δi is true, then the corre-
sponding constraints must be satisfied. N -ary conjunction
is captured by enforcing that all corresponding constraints
are satisfied at the same time. The encoding of ⟪Γ⟫X re-
sults from generating ∣IndΓ∣ successor state variables yj to
ensure that for every strategy of the agents in Γ, ϕ is satisfied
at the corresponding successor. Symmetrically, the encoding
of JΓKX generates ∣IndΓ∣ successor state variables yi.

It can be shown that the encoding is as intended.
Lemma 3. Given a NIS S, a formula ϕ ∈ bATL∗, and a state
q inMS we have that q ⊧ ϕ iff there exists an assignment a
to vars(πS,ϕ(x)) such that a ⊧ πS,ϕ(x) and q = a(x).

Having defined the encoding, we can re-use the verifica-
tion procedure used for NANES and bCTLR< in (Akintunde
et al. 2020a). Reported in Algorithm 1 with mono set to
True, it attempts to falsify S ⊧ ϕ by searching for a state
q ∈ I such that q /⊧ ϕ (equivalently, q ⊧ ¬ϕ). To this purpose,
the formula passed to the monolithic encoding is ¬ϕ ∧ pI in
negation normal form, where the negation is pushed down
through to the atoms. Here, for simplicity, we assume that

Algorithm 1 The MILP verification procedure.
1: procedure VERIFY(S , ϕ, mono)
2: Input: NIS S = (Agt ,E, I, V ); formula ϕ ∈ bATL∗
3: Output: True/False
4: feasible ← False
5: ϕ′ ← NNF(¬ϕ ∧ pI)
6: if mono then
7: πS,ϕ′ ← MILP associated with S and ϕ′
8: feasible ←MILP SOLVER(πS,ϕ′)
9: else

10: ΠS,ϕ′ ← Set of MILPs associated with S and ϕ′
11: for π in ΠS,ϕ′ do
12: aux ←MILP SOLVER(π)
13: if aux is True then
14: feasible ← True
15: break
16: return ¬feasible

pI is an additional atomic proposition in AP used for la-
belling the states in I , and that V (pI) = I .

Compositional Encoding. To provide a more scalable
verification procedure, we follow (Akintunde et al. 2020a)
by devising an encoding which creates separate MILP pro-
grams for each disjunctive case encountered in the mono-
lithic encoding. Given a NIS S and a formula ϕ ∈ bATL∗,
we define a set ΠS,ϕ of MILP programs such that the satis-
faction of ϕ by a state q ∈MS corresponds to at least one
of the programs π ∈ ΠS,ϕ being feasible. Due to poten-
tially multiple programs whose feasibility can be checked
independently of each other, this encoding is particularly
amenable to parallelisation.

We denote by [C] the MILP program for the set C of
linear constraints. Given sets A = {[A1], . . . , [Ap]} and
B = {[B1], . . . , [Bq]} of MILP programs, we denote by
A ×B the product {[Ai ∪Bj] ∣ i = 1, . . . , p, j = 1, . . . , q}.
Definition 11. The compositional MILP encoding for a
NIS S and a specification ϕ ∈ bATL∗, denoted ΠS,ϕ, is built
inductively as the set of MILPs ΠS,ϕ(x), for a tuple of fresh
state variables x, according to the rules in Figure 2.

The compositional encoding operates on sets of MILPs.
The encoding of the literals is straightforward and gener-
ates a singleton set containing the program corresponding to
the literal. Disjunctions are dealt with by generating a dif-
ferent set of programs for each of the cases, and hence are



ΠS,l(x) = {[V(l,x)]},
ΠS,ϕ1∨ϕ2(x) = ΠS,ϕ1(x) ∪ΠS,ϕ2(x),
ΠS,ϕ1∧ϕ2(x) = ΠS,ϕ1(x) ×ΠS,ϕ2(x),

ΠS,⟪Γ⟫Xϕ(x) =
∣IndΓ∣

⋃
i=1

⎛
⎝

∣Ind
Γ
∣

⨉
j=1

{[CΣi
Γ
∪Σj

Γ

(x,yj)]} ×ΠS,ϕ(yj)
⎞
⎠
,

ΠS,JΓKXϕ(x) =
∣IndΓ∣

⨉
i=1

⎛
⎝

∣Ind
Γ
∣

⋃
j=1

{[CΣi
Γ
∪Σj

Γ

(x,yi)]}
⎞
⎠
×ΠS,ϕ(yi).

Figure 2: Compositional encoding ΠS,ϕ for ϕ ∈ bATL∗.

implemented via the union operation over sets of programs.
Conversely, conjunctions are encoded by taking all combi-
nations of programs for each of the cases; it is implemented
via the product operation over sets of programs. Therefore,
the patterns of the form ⋃i(δi = 1)⇒ Ci ∪ ∑i δi = 1 found
in the monolithic encoding are replaced by ⋃i{[Ci]}, while
“∪” found in the monolithic encoding is replaced by “×”.

We can show this encoding is correct.

Lemma 4. Given a NIS S , a formula ϕ ∈ bATL∗, and a state
q in MS , we have that q ⊧ ϕ iff there is a MILP π(x) ∈
ΠS,ϕ(x) and an assignment a to vars(π(x)) such that q =
a(x) and a ⊧ π(x).

The verification procedure of Algorithm 1 can also use
the compositional encoding above, when mono is False.
Notably, checking feasibility of the generated programs
(lines 11–15) can be done sequentially, one after another,
or in parallel across multiple processors. The theorem be-
low states the correctness of the verification procedure for
both the monolithic and compositional encodings.

Theorem 1. Given a NIS S and a formula ϕ ∈ bATL∗, Al-
gorithm 1 returns False iff S /⊧ ϕ.

5 Complexity of the Verification Problem
In this section we analyse the computational complexity
of the verification problem against bATL∗. We identify
the complexity of the verification problem to lie between
PSPACE and coNEXPTIME. The lower bound follows from
the lower bound for the verification problem of a neural-
symbolic agent operating in non-deterministic environment
systems (NANES) against a bounded fragment of CTL (Ak-
intunde et al. 2020a). The upper bound follows from the
monolithic version of the verification procedure devised in
Section 4.

We start with the PSPACE lower bound. As is known, the
CTL modalities EX and AX can be expressed in ATL as
⟪Agt ∪{E}⟫X and JAgt ∪{E}KX , respectively. Moreover,
we can model a neural-symbolic agent operating in a non-
deterministic environment as a NIS where Agt is a singleton.
Since the validity problem of QBF can be reduced to the
verification problem of NANES against a bounded fragment
of CTL, we obtain the following result.

Theorem 2. Verifying NIS against bATL∗ is PSPACE-hard.

Next, we analyse the upper bound. Recall that the mono-
lithic verification procedure generates one MILP and then
checks its (in)feasibility. The feasibility check can be done
in non-deterministic polynomial time in the size of the
mixed-integer linear program; guess an assignment to the

binary variables and then check that the induced linear pro-
gram is feasible in polynomial time (Papadimitriou and Stei-
glitz 1982). It remains to estimate the size of the MILP ob-
tained by the monolithic encoding.

First we note that the MILP encodings of PWL FFNNs
and of PWL functions are of linear size. We analyse now
the encoding of the ATL-specific operators. We have that the
size of πS,⟪Γ⟫Xϕ is O(∣IndΓ∣ ⋅ ∣IndΓ∣ ⋅ ∣S ∣ + ∣IndΓ∣ ⋅ ∣πS,ϕ∣),
while of πS,JΓKXϕ is O(∣IndΓ∣ ⋅ ∣IndΓ∣ ⋅ ∣S ∣+ ∣IndΓ∣ ⋅ ∣πS,ϕ∣),
where ∣S ∣ denotes the number of bits required to represent S.
Observe that ∣IndΓ∣ is bound by the total number of succes-
sors of a state ∣IndAgt∪{E}∣ = b1 ⋅ ⋯ ⋅ bK ⋅ bE , which in turn
is bound by bK+1, where b = max(b1, . . . , bK , bE). This
gives us the best and the worst case sizes of the monolithic
encodings: for ϕ = ⟪Agt ∪ {E}⟫Xd¬p, the size of πS,ϕ is
O (bK+1(d ⋅ ∣S ∣ + ∣V (p)∣)) and for ϕ = JAgt ∪ {E}KXd¬p,
the size of πS,ϕ is O (b(K+1)⋅d(∣S ∣ + ∣V (p)∣)). When all
ba = 1 except for one, the program πS,ϕ is linearly large in
∣S ∣ (since we can replace bK+1 by b), otherwise assuming
that ba > 1 for a non-constant number of agents, it is expo-
nentially large in ∣S ∣. Moreover, unless ϕ has only occur-
rences of temporal modalities of the form ⟪Agt ∪ {E}⟫Xd,
πS,ϕ is exponentially large in the temporal depth of ϕ.

Given that the verification problem for S and ϕ does not
hold if and only if the MILP πS,¬ϕ∧pI is feasible, we obtain
the following upper bound.

Theorem 3. Verifying NIS against bATL∗ is in
coNEXPTIME.

We observe that in the worst case the verification problem
for NIS against bATL∗ is not harder than that of NANES
against bounded CTL. However, for the latter systems ver-
ification against properties of the form AXdp is coNP-
complete, while for a NIS composed of a non-fixed num-
ber of agents the monolithic verification procedure does not
provide a coNP upper bound for properties of the form
JAgt ∪ {E}KXdp. It remains an open question whether,
when looking for initial states in I violating the specifica-
tion, it is sufficient to consider states of polynomial size. The
positive answer to this question would mean that the verifi-
cation problem for NIS against bATL∗ is PSPACE-complete
and against bounded safety properties is coNP-complete.

6 Implementation and Evaluation
In this section we present an implementation of the verifi-
cation procedures described in Section 4 in a toolkit called
VENMAS (Akintunde et al. 2020b) which we evaluated on
an air-traffic collision avoidance system.



VENMAS takes as input a NIS S and a bATL∗ specifi-
cation ϕ. The observation function for each agent is given
as linear combination of FFNNs. The local protocol and
transition functions for each agent are given as PWL func-
tions. The set I of initial states is given in the form of a
hyper-rectangle [l1, u1]×⋯× [lµ, uµ]. The user can specify
a parameter determining whether the monolithic or compo-
sitional procedure with parallel or sequential execution is to
be used. The toolkit returns whether or not the specification
ϕ holds on S . We used Python to implement the tool and
relied on Gurobi ver. 9.0 (Gu, Rothberg, and Bixby 2020) as
a back-end to resolve the feasibility of the generated MILPs.

Two-Agent Aircraft Collision Avoidance Scenario. We
validated the toolkit by using a two-agent extension of
the scenario introduced in (Julian and Kochenderfer 2019;
Julian et al. 2019) and studied in (Akintunde et al. 2020a),
VerticalCAS. It was originally a single-agent system com-
posed of ownship and intruder aircraft where the ownship
pilot’s aim was to respond to a neural network-controlled
collision avoidance system called VerticalCAS. Each second
the system issues an advisory that together with the current
climbrate of the ownship determines a range of accelerations
from which the ownship pilot can non-deterministically
choose to apply, in order to avoid a near mid-air collision
(NMAC), a region where the aircraft are separated by less
than 100 ft vertically and 500 ft horizontally. The intruder is
assumed to follow a horizontal trajectory throughout.

Instead we here consider both aircraft to be controlled by
their own independent VerticalCAS systems, removing the
assumption that the intruder follows a horizontal trajectory;
the intruder can now climb and descend independently to
the ownship. This makes for a more complex scenario with
a higher degree of branching in the resulting temporal evo-
lution of the system. For simplicity we hereafter refer to this
novel two-agent extension of our construction as VCAS[2].

We describe the global states of the scenario using
the set of tuples G = (h, ḣown, ḣint, τ,adown,ad int) ∈
[−3000,3000] × [−2500,2500] × [−2500,2500] × [0,40] ×
[9] × [9], where h (ft) is the intruder altitude relative to the
ownship, ḣown (ft/sec) is the ownship’s vertical climbrate,
ḣint (ft/sec) is the intruder’s vertical climbrate, τ (secs) is the
time to loss of horizontal separation of the aircraft, adown is
the previous advisory issued to the ownship, and ad int is the
previous advisory issued to the intruder.

Each VerticalCAS system is composed of nine ReLU-
FFNNs F = {(fi ∶ R4 → R9) ∶ i ∈ [9]}, one for each
previously-issued advisory with four inputs, seven hidden
layers of 45 nodes and nine outputs representing the score
of each possible advisory.

Encoding VCAS[2] as a Neural Interpreted System.
Here we model VCAS[2] as a NIS. First, the environ-
ment states `E are tuples (h, ḣown, ḣint, τ), hence LE =
[−3000,3000] × [−2500,2500] × [−2500,2500] × [0,40].
There are two agents a ∈ {own, int} defined almost identi-
cally. Formally their components are as follows:
• local states `a are tuples (ḣa,ada), where the current

climbrate ḣa constitutes the private state and the previ-

ously issued advisory ada corresponds to the percept, so
La = [−2500,2500] × [9],

• actions correspond to accelerations; we set Acta =
{0,±3.0,±7.33,±9.33,±9.7,±11.7},

• the protocol function returns the available accelerations,
prota(`a) = accs(compliant(`a),ada),

• for accelerations ḧa ∈ Acta, we define the local transition
tra((ḣa,ada), ḧa, ⋅, ⋅) = ḣa + ḧa∆τ = ḣ′a,

• the observation function perceives the environment by
computing the advisory according to VerticalCAS and in-
formation stored in the intermediate agent’s local state
`′a = (ḣ′a,ada) and updated environment’s local state `′E ,
so obsa(`′a, `′E) = ad ′a = arg max(applya(fada

, `′E)),
where compliant(`a) is True iff ḣa is compliant with ada;
accs(β,ada) ⊆ 2Acta is a set of accelerations such that
accs(True, ⋅) = {0} and accs(False,ada) is the set of
permitted accelerations for the advisory ada; ∆τ = 1;
applya∶F × LE → R9 computes the output of a neural net-
work on an environment state, such that applyown(f, `E) =
f(h, ḣown, ḣint, τ) and applyint(f, `E) = f(−h, ḣint, ḣown, τ);
arg max∶R9 → [9] gives the index of the largest component.

Finally, the environment has one dummy action ε, giving
αE = {ε} and protocol function protE(`E) = {ε} for all
`E ∈ LE , and the transition function is defined as

trE

⎛
⎜⎜⎜
⎝

⎡⎢⎢⎢⎢⎢⎢⎢⎣

h
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ḣint
τ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

, ḧown, ḧint, ε

⎞
⎟⎟⎟
⎠
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ḣown + ḧown∆τ

ḣint + ḧint∆τ
τ −∆τ

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where h′ = h −∆τ(ḣown − ḣint) − 0.5∆τ2(ḧown − ḧint).
Given Agt = {own, int} and atomic propositions AP =

{NMAC, safe}, define the valuation function V ∶ AP → 2G

as V (NMAC) = {q ∈ G ∣ ∣h∣ ≤ 100} and V (safe) = {q ∈ G ∣
h > 100 or h < −100} for global states q = (h, ⋅, ⋅, τ, ⋅, ⋅) with
τ never close to zero.

We take the set of initial states I = [hI − 2, hI +
2] × {−5.0} × {5.0} × {25.0} × {1} × {1} , where hI ∈
{−30,10,50,90}ft. These represent potentially dangerous
encounters with the aircraft inside the NMAC region with
a descending ownship and an ascending intruder. When
hI > 0, the ownship is below the intruder, and when hI < 0,
the ownship is above the intruder. We fix an action choice
factor of 2.

We can now construct a Neural Interpreted System for
VCAS[2] for our two agents a ∈ Agt as defined above.

Experimental Results. We used VENMAS to evalu-
ate VCAS[2] against the two specifications: ϕk1 =
⟪own⟫Xk safe, expressing the fact that the ownship has a
strategy for the system to be in a safe configuration after k
steps, and ϕk2 = JintKXk safe, expressing the fact that the in-
truder has no strategy to avoid the system to enter a safe con-
figuration after k steps (note that ϕk1 implies ϕk2 but not the
other way around). We evaluated the formulas with the set
of initial states I defined as above. All results were obtained
on a machine with an Intel Core i7-7700K CPU with 16GB
RAM, running a 64-bit version of Ubuntu 18.04. We denote
by MONOLITHIC the results for the monolithic procedure



COMP-PAR COMP-SEQ MONOLITHIC

hI
ϕ1

1

ϕ2
1

ϕ3
1

ϕ4
1

ϕ5
1

ϕ1
2

ϕ2
2

ϕ3
2

ϕ4
2

ϕ5
2

−30 10 50 90
0.33 0.39 0.34 0.48
1.67 4.07 13.63 13.88

104.29 – – –
– – – –
– – – –

0.35 0.37 0.35 0.37
1.23 3.07 2.21 2.47

55.20 564.85 69.38 100.93
– – – –
– – – –

−30 10 50 90
0.32 0.34 0.32 0.97
1.29 3.16 41.82 42.64

59.48 – – –
– – – –
– – – –

0.32 0.37 0.32 0.57
1.17 2.99 5.66 5.76

22.14 1823.65 213.81 309.56
– – – –
– – – –

−30 10 50 90
0.04 0.08 0.05 0.04
0.53 4.17 0.16 0.16

303.35 994.45 0.67 0.85
– – 3.20 3.40
– – 9.63 9.22

0.04 0.08 0.05 0.04
0.52 4.25 0.16 0.16

906.68 933.99 0.66 0.84
– – 3.21 3.38
– – 9.51 9.23

Table 1: Verification times for VCAS[2] against properties ϕk
1 and ϕk

2 for various k and hI . Grey cells indicate a False result, otherwise a
True result was obtained. Dashes indicate a one hour timeout.

and by COMP-PAR and COMP-SEQ those for the composi-
tional procedure with parallel and sequential execution re-
spectively.

In Table 1, we report the performance of VENMAS in
terms of the amount of time (in seconds) to determine the
truth of the specifications ϕk1 and ϕk2 for k ∈ {1, ..,5} with
initial relative positions hI ∈ {−30,10,50,90} for each ex-
ecution mode. In all cases we used a timeout of one hour.
Note that the choice of hI has an impact on the truth of the
various specifications.

Regarding the performance of the different encodings, we
find that the monolithic encoding is more efficient than the
compositional encoding for hI = 50 and hI = 90. We be-
lieve this to be because checking the infeasibility of a sin-
gle MILP with tight bounds can be determined faster than
checking several MILPs. For hI = −30 and hI = 10 the
compositional encodings were more efficient. We believe
this to be because if a single feasible MILP (from the set
of generated MILP instances) is found, then a result can be
returned immediately. It remains to be explored which en-
coding is preferable in general, as the difficulty of solving
a MILP is hard to determine in advance. This would open
the way to the development of heuristics to guide the choice
of the encoding more likely to efficiently solve the problem
under analysis.

We are unable to present a comparison with other tools be-
cause we are not aware of other tools supporting systems of
multiple neural-symbolic agents and strategic properties as
we do here. Similarly to (Akintunde et al. 2020a), real val-
ues in VENMAS are represented by double-precision floating
point numbers and we use the default constraint-satisfaction
tolerance level of 10−6 in Gurobi.

7 Conclusions
As known, methods for strategic reasoning can be highly
advantageous to the development and deployment of MAS.
While the literature on the subject over the past twenty years
is very considerable, all approaches have so far been limited
to agent-based systems whose components are traditionally
modelled via various forms of transition systems. But, as

we discussed in the introduction, a new generation of MAS
is emerging in applications. These are systems in which ma-
chine learning elements are used for perception tasks and
combined with traditional logic-based elements for deci-
sion making and control. The result is a loosely-coupled,
neural-symbolic architecture where both machine learning
and logic-based elements contribute to the overall agent be-
haviour. To analyse the resulting behaviour of these systems
new agent models and methods need to be devised.

In this paper we put forward the concept of neural inter-
preted systems to capture agents implementing the above ar-
chitecture. The proposed architecture closely mirrors sev-
eral forthcoming applications in which vision is realised via
machine learning systems whereas decision making is exe-
cuted via control logic, e.g., platoons of autonomous vehi-
cles. We have formulated the verification problem against a
language representing strategic interplay. Differently from
traditional approaches in the literature, we have here opted
for a bounded version of ATL with the aim of looking for
shallow bugs. This is also in line with considerable recent
work on LTL and other languages on finite traces (De Gia-
como and Vardi 2016). We have solved the resulting verifi-
cation problem in terms of MILP and presented an encoding
which, as we showed, is amenable to parallelisation.

We reported on a prototype that we developed implement-
ing both encodings and evaluated against a sophisticated
model from the avionics literature. The evaluation demon-
strated the correctness of the approach and that small sys-
tems can feasibly be verified. It also highlighted, however,
that a challenge of the present method lies in its scalability,
as the MILPs become more difficult to solve as the number
of non-linearities encountered in the encodings grow rapidly
with the number of steps considered. This problem is exac-
erbated by the highly branching nature of the models often
considered in a strategic setting.

Future work will focus on conquering the scalability of
the method, extending the specification language and sup-
porting richer symbolic reasoning abilities in the agents.
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