
Interest
G
roup

in
P
ure

and
A
pplied

L
ogics

Volume 10 Number 2 March 2002

LOGIC JOURNAL
of
the

Editor-in-Chief:

DOV M. GABBAY

Executive Editors:

RUY de QUEIROZ

and

HANS J�URGEN OHLBACH

Editorial Board:

Wilfrid Hodges

Hans Kamp

Robert Kowalski

Grigori Mints

Ewa Orlowska

Amir Pnueli

Vaughan Pratt

Saharon Shelah

Johan van Benthem

OXFORD

UNIVERSITY

PRESS

ISSN 1367-0751

Subscription Information
Volume 10, 2002 (bimonthly) Full: Europe pounds sterling 275; Rest of World US$
450. Personal: pounds sterling 138 (US$ 225). Please note that personal rates apply
only when copies are sent to a private address and payment is made by a personal
cheque or credit card.

Order Information

Subscriptions can be accepted for complete volumes only. Prices include air-speeded
delivery to Australia, Canada, India, Japan, New Zealand, and the USA. Delivery
elsewhere is by surface post. Payment is required with all orders and may be made
in the following ways:

Cheque (made payable to Oxford University Press)
National Girobank (account 500 1056)
Credit card (Access, Visa, American Express)
UNESCO Coupons
Bankers: Barclays Bank plc, PO Box 333, Oxford, UK. Code 20-65-18, Account
00715654.

Requests for sample copies, subscription enquiries, orders and changes of address
should be sent to the Journals Subscriptions Department, Oxford University Press,
Great Clarendon Street, Oxford OX2 6DP, UK. Tel: +44 (0) 1865 267907. Fax: +44
(0) 1865 267485. Email: jnl.orders@oup.co.uk

Advertisements

Advertising enquiries should be addressed to Peter Carpenter, PRC Associates, The
Annexe, Fitznells Manor, Chessington Road, Ewell Village, Surrey KT17 1TF, UK.
Tel: +44 (0) 181 786 7376. Fax: +44 (0) 181 786 7262.

Copyright

c©Oxford University Press 2002. All rights reserved: no part of this publication
may be reproduced, stored in a retrieval system, or transmitted in any form or by
any means, electronic, mechanical, photocopying, recording, or otherwise, without
either the prior written permission of the Publishers, or a licence permitting restricted
copying issued in the UK by the Copyright Licensing Agency Ltd, 90 Tottenham
Court Road, London W1P 9HE, or in the USA by the Copyright Clearance Center,
222 Rosewood Drive, Danvers, MA 01923.
Logic Journal of the IGPL (ISSN 1367-0751) is published bimonthly in January,
March, May, July, September and November by Oxford University Press, Oxford,
UK. Annual subscription price is US$ 450.00. Logic Journal of the IGPL is dis-
tributed by M.A.I.L. America, 2323 Randolph Avenue, Avenel, NJ 07001. Periodical
postage paid at Rahway, New Jersey, USA and at additional entry points.
US Postmasters: Send address changes to Logic Journal of the IGPL, c/o Mercury
International, 365 Blair Road, Avenel, NJ 07001, USA.

Back Issues

The current plus two back volumes are available from Oxford University Press. Previ-
ous volumes can be obtained from the Periodicals Service Company, 11 Main Street,
Germantown, NY 12526 USA. Tel: +1 (518) 537 4700, Fax: +1 (518) 537 5899.

http://www.jigpal.oupjournals.org/
http://www.oup.co.uk/jnls/igpl

Logic Journal of the IGPL
Volume 10, Number 2, March 2002

Contents

105On the Descriptive Complexity of a Simplified Game of Hex
A. Arratia

123Labelled Natural Deduction for Conditional Logics of
Normality
K. Broda, D. M. Gabbay, L. C. Lamb and A. Russo

165The Unrestricted Combination of Temporal Logic Systems
M. Finger and M. A. Weiss

191A Fibring Semantics for the Semantic-Morphological Interface
in Natural Language
R. Naumann

Please visit the journal’s World Wide Web site at
http://www.jigpal.oupjournals.org

http://www.jigpal.oupjournals.org/

Logic Journal of the Interest Group in
Pure and Applied Logics

Editor-in-Chief:

Dov Gabbay

Department of Computer Science
King’s College
Strand
London WC2R 2LS, UK
dg@dcs.kcl.ac.uk
Tel +44 20 7848 2930
Fax +44 20 7240 1071

Executive Editors:

Ruy de Queiroz
Departamento de Informática
UFPE em Recife
Caixa Postal 7851
Recife, PE 50732-970, Brazil
ruy@di.ufpe.br

Hans Jürgen Ohlbach
Inst. für Informatik
Ludwig-Maximilians-Universität
Öttingenstr. 67
D-80538 München
ohlbach@informatik.uni-
muenchen.de
Tel +49 89 2180 9300
Fax +49 89 2180 9311

Editorial Board:

Wilfrid Hodges, QMW, UK
Hans Kamp, Stuttgart, Germany
Robert Kowalski, ICSTM, UK
Grigori Mints, Stanford, USA
Ewa Orlowska, Warsaw, Poland
Amir Pnueli, Weizmann, Israel
Vaughan Pratt, Stanford, USA
Saharon Shelah, Jerusalem
Johan van Benthem,

ILLC, Amsterdam

Scope of the Journal
The Journal is the official publication of the International In-
terest Group in Pure and Applied Logics (IGPL), which is
sponsored by The European Foundation for Logic, Language
and Information (FoLLI), and currently has a membership of
over a thousand researchers in various aspects of logic (sym-
bolic, computational, mathematical, philosophical, etc.) from
all over the world.

The Journal is published in hardcopy and in electronic form
six times per year. Publication is fully electronic: submission,
refereeing, revising, typesetting, checking proofs, and publish-
ing, all is done via electronic mailing and electronic publishing.

Papers are invited in all areas of pure and applied logic, in-
cluding: pure logical systems, proof theory, model theory, re-
cursion theory, type theory, nonclassical logics, nonmonotonic
logic, numerical and uncertainty reasoning, logic and AI, foun-
dations of logic programming, logic and computation, logic
and language, and logic engineering.

The Journal is an attempt to solve a problem in the logic (in
particular, IGPL) community:

◦ Long delays and large backlogs in publication of papers in
current journals.

◦ Very tight time and page number limits on submission.

Papers in the final form should be in LATEX. The review pro-
cess is quick, and is made mainly by other IGPL members.

Submissions
Submissions are made by sending a submission letter to the
e-mail address: jigpl@dcs.kcl.ac.uk, giving the title and the
abstract of the paper, and informing: of how to obtain the file
electronically or, by sending 5 (five) hardcopies of the paper
to the Editor-in-Chief.

URL: http://www.jigpal.oupjournals.org

http://www.jigpal.oupjournals.org/

On the Descriptive Complexity of a
Simplified Game of Hex

ARGIMIRO ARRATIA, Departamento de Matemáticas, Universidad
Simón Boĺıvar, Apartado 89000, Caracas 1080-A, Venezuela. E-mail:
arratia@ma.usb.ve

Abstract

The game Whex is here defined, which is similar to Generalized Hex but the players are restricted
to colour vertices adjacent to the vertex last coloured by one of the players. It is shown that the
problem of deciding existence of winning strategies for one of the players in this game is complete
for PSPACE, via quantifier free projections, and that the extension of first order logic with the
corresponding generalized quantifier captures PSPACE and verifies a normal form. This problem
is used to show that the problem of finding a proof in a proof system, like propositional resolution,
in which the user is allowed to introduce auxiliary statements in order to help the system reach the
theorem that he had set it to prove, is also complete for PSPACE via quantifier free projections.
Also, it is established the complexity of the game Whex when restricted to graphs of outdegree at
most 3, and, as a generalized quantifier, its expressive capabilities in the absence of ordering relation.

Keywords: Descriptive complexity; generalized quantifier; quantifier free projection; games; Genera-

lized Hex; polynomial space.

1 Introduction

In Descriptive Complexity we are concerned with logical characterizations of the usual
Turing machine based notion of a computational complexity class. Among the advan-
tages of the logical approach to Computational Complexity we have: we can establish
the complexity of a problem by syntactic measures, like number of quantifiers, varia-
bles and other symbols needed for describing the problem, instead of, say, designing
an algorithm for it; we can define a notion of reduction among problems (the first or-
der reduction) which is weaker than the traditional log–space; and we can sometimes
discern the nature of problems (on logical grounds) that within the traditional Turing
machine framework are equivalent (a fact which, often, defies our intuition).

There are various ways of constructing a logic that define exactly the properties that
lie within a certain computational complexity class. The method used in this paper
consists of extending the expressive power of first order logic with a uniform sequence
of generalized quantifiers, corresponding to a problem which is a representative of the
complexity class, in the sense of being complete for the class via logspace reducibility.
It is also necessary to include some built–in ordering relation, like that of successor
on the natural numbers, plus two constants that stand for the first and last element
in the ordering. This is the same as saying that our logical interpretations of our
complexity classes hold only over ordered finite structures with at least two elements,
which seems to be a necessary restriction, at least for logics expressing polynomial
time properties and of lesser complexity. The reader can find in the books [5] and [10]
further details on generalized quantifiers, and an extensive discussion on the problem

105L. J. of the IGPL, Vol. 10 No. 2, pp. 105–122 2002 c©Oxford University Press

106 On the Descriptive Complexity of a Simplified Game of Hex

of the ordering in the logical characterizations of computational complexity classes.
The computational problem presented in this paper is a variation of the game of

Generalized Hex (see [7]), that I have named Whex for reasons to be explained later,
which illustrates the facts mentioned in the first paragraph of this introduction. In
particular this new game seems easier to play in practice but, as it will be shown,
enjoys similar complexity features as Hex in theory.

As an application, the new game problem Whex is used to show that the problem
of finding a proof in a (mechanical) proof system with only one rule of inference like,
say, propositional resolution, and in which the user is allowed to introduce auxiliary
statements in order to help the system reach the theorem that we had set it to prove, is
complete for the class of problems that have polynomially space bounded algorithmic
solutions, via a very weak kind of reductions, namely quantifier free projections. On
the way, here I also exhibit some tools for proving problems complete via reductions
which are definable in first order logic, and illustrate their use with the particular
game problem in consideration. This paper ends exhibiting the complexity of Whex,
both computational and logical, when the board is restricted to be directed graphs of
outdegree ≤ 3, and further, it is pointed out the expressive capabilities of Whex, as
a generalized quantifier, in the absence of order.

2 Background on Descriptive Complexity

Some needed notions from Descriptive Complexity are reviewed in this section. More
details can be found in the books [5], [10]. A vocabulary τ = {R1, . . . , Rr, C1, . . . , Cs}
is a finite set of relation and constant symbols, where each relation Ri has arity
ni. A finite τ–structure A = 〈A,RA1 , . . . , RAr , CA1 , . . . , CAs 〉 consists of a universe
A = {0, . . . , n − 1}, relations RAi ⊆ Ani , and constants CAj (1 ≤ i ≤ r, 1 ≤ j ≤ s).
STRUCT(τ) denotes the set of all finite τ–structures. A problem over vocabulary τ
is a subset of STRUCT(τ) closed under isomorphisms.

A logic L consists of: 1) all sets L(τ) of formulas over each finite vocabulary τ ,
build up from the symbols in τ , variables, boolean operations ∧, ∨, ¬, and quantifiers
∀, ∃, following certain syntactic rules, together with a satisfaction relation |= which
establishes the meaning of formulas in (finite) models (possibly extended with inter-
pretations for free variables). In particular FO denotes First Order logic, and FOs

is First Order logic with built–in symbols suc(·, ·), 0 and max, which are always in-
terpreted on finite structures as the successor relation over the naturals, the first and
the last element. Hence, a sentence in FOs describes a property of ordered structures.

If L is a logic and φ a sentence in L(τ), for some vocabulary τ , then MOD(φ) :=
{A ∈ STRUCT(τ) : A |= φ} denotes the set of finite models that satisfy φ.

Problems as traditionally considered in Computational Complexity are sets of
strings, usually of 0’s and 1’s, so that they can be inputted into Turing machines.
To transform finite structures into strings of {0, 1}∗, and viceversa, some forms of
encodings are established, and, furthermore, these encodings can be made very effi-
ciently (e.g., first order definable, see [10]). Hence, if τ is some vocabulary and A ∈
STRUCT(τ), eτ (A) denotes an encoding ofA as a string over the set of symbols {0, 1},
which is first order definable. If Ω is some problem over τ (in the sense of being a set of
finite τ -structures closed under isomorphism), then the set of strings over {0, 1} corres-
ponding to encodings of elements of Ω is denoted eτ (Ω) := {eτ(A) : A ∈ Ω} ⊆ {0, 1}∗.

2. BACKGROUND ON DESCRIPTIVE COMPLEXITY 107

Thus, given a complexity class C, defined in terms of the sets of strings over {0, 1}
accepted by some kind of Turing machines, when it is said that C is captured by a
logic L it is meant formally that

1. for each set of strings S ∈ C, there is some vocabulary τ and a sentence φ in L(τ),
such that S = eτ (MOD(φ)); and

2. for each vocabulary τ and each sentence φ in L(τ), eτ (MOD(φ)) ∈ C.
Whenever class C is captured by logic L (or L captures C), it will be denoted C = L.
Moreover, C ≤ L denotes that item 1. above is satisfied, and L ≤ C denotes that item
2. is satisfied. So, C = L if and only if C ≤ L and L ≤ C. If L1 and L2 are two logics
then L1 = L2 means that, for all vocabulary τ , every L1(τ)-sentence φ1 is equivalent
to an L2(τ)-sentence φ2 and viceversa. (Here, equivalence of sentences φ1 and φ2 has
the following intended meaning: for every finite τ -structure A, A |= φ1 if and only if
A |= φ2, this is commonly denoted as |= φ1 ←→ φ2.)

An important notion in Descriptive Complexity is that of a logical reduction.

Definition 2.1 Let L be some logic, let τ be a vocabulary and σ = {R1, . . . , Rr, C1, . . . ,
Cs} be another vocabulary, where each Ri is a relation symbol of arity ni and each
Cj is a constant symbol. A set Σ of L(τ)–formulas of the form

Σ := {φ1(x1), . . . , φr(xr), ψ1(y1), . . . , ψs(ys)},

where xi and yj are vectors of distinct variables with |xi| = kni and |yj | = k, for
some positive integer k, 1 ≤ i ≤ r and 1 ≤ j ≤ s, describes a (τ, σ)–translation of
arity k, which is a map sending a τ–structure A into a σ–structure AΣ, such that

• the universe of AΣ is the set Ak of k-tuples of A;
• for i = 1, . . . , r, the relation Ri of σ has the interpretation:

RAΣ
i := {a ∈ Akni : 〈A, a〉 |= φi(xi)}

• for j = 1, . . . , s, the constant Cj of σ has the interpretation:

CAΣ
j := uj

where uj is the unique element in Ak that satisfies ψj .

A problem Ω1 ⊆ STRUCT(τ) L-reduces to Ω2 ⊆ STRUCT(σ) (denoted Ω1 ≤L Ω2)
if there exists a k > 0 and a set Σ of L(τ)–formulas which defines a (τ, σ)–translation
of arity k so that, for all A ∈ STRUCT(τ),

A ∈ Ω1 if and only if AΣ ∈ Ω2.

In particular, if L in the above definition is FO, then we have a first order reduction.
If, further, all the formulas in Σ are projections, then we have a reduction which is
a first order projection (fop). (A first order formula ψ, over some vocabulary τ , is a
projection if it has the form

α0 ∨ (α1 ∧ β1) ∨ . . . ∨ (αm ∧ βm)

where none of the αi contains a symbol from τ ; for i 6= j, αi and αj are mutually
exclusive; and each βi is an atomic or negated atomic formula built up from symbols
in τ only.)

108 On the Descriptive Complexity of a Simplified Game of Hex

3 Capturing complexity classes with generalized quantifiers

We can turn a problem into a generalized quantifier and increase the expressive power
of first order logic as follows. Let σ be as in the Definition 2.1 and let Ω be a problem
over σ. Then the extension of FO with the generalized quantifier Ω, which will be
denoted Ω∗[FO], is the smallest set L of formulas such that: L contains all first order
formulas, L is closed under all logical connectives and first order quantifiers, and for
any finite vocabulary τ , if Σ := {φ1, . . . , φr, ψ1, . . . , ψs} is a set of τ–formulas in L
that describes a (τ, σ)–translation of arity k, mapping τ–structure A into σ–structure
AΣ, then

Φ := Ω[x1, . . . , xr, y1, . . . , ys : φ1(x1), . . . , φr(xr), ψ1(y1), . . . , ψs(ys)]

is a new sentence in L, which is interpreted as follows. Given a τ–structure A, A |= Φ
if, and only if, the (τ, σ)–translation of A described by Σ, namely, the σ–structure
AΣ, is such that AΣ ∈ Ω.

Remark 3.1 The formula

Ω[x1, . . . , xr, y1, . . . , ys : φ1(x1), . . . , φr(xr), y1 = C1, . . . , ys = Cs]

is often abbreviated as

Ω[x1, . . . , xr : φ1(x1), . . . , φr(xr)](C1, . . . , Cs).

Some interesting fragments of Ω∗[FO] are:

Ωn[FO] for a positive integer n, is such that at most n nested applications of Ω can
appear in a formula.

posΩ∗[FO] is the sublogic where no application of Ω is within the scope of a ¬ (i.e.,
Ω has only positive occurrences).

posΩn[FO] for a positive integer n is the language with all occurrences of Ω positive
and at most n nested

Ω∗[FOs] is the fragment of Ω∗[FO] with the built–in successor and built–in constants
0 and max. In a similar way are defined the fragments Ωn[FOs], posΩ∗[FOs] and
posΩn[FOs].

Example 3.2 Consider the vocabulary τ2 = {E,C,D}, where E is a binary relation
symbol, C and D are constant symbols, and consider the following two problems over
τ2:

TC := {A ∈ STRUCT(τ2) : A is a directed graph
and there is a path from vertex CA to vertex DA}.

DTC := {A ∈ STRUCT(τ2) : A is a directed graph and there is a
path from CA to DA of all vertices with outdegree 1}.

(Recall that the outdegree of a vertex v in a directed graph is the number of edges
going out of v.)

3. CAPTURING COMPLEXITY CLASSES 109

As it was shown by Neil Immerman in [9], the positive fragment of the exten-
sions of FOs with generalized quantifiers corresponding to each one of these problems
captures, respectively, the classes nondeterministic logspace (NL) and logspace (L).
Specifically:

posTC∗[FOs] = NL and posDTC∗[FOs] = DTC∗[FOs] = L

In general, if L is any regular logic (as defined in [4]), define the extension of L
with the generalized quantifier Ω in a similar manner as for FO, and obtain the logic
Ω∗[L] and similar fragments. The next proposition is immediate from the definitions,
and it just makes explicit the fact that L–reducibility among problems is equivalent
to definability in the extension of L with the generalized quantifier corresponding to
the larger problem.

Proposition 3.3 Let L be a regular logic, σ and τ be two vocabularies, with τ = {R1,
. . . , Rr, C1, . . . , Cc}. Let Ω1 be a σ–problem and Ω2 be a τ–problem. Then Ω1 ≤L Ω2

via a (σ, τ)–translation of arity k if, and only if, Ω1 = MOD(Φ) for some sentence
Φ ∈ posΩ1

2[L(σ)] of the form Ω2[x1, . . . , xr, y1, . . . , yc : φ1, . . . , φr, ψ1, . . . , ψc], where
{φ1, . . . , φr , ψ1, . . . , ψc} ⊂ L(σ) constitute a (σ, τ)–translation of arity k.

The following important result that links the usual Turing machine based reducibi-
lity and the logical reducibility has been proved in [12] (cf. [5, Proposition 10.3.22]).

Proposition 3.4 Let Ω1 ⊆ STRUCT(σ) and Ω2 ⊆ STRUCT(τ) be problems. Then
eσ(Ω1) is logspace reducible to eτ (Ω2) if, and only if, Ω1 ≤DTC1[FOs] Ω2.

As a consequence of the previous propositions and definitions we have the following
sandwich theorem, which is a key tool for “almost capturing” complexity classes by
extensions of FOs with generalized quantifiers. (This result is a generalization of
Corollary 3.1 of [12], and it is not difficult to prove.)

Theorem 3.5 Let C be a complexity class above L and closed under logspace re-
ducibility. Let Ω ⊆ STRUCT(τ) be a problem such that DTC1[FOs] ≤ posΩ∗[FOs],
and eτ (Ω) is complete in C via logspace reducibility. Then,

posΩ1[FOs] ≤ C ≤ posΩ∗[FOs]

The necessary next step for having an exact description of C by the logic posΩ∗[FOs]
is to show that it has a first order normal form; that is, every sentence in posΩ∗[FOs]
is equivalent to one application of the quantifier Ω to a first order sentence ψ. In
symbols, that posΩ∗[FOs] = posΩ1[FOs] We sometimes get something much better;
namely, that the first order sentence ψ is a quantifier free projection (qfp), and so it
is said that the logic has a quantifier free projective normal form.

When there is a normal form then the corresponding problem Ω is complete for the
class via either first order or qfp reductions, according to the nature of the normal
form. Either of these reducibilities is computationally much weaker than logspace,
since the set of all problems definable by first order sentences is properly contained in
the class L. As an example, the two logics just mentioned, namely, posTC∗[FOs] and
DTC∗[FOs], verify a quantifier free projective normal form and, hence, TC and DTC
are complete via qfp reductions in their respective classes (see [9] for the details).

110 On the Descriptive Complexity of a Simplified Game of Hex

4 The WHEX logic

Fix a vocabulary τ2 = {E,C,D}, where E is a binary relation symbol, C and D are
constant symbols. A complexity class and a problem that fits in the hypothesis of
Theorem 3.5 is PSPACE (polynomial space) and the τ2–problem HEX. An instance
of HEX is a graph G with a source s and a sink t, and a yes-instance is an instance
(G, s, t) where Player 1 has a winning strategy in the game of Hex on (G, s, t). The
game of Hex proceeds as follows. Beginning with Player 1, two players take turns in
colouring previously uncoloured vertices of G, apart from s and t, until all vertices are
coloured. Player 1 always colours a vertex red and Player 2 always colours a vertex
blue. Player 1 wins the game of Hex if in the resulting coloured graph there is a path
consisting entirely of red vertices from s to t. That the encoding of this problem as
strings of 0’s and 1’s is complete for PSPACE via logspace reducibility was shown in
[6]; and that the extension of first-order logic using a uniform sequence of generalized
quantifiers corresponding to the problem HEX contains DTC–logic (with respect to
arbitrary finite structures) is proved in the following theorem.

Theorem 4.1 DTC1[FO] ≤ posHEX∗[FO]

Proof. Consider the τ2–sentence ψ := DTC[x, y : θ(x, y)](C,D), where x and y are
k-tuples of distinct variables, for some k > 0, C and D are k–tuples with all entries
equal to C and to D respectively, and θ ∈ FO. Consider the following formula φ with
free variables x, u1, u2, y, v1 and v2:

φ := (x = C ∧ u1 = u2 = C ∧ y = C

∧ ((v1 = D ∧ v2 = C) ∨ (v1 = C ∧ v2 = D)))
∨ (x = D ∧ ((u1 = D ∧ u2 = C) ∨ (u1 = C ∧ u2 = D))
∧ y = D ∧ v1 = D ∧ v2 = D)

∨ (u1 = v1 ∧ u2 = v2 ∧ θ(x, y))
∨ (u1 = C ∧ u2 = D ∧ v1 = D ∧ v2 = C ∧ θ(x, y))
∨ (u1 = D ∧ u2 = C ∧ v1 = C ∧ v2 = D ∧ θ(x, y))

Then
|= ψ ←→ HEX[(x, u1, u2), (y, v1, v2) : φ](C,D).

(Player 1’s winning strategy consists of colouring first (C,C,D) or (C,D,C), and
thereafter colour opposite vertex to Player 2’s choice; that is, if Player 2 colours
(x, u1, u2) then Player 1 colours (x, u2, u1).)

In [2] it was shown that the HEX–logic has a quantifier free projective normal form
and, hence, captures PSPACE applying Theorems 4.1 and 3.5. As an extra bonus we
get that the problem HEX is complete for PSPACE via quantifier free projections.

I would like to remark that similar results hold for the version of the Hex game
where players colour edges (as opposed to vertices) of a directed graph. The version
of the Hex game where players colour edges of an undirected graph is known as the
Shannon switching game for which polynomial time algorithms are known (see, for
example, [15]).

The main concern of this paper is the following variation of the problem HEX. An
instance is a graph G with a source s and a sink t, and a yes–instance is an instance

4. THE WHEX LOGIC 111

where Player 1 has a winning strategy in a game which proceeds as the game of Hex
but with the following restriction:

Players can not colour an arbitrary vertex but must proceed as follows: Player
1 begins the game and he must do it by colouring red a vertex adjacent to
the source. From this move and on, Player 2 must colour blue an uncoloured
vertex adjacent to the vertex last coloured red (i.e. coloured by Player 1), and
Player 1 replies by colouring red an uncoloured vertex adjacent to the vertex
that he coloured red last.

Thus, Player 1 tries to build a path in a step–by–step fashion and linked to the source,
whilst Player 2 tries continually to block Player 1’s construction. As in the Hex game,
Player 1 wins if he reaches t with a path of red vertices only from s, with s and t
uncoloured and possibly some other vertices at the end of the game.

The above restriction placed upon the game of Hex makes the construction process
of a path local and reduces the space of search for each player (in fact, it makes it
linear); for these reasons I named this game Weak Hex (abbreviated Whex) and the
corresponding decision problem WHEX. However I shall prove below that WHEX
is similar to HEX with regards to computational complexity, when both are treated
as decision problems, and, on the other hand, they also coincide in expressive power
when treated as generalized quantifiers. So, in those two aspects, WHEX is no weaker
than HEX.

WHEX is encoded as a class of τ2-structures as follows:

WHEX = {A = 〈A,EA, CA, DA〉 ∈ STRUCT(τ2) : Player 1 has
a winning strategy for the game of Whex played on A }

It is worth observing that, as classes of structures, WHEX 6= HEX: There are graphs
where Player 1 wins the game of Whex but can loose the game of Hex (for example, a
graph as constructed in Theorem 4.3 below, corresponding to a satisfiable sentence),
and viceversa (for example, the complete bipartite graph Kn,n, with n ≥ 4 and where
the top two vertices are joined to a vertex s and the bottom two vertices are joined
to a vertex t, is a yes–instance of HEX but not of WHEX). Furthermore, there are
graphs where Player 1 wins both the Hex and the Whex games, as, for example, a
ladder with diagonal rungs with the source joined at one end and the sink joined at
the other end. One such a graph is constructed in the proof of Theorem 4.1, and, so,
we have

Theorem 4.2 DTC1[FO] ≤ posWHEX∗[FO]

4.1 WHEX is PSPACE-complete

QSAT, or the problem of determining if a quantified boolean formula in conjunctive
normal form is true, is the classical example of a PSPACE–complete problem [7] and
can be regarded as a game as follows (see [11] also): given

Φ := ∃x1∀x2 . . . Qn−1xn−1Qnxn φ

112 On the Descriptive Complexity of a Simplified Game of Hex

where φ is a boolean formula in conjunctive normal form involving the variables x1,
. . . , xn, and the quantifiers Qi ∈ {∀, ∃} alternate starting with ∃ 1. We have two
players, Player 1 and Player 2, who take turns assigning a value of 0 (false) or 1
(true) to each variable, beginning with x1 and with Player 1 making the first move.
So, Player 1 assigns truth values to the variables existentially quantified, whilst Player
2 assigns truth values to the variables universally quantified; for those reasons Player
1 is also known as the ∃ player and Player 2 as the ∀ player. This game is named
Qsat (played on Φ), and one say that Player 1 (or ∃) wins the game of Qsat on Φ if,
and only if, after the n-th move φ is true.

To show that WHEX is PSPACE–complete I will describe below how to construct,
using logarithmic space, an instance, (G, s, t), of WHEX from an instance, Φ, of
QSAT.

Theorem 4.3 QSAT ≤log WHEX.

Proof. Let Φ := ∃x1∀x2 . . . Qnxn(C1 ∧ C2 ∧ . . . ∧ Cm), where each clause Ci is a
conjunction of literals. Define the graph GΦ = (V,E) as follows:

V = {s, t, y} ∪ {xi, xi, ui, ui, vi : 1 ≤ i ≤ n}
∪ {w2i : 1 ≤ i ≤ dn/2e} ∪ {ci, zi : 1 ≤ i ≤ m}

E = {(s, x1), (s, x1), (vn, c1), (vn, z1), (zm, t), (y, t)}
∪ {(xi, ui), (xi, ui), (ui, t), (ui, t), (xi, vi), (xi, vi) : 1 ≤ i ≤ n}
∪ {(vi, xi+1), (vi, xi+1) : 1 ≤ i ≤ n− 1}
∪ {(v2i, w2i), (w2i, t) : 1 ≤ i ≤ dn/2e}
∪ {(zi, zi+1), (zi, ci+1) : 1 ≤ i ≤ m− 1}
∪ {(ci, y) : 1 ≤ i ≤ m}
∪ {(ci, uj) : the literal ¬xj is in clause Ci}
∪ {(ci, uj) : the literal xj is in clause Ci}

(Figure 1 illustrates the graph GΦ for

Φ := ∃x1∀x2∃x3[(¬x1 ∨ ¬x2) ∧ (x2 ∨ x3 ∨ ¬x1) ∧ (x2 ∨ ¬x3)])

First note that the moves of Player 1 and Player 2 on the graph GΦ corresponds to
moves by ∃ and ∀ on Φ. The literal xi stands for the negation of xi; hence, Player 1
colouring x2i−1 or x2i−1 red corresponds to ∃ deciding to give value 1 or 0 to x2i−1.
After Player 1’s colouring, Player 2 is forced to colour vertex u2i−1 or u2i−1; otherwise
Player 1 reaches t in his next move. After the forced colouring of u2i−1 or u2i−1 by
Player 2, Player 1’s only possible choice is v2i−1. Then it is Player 2’s turn to decide
whether to colour blue vertex x2i or x2i, which corresponds to ∀ making the decision
of assigning value 1 or 0 to x2i. According to the selection of Player 2, Player 1
must continue with colouring the opposite vertex and, again, Player 2 has a forced

1This is no loss of generality since we can always add clauses of the form x ∨ ¬x without altering the truth value

of φ

4. THE WHEX LOGIC 113

s

t
y

t

t

t

t

v3

1u
_

1u

2u 2u
_

3u
_

3u

2

1v

2v

1z

2z

3z

1c

2c

3c

x
_

1

_
x2

x

_
x3

x3

x1

Fig. 1. GΦ for Φ := ∃x1∀x2∃x3[(¬x1 ∨ ¬x2) ∧ (x2 ∨ x3 ∨ ¬x1) ∧ (x2 ∨ ¬x3)].

response, which obliges Player 1 to colour v2i. From there, Player 1 either wins or,
once again, must choose between x2i+1 or x2i+1, and so on.

Now, suppose ∃ has a winning strategy in the game of Qsat on Φ. Then Player
1 has the following winning strategy in the game of Whex on GΦ: if ∃ gives value
1 (respectively, 0) to variable x2i−1 then Player 1 colours vertex x2i−1 (resp. x2i−1)
red. If, when Player 1 reaches vertex vn, Player 2 subsequently colours all vertices ci
blue, then Player 1 will be left with zm to colour and wins; otherwise, Player 1 will
colour some ci red. Since all clauses are satisfiable, some literal in Ci is true; therefore
there is an edge from ci to some unvisited vertex uj or uj , besides the edge to y, so
Player 1 colours the one left free by Player 2 and wins.

For the converse, suppose ∀ has a winning strategy in the game of Qsat on Φ. Then

114 On the Descriptive Complexity of a Simplified Game of Hex

Player 2 wins the game of Whex in the following way: if ∀ gives value 1 (resp. 0)
to variable x2i, then Player 2 colours vertex x2i (resp. x2i) blue; this forces Player
1 to colour x2i (resp. x2i) red, and Player 2 to colour u2i (resp. u2i) blue. When
Player 1 reaches vn, there is one clause Ci that is false, and, therefore, Player 2 forces
Player 1 to colour vertex ci by colouring vertex zi blue. Then Player 2 colours y,
thus succeeding in blocking Player 1, since all other edges lead to vertices uj already
coloured by Player 2.

Finally it is easy to see that the construction of GΦ from Φ can be done determi-
nistically using logarithmic space.

Next it will be shown that the logic posWHEX∗[FOs] has a quantifier–free projec-
tive normal form.

Theorem 4.4 Let τ be some vocabulary. Every sentence φ ∈ posWHEX∗[FOs(τ)]
is equivalent to a sentence of the form WHEX[x, y : ψ](0,max), where ψ ∈ FOs(τ),
ψ is quantifier–free projective and over the distinct k-tuples of variables x and y, for
some k ≥ 1, and where 0 (resp. max) is the constant symbol 0 (resp. max) repeated
k-times.

Proof. (Sketch) The proof runs along the same lines as the proof of the normal
form for posHEX∗[FOs] in [2], which in turn is inspired by the proof of [9, Theorem
3.3]. I proceed by induction on the complexity of the sentence φ, having to consider
essentially five cases; the first one being φ an atomic or negated atomic sentence which
is trivially equivalent to WHEX[(x1, y1), (x2, y2) : φ]((0, 0), (max,max)) with x1, x2,
y1, and y2 new variables not occurring in φ.

For the remaining cases I adapted the constructions done in [9, Theorem 3.3], so
as to fit in with the combinatorics of the Whex game, by incorporating the following
gadget. Given an undirected graph G = (V,E) with source s and sink t in V , built a
new graph X(G) consisting of a copy of G with two sources, s1 and s2, in place of s,
and two sinks, t1 and t2, in place of t. Draw edges between s1 (respectively s2) and
each vertex that forms an edge with s in G, and, similarly, draw edges between t1
(respectively t2) and each vertex that forms an edge with t in G. Add a new vertex
w, distinct from all the vertices in G, and edges between w and s1, s2, t1 and t2,
respectively. The gadget X(G) can be seen in Figure 2.

The idea behind X(G) is to guarantee a winning strategy for Player 1 in the game
of Whex played on all the set of vertices V , provided that Player 1 has a winning
strategy in the game of Whex played on the set of vertices V − {s, t}. Consider the
game of Whex on X(G) as the usual game of Whex on a graph with distinct source
and sink, except that Player 1 must begin by colouring one of the two sources, the
players continue as in the usual game of Whex from the previous coloured source,
and Player 1 wins if he reaches (and colours) one of the two sinks. Suppose Player 1
has a winning strategy in the game of Whex played on G; then, Player 1 wins in the
game of Whex played on (all the vertices of) X(G) by first taking one of the sources,
and, afterwards, if Player 2 doesn’t take w, Player 1 takes it and wins in his next
move; otherwise, Player 1 uses his winning strategy for G, which applies since he is
the first one to take a vertex of V − {s, t}; he will then reach one of the sinks and
win. Conversely, suppose Player 2 has a winning strategy in the game of Whex played
on G. Then Player 2 wins the game of Whex played on X(G) by taking, in his first

4. THE WHEX LOGIC 115

1s
2s

1t 2t

G

. .

..

. w

Fig. 2. The gadget X(G).

move, vertex w, and then applying his winning strategy for G, which is possible since
Player 1 is the first one to move in V − {s, t}.

Now, let me explain how to useX(G) to obtain the formulas in normal form. Say we
want to eliminate the existential quantifier in φ := ∃zWHEX[x, y : θ(x, y, z)](0,max)
where θ is, by inductive hypothesis, a quantifier free projection and |x| = |y| = k.
Proceed to construct, from a given finite τ2-structure (a graph) A = 〈{0, 1, . . . , n −
1}, EA, CA, DA〉, the graphs X(Az) for each z ∈ {0, 1, . . . , n − 1}, where each Az
has universe |A|k and edge relation determined by θ(x, y, z). Then add two new
vertices s and t and, for each z ∈ {0, . . . , n − 1}, join the sources in X(Az) to s,
and the sinks to t. In the new graph thus obtained, named Gφ, s is codified as a
k + 4 tuple of 0’s and t as a k + 4 tuple of max’s; the vertices in each X(Az) are
codified as follows: the sources as (0,max, 0,max, z) and (0, 0, 0,max, z); the sinks
as (max,max, 0,max, z) and (max, 0, 0,max, z); the w as (0, 0,max, 0, z), and the
other vertices as (x,max,max, 0, z) for x 6∈ {0,max}. It is not difficult to describe
Gφ with a quantifier free projection ψ(x, u1, u2, u3, u4, y, v1, v2, v3, v3), and to show
that Player 1 has a winning strategy in the game of Whex played on Gφ if and only
if, for some z ∈ {0, . . . , n− 1}, Player 1 has a winning strategy in the game of Whex
played on X(Az).

To eliminate the universal quantifier place the gadgets in series, and do a similar
codification as in the existential case. It is here where the ordering relation is needed to
write the appropriate quantifier free formula. The nested case is resolved in a similar
manner by incorporating the X(G) gadget to the construction of the nested case for
TC in [9, Theorem 3.3], and following that proof the reader can write the appropriate
formulas for our present problem. This completes the proof of the theorem.

Corollary 4.5 PSPACE = WHEX∗[FOs] = posWHEX∗[FOs] = posWHEX1[FOs]
and WHEX is complete for PSPACE via quantifier free projections.

Proof. Put together Theorems 4.3, 4.2, 3.5 and 4.4.

116 On the Descriptive Complexity of a Simplified Game of Hex

I would like to remark that the variations of the game of Whex where: 1) players
colour vertices of an undirected graph; 2) players colour edges of a directed or undi-
rected graph, remain complete for PSPACE via quantifier free projections. To see
the second point, observe that colouring an edge {u, v} adjacent to an edge {w, u}
coloured in a preceding move has the same effect of colouring the vertex v adjacent
to the previously coloured vertex u; hence, all results for the Whex game on ver-
tices apply with minor fixes to the game of Whex on edges. This contrast with Hex,
where playing on edges does make a difference in the computational complexity of
the problem, as it was remarked before.

Also, it should be noted that the version of the game of Whex where Player 2 begins
the game (by colouring blue a vertex adjacent to the source), and where we ask the
same query as before, namely, does Player 1 has a winning strategy?, yields a decision
problem, which it will be distinguished by WHEX′, with the same computational and
logical characteristics than our original WHEX (where Player 1 is the first one to
play). The proofs of these facts amounts to slight modifications of the proofs given
for the corresponding facts for WHEX. For example, to show WHEX′ is complete
for PSPACE, view QSAT as the same alternating game among ∃ and ∀, but with
∀ beginning the game instead of ∃, and the board being formulas with alternating
quantifiers beginning with ∀. Then the construction in Theorem 4.3 goes through and
we have QSAT ≤log WHEX′. We shall find WHEX′ more convenient to use for the
application of our games given in the next section.

5 The complexity of a user–aided proof system

Let τ3 = {R,C,D} be a vocabulary with a relation symbol R of arity 3 and two
constant symbols C and D. A τ3–structure A of size n can be regarded as a path
system, that is, a set A of n vertices, a relation RA ⊆ A×A×A, a source CA ∈ A and
a sink DA ∈ A, where in order to reach a vertex z, there must be two other reachable
vertices x and y so that (x, y, z) ∈ RA. This view of structures over τ3 is suitable for
encoding the problem Path System Accessibility (see [7]), whose instances are path
systems and yes–instances are instances where the sink is accessible from the source, a
vertex z being accessible if it is the source of the path system or if R(x, y, z) holds for
some accessible vertices x and y. The resulting class of τ3-structures corresponding
to Path System Accessibility was denoted PS by Iain Stewart in [13], considered by
him as a generalized quantifier and added to first order logic to obtain the extension
PS∗[FOs], path system logic, which satisfies a projective normal form and which
captures the class of polynomial time computable problems, P.

Theorem 5.1 ([13]) PS∗[FOs] = posPS∗[FOs] = posPS1[FOs] = P and the normal
form for posPS∗[FOs] is quantifier free projective. Therefore, the problem PS is
complete for P via quantifier free projections.

Alternatively, we can regard a τ3–structure A of size n as a proof system, by in-
terpreting the elements of A as statements and the 3–ary relation RA as a rule of
inference, say, for example, one like resolution, which when applied to statements x
and y yield the statement z, whenever (x, y, z) ∈ RA. This is the way I like to think
of τ3–structures here, and, under this view, the problem PS is the set of proof sys-
tems A where the statement DA is provable from the statement CA, where provable

5. THE COMPLEXITY OF A USER–AIDED PROOF SYSTEM 117

is synonymous with accessible and defined likewise.
Considering τ3–structures as proof systems, one then wonder about the complexity

of proving theorems in a proof system where the user can help the system by adding
“lemmas” along a proof, which are not necessarily provable from the initial state-
ment CA. The intended meaning of this last statement is formalize in the following
definition.

Definition 5.2 Let A = 〈A,RA, CA, DA〉 be a proof system. A statement z in A
is partially provable (p.p) if it is CA or it is obtained from some partially provable
statement x and an arbitrary, non partially provable statement y, by applying the
rule R to x and y (i.e. (x, y, z) ∈ RA).

A statement w is provable from u by a proof of partially provable statements if,
and only if, there is a sequence of partially provable statements c1, c2, . . . , cn, with
cn = w, which witnesses the following set of expressions:

∀b1∃c1 : (b1 = w or b1 is not p.p.) and (u, b1, c1) ∈ R (5.1)
and, for 1 ≤ i < n,

∀bi+1∃ci+1 : (bi+1 = w or bi+1 is not p.p.) and (ci, bi+1, ci+1) ∈ R. (5.2)

Define the problem Partial Proof System (PPS) as the following class of τ3–structu-
res:

PPS := {A ∈ STRUCT(τ3) : A is a proof system, where DA

is provable from CA by a proof of p.p. statements}

It is not difficult to see that PPS is in PSPACE: at the i–th step of a proof we
need to have in store the last statement ci partially provable, nondeterministically
generate and store a statement bi+1, and store a ci+1 for which (ci, bi, ci+1) ∈ RA.
Furthermore, we have

Theorem 5.3 WHEX′ ≤log PPS.

Proof. Given an undirected graph G = 〈V,E, u, w〉 with source u and sink w, define
the proof system AG = 〈A,R, s, t〉, with A = V , s = u, w = t and

R = {(a, b, c) : E(a, c) ∧ E(a, b) ∧ b 6= c}
∪ {(a, w,w) : E(a, w)}

Suppose G ∈WHEX. Then, for whatever vertex b1 Player 2 starts off the game of
Whex on G, Player 1 can respond with c1 such that E(u, b1) and E(u, c1) holds (and
c1 is on a path to w). Successively, in the i–th move, for whatever vertex bi Player
2 selects, Player 1 can respond with a ci such that E(ci−1, bi) and E(ci−1, ci) holds
(and ci is on a path to w), and so on, until Player 1 reaches a vertex cn such that
E(cn, w) holds. Then the sequence c1, c2, . . . , cn, w, is made of partially provable
statements in AG, satisfying conditions (5.1) and (5.2). Hence, it constitutes a proof
of t from s and, hence, AG ∈PPS.

Conversely, if we assume AG ∈PPS, then there is a proof of t from s by partially
provable statements, which satisfies conditions (5.1) and (5.2). These conditions des-
cribe a winning strategy for Player 1 in the version of the game of Whex played on
G where Player 2 makes the first move.

118 On the Descriptive Complexity of a Simplified Game of Hex

We have that the problem PPS is complete for PSPACE via log–space reducibility.
It is argue next why PPS is also complete via quantifier free projections. First,
consider PPS as a generalized quantifier and add it to first order logic (with built–in
successor), and form the logic PPS∗[FOs]. Then observe that the problem DTC is
expressible in posPPS∗[FOs]: the intuitive idea is that for a given graph G, with
distinguished vertices s and t, a path 〈s, c1, c2, . . . , cn, t〉 from s to t can be seen as
a proof of t from s by the following sequence of applications of the rule R:

(s, t, c1), (c1, t, c2), . . . , (ci, t, ci+1), . . . , (cn, t, t)

Next, to show that posPPS∗[FOs] = posPPS1[FOs] proceed almost identically as in
Stewart’s proof of the normal form for PS∗[FOs] (Theorem 4.2 of [13]). For example,
to eliminate the existential quantifier in the sentence

∃wPPS[x, y, z : ψ(x, y, z, w)](C,D)

consider, for a structure A of size n, a disjoint union of the n proof systems described
by ψA(x, y, z, i), for i = 0, 1, . . . , n−1, with a common initial statement and a common
final statement. We then have a result analogous to Theorem 5.1.

Theorem 5.4 PPS∗[FOs] = posPPS∗[FOs] = posPPS1[FOs] = PSPACE and the
normal form for posPPS∗[FOs] is quantifier free projective. Therefore, the problem
PPS is complete for PSPACE via quantifier free projections (with the successor
relation).

(An alternative way of proving the completeness of PPS via qfp’s follows from ob-
serving that the reduction of WHEX′ to PPS in Theorem 5.3 can be described by
quantifier free projective formulas. On the other hand, WHEX′ can be shown com-
plete via qfp’s by same arguments employed for the completeness of WHEX, and then
use that quantifier free projections are transitive [10].)

The above theorem, together with Theorem 5.1, have as consequence a characteri-
zation of the P versus PSPACE problem. P = PSPACE if and only if PPS is first
order reducible to PS. This tells us, informally, that in order for the class PSPACE
be equal to P, it is sufficient to show that any proof system that uses auxiliary state-
ments in its proofs, can be effectively simulated by a proof system where all proofs
are constituted by provable statements from the initial one CA.

One more observation about the problem PPS is that it is definable in partial fixed
point logic, or PFP[PO]. This is the closure of first order logic with the partial fixed
point operator PFP and all boolean operations. PFP applies to formulas of the form
ϕ(x1, . . . , xk, R), where R is a relational variable of arity k, to make up the formula
PFP[x,R : ϕ(x,R)](t1, . . . , tk) whose interpretation is as follows: for an appropriate
structure A, A |= PFP[x,R : ϕ(x,R)](t1, . . . , tk) if and only if (t1, . . . , tk)A is in the
fixed point (if it exists) of the sequence of sets

ϕ0
A := {(a1, . . . , ak) ∈ Ak : A |= ϕ(a1, . . . , ak, ∅)}

and for i > 0
ϕiA := {(a1, . . . , ak) ∈ Ak : A |= ϕ(a1, . . . , ak, ϕ

i+1
A)}

(For further details see [5].)

6. WHEX ON GRAPH WITH OUTDEGREE ≤ 3. 119

Now, it is not difficult to see that PPS is definable in PFP[PO] by the sentence

∃w(PFP[z,X : z = C ∨ ∃x∀y(X(x) ∧ (5.3)
(¬X(y) ∨ y = D) ∧R(x, y, z))](w) ∧ w = D)

(essentially we put in the set X the partially provable statements, beginning with C
and until we reach D).

If we consider PFP[POs], namely, PFP over first order logic with the built–in
successor, then using the facts just proved, that PPS is complete for PSPACE via
qfp’s with successor, and that PPS is definable in PFP[PO] (hence in PFP[POs]),
we obtain that every problem computable by Turing machines with a polynomial
space bound is definable in PFP[POs]. Conversely, the set of finite structures that
satisfy a given sentence in PFP[POs] can be decided by a polynomial space bounded
algorithm (see [5]). Thus, we have another proof of Abitebuol and Vianu’s logical
characterization of PSPACE:

Theorem 5.5 ([1]) PSPACE = PFP[POs].

6 WHEX on graph with outdegree ≤ 3.

Let WHEX3 be the set of digraphs of outdegree at most 3 which are yes–instances of
WHEX. I shall reduce the problem QSAT to WHEX3 via a quantifier free projection.
To do that view QSAT as a problem over the vocabulary σ = {P,N,U}, where P
and N are binary relation symbols and U is unary; then, an instance of QSAT is a
finite σ–structure A = 〈A,P,N,U〉, where P (i, j) holds in A if and only if variable j
occurs positive in clause i, N(i, j) holds in A if and only if variable j occurs negative
in clause i, and U(i) holds in A if and only if variable i is universally quantified. A
yes–instance of QSAT is an instance where Player 1 has a winning strategy in the
game of Qsat described previously.

Theorem 6.1 QSAT ≤qfp WHEX3.

Proof. The strategy is as follows: first, a log–space reduction from QSAT to WHEX3
is given, which is essentially the reduction of QSAT to WHEX given in Theorem 4.3
with suitable modifications meant to keep the outdegree below 3. Then it is indicated
how to codify the reduction and express it with a quantifier free first order projection.

Let Φ := ∃x1∀x2 · · ·Qnxn(C1∧C2∧ . . .∧Ck), where each clause Ci is a conjunction
of literals. Observe that n is the number of variables in Φ, and k is the number of
clauses. Define the graph GΦ = 〈V,E〉 as follows:

V = {s, t, y} ∪ {xi, xi, ui, ui, vi : 1 ≤ i ≤ n}
∪ {w2i : 1 ≤ i ≤ dn/2e} ∪ {ci, zi : 1 ≤ i ≤ k}
∪ {pji , n

j
i , y

j
i : 1 ≤ j ≤ n, 1 ≤ i ≤ k}.

E = {(s, x1), (s, x1), (vn, c1), (vn, z1), (zk, t), (y, t)}
∪ {(xi, ui), (xi, ui), (ui, t), (ui, t), (xi, vi), (xi, vi) : 1 ≤ i ≤ n}
∪ {(vi, xi+1), (vi, xi+1) : 1 ≤ i ≤ n− 1}

120 On the Descriptive Complexity of a Simplified Game of Hex

∪ {(v2i, w2i), (w2i, t) : 1 ≤ i ≤ dn/2e}
∪ {(zi, zi+1), (zi, ci+1) : 1 ≤ i ≤ k − 1}
∪ {(ci, y), (ci, p1

i), (ci, n
1
i) : 1 ≤ i ≤ k}

∪ {(pji , y
j
i), (n

j
i , y

j
i), (y

j
i , t) : 1 ≤ i ≤ k, 1 ≤ j ≤ n}

∪ {(pji , p
j+1
i), (nji , n

j+1
i) : 1 ≤ i ≤ k, 1 ≤ j ≤ n− 1}

∪ {(pji , üj) : the literal xj is in clause Ci}
∪ {(nji , uj) : the literal ¬xj is in clause Ci}.

GΦ is a graph with outdegree at most 3, and it is not difficult to see that Player 1 has
a winning strategy in the Qsat game played on Φ if and only if Player 1 has a winning
strategy in the Whex game played on (GΦ, s, t). In order to write the above reduction
as a quantifier free formula, begin by codifying the 14 types of vertices as the following
sextuples (max is abbreviated as m): s = (0, 0, 0, 0, 0, 0), t = (m,m,m,m,m,m),
y = (m,m,m, 0, 0, 0), xi = (i, 0,m,m,m,m), xi = (i,m, 0,m,m,m), ui = (i, 0, 0, m,
m, m), ui = (i,m, 0, 0,m,m), vi = (i, 0,m, 0,m,m), wi = (i,m,m, 0,m,m), ci = (i
, m, m, m, 0, m), zi = (i,m,m, 0, 0,m), pji = (i, j, 0,m, 0,m), nji = (i, j, 0,m, 0, 0),
and yji = (i, j, 0, 0, m, 0). Then I proceed to define the edge relation with a formula
in the variables x1, x2,. . . , x6, y1, y2,. . . , y6, consisting of disjunctions of clauses, one
for each of the type of edges described above, and most of which can be easily seen
to be a quantifier free conjunction. Therefore, I just write down the (possibly) not
so trivial quantifier free formulas that describe some of the edges. Take for example
an edge of the form (v2i, w2i). This is an edge corresponding to variable i universally
quantified, and so is equivalent to have (vi, wi) ←→ U(i) holding in GΦ; hence, we
can express this edge with the formula:

(¬φvw ∧ ¬U(x1)) ∨ (φvw ∧ U(x1))

where

φvw := x1 = y1 ∧ x2 = x4 = y4 = 0
∧ x3 = x5 = x6 = y2 = y3 = y5 = y6 = m

Edges such as (pji , uj) are given by the formula

x2 = y1 ∧ x3 = x5 = y3 = y4 = 0
∧ P (x1, x2) ∧ x4 = x6 = y2 = y5 = y6 = m

Edges such as (nji , uj) are given by the formula

x2 = y1 ∧ x3 = x5 = x6 = y2 = y3 = 0
∧ N(x1, x2) ∧ x4 = y4 = y5 = y6 = m

And for edges such as (vi, xi+1), (zi, zi+1), or (pji , p
j+1
i) we use the (built–in) successor

relation to write up appropriate quantifier free conjunctions. This ends the proof of
the theorem.

Corollary 6.2 WHEX3 is complete for PSPACE via first order reductions, and

posWHEX31[FOs] = WHEX31[FOs] = PSPACE.

7. WHEX ON UNORDERED STRUCTURES 121

The problem WHEX2 whose instances are digraphs of outdegree at most 2, and
yes–instances are instances where Player 1 has a winning strategy for the game of
Whex, can be solved in polynomial time. This is immediate, since there is at most
one alternative for each player’s next move, and so all the moves are forced.

7 WHEX on unordered structures

In this section a comment is made on the expressive capabilities of WHEX, as a
generalized quantifier, with respect to properties of arbitrary (but finite) structures.
If we do not include the built–in successor relation, so that our input structures can
be unordered as well as ordered, then the logic WHEX∗[FO] has a 0–1 law, since
WHEX is a problem closed under extensions and, thus, satisfies the conditions for
logics with generalized quantifiers to have asymptotic probability equal to either 0 or
1, as established in [3] for graph problems and later generalized to any problem in
[14]. Therefore, WHEX∗[FO] does not capture PSPACE.

Also, just as it was shown in [2] that HEX∗[FO] does not have a normal form using
suitable Ehrenfeucht–Fraissé type of games, the same can be shown for the logic
WHEX∗[FO]:

Theorem 7.1 There are problems definable in WHEX∗[FO] which can not be defined
by a sentence of WHEX1[FO] in which the operator WHEX does not appear within
the scope of the quantifier ∀.

Proof. The proof is the same as the proof of [2, Proposition 4]. Incidentally, the
structures Sm and Tm in the proof of that proposition are also in WHEX and not in
WHEX, respectively.

8 Final Remarks

WHEX illustrates the necessity of developing tools for sharpening the classification of
computational problems. It is a problem based on a game where, intuitively, should be
easier than the game of Hex to design winning strategies. However I have shown how
similar WHEX and HEX are with respect to their computational complexity and logic
expressive power. Nonetheless, I believe some distinctive features among these two
problems can be obtained by further exploiting their logical characteristics (besides
the few structural differences pointed out through this paper). For example, after
Theorem 5.4, it was remarked that WHEX′, and hence WHEX, can be reduced to
PPS via a quantifier free projection; sustituting in formula (5.3) the relation R by its
description in the vocabulary τ2 = {E,C,D}, as suggested in the proof of Theorem
5.3, we get a definition of WHEX in the logic PFP[PO] by a formula structurally
simple: it contains a second order variable of arity 1 and the quantifiers (PFP and
the first order quantifiers) are relativized by atomic formulas. This fit the pattern of
formulas in a guarded fixed point logic (see [8]), therefore suggesting a finer subclass of
PSPACE problems (where WHEX and PPS belongs) as those problems definable in
some fragment of the logic PFP[PO], possibly a “guarded partial fixed point” logic.
I will leave this characterization as an open problem.

Finally, I will end with the following application of WHEX to a problem of commu-
nication in networks, suggested to me by Iain Stewart. Given a network with a source

122 On the Descriptive Complexity of a Simplified Game of Hex

s, a sink t and a fixed positive integer λ, consider each edge between two nodes i and
j as having a valuation tij , which might represent the time that a message takes to
go from i to j. We consider also that, for each node i, up to λ nodes might fail in
processing the information per unit of time tij among i and any other adjacent node
j. We wish then to know if a message can be send from s to t, and in the afirmative,
which is the strategy for transmission that gives the less time possible. Observe that
WHEX is a particular instance of this problem: take λ = tij = 1; hence, this problem
is PSPACE–hard.

Acknowledgement: I came around to the definition of WHEX, its logical and com-
putational properties, through various conversations with Iain Stewart. I am grateful
to him for all his help. Thanks also to EPSRC for a Visiting Fellowship (Grant GR/M
91006) that made possible one of my visits to Stewart’s research group at Leicester.
I am also grateful to the referees for their many valuable remarks and comments.

References

[1] S. Abiteboul and V. Vianu. Fixpoint extensions of first–order logic and Datalog–like languages,
in: Proc. 4th IEEE Ann. Symp. on Logic in Comp. Sci. (1989) 71–79.

[2] A.A. Arratia-Quesada and I.A. Stewart. Generalized Hex and logical characterizations of poly-
nomial space. Inf. Procs. Letters 63 (1997) 147–152.

[3] A. Dawar and E. Grädel. Generalized quantifiers and 0–1 laws, in: Proc. 10th IEEE Ann. Symp.
on Logic in Comp. Sci. (1995) 54–64.

[4] H.D. Ebbinghaus. Extended logics: the general framework, in: Barwise and Feferman, eds.,
Model Theoretic Logics (Springer–Verlag, 1985).

[5] H.D. Ebbinghaus and J. Flum. Finite Model Theory (Springer-Verlag, 1995).

[6] S. Even and R.E. Tarjan. A combinatorial problem which is complete in polynomial space. J.
Assoc. Comput. Mach. 23 (1976) 710–719.

[7] M. R. Garey and D. S. Johnson. Computers and Intractability - A Guide to the Theory of
NP-Completeness (W. H. Freeman and Co., 1979).

[8] E. Grädel and I. Walukiewicz. Guarded fixed point logic, in: Proceedings of 14th IEEE Sympo-
sium on Logic in Computer Science LICS ‘99, Trento, pp. 45-54, 1999.

[9] N. Immerman. Languages that capture complexity classes. SIAM J. of Computing 16, 4 (1987)
760–778.

[10] N. Immerman. Descriptive Complexity (Springer, 1998).

[11] T.J. Schaefer. On the complexity of some two-person perfect information games. J. Comp. Syst.
Sci. 16 (1978) 185–225.

[12] I.A. Stewart. Comparing the expressibility of languages formed using NP–complete operators.
J. Logic Computat. 1 (1991) 305-330.

[13] I.A. Stewart. Logical description of monotone NP problems. J. Logic Computat. 4 (1994) 305-
330.

[14] I.A. Stewart. Program schemes, arrays, Lindström quantifiers and zero-one laws, in: J. Flum
and M. Rodriguez-Artalejo, eds., Proc. 8th Ann. Conference of the European Association for
Computer Science Logic (LNCS Vol. 1683, Springer-Verlag, Berlin, 1999).

[15] L.J. White. An efficient algorithm for the Shannon switching game. Ann. New York Acad. Sci.
175 (1970) 411–412.

Received 21 of March, 2002

Labelled Natural Deduction for
Conditional Logics of Normality

KRYSIA BRODA, Department of Computing, Imperial College, London
SW7 2BZ, E-mail: kb@doc.ic.ac.uk

DOV M. GABBAY, Augustus De Morgan Professor of Logic,
Department of Computer Science, King’s College, London WC2R 2LS,
E-mail: dg@dcs.kcl.ac.uk

LUÍS C. LAMB,1 Department of Computing, Imperial College, London
SW7 2BZ, E-mail: ldcl@doc.ic.ac.uk

ALESSANDRA M. RUSSO, Department of Computing, Imperial
College, London SW7 2BZ, E-mail: ar3@doc.ic.ac.uk

Abstract

We propose a family of Labelled Deductive Conditional Logic systems (LDCL) by defining a
Labelled Deductive formalisation for the propositional conditional logics of normality proposed by
Boutilier and Lamarre. By making use of the Compilation approach to Labelled Deductive Systems
(CLDS) we define natural deduction rules for conditional logics and prove that our formalisation is
a generalisation of the conditional logics of normality.

Keywords: Labelled Deductive Systems; Conditional Logic; Natural Deduction

1 Introduction

Conditional patterns of inference are ubiquitous in human reasoning. Because of
their intrinsic presence in human discourse this subject has been the theme of intense
investigation in philosophy, particularly in philosophical logic. Formal analyses of
sentences of the form If α then β, where α is called the antecedent and β is called
the consequent, have been extensively studied by philosophers who were interested
in explaining under which circumstances conditional sentences hold, see e.g. [1, 11,
13, 18, 24, 26, 29, 35, 40, 45, 46, 47, 49]. In 1968, Stalnaker published a formal
semantics and an axiomatic system for conditional logic in a paper that set in motion
the modern study of conditional logic [46]. Most of Stalnaker’s seminal work, as
well as his later joint work with Thomason [47], was concentrated on counterfactual
conditionals, as opposed to indicative conditionals (also studied by philosophers),

1Current address: Faculdade de Informática, PUCRS - Av. Ipiranga 6681, Porto Alegre, RS, 90450-030, Brazil.

E-mail: lamb@inf.pucrs.br

123L. J. of the IGPL, Vol. 10 No. 2, pp. 123–163 2002 c©Oxford University Press

124 Labelled Natural Deduction for Conditional Logics of Normality

and classical material conditional [4]. In particular, Stalnaker proposed a notion
of a counterfactual conditional based on a concept of “similarity” between Kripke
worlds: a counterfactual conditional α > β is true if the consequence β is true in
the world “most similar” to the world in which α is true [47]. His initial proposal of
conditional logic (in 1968) sparked a proliferation of research work, which developed
Stalnaker’s ideas even further by proposing alternative logical analysis of conditionals
under different philosophical perspectives [26]. A number of distinct and competing
theories has since been presented in the literature, including, for instance, Boutilier’s
conditional logic of normality [7], where a conditional α > β is interpreted as “if α then
normally β”. However, no universally accepted unified theory of conditional logic has
ever been proposed or investigated. This paper partly addresses this issue by providing
a unified theory presentation for the family of conditional logics of normality and
extensions given by introducing additional modality operators proposed by Boutilier
and Lamarre (see [7] and [32]). However, as discussed in Section 7, this paper acts
as the starting point for a broader agenda of research into the development of a
unifiying framework for various classes of conditional logics. A full investigation of
the applicability of our approach to all existing conditional logics of normality is a
topic of future research.

The choice of Boutilier’s conditional logics has been driven by our interest towards
those conditional logics that can be used to model common sense reasoning in real
application problems. As discussed later in this section, one of the advantages of our
approach is to provide logical systems with features that make them more suitable for
the needs of specific applications, and Boutilier’s conditional logics have been shown
to be related to issues involved in common sense reasoning. With the development
of non-monotonic logics (e.g.,[38, 42, 39]), various authors have started investigating
the relationships between those logics and conditional logics. For instance, Lehmann
and Magidor identified connections between the so called KLM (non-monotonic) sys-
tems [31] and conditional logics [34], and further relations between non-monotonic
and conditional logics were also presented in [37, 30, 20]. Building on these results
some authors have then shown how conditional logics can be useful in modelling ap-
plications in artificial intelligence, as for instance in formalising common sense and
practical reasoning; see e.g. [2, 15, 37, 13]. Among these, conditional logics of normal-
ity have received particular attention, as properties like “typicality” and “normality”
are of great interest in artificial intelligence. The analysis of normality (or generic)
conditionals has been a big research challenge in artificial intelligence, since this type
of conditional construction can be seen as a form of common sense reasoning, es-
pecially for representing defeasible assertions [7]. However as in philosophical logic,
most of the work is centered around semantic approaches, such as preferential models
[31, 34], ranked systems [23], and quantitative approaches, especially probabilistic
semantics [41]. The approach described in this paper provides conditional logics of
normality with a unifying logical representation and uniform natural deduction proof
system, which can facilitate their use in real applications.

Existing proof-theoretic presentations of conditional logics are mostly based on
axiomatic systems in Hilbert-Frege style, perhaps because of the strong interests of the
philosophical community in the area. Even in typical computer science and artificial
intelligence literature [15, 7, 20, 32] the presentation of conditional logics has mainly
been based on axiomatic systems. Proof procedures for varieties of conditionals have

1. INTRODUCTION 125

scarcely been proposed so far. In [25, 22, 14, 3] some work on tableaux and Gentzen
systems for specific types of conditional logic has been presented, and studies on the
complexity problem for conditional logics have been presented in [19]. We believe,
however, that natural deduction presentation and formalisation of proofs - as Gentzen
and Prawitz have claimed - represents a more natural way of modelling practical
reasoning. In placing the emphasis on the relations between premises and conclusions,
natural deduction “resembles far more closely the reasoning of ordinary life” [17].
We aim to bridge the gap between the semantics of conditional logics (which have
been more extensively studied) and their proof theory presentation. In particular, we
propose a uniform natural deduction proof system for Boutilier’s family of conditional
logics of normality and extensions with additional modal operators, providing also a
contribution to the proof theoretical study of these existing logics.

The approach developed in this paper builds upon the Labelled Deductive Systems
(LDS) methodology, proposed by Gabbay in [21], and a related framework called
Compiled Labelled Deductive System (CLDS), developed by Russo in [44]. The LDS
methodology has been initially proposed both for the theoretical study of logics and
for the development of logical systems suitable for the needs of specific applications
[21]. The basic unit of information of an LDS system is a labelled formula, where the
label provides useful additional information about a formula, which is not obviously
expressed by it. For instance, labels can represent the worlds in which a formula
holds (in the case of modal logic), a resource in resource logics, the time at which
the formula holds in temporal logics, numerical values in the case of probabilistic,
fuzzy or many-valued logics, or information about the type of a formula in the case
of the Curry-Howard interpretation of formulas as typed theories. Labels belong
to a labelling algebra, which syntactically identifies semantic and/or proof theoretic
properties of the underlying logics. For example, in the case of modal logic, the
labelling algebra can be defined as a binary first-order theory which axiomatises the
Kripke semantic notion of an accessibility relation. Derivation rules act on both labels
and formulae, according to certain fixed rules of propagation based on the labelling
algebra and on the logical meaning of the connectives. The explicit syntactic reference
to semantic properties of the underlying logic, allows the development of proof systems
that are uniform for a given family of logics. For example, in the case of modal logic,
the single LDS proof system can be applied to the whole family of normal modal logics
by just considering different underlying labelling algebras and leaving the inference
rules for the modality operators unchanged [44]. The CLDS framework is a variation
of an LDS system, which retains the same features of an LDS system but facilitates,
in addition, a unified semantic formulation of different logics (possibly belonging to
different families), and a generalisation of the natural deductive system of these logics
[9, 8]. In a CLDS system, the notion of a logical theory is generalised to a notion of
configuration, i.e. a (possibly singleton) “structure” of local theories. For example,
in the case of modal logic, a CLDS theory is a structure of actual worlds, to which
arbitrary modal theories can be locally associated [9] The deductive process can be
defined with respect to the overall configuration, allowing the inference of what is
true at different points of a given structure.

Our approach, called Labelled Deductive Conditional Logic (LDCL) makes use of the
features and advantages of both LDS and CLDS, to provide a natural deduction proof
system for conditional logics of normality that (i) is uniform for the whole family of

126 Labelled Natural Deduction for Conditional Logics of Normality

these logics, and (ii) generalises the standard formulation of these logics by enabling
reasoning on structures of local conditional theories. This is to provide a logic, based
on conditional reasoning, able to fulfill the increasing need in some application areas
for using not only sets, but structures of information. In particular, in a LDCL system
explicit references to structures of arbitrary conditional theories can be made, while
retaining the conventional syntax of a conditional logic of normality and a concise
proof-theoretical presentation of the underlying conditional logic. This is achieved by
combining the conditional logics of normality with an appropriate labelling algebra.
The labelling algebra is defined as a binary first-order theory which axiomatises the
semantic notion of normal conditional relation between the worlds that are most
similar or most normal compared to each other. The conditional language is given in
a traditional way [7], without requiring a full translation into modal logic. The two
languages (conditional language and labelling language) are combined via the notion
of a declarative unit. A declarative unit is a labelled formula of the form α : w, which
expresses that the conditional formula α is true at the label (i.e. possible world) w.
This combined language retains the advantage of using a traditional formalisation
of conditional logic, and at the same time is rich enough to allow explicit syntactic
reference to normal conditional relations between possible worlds. A LDCL theory is
a generalisation of standard conditional theories in that it facilitates reasoning about
what is true at different points in a (possibly singleton) structure of actual worlds. An
example of a LDCL theory is the set {Rωω1, α > β : ω,�α : ω1, β : ω1}. The proof
system is a natural deduction system that is uniform to any of the existing Boutilier’s
conditional logics of normality, in the sense that the same set of deduction rules can
be applied to each of these conditional logics of normality. The difference between
one conditional logic and another is captured entirely by the labelling algebra.

To summarise, this paper proposes a family of Labelled Deductive Conditional
Logic systems for the existing Boutilier’s propositional conditional logics of normal-
ity, which contributes to the theoretical study of these logics in the following ways.
(1) It provides them with a uniform natural deduction system, which can also be used
to investigate extensions of these logics with additional modality operators. (2) It ex-
tends the scope of these logics in order to deal with domains containing not just one,
but a structure of one or more local or actual conditional theories. A proof is given
that existing axiomatisations of Boutilier’s propositional conditional logic of normal-
ity are subsumed by the LDCL systems described here. (3) It provides an alternative
approach to conditional reasoning whose increased syntactic expressivity and deduc-
tive power contributes towards the long term aim of constructing logical formalisms
more suitable to the needs of applications (in the sense described in [Gab92]).

The paper is organized as follows. In Section 2 a brief summary of Boutilier’s
conditional logic of normality is given. In Section 3 the language and syntax of a LDCL
system is defined together with the notion of a configuration – a LDCL equivalent to
a conditional theory. In Section 4, a natural deduction style proof theory for a family
of LDCL systems is given in which inference rules are applied to configurations. In
Section 5, a model-theoretic semantics, based on a translation method into classical
logic, is described together with a notion of semantic entailment. Its equivalence
to Boutilier’s semantics for conditional logic of normality is also shown whenever the
initial configuration is a single point. Soundness and completeness results of the proof
system described in Section 4 are proved with respect to this semantics. In Section 6,

2. ON CONDITIONAL LOGICS OF NORMALITY 127

extensions of Boutilier’s conditional logics with additional modalities are formalised
and proved to be also sound and complete with respect to the semantics we present.
Section 7 ends the paper with a general discussion.

2 On Conditional Logics of Normality

As mentioned in the previous section, a (uniform) natural deduction proof presenta-
tion for conditional logics is lacking in the literature. Among the very few examples,
we can mention Thomason’s Fitch-style natural deduction system for Stalnaker’s C2
[48], and Chellas’s approach based on a full translation of conditional statements
α > β into modal formulae of the form [α]β representing the consequence β to be
necessary with respect to the antecedent α [12]. On the other hand, among the re-
searchers who have investigated the use of conditional logics in Artificial Intelligence,
Boutilier and Lamarre presented an (axiomatic) approach for conditional logics of nor-
mality based on standard models for propositional modal logic, as shown in [7, 32].
Our aim is to provide a uniform and generalised natural deduction proof system for
these latter logics. Therefore, before describing the details of our system, we briefly
summarise Boutilier’s propositional conditional logics of normality.

2.1 Boutilier’s Conditional Logics of Normality

In [5] a “conditional logic of normality” is proposed in order to provide a logic with
enough expressive power to deal with some forms of non-monotonic and defeasible
reasoning. A normality conditional, denoted by “α > β”, has been defined as “if α
then normally β” [7]. The models for normality reasoning are essentially Kripke struc-
tures. They include a partial ordering between possible worlds where Rωω′ denotes
that ω′ is “at least as normal” as ω, an idea similar to the intuitive semantics of coun-
terfactual conditional logics based on possible worlds structures. In the conditional
logic of normality, the conditional α > β is true in a world ω if for each “α-world”
there exists a world ω1 at least as normal as ω in which both α and β hold, i.e. an
“α∧β-world” ω1 such that the material implication α ⊃ β holds at all worlds at least
as normal as ω1 ([7] pp. 103). Following this interpretation of normality, Boutilier’s
notion of conditional α > β is equivalent to the following modal formula [5, 7]:

�(α ⊃ 3(α ∧�(α ⊃ β))) (2.1)

where, �α means that the formula α is true at all normal worlds and 3α means that
the formula α holds at some normal world. Within this context, the basic Boutilier’s
conditional logic is the logic CT 4, also referred to, in the literature, as mono-modal
logic CT 4. We take this logic as our basic logic as well, and will refer to it as the
Boutilier’s Conditional Logic (BCL).

The logic CT 4 and its extensions have been proved to be equivalent to extensions of
modal logic S4 [32, 5]. Informally, reading the (accessibility) conditional relation R
between two possible worlds as the relation “at least as normal as”, makes it into a
relation that is at least reflexive and transitive, for intuitively, a world is at least as
normal as itself. Other conditions can be imposed on the relation R, giving rise to

128 Labelled Natural Deduction for Conditional Logics of Normality

extensions of the conditional system CT 4. For instance, the addition of the seriality
property to the conditional relation R gives Boutilier’s logic CT 4D, which is the logic
CT 4 extended with the modal axiom D [7]. In [7], CT 4 has also been extended with
additional modalities. These bimodal extensions do not include additional semantic
features, but have additional expressive power which allows assessment of information
at inaccessible, i.e.“less normal”, worlds. For instance, the bimodal extension CT 4O
allows the axiomatisation of the problem of irrelevance and it also makes it easier
to express different types of defeasible reasoning, e.g. autoepistemic logic. Boutilier
has also showed a correspondence between his conditional logics and other existing
conditional systems. In particular, the conditional logics of normality CT 4O and
CO (bi-modal extension of CT 4 where the relation R is totally connected) have
been shown to correspond to the logics P and R ([34]) whenever both CT 4O and
CO systems are restricted to their flat fragments (i.e. the ones that do not permit
nesting of conditional operators) [7]. Some theorems of the P systems have also
been shown to be valid within the basic Boutilier’s conditional logic CT 4. These are
ID,Or,RCM,RT,CM,And, and we will show in Section 5.2 how these theorems are
also captured by our LDCL system.

The syntax of a propositional conditional logic (BCL) is defined over the following
language.

Definition 2.1 (Language LC) Let BCL be a normal conditional logic. A proposi-
tional language LC of BCL is given by a countable set of propositional letters denoted
by p, q, r, ..., the classical connectives ¬, ∧, ∨, ⊃, the conditional operator >, and the
modal operators �, 3. The grouping symbols “(” and “)” are also assumed to be
part of LC .

The semantics of a normal conditional logic BCL builds upon Kripke semantic
notions. A model for BCL is essentially a standard S4 Kripke structure, whereas
the notion of satisfiability extends the standard notions of satisfiability for modal
logic with the definition of satisfiability for conditional formulae. These are formally
defined below.

Definition 2.2 (Models for BCL) Let LC be a BCL language. A BCL model is a
tuple M = 〈W,R, v〉 where W is a set of possible worlds, v is a mapping that assigns
to each propositional letter of LC a subset of W , and R is a binary relation over W
that satisfies reflexivity (i.e. ∀ω ∈ W , Rωω) and transitivity (i.e. ∀ωi, ωj, ωk ∈ W ,
Rωiωj and Rωjωk implies Rωiωk).

A BCL formula is true or false only with respect to a particular possible world. A wff
α is said to be true at a possible world ω of a model M , written (M,ω) |= α, if and
only if one of the following satisfiability conditions holds.

Definition 2.3 (Satisfiability) Let LC be a BCL language, M = 〈W,R, v〉 be a
model, ω be a possible world, and let α and β be two wffs of LC . The satisfiability
relation |= is uniquely defined as follows:

1. (M,ω) |= p iff ω ∈ v(p) (for a propositional letter p)

2. ON CONDITIONAL LOGICS OF NORMALITY 129

2. (M,ω) |= ¬α iff (M,ω) 6|= α

3. (M,ω) |= α ∧ β iff (M,ω) |= α and (M,ω) |= β

4. (M,ω) |= α ∨ β iff (M,ω) |= α or (M,ω) |= β

5. (M,ω) |= α ⊃ β iff (M,ω) |= β or (M,ω) 6|= α

6. (M,ω) |= �α iff for all ω1 ∈ W , if Rωω1 then (M,ω1) |= α

7. (M,ω) |= 3α iff there exists a ω1 such that Rωω1, and (M,ω1) |= α

8. (M,ω) |= α > β iff for all ω1 ∈W , if Rωω1 then either (a) or (b) holds:
(a) there exists ω2 ∈ W such that Rω1ω2 and (M,ω2) |= α and for each ω3 ∈ W

such that Rω2ω3, (M,ω3) 6|= α or (M,ω3) |= β

(b) for every ω2 ∈ W such that Rω1ω2, (M,ω2) 6|= α

Definition 2.4 (Validity) Let M = 〈W,R, v〉 be a BCL model and let α be a BCL
wff. α is valid in the model M , written M |= α, if for every possible world ω of W ,
M,ω |= α (i.e. α is true at every possible world of the model). Moreover, α is valid,
written |= α, if M |= α for every model M .

The propositional conditional logic BCL, referred to in the literature as CT 4 or C4
[7, 32], is uniquely defined by the following axiomatisation.

Definition 2.5 (BCL Axiomatisation) The propositional conditional logic BCL
is the set of formulae that includes, for any arbitrary wffs α and β, propositional
tautologies, all formulae of the form K, T, 4, C given below, and that is closed under
the inference rules Necessity, MP and Subs:

K �(α ⊃ β) ⊃ (�α ⊃ �β)
T �α ⊃ α
4 �α ⊃ �� α
C (α > β) ≡ �(α ⊃ 3(α ∧�(α ⊃ β)))
Necessity from α infer �α
MP From α ⊃ β and α infer β
Subs From α infer α′, where α′ is a substitution instance of α

The above BCL logic is also known as the normal conditional logic CT 4. This is the
minimal logic for expressing normality. The formulae given in Table 1 are also well
known theorems derivable in BCL using the above axiomatisation. In Section 5.2 we
show that these theorems are also provable in our LDCL system.

Table 1. Other theorems of BCL
α > α ID
((α > β) ∧ (α > γ)) ⊃ (α > (β ∧ γ)) And
(α > β) ⊃ (((α ∧ β) > γ) ⊃ (α > γ)) RT
((α > γ) ∧ (β > γ)) ⊃ ((α ∨ β) > γ) Or
�(β ⊃ γ) ⊃ ((α > β) ⊃ (α > γ)) RCM
((α > β) ∧ (α > γ)) ⊃ (α ∧ β > γ) CM

Note that the rational monotony property (RM), expressed by the formula ((α >
γ) ∧ (α ∧ β 6> γ)) ⊃ (α > ¬β), and the property CV given by (α 6> β) ⊃ ((α > γ) ⊃

130 Labelled Natural Deduction for Conditional Logics of Normality

(α ∧ ¬β 6> γ)), are not theorems of BCL, but are valid in some of its extensions, as
we explain later on2.

3 Defining a Labelled Deductive Conditional Logic

In this section a Labelled Deductive Conditional Logic system for the conditional
logic of normality is described formally. Basic definitions of the LDCL language and
syntax are given together with the notion of a configuration – a LDCL’s equivalent
to a conditional theory.

3.1 Languages and Algebra

A propositional LDCL language is defined as an ordered pair 〈LL,LC〉, where LL is a
labelling language and LC is a propositional BCL language. As in BCL, LC includes
both modal and conditional operators and its formal definition is given in Definition
2.1. The labelling language LL is a binary fragment of a first-order language defined
as follows.

Definition 3.1 (Labelling Language) A labelling language LL is a first-order lan-
guage composed of a countable set of constant symbols W = {ω0, ω1, ω2, ...}, a count-
able set of variables V = {x, y, z, ...}, a binary predicate R, the set of connectives
{¬,∧,∨,≡,⊃} and the quantifiers ∀, ∃.

Constants and variables of LL denote possible worlds and the binary predicate R
formalises the normality relation between possible worlds. For an arbitrary world ω,
R-literals of the formRω, ω′ provides a declarative representation of the worlds ω′ that
are at least as normal as ω. The above language allows Kripke semantic notions of
possible world structures to be expressed syntactically. Logical information is instead
expressed in the propositional conditional language LC .

For proof-theoretic purposes, the labelling language is extended with additional sets
of terms, which will be used only in derivations. Specifically, four sets of “Skolem”
function symbols are defined. The resulting language is called semi-extended labelling
language.

Definition 3.2 (Semi-extended Labelling Language) Let LL be a labelling lan-
guage and LC be a BCL language. Let α1, α2, ..., αn be a canonically ordered set
of the wffs of LC . The semi-extended labelling language ext(LL,LC) is defined as
the language LL extended with four sets of unary function symbols {fα1 , ..., fαn , ...},
{gα1, ..., gαn , ...}, {hfαi,αj | for all i, j ≥ 1} and {hgαi,αj | for all i, j ≥ 1}.

All ground terms of the semi-extended labelling language, also called labels, refer to
possible worlds. In particular, the terms constructed by using the function symbols of
ext(LL,LC) play particular roles. For each possible world ω and conditional formula
α, fα(ω) names a particular world specifically associated with α. Such terms will be

2α 6> β abbreviates ¬(α > β) [7]

3. DEFINING A LABELLED DEDUCTIVE CONDITIONAL LOGIC 131

used whenever Kripke semantic notions of the form “there exists a possible world . . .”
need to be formalised. In contrast, terms of the form gα(ω) can be thought of as
referring to any arbitrary world specifically associated with α. These terms will be
used whenever Kripke semantic notions of the form “for all possible worlds . . .” need
to be expressed. On the other hand, for each pair of formulae α and β and possible
world ω, the function symbols hfα,β and hgα,β refer to a particular normal world
and an arbitrary normal world specifically associated with the conditional α > β.
Intuitively, these two types of function symbols could be thought of as representing a
particular composition of possible worlds, named with ground terms using only f and
g function symbols, that corresponds to the “unfolded” modal formula equivalent to
the conditional formula α > β.

Different properties of the normality relation R are syntactically formalised in a
LDCL system by a first-order axiomatisation called labelling algebra written in the
language ext(LL,LC) and denoted by A. We define here the labelling algebra that
captures the underlying semantic properties of BCL logic.

Definition 3.3 (Labelling Algebra) A labelling algebra A is a first-order theory
written in the language ext(LL,LC) given by the following axioms:

∀x.Rxx (T)

∀x∀y∀z.(Rxy ∧Ryz) ⊃ Rxz (4)

As shown in Section 5.2, the above labelling algebra enables our LDCL system to
fully capture the existing BCL logic. Different extensions of this logic can also be
expressed in our LDCL system by appropriately extending the labelling algebra A
with additional properties on the normal relation R. For instance, to capture the
logic CT 4D (in which RM and CV are valid), our labelling language will have to be
extended with the inclusion of a new unary function symbol succ and our labelling
algebra A will have to be extended with the seriality axiom ∀x.Rxsucc(x). Some of
other relevant additional properties for the normal relation R are listed in Table 2:

Table 2. Additional axioms for the labelling algebra A
∀x∀y.Rxy ⊃ Ryx Symmetry
∀x∀y∀z.Rxy ∧Rxz ⊃ Ryz Euclidianity
∀x∀y.Rxy ∨Ryx Connectedness

3.2 Syntax

The LDCL language facilitates the formalisation of two types of information, (i)
what holds at particular possible worlds and (ii) which worlds are in relation with
each other and which are not. Two different syntactic entities are defined to capture
these two aspects of the language, called respectively declarative units and R-literals.
A declarative unit is a pair separated by colon of the form conditional formula:label,
expressing that a conditional formula is true at a possible world. In a very general
sense, the symbol “:” between the two components can be regarded as a sort of
“Holds” predicate. (This interpretation will be reflected in the semantics of our

132 Labelled Natural Deduction for Conditional Logics of Normality

LDCL.) The label component is a ground term of the language ext(LL,LC). This is
the only syntactic entity which combines the two entities of the LDCL language, and
it is formally defined as follows.

Definition 3.4 (Declarative Unit) Given the LDCL language 〈LL,LC〉, a declar-
ative unit is a pair α : ω where α is a wff of LC and ω is a ground term of ext(LL,LC).

An R-literal is any ground literal in the language ext(LL,LC) of the form Rω1ω2 or
¬Rω1ω2, where ω1 and ω2 are labels, expressing the fact that ω2 is, or is not, an
accessible world that is at least as normal as ω1. Examples of R-literals are Rω1ω2

and Rω1g�α(ω2) and Rω0fp(ω2). To distinguish an R-literal from its opposite in sign,
the notion of the conjugate of an R-literal is also introduced.

Definition 3.5 (R-literal) Given the LDCL language 〈LL,LC〉, an R-literal is a
literal of the form Rω1ω2 or ¬Rω1ω2, where ω1, ω2 are ground terms of ext(LL,LC).
Let R be an R-literal. The conjugate of R, written R, is defined as ¬Rω1ω2 if R =
Rω1ω2 and Rω1ω2 if R = ¬Rω1ω2.

The syntax of a LDCL system allows arbitrary sets of conditional formulae to be
associated with (different) labels, describing not only one initial set of local assump-
tions (as in the standard conditional logic) but allowing for several (distinct) local
initial conditional theories to be specified. With the addition of R-literals, these local
theories can be stated to be either independent (using negative R-literals) or interact-
ing with each other (using positive R-literals). This yields a definition of a conditional
labelled deductive theory more general than the traditional notion of a conditional
theory. A conditional labelled deductive theory, called a configuration, is composed of
two sets of information, (i) a set of R-literals and (ii) a set of declarative units. Sets of
declarative units having the same labels denote local conditional theories associated
with that label, whereas declarative units with different labels express conditional
formulae belonging to (possibly) different local worlds. The first set (i), consisting of
R-literals, is called a diagram and it provides the “structural” information about a
conditional labelled deductive theory. For instance, the set {Rω1ω2, Rω2ω3,¬Rω1ω3}
is a diagram. Local conditional theories can be assigned to each node of the diagram
by adding appropriate declarative units. This is formally defined below.

Definition 3.6 (Configuration) Given an LDCL language 〈LL,LC〉, a configura-
tion is a pair 〈D, f〉 where D is a (possibly empty) set of R-literals in ext(LC ,LL)
called diagram, and f is a function from the set of ground terms of ext(LC ,LL) to
the set ℘(wff(LC)) of sets of wffs of LC .

The function f is a total function which assigns an empty set to the labels for which
there is no information and a non-empty local conditional theory to the other labels.
For a given configuration C = 〈D, f〉 an R-literal R is said to be a member of that
configuration (written R ∈ C) if R ∈ D. A declarative unit α : ω is said to be a member
of C, written α : ω ∈ C, if α ∈ f(ω). As mentioned before, function symbols of the
language ext(LL,LC) have been introduced for proof-theoretical reasons. Therefore
any user specified conditional labelled deductive theory (or initial configuration) will
usually (initially) contain only constant symbols of ext(LL,LC) as labels, whereas

4. LDS FOR CONDITIONAL LOGICS OF NORMALITY 133

configurations containing general ground terms of ext(LL,LC) will mainly appear
in proof-derivations as inferred configurations. This will become clearer in the next
section where the description of a natural deduction proof system for our LDCL
system is given.

We can now give the definition of an LDCL system.

Definition 3.7 (Propositional LDCL System) Given a LDCL language
〈LL,LC〉, a propositional LDCL system is a tuple 〈〈LL,LC〉,A, I〉 where A is a
labelling algebra and I is a set of inference rules which generate configurations from
other configurations.

From the above definition it is clear that, given a set of rules I, different propositional
LDCL systems can be obtained by considering different labelling algebrae. For the
remaining of this paper, we will denote with LDCL the system obtained by the la-
belling algebra A given in Definition 3.3 and corresponding to Boutilier’s conditional
logic CT 4.

To give a full definition of our LDCL system, we still need to specify the set of
inference rules. This is done in the next section.

4 A Labelled Natural Deduction System for Conditional
Logics of Normality

As illustrated above, a propositional LDCL language is a generalisation of standard
conditional logic formalisms, – its syntax facilitates the representation of (possibly
singleton) structures of local conditional theories. This main characteristic is also
preserved within the LDCL proof theory in the sense that inference rules and the
derivability relation are defined between configurations. This differs from standard
existing conditional logic proof systems for which a derivability relation is either
defined axiomatically, or defined between a theory (or a set of formulae) and a single
formula. In a propositional LDCL, the deductive process describes how configurations
can “evolve” by reasoning within or between local conditional theories or by reasoning
about diagrams. An inference rule of a propositional LDCL can be generally defined
as follows.

Definition 4.1 (Inference Rule) An inference rule = is a set of pairs of configura-
tions where each pair is written C CI . If C CI ∈ = then C is said to be an the
antecedent configuration of = and CI the inferred configuration of = with respect to
C. It is also said that = infers CI from C.

This definition of inference rule was first proposed in [43]. Such inference rules have
an advantage over Prawitz’s rules (in which there is a distinction between inference
rules and improper deduction rules) in the sense that this definition holds also for
inference rules that require sub-derivations as their antecedents.

Definition 4.2 (Proof) Given a LDCL system 〈〈LL,LC〉,A, I〉, a proof is a pair
(P , µ) where P is a sequence of configurations 〈C0, ...Cn〉 with n > 0, and µ is a

134 Labelled Natural Deduction for Conditional Logics of Normality

mapping from the set {0, . . . , n−1} to I such that for each i, 0 ≤ i < n, µ(i) infers
Ci+1 from Ci, denoted by Ci Ci+1 ∈ µ(i).

Definition 4.3 Let C and C
′
be two configurations. A configuration C

′
is derivable

fromC in a LDCL system (denoted byC `LDCL C
′
) if there is a proof 〈{C, ..., C ′}, µ〉.

Recall that a configuration is a pair of sets, and usual set operations can be defined
over them. Thus, we have the following notations. For a configuration C = 〈D, f〉,
declarative unit α : ω, and R-literal R, the configuration C + [α : ω] represents a
configuration C′ = 〈D, f′〉 where f′(w) = f(ω) ∪ {α} and f ′(ω′) = f(ω) for any ω′ 6= ω
in the language ext(LL,LC). C + [R] represents the configuration C′ = 〈D′, f〉 where
D′ = D ∪ {R}. Given two configurations C,C′, a declarative unit or R-literal δ we
write C `LDCL δ if there exists a configuration C′ such that C `LDCL C′, and δ ∈ C′.
Moreover, we say that C `LDCL ⊥ : ω if C `LDCL γ ∧ ¬γ : ω.

As described in Definition 4.1, inference rules of a propositional LDCL system are
generally applied to configurations to infer “new” configurations. The main question
is, of course, how an inferred configuration is generated. Given an antecedent config-
uration C, three types of reasoning step can occur. Those of the first type are local in
the sense that they occur within any particular local conditional theory included in C,
respecting standard notions of inference for classical connectives. Those of the second
type are between-theories and concern the interaction between different local theo-
ries in C, according to the modal and/or conditional information (wffs) incorporated
in the declarative units that belong to C. In the first two cases inferred configura-
tions are mainly “logical expansions” of (i.e. additions of declarative units to) the
antecedent configurations. Those of the third type are structural, as they are related
to the diagram information in C and to the “interaction” between the diagram and
the declarative units. In this case, inferred configurations are often “structural expan-
sions” of (i.e. additions of R-literals to) the antecedent configurations. Four different
classes of inference rule have therefore been defined. The first includes classical elim-
ination and introduction rules and are the local type of rules. The second and third
classes include elimination and introduction rules for modal and conditional opera-
tors, respectively, and constitute the between-theories type of rules, whereas the last
class of rules includes rules for manipulating R-literals and are therefore structural
type of rules. Classical, modal and structural rules are schematically represented in
Tables 3–5, where the symbol ⊥ is used as an abbreviation for any formula of the form
γ ∧ ¬γ. Formal descriptions of the conditional rules are instead given in Definitions
4.4 and 4.5.

Some remarks are essential to clarify the informal notation used in both the
schematic representation and formal descriptions of the LDCL inference rules. For
any configuration C, the informal notation C〈α : ω〉 (respectively C〈R〉) denotes that
C includes a declarative unit α : ω (respectively R-literal R). Declarative units and R-
literals contained in square brackets (see e.g. the ∨E rule) are assumptions introduced
within a derivation that are subsequently discharged. The notation CI〈δ〉 represents
that the inferred configuration CI is the antecedent configuration C extended with
the declarative unit or R-literal δ, whereas the notation CS is used to refer to con-
figurations inferred within subderivations. For instance, in the (⊃ I) rule, CS is the

4. LDS FOR CONDITIONAL LOGICS OF NORMALITY 135

configuration derived in the subderivation after adding the assumption [α : ω] to the
antecedent configuration of the rule in order to obtain the declarative unit β : ω.

4.1 Classical Rules

The classical rules for classical connectives are schematically described in Table 3.
Note that, for the (∨I) rule, the symmetric rule in which the inferred configuration
includes β ∨ α : ω instead of α ∨ β : ω is implicitly assumed.

Table 3. Rules for Classical Connectives

C〈α ∨ β : ω〉

C〈[α : ω]〉
···

CS〈γ : ω〉

C〈[β : ω]〉
···

CS′〈γ : ω〉
∨E

CI〈γ : ω〉

C〈α : ω〉
∨I

CI〈α ∨ β : ω〉

C〈α ∧ β : ω〉
∧E

CI〈α : ω, β : ω〉
C〈α : ω, β : ω〉

∧I
CI〈α ∧ β : ω〉

C〈α ⊃ β : ω, α : ω〉
⊃E

CI〈β : ω〉

C〈[α : ω]〉
···

CS〈β : ω〉
⊃I

CI〈α ⊃ β : ω〉

C〈¬¬α : ω〉
¬E

CI〈α : ω〉

C〈α : ω〉
···

CS〈⊥ : ω′〉
¬I

CI〈¬α : ω〉

Each of these rules has the effect of expanding the antecedent configuration with a
new declarative unit. With the exception of the (¬I) rule, both the added declarative
unit and the declarative unit(s) involved in the premise refer to the same label. This
shows that the reasoning allowed by these rules takes place entirely within the scope
of the local theory under consideration. This characteristic is semantically motivated
by the fact that the classical fragment of a conditional logic behaves like a classical
logic “locally” associated with any particular normal world. But for the (¬I) rule, this
is not always the case. According to the classical interpretation of the ¬ connective,
the negation of a formula can in general be proved by showing that the assumption
of its positive form leads to a contradiction. In conditional reasoning, contradictions
can arise in normal worlds which are different from the current actual world. The
sub-derivation may involve reasoning about worlds different from the current world in
which contradictions may arise. Therefore, in order to capture these cases a different
meta-symbol ω′ is used, which may or may not be equal to ω. Note that such world

136 Labelled Natural Deduction for Conditional Logics of Normality

ω′ does not necessary need to be accessible from the current world ω. This is because,
given the more general type of theories (configurations), inconsistency can also arise
in local actual worlds which are different and not in relation with the normal world
under consideration. In this case, (¬I) reflects the classical principle “any formula
can be inferred from a contradiction”. Later it is shown that the same principle holds
for inconsistencies caused by R-literals.

4.2 Modal and Conditional Rules

The set of natural deduction rules concerning the modal operators 2 and 3 of an
LDCL language is given in Table 4. Each of these rules describes how sets of infor-
mation belonging to different worlds in relation with each other can interact.

Table 4. Rules for modality operators
C〈[R(ω, gα(ω))]〉

···
CS〈α : gα(ω)〉�I
CI〈�α : ω〉

C〈�α : ω1, Rω1ω2〉 �E
CI〈α : ω2〉

C〈3α : ω〉
3E

CI〈α : fα(ω), Rωfα(ω)〉
C〈α : ω2, Rω1ω2〉

3I
CI〈3α : ω1〉

The (3E) rule can be seen (informally) as a “skolemization” of the existential quan-
tifier over possible worlds which is semantically implied by the formula 3α in the
premise. The term fα(ω) defines a particular possible world uniquely associated with
the formula α, and inferred to be accessible from the possible world ω (i.e. Rωfα(ω)).
It is clear from the definition that this rule has the effect of expanding both the two
components (diagram and set of declarative units) of the antecedent configuration.
In the (�I) rule, the temporary assumption should be read as “given an arbitrary
accessible world gα(ω)”. Although, from a syntactical point of view, the use of a
term is often seen as a way of naming particular objects (possible worlds), in this
case it is adopted to refer to an arbitrary possible world. This is to ensure that labels
are always ground terms. The role of the function symbol gα will become clearer in
Section 5, where the semantics for a LDCL system is given.

The introduction and elimination rules for the conditional operator are formally
defined in the following definitions. Intuitively, to prove a conditional declarative unit
α > β : ω it is necessary to show that there exists a sub-derivation, which assumes α
to be true at an arbitrary world hgα,β (ω) at least as normal as (and accessible from)
ω, and to show that α is also true at a world ω′ at least as normal as (and accessible
from) hgα,β (ω) and that α ⊃ β is true at any arbitrary world at least as normal as
(and accessible from) hgα,β (ω).

Definition 4.4 (Introduction rule for >) Let C be an arbitrary configuration,
let ω be an arbitrary label and let α and β be two well-formed formulae. We

4. LDS FOR CONDITIONAL LOGICS OF NORMALITY 137

say that C C + [α > β : ω] is a member of the inference rule (> I) if C + [α :
hgα,β (ω), Rωhgα,β (ω)] `LDCL {α : ω′,�(α ⊃ β) : ω′, Rhgα,β (ω)ω′}, for some label ω′

The diagrammatic representation is as follows.

C〈[α : hgα,β (ω), Rωhgα,β (ω)]〉
···

CS〈α : ω′,�(α ⊃ β) : ω′, Rhgα,β (ω)ω′〉
> I

CI〈α > β : ω〉

Definition 4.5 (Elimination rule for >) Let C be an arbitrary configuration, let
ω and ω′ be two arbitrary labels and let α and β be two well-formed formulae. We
say that C C + [Rω′hfα,β (ω

′), α : hfα,β (ω
′),�(α ⊃ β) : hfα,β (ω

′)] is a member of
the inference rule (> E) if {α > β : ω,Rωω′, α : ω′} ⊂ C. The diagrammatic repre-
sentation of the rule is as follows.

C〈α > β : ω,Rωω′, α : ω′〉
> E

CI〈Rω′hfα,β (ω′), α : hfα,β (ω
′),�(α ⊃ β) : hfα,β (ω

′)〉

The definition of the elimination rule for the conditional connective clearly reflects
Boutilier’s semantic definition of normality, as is also the case for the introduction (>
I) rule. From equation 2.1, it is easy to see that hfα,β also represents fα∧�(α⊃β), in the
same way as the function symbol hgα,β represents gα⊃3(α∧�(α⊃β)) in the (> I) rule.
Therefore, both (> I) and (> E) rules abstract much of the machinery involved in a
“pure” modal logic deductive system, and allows the deduction process to concentrate
on the intuition behind the semantics of the conditional connective. The examples
given in Section 4.4 illustrate how the conditional rules operate and how the use of the
conditional operator instead of a full translation into modal logic facilitates simpler
proofs.

4.3 Structural Rules

To allow reasoning about arbitrary configurations and to capture the different LDCL
systems, a third set of inference rules needs to be included as part of a propositional
LDCL system. These rules facilitate reasoning about the diagram of a configuration,
using the particular labelling algebra A of the LDCL system under consideration,
and enable the inference of R-literals and declarative units that are not implied by
the modal and conditional rules. These structural rules are schematically represented
in Table 5. In Section 3 we have mentioned that different labelling algebrae de-
fine different propositional LDCL systems. Proof-theoretically these differences are
imposed by the DExp rule. This rule facilitates the inference of new R-literals ac-
cording to the properties of the accessibility relation given by a particular labelling
algebra A. So for example, if the labelling algebra A includes the seriality axiom
for the accessibility relation R, then the above rule would allow the inference of
R-literals of the form R(ω, succ(ω)), for any label ω, thus embedding the seriality
property of the accessibility relation in the derivation process and allowing the axiom
D �(�α ⊃ β) ∨ �(�β ⊃ α)) : ω to be proved at any arbitrary label ω, hence cap-
turing the LDCL system CT4D. By using the DExp rule and the different labelling

138 Labelled Natural Deduction for Conditional Logics of Normality

Table 5. Structural Rules
C

DExp
CI〈R〉

if D,A `FOL R
C
DRed, where CI ⊆ C

CI

C〈[∼ R]〉
···

CS〈⊥ : ω′〉
RIntr

CI〈R〉

C〈R,∼ R〉
⊥E

CI〈α : ω〉

algebras, the sets of modal and conditional rules remain unchanged for the whole fam-
ily of normal conditional logic LDCL, making the system a uniform natural deduction
system.

The (⊥E) and (RIntr) rules formalise additional forms of interaction between R-
literals and declarative units. In a LDCL theory contradictory assumptions can be
either an R-literal and its conjugate, or a declarative unit and its negation3. Whereas
the latter are captured by the ¬I rule (see previous discussion), the former are iden-
tified by the (RIntr) rule, which again reflects the classical principle of any formula
being derived from a contradiction. The RIntr rules is a kind of ¬I rule for R-literals.
However, the interesting feature of this rule is that it facilitates a second form of in-
teraction between declarative units and R-literals. Specifically, R–literals are derived
whenever a logical inconsistency arises within a configuration. The standard classi-
cal case of deriving an R-literal whenever an inconsistency arises among R-literals is
instead already covered by the DExp rule.

4.4 Example Derivations

We now show some example derivations using the graphical representation of the
natural deduction rules defined above. Note that in these derivations the symbols
h1, h2, h3, h4 are abbreviations for labels using the Skolem symbols hgα,β and hfα,β
introduced by the rules for the conditional. In the first example derivation (i.e. the
proof of ((α > β) ∧ (α > γ)) ⊃ (α > (β ∧ γ)) : ω0), h1 stands for hgα,(β∧γ)(ω0), h2 for
hfα,β (h1), h3 for hfα,γ (h2) and g1 stands for gα⊃(β∧γ)(h3). In what follows, we don’t
make distinctions between configurations CS , CI and intermediate configurations.
They are all sequentially indexed with a natural number. Each single derivation step
is labelled with the name of the rule and the antecedent configurations on which the
rule is applied. For an introduction rule, we also labelled the step of introducing a
new assumption and we write the configuration that closes the sub-derivation and
where the temporary assumption is discharged.

The first example is a derivation of the axiom (And) (also known as CC [12]). Since
this is supposed to be a theorem of CT 4, we start from an empty configuration and
we try to derive a configuration which includes ((α > β) ∧ (α > γ)) ⊃ (α > (β ∧ γ))

3The negation of a declarative unit α : ω is a declarative unit of the form ¬α : ω.

4. LDS FOR CONDITIONAL LOGICS OF NORMALITY 139

at the initial world ω0. The derivation of R-literals in C4 and C8 is made using the
transitivity axiom of the labelling algebra.

C∅
C1〈[α > β : ω0, α > γ : ω0]〉 (Assump,C17)
C2〈[α : h1, Rω0h1]〉 (Assump,C16)
C3〈α : h2,�(α ⊃ β) : h2, Rh1h2〉 (> E,C1, C2)
C4〈Rω0h2〉 (DExp, C2, C3, T rans)
C5〈α : h3,�(α ⊃ γ) : h3, Rh2h3〉 (> E,C1, C3, C4)
C6〈[Rh3g1]〉 (Assump,C14)
C7〈[α : g1]〉 (Assump,C13)
C8〈α ⊃ β : g1〉 (�E,C3, DExp, C5, C6, T rans)
C9〈α ⊃ γ : g1〉 (�E,C5, C6)
C10〈β : g1〉 (⊃ E,C7, C8)
C11〈γ : g1〉 (⊃ E,C7, C9)
C12〈β ∧ γ : g1〉 (∧I, C10, C11)

C13〈α ⊃ (β ∧ γ) : g1〉 (⊃ I, C7 − C12)
C14〈�(α ⊃ (β ∧ γ)) : h3〉 (�I, C6 − C13)
C15〈α : h3,�(α ⊃ (β ∧ γ)) : h3, Rh1h3〉 (C5, C14, DExp, C3, C5, T rans)

C16〈α > (β ∧ γ) : ω0〉 (> I,C2 − C15)
C17〈((α > β) ∧ (α > γ)) ⊃ (α > (β ∧ γ)) : ω0〉 (⊃ I, C1 − C16)

The next example shows the entailment �α : ω0 `LDCL ¬α > α : ω0. In this
derivation, the reflexivity property of the labelling algebra is used to derive C8, h1

stays for the label hg¬α,α(ω0), whereas g1 abbreviates g¬α⊃α(h1).

C0〈�α : ω0〉 (InitialData)
C1〈[¬α : h1, Rω0h1]〉 (Assump,C9)
C2〈[Rh1g1]〉 (Assump,C7)
C3〈[¬α : g1]〉 (Assump,C6)
C4〈Rω0g1〉 (DExp, T rans, C1, C2)
C5〈α : g1〉 (�E,C0, C4)

C6〈¬α ⊃ α : g1〉 (⊃ I, C3 − C5)
C7〈�(¬α ⊃ α) : h1〉 (�I, C2 − C6)
C8〈¬α : h1,�(¬α ⊃ α) : h1, Rh1h1〉 (C1, C7, DExp, Refl)

C9〈¬α > α : ω0〉 (> I,C1 − C8)

The converse entailment ¬α > α : ω `LDCL �α : ω is proved below, where the labels
g1 and h1 abbreviate, respectively, gα(ω0) and hf¬α,α(g1).

C0〈¬α > α : ω0〉 (InitialData)
C1〈[Rω0g1]〉 (Assump,C8)
C2〈[¬α : g1]〉 (Assump,C7)
C3〈Rg1h1,¬α : h1,�(¬α ⊃ α) : h1〉 (> E,C0, C1, C2)
C4〈¬α ⊃ α : h1〉 (DExp, Refl,�E,C3)
C5〈α : h1〉 (⊃ E,C4, C2)
C6〈⊥ : h1〉 (∧I, C3, C5)

C7〈α : g1〉 (⊃ I, C2 − C6)
C8〈�α : ω0〉 (�I, C1 − C7)

140 Labelled Natural Deduction for Conditional Logics of Normality

Finally, we show here the axiom of the conditional logics of normality called Weak
Modus Ponens [7], given by the formula (α ∧ (α > β)) > β. The derivation of this
axiom illustrates how the LDCL system facilitates simpler derivations than a system
where the conditions are fully translated into modal formulae. This simplification is
allowed by the use of specific conditional rules. If we were not using the rules for the
conditional connective, we would have translated the Weak Modus Ponens axiom into
the following modal formula and proved it using only modal operators.

α ∧ (α > β) > β ≡ �(α ∧ [�(α ⊃ 3(α ∧�(α ⊃ β)))] ⊃ 3(α ∧ [�(α ⊃ 3(α ∧�(α ⊃
β)))] ∧�(α ∧ [�(α ⊃ 3(α ∧�(α ⊃ β)))] ⊃ β))).

In the derivation given here h1, h2, h3, g1 and g2 are, respectively, abbreviations for
hgα∧(α>β),β (ω0), hfα,β (h1), hgα,β (h2), gα∧(α>β)⊃β(h2) and gα⊃β(h3).

C∅
C1〈[α ∧ (α > β) : h1, Rω0h1]〉 (Assump,C8)
C2〈α : h1, α > β : h1〉 (∧E,C1)
C3〈α : h2,�(α ⊃ β) : h2, Rh1h2〉 (> E,Refl, C2)
C4〈[α : h3, Rh2h3]〉 (Assump,C9)
C5〈[Rh3g2]〉 (Assump,C8)
C6〈Rh2g2, Rh3h3〉 (DExp, T rans, C4, C5)
C7〈α ⊃ β : g2〉 (�I, C3, C6)

C8〈�(α ⊃ β) : h3〉 (�I, C5 − C7)
C9〈α > β : h2〉 (> I,DExp, Refl, C4 − C8)
C10〈α ∧ (α > β) : h2〉 (∧I, C3, C9)
C11〈[Rh2g1]〉 (Assump,C17)
C12〈[α ∧ (α > β) : g1]〉 (Assump,C16)
C13〈α : g1, α > β : g1〉 (∧E,C12)
C14〈α ⊃ β : g1〉 (�E,C3, C11)
C15〈β : g1〉 (⊃ E,C13, C14)

C16〈α ∧ (α > β) ⊃ β : g1〉 (⊃ I, C12 − C15)
C17〈�(α ∧ (α > β) ⊃ β) : h2〉 (�I, C11 − C16)
C18〈�(α ∧ (α > β) ⊃ β) : ∧α ∧ (α > β) : h2, Rh1h2〉 (C17, C10, C3)

C19〈(α ∧ (α > β)) > β : ω0〉 (> I,C1 − C18)

5 Semantics, Soundness and Completeness

A propositional CLDS can be considered to be a “semi-translated” approach to condi-
tional logic – a Kripke-like accessibility relation is syntactically expressed, but without
requiring the full translation of conditional formulae into modal formulae and the lat-
ter into first-order sentences. In this section, we define a translation method of a
propositional CLDS into a first-order logic, and provide the semantic notion of a con-
sequence relation, |=LDCL, as well as the definition of a model and of satisfiability of
a configuration, also in terms of classical semantics.

5. SEMANTICS, SOUNDNESS AND COMPLETENESS 141

Declarative units α : ω can be interpreted as the formula α is true at the possible
world ω. In what follows, such Kripke semantic notions are expressed in terms of first-
order statements of the form JαKω, where JαK is a unary predicate symbol. Hence the
semi-extended labelling language ext(LL,LC) is further expanded to ext+(LC ,LL)
by adding predicate symbol JαK for each wff α of LC . The relationships between these
predicates are constrained by a set of first-order axiom schemas which capture the
satisfiability conditions (given in Definition 2.3) of each type4 of formula α. These
axiom schemas extend the labelling algebra A of a propositional CLDS into a first-
order theory denoted with A+ and called an extended algebra. Formal definitions are
given below.

Definition 5.1 (Extended Algebra) Given an extended labelling language
ext+(LC ,LL) and a labelling algebra A, the extended algebra A+ is the first–order
theory in ext+(LC ,LL) consisting of the following axiom schemas (Ax1)–(Ax10),
together with the axioms of A:

For any wffs α and β of LC :

∀x(Jα ∧ βKx ≡ (JαKx ∧ JβKx)) (Ax1)

∀x(J¬αKx ≡ ¬JαKx) (Ax2)

∀x(Jα ∨ βKx ≡ (JαK(x) ∨ JβKx)) (Ax3)

∀x(Jα ⊃ βKx ≡ JαKx ⊃ JβKx) (Ax4)

∀x(J3αKx ⊃ (Rxfα(x) ∧ JαKfα(x))) (Ax5)

∀x((∃y(Rxy ∧ JαKy) ⊃ J3αKx) (Ax6)

∀x((Rxgα(x) ⊃ JαKgα(x)) ⊃ J�αKx) (Ax7)

∀x(J�αKx ⊃ (∀y(Rxy ⊃ JαKy))) (Ax8)

∀x(((Rxhgα,β (x) ∧ JαKhgα,β (x)) ⊃ (Ax9)
∃y(Rhgα,β (x)y ∧ JαKy ∧ J�(α ⊃ β)Ky)) ⊃ Jα > βKx)

∀x(Jα > βKx ⊃ (Ax10)
∀y(Rxy ∧ JαKy ⊃ (Ryhfα,β (x) ∧ JαKhfα,β (x) ∧ J�(α ⊃ β)Khfα,β (x))))

The first four axiom schemas express the distributive properties of the logical con-
nectives among the monadic predicates of ext+(LC ,LL). They cover the Kripke
semantic definition of satisfiability of the logical connectives ∧, ¬, ∨ and ⊃ respec-
tively. (Ax5) forces the accessibility relation R on the labels generated by the applica-
tion of function symbols fαi of ext+(LC ,LL). Axiom schemas (Ax5)–(Ax6) together
cover the Kripke semantic definition of the modal operator 3. (i.e. the statement
∀x(∃y(R(x, y)∧ JαKy) ≡ J3αKx) can be derived from (Ax5)–(Ax6)). Analogously ax-
iom schemas (Ax7)–(Ax8) together cover the Kripke semantic definition of the modal

4The type of a wff is given by the main connective of the wff itself.

142 Labelled Natural Deduction for Conditional Logics of Normality

operator 2. (i.e. the statement ∀x(J2αKx ≡ ∀y(R(x, y) ⊃ JαKy)) can be derived from
(Ax7)–(Ax8)). Finally, axiom schemas (Ax9) and (Ax10) cover together Boutilier’s
semantic definition of the normal conditional operator (as given in Definition 2.3).

A translation method is defined next. It associates syntactic expressions of a
propositional CLDS with sentences of the first-order language ext+(LC ,LL), and
hence associates theories (configurations) with first-order theories in the language
ext+(LC ,LL). Each declarative unit α : ω is translated into the sentence JαKω, and
R-literals are translated as themselves. Therefore, the first-order translation of a
configuration is a first-order theory including the R–literals, which are present in the
diagram of the configuration, and the set of monadic formulae JαKω that correspond
to the declarative units present in the configuration. A formal definition is given
below.

Definition 5.2 (First-order Translation of a Configuration) Let C = 〈D, f〉 be
a configuration. The first-order translation of C, written FOT (C), is the theory written
in ext+(LC ,LL) and defined by FOT (C) = D ∪∆, where ∆ = {JαKω | α ∈ f(ω)}.

Note that, since labels can only be ground terms of the language ext(LC ,LL), the
first-order translation of a configuration is a set of ground literals of the language
ext+(LC ,LL). Notions of models, satisfiability and semantic entailment are given in
terms of classical semantics using the following definitions.

Definition 5.3 (Semantic Structure of a LDCL) Given an LDCL system and
the associated extended algebra A+, M is a semantic structure of LDCL, if M is a
model of A+.

Note that different classes of semantic structures can be obtained by considering
different underlying labelling algebrae. In this paper, we will consider mainly semantic
structures for the labelling algebra given in Definition 3.3.

Definition 5.4 (Satisfiability of Declarative Units and R-literals) Let α : ω
be a declarative unit. α : ω is satisfiable (with respect to an LDCL system) if there
exists a semantic structure M such that M |=FOL JαKω). In this case M is said to
satisfy α : ω, written as M |=LDCL α : ω. Let R be an R-literal. R is satisfiable
(with respect to an LDCL system) if there exists a semantic structureM such that
M |=FOL R. In this caseM is said to satisfy R, written asM |=LDCL R.

Definition 5.5 (Satisfiability of a Configuration) Let C be a configuration of a
LDCL system. We say that a semantic structure M satisfies a configuration C
denoted byM |=LDCL C, if for each declarative unit or R-literal δ ∈ C, we have that
M |=LDCL δ.

Definition 5.6 (Semantic Entailment) Let A+ be the extended algebra of a
LDCL system, let C = 〈D, f〉 and CI = 〈DI , f I〉 be two configurations and let
FOT (C) and FOT (CI) be their first-order translations. We say that C semantically
entails CI denoted by C |=LDCL C

I if (i) A+ ∪ FOT (C) |=FOL R for each R ∈ DI
and (ii) A+ ∪ FOT (C) |=FOL JαKω for each JαKω ∈ ∆I .

5. SEMANTICS, SOUNDNESS AND COMPLETENESS 143

5.1 Soundness and Completeness

In the previous section, the notions of a syntactic and semantic consequence relation
have been defined, so completing the description of a propositional LDCL system as a
logical framework. Three important results are proved in this section, which show that
(i) the two notions of consequence relation are equivalent and (ii) the propositional
LDCL system fully detailed in this paper really is a generalisation of the standard
Boutilier’s conditional logic CT 4. To show (i), it is proved that the derivability
relation `LDCL is sound and complete with respect to the semantic entailment relation
|=LDCL, whereas to show (ii), it is proved that Boutilier’s conditional logic CT 4 is
strictly subsumed by the corresponding propositional LDCL system. Many of the
propositions, lemmas and theorems in this section are proved reasoning by cases, but
for space limitation only cases relevant to the conditional connective are shown here.
The reader is referred to [33] for full detailed proofs.

5.1.1 Soundness

The soundness property states that whenever there exists a natural deduction proof
of a configuration C′

from a configuration C then C semantically entails C′
. In general

this type of theorem is proved by induction on the number of inference steps of the
assumed derivation. However, the natural deduction feature of using temporary new
assumptions in a derivation needs particular attention, since it temporarily alters the
initial theory. Proofs of soundness described in the literature often adopt a particular
technique, which is that of defining for each step of the derivation the notion of a
context – i.e. the set of all the assumptions which have been introduced and not yet
discharged. However a different technique is adopted here. The basic idea is to define
the notions of length of an inference rule and of size of a proof, and apply induction on
the size of the assumed derivation. In this way there is no difference (apart from the
length) between the inference rules that introduce new assumptions and the ones that
do not introduce new assumptions. At the inductive step the important consideration
is the total size of the subproof under consideration.

Informally, given a LDCL proof, the size of a proof is the sum of the length of the
inference rules used in the proof. Inference rules of an LDCL system can be grouped
into four different categories, depending on the number of their subderivations. The
definition of length of an inference rule, depends on the category the rule belongs to.
The first category includes only the diagram reduction rule DRed, which is the only
inference rule that does not infer new declarative units or new R–literals and does not
use any LDCL subderivation as condition. This rule is defined to have length equal
to zero. The second category consists of inference rules that infer new declarative
units and/or new R–literals without using any subderivations as conditions. Rules
belonging to this category have length equal to 1. Examples are, for instance, ∨I and
∧E. The third category includes those rules that require only one subderivation, as for
instance the ⊃I or the RIntr rule. The length of these rules is given by the smallest of
the sizes of all subderivations that can be used as a condition of the rule, incremented
by 1. Finally, the fourth category includes rules that have two subderivations as
conditions. The only rule of this category is the ∨E rule. In this case the length is
given by the sum of the lengths of the smallest subderivation that can be used as the

144 Labelled Natural Deduction for Conditional Logics of Normality

two respective conditions of the rule, incremented by 1.

Given that the semantics of an LDCL system is based on a first-order translation
method, the proof of the soundness property of `LDCL with respect to |=LDCL is
based on the soundness of the first-order classical derivability relation `FOL. The
formal statement of the theorem is given in Theorem 5.10 and a diagrammatic rep-
resentation of the proof is given in Figure 1. The soundness statement is proved
by the composition of three main steps. The first step proves that the hypothesis,
C `LDCL CI implies that A+ ∪FOT (C) `FOL FOT (CI) (see Lemma 5.9). This triv-
ially implies (by soundness of first-order logic) that A+ ∪ FOT (C) |=FOL FOT (CI),
which gives the second step of the proof. The third step of the proof is given by
the definition of the semantic entailment between configurations, which directly gives
that C |=LDCL C

I (see Definition 5.6).

Proposition 5.7 (Classical soundness) Let A+ be the algebra of a LDCL and
C,CI two configurations. IfA+∪FOT (C) `FOL FOT (CI) thenA+∪FOT (C) |=FOL

FOT (CI).

Proof. By hypothesis, A+ ∪ FOT (C) derives JαKω for each JαKω ∈ ∆ and A+ ∪
FOT (C) derives R, for each R ∈ D. By soundness of first-order logic, A+ ∪FOT (C)
semantically entails α : ω and A+∪FOT (C) semantically entails R as defined before;
thus A+ ∪ FOT (C) |=FOL FOT (CI).

Proposition 5.8 Let A+ be the algebra of a LDCL system and let
〈{C0, ..., Ck, ..., Cn}, µ〉 be a proof where k ≥ 0 and n > k and s is a map from
{0, ..., n − 1} to I s.t. Ci Ci+1 ∈ I. Let µ(j) be the inference rule Dia-
gram reduction for all k ≤ j < n and let A+ ∪ FOT (C0) `FOL FOT (Ck). Then
A+ ∪ FOT (C0) `FOL FOT (Cn).

Proof. Since the rule of Diagram reduction presupposes that its conclusion - a con-
figuration - is contained in the original configuration we have that Cn ⊆ Ck; by
reflexivity of the `FOL relation we obtain A+ ∪ FOT (C0) `FOL FOT (Ck) and by
transitivity of `FOL, A+ ∪ FOT (C0) `FOL FOT (Cn).

Proposition 5.8 allows us, without loss of generality, to prove, Lemma 5.9 for those
derivations that do not apply DRed in the last step of the proof.

Lemma 5.9 (Soundness with respect to Translations) Let A+ be the ex-
tended algebra of a LDCL, let C and CI be two configurations and let FOT (C) and
FOT (CI) be their first order translations. If C `LDCL CI then A+ ∪FOT (C) `FOL
FOT (CI)

Proof. Given a derivation 〈{C0, ..., Cn}, µ〉 where C0 = C and Cn = CI , we proceed
by induction on the length of the smallest derivations. When the length of the
derivation is zero, we have that Cn ⊆ C0, and A+ ∪ FOT (C0) `FOL FOT (Cn).
Now, for the inductive step, suppose the length of the derivation
length(〈{C0, ..., Cn}, µ〉) = λ, λ > 0. Also, assume that µ(n−1) is not the rule of dia-
gram reduction. When n = 1, n−1 = 0 and length(Cn−1 Cn, µ) = λ. For n > 1 we

5. SEMANTICS, SOUNDNESS AND COMPLETENESS 145

have that length(Cn−1 Cn, µ(n−1)) ∈ (O, λ] and length(〈{C0, ..., Cn}, µ′〉) ∈ [0, n)
where µ′(i) = µ(i) for all i ∈ [0, n − 2]. Thus, A+ ∪ FOT (C0) `FOL FOT (Cn−1).
Now we need to show that A+ ∪ FOT (Cn−1) `FOL FOT (Cn) for any rule µ(n − 1)
in I. We only show this for the case when the rule µ(n− 1) is a conditional rule.

• In the case where the inference rule (> I) is applied in the last line a deriva-
tion, there exists an R-literal of the form Rωh1, where h1 abbreviates hgα,β (ω)
, and a declarative unit α : h1 such that Cn−1 + [Rωh1, α : h1] `LDCL α :
ω′,�(α ⊃ β) : ω′, Rh1ω

′ holds for some ω′ and Cn is equal to Cn−1 + [α > β : ω].
Therefore FOT (Cn) = FOT (Cn−1) ∪ {Jα > βKω}. By reflexivity of `FOL,
A+ ∪ FOT (Cn−1) `FOL FOT (Cn−1) holds; but we still need to show that
A+ ∪ FOT (Cn−1) `FOL Jα > βKω.

Let 〈{Cn−1 + [Rωh1, α : h1], ..., CS}, µ′〉 with α : ω′,�(α ⊃ β) : ω′, Rh1ω
′ ∈ CS

be a proof of the smallest length of Cn−1 + [Rωh1, α : h1] `LDCL α :
ω′,�(α ⊃ β) : ω′, Rh1ω

′ for some ω′. By hypothesis of inductive step,
0 < l(Cn−1 Cn, (> I)) = 1 + l1 ≤ λ, where l1 is the smallest length
of subderivations that can be used as conditions of the inference rule (> I).
Then l1 = length(〈{Cn−1 + [Rωh1, α : h1], ..., CS}, s′〉 ∈ [0, λ). By in-
ductive hypothesis, A+ ∪ FOT (Cn−1) ∪ {Rωh1, α : h1} `FO FOT (CS) and
A+ ∪ FOT (Cn−1) ∪ {Rωh1, α : h1} `FOL JαKω′ ∧ J�(α ⊃ β)Kω′ ∧Rh1ω

′.
By the first order logic deduction theorem we have A+ ∪ FOT (Cn−1) `FOL
(Rωh1 ∧ JαKh1) ⊃ ∃y(JαKy ∧ J�(α ⊃ β)Ky ∧ Rh1y). Thus by axiom (Ax9),
A+, FOT (Cn−1) `FOL Jα > βKω.

• In the case where the inference rule (> E) is applied as last rule in
a derivation, then there exists a R-literal Rωω′ ∈ Cn−1 and declarative units
α : ω′, α > β : ω ∈ Cn−1 and Cn = Cn−1 + [α : h2,�(α ⊃ β) : h2, Rω

′h2], where h2

abbreviates hfα,β (ω
′). Then {Jα > βKω, JαKω′, Rωω′} ⊆ FOT (Cn−1) and

FOT (Cn) = FOT (Cn−1) ∪ {JαKh2, J�(α ⊃ β)Kh2, Rω
′h2}. By reflexivity of `FOL,

A+, FOT (Cn−1) `FOL FOT (Cn−1); and by axiom (Ax10) and FOT (Cn−1), we
have A+, FOT (Cn−1) `FOL JαKh2;A+, FOT (Cn−1) `FOL J�(α ⊃ β)Kh2 and
A+, FOT (Cn−1) `FOL Rω1h2.

Theorem 5.10 (Soundness) If there is a natural deduction proof of a configuration
CI from a configuration C then C semantically entails CI , i.e. if C `LDCL CI then
C |=LDCL C

I .

The proof of the theorem is illustrated by the diagram below. The diagram represents
a proof technique introduced by Russo in [43] for the case of modal logic described as
labelled deductive systems and further developed by Broda and Russo in [10].

Proof. By hypothesis C `LDCL CI ; by Lemma 5.9, A+∪FOT (C) `FOL FOT (CI).
Proposition 5.7 gives usA+∪FOT (C) |=FOL FOT (CI), and by definition of semantic
entailment we get C |=LDCL C

I .

146 Labelled Natural Deduction for Conditional Logics of Normality

Fig. 1. Diagram of the Soundness Proof

C `LDCL CI ===================⇒ C |=LDCL C
I

A+ ∪ FOT (C) `FOL FOT (CI)
?

- A+ ∪ FOT (C) |=FOL FOT (CI)

6

5.1.2 Completeness Formalisation

The proof of completeness is an adaptation of the Lindenbaum/Henkin [27] classical
proof technique of constructing maximal consistent sets, as applied by Makinson in
[36] to prove completeness of modal logics with respect to Kripke models and extended
by Broda and Russo to labelled modal logics in [10, 44]. The completeness theorem
is proved by contraposition. We show that, if C 0LDCL C

I then C 6|=LDCL C
I . To

do this we provide a definition of maximal consistent configurations and we show
relevant properties of such configurations with respect to declarative units and R-
literals. Omitted proofs can be found in [33].

Definition 5.11 (Consistent Configuration) Let C be a configuration of an ar-
bitrary LDCL. C is consistent if C 0LDCL ⊥ : ω for some ground term ω of
ext(LL,LC). We say that C is inconsistent if it is not consistent.

Definition 5.12 (Maximal Consistent Configuration) The configuration de-
noted by Cmax is a maximal consistent configuration of LDCL if it is consistent
and if for any δ, where δ is either a declarative unit or an R-literal not in Cmax, the
configuration Cmax + [δ] is inconsistent.

The use of symbols fα, gα, hgα,β , hfα,β is related to the interpretation of the opera-
tors associated with modalities and conditionals in the proof procedure. In order to
guarantee consistency in the construction of a maximal consistent configuration, it
is necessary that these skolem constant symbols satisfy some properties. These are
stated below.

Proposition 5.13 Let C = 〈D, f〉 be a consistent configuration, ω an arbitrary label
and α be a wff of LC . Then (i) if 3α ∈ f(ω) then ¬Rωfα(ω) /∈ D and ¬α /∈ f(fα(ω)),
(ii) if ¬�α ∈ f(ω) then ¬Rωgα(ω) /∈ D and α /∈ f(gα(ω)), (iii) if α > β ∈ f(ω), Rωω′ ∈
D and α ∈ f(ω′), then ¬Rω′hfα,β (ω′) /∈ D, ¬α /∈ f(hfα,β (ω

′)) and ¬ � (α ⊃ β) /∈
f(hfα,β (ω

′)), and (iv) if ¬α > β ∈ f(ω) then ¬Rωhgα,β (ω) /∈ D, ¬α /∈ f(hgα,β (ω)),
and for any ω′, either α /∈ f(ω′), �(α ⊃ β) /∈ f(ω′) or Rhgα,β (ω)ω′ /∈ D.

The proof consists in showing that if the above conditions do not hold, then it is
possible to derive an inconsistency within a configuration C and then contradict the
hypothesis that C is consistent. For details of the proof the reader is referred to [33].

5. SEMANTICS, SOUNDNESS AND COMPLETENESS 147

The next theorem is a characterisation of the derivability relation. It expresses the
fact that CI is derivable from C if each R-literal or a declarative unit can be derived
from C.(For the proofs of the next theorems and propositions, the reader is referred
to [33])

Theorem 5.14 (Characterisation of Derivability) Let C,CI be two configura-
tions of an arbitrary LDCL system, let δ be either a declarative unit or R-literal. If
CI−C is finite then C `LDCL CI if and only if for all δ ∈ CI−C we have C `LDCL δ.

The next proposition and the next theorem are important properties of configura-
tions. The proposition that follows refers to an important property of consistent
configurations, namely, consistency of sub-configurations. Theorem 5.16 states the
compactness property for an LDCL system.

Proposition 5.15 Let C be an arbitrary configuration of a LDCL system, δ be a
declarative unit or R-literal. Then, if C + [δ] is consistent then for any configuration
Ci, Ci ⊆ C we have Ci + [δ] is consistent.

Theorem 5.16 (Finiteness) Let C be an arbitrary configuration of an arbitrary
LDCL system, let δ be a declarative unit or R-literal. If C `LDCL δ then there exist
a finite configuration CI , CI ⊆ C and CI `LDCL δ.

Corollary 5.17 (Compactness) Let C be a configuration of a labelled deductive
conditional logic system. If for any finite configuration CI , CI ⊆ C, CI is consistent,
then C is consistent.

Definition 5.18 (Construction of Maximal Consistent Configuration) Let
LDCL be an arbitrary labelled deductive conditional logic system, δ1, δ2, ...δn, ...
be an ordering on the set of declarative units and R-literals of LDCL. Let C be
a consistent configuration; let C0 = C. If C0 is consistent then we construct a
sequence of consistent configurations Ci by induction on i and for each δi, Ci is
defined as: Ci = Ci−1 + [δi] if Cn−1 + [δi] is consistent; Ci = Ci−1, otherwise. Let
C0, C1, ..., Cn, ... be the sequence of configurations so constructed. Then Cmax is the
configuration which contains all δi ∈ Ci (for all i ≥ 1), i.e. Cmax = ∪i≥0Ci.

Notice that eachCi included in Cmax is consistent, by construction and by the assump-
tion that C0 is consistent. Moreover, each Ci ⊆ Cmax is a consistent configuration. It
is therefore easy to show that given a consistent configuration C and a configuration
Cmax constructed as in Definition 5.18, Cmax is consistent and maximal.

Proposition 5.19 (Consistency w.r.t Declarative Units/R-literals) Let
Cmax be a maximal consistent configuration of our system of LDCL. Then (i) for
any declarative unit α : ω, α : ω and ¬α : ω are not both in Cmax; (ii) for any
R-literal R, R and ¬R are not both in Cmax.

Proposition 5.20 (Maximality on Declarative Units/R-literals) Let Cmax be
a maximal consistent configuration of an arbitrary LDCL. Then (i) for any declara-
tive unit α : ω, either α : ω ∈ Cmax or ¬α : ω ∈ Cmax; (ii) for any R-literal R, either
R ∈ Cmax or ¬R ∈ Cmax.

148 Labelled Natural Deduction for Conditional Logics of Normality

Proposition 5.21 Let Cmax be a maximal consistent configuration. Then for any δ,
where δ is a declarative unit or R-literal and any wffs α, β, we have.

1. α ∧ β : ω ∈ Cmax ⇐⇒ α : ω ∈ Cmax and β : ω ∈ Cmax
2. if ¬α : ω ∈ Cmax or β : ω ∈ Cmax then α ⊃ β : ω ∈ Cmax
3. α ∨ β : ω ∈ Cmax ⇐⇒ α : ω ∈ Cmax or β : ω ∈ Cmax
4. if α : ω ∈ Cmax and α ⊃ β : ω ∈ Cmax then β : ω ∈ Cmax
5. if 3α : ω ∈ Cmax then α : fα(ω) ∈ Cmax and Rωfα(ω) ∈ Cmax
6. if Rωω1 ∈ Cmax and α : ω1 ∈ Cmax then 3α : ω ∈ Cmax
7. if ¬Rωgα(ω) ∈ Cmax or α : gα(ω) ∈ Cmax then �α : ω ∈ Cmax
8. if �α : ω ∈ Cmax and Rωω1 ∈ Cmax then α : ω1 ∈ Cmax
9. if α > β : ω ∈ Cmax and Rωω′ ∈ Cmax and α : ω′ ∈ Cmax then Rω′hfα,β (ω

′) ∈
Cmax and α : hfα,β (ω

′) ∈ Cmax and �(α ⊃ β) : hfα,β (ω
′) ∈ Cmax

10. if ¬α : hgα,β (ω) ∈ Cmax or ¬Rωhgα,β (ω) ∈ Cmax or ∃ω′ (α : ω′ ∈ Cmax and
Rhgα,β (ω

′) ∈ Cmax and �(α ⊃ β) : ω′ ∈ Cmax) then α > β : ω ∈ Cmax

Proof. The cases for (9) and (10) are proved here; for the other cases see [33]. We
again use the abbreviations h1 for hgα,β (ω) and h2 for hfα,β (ω

′). First, assume that
α > β : ω ∈ Cmax, α : ω′ ∈ Cmax and Rωω′ ∈ Cmax. We reason by contradiction.
Suppose that it is not the case that α : ω′ ∈ Cmax and �(α ⊃ β) : ω′ ∈ Cmax and
Rh2ω

′ ∈ Cmax. Then ¬α : ω′ ∈ Cmax or ¬� (α ⊃ β) : ω′ ∈ Cmax or ¬Rh2ω
′ ∈ Cmax.

We have either Rω′h2 ∈ Cmax or α : h2 ∈ Cmax or �(α ⊃ β) : h2 ∈ Cmax which,
using (> E), contradicts the assumption.

Now suppose that ¬Rωh1 ∈ Cmax or (¬α : h1 ∈ Cmax) or for some ω′,
(Rh1ω

′ ∈ Cmax ∧ α : ω′ ∈ Cmax ∧ �(α ⊃ β) : ω′ ∈ Cmax). Assume by contradiction
that α > β : ω /∈ Cmax then by Propositions 5.20 and 5.13 ¬(α > β) : ω ∈ Cmax.
There are three possible cases.
Case (i): Suppose ¬Rωh1 ∈ Cmax. The following derivation leads to a contradiction.
Cmax〈¬Rωh1〉 (InitialData)
C1〈[α : h1, Rωh1]〉 (Assump,C3)
C2〈Rh1h1,�(α ⊃ β) : h1〉 (⊥E , DExp, Refl, C1, Cmax)
C3〈α > β : ω〉 (> I,C1, C2)
C4〈⊥ : ω〉 (∧E,C3, Cmax)

Case(ii): Suppose ¬α : h1 ∈ Cmax. A similar derivation to that used in Case
(i) leads to a contradiction.
Case(iii): Suppose Rh1ω

′ ∈ Cmax and α : ω′ ∈ Cmax and �(α ⊃ β) : ω′ ∈ Cmax
for some ω′. Then α > β : ω ∈ Cmax can be derived using (>I), again yielding a
contradiction.

Proposition 5.22 Let LDCL be a labelled deductive conditional logic system such
that ∀x∀y∀z(Rxy∧Ryz ⊃ Rxz) ∈ A, let Cmax be a maximal consistent configuration,
let ω1, ω2, ω3 ∈ ext(LC ,LL) be such that Rω1ω2 ∈ Cmax and Rω2ω3 ∈ Cmax. Then
Rω1ω3 ∈ Cmax.

5. SEMANTICS, SOUNDNESS AND COMPLETENESS 149

Proposition 5.23 Let LDCL be a labelled deductive conditional logic system such
that ∀xRxx ∈ A, let Cmax be a maximal consistent configuration. Then for each
ω ∈ ext(LC ,LL), Rωω ∈ Cmax.

In order to prove the model existence lemma we need to define the notion of canonical
interpretation. In what follows, we define the notion of canonical interpretation with
respect to maximal consistent configurations.

Definition 5.24 (Canonical Interpretation) Let Cmax be a maximal consistent
configuration relative to LDCL, and let FOT (Cmax) = Dmax∪∆max where ∆max =
{JαKω | α : ω ∈ Cmax}, be its first order translation. LetHU be the Herbrand universe
of the language ext+(LC ,LL). The canonical interpretation of the maximal consis-
tent configuration Cmax is the pair MCmax = (HU , ıCmax) where the interpretation
function ıCmax is defined as follows:

i)
f
ω
fıCmax = ω for each ground term ω ∈ ext+(LC ,LL)

ii)
f
R
fıCmax = {(ωi, ωj)|Rωiωj ∈ FOT (Cmax)} for R ∈ ext+(LC ,LL)

iii)
fJαK fıCmax = {ωi|JαKωi ∈ FOT (Cmax)} for JαK ∈ ext+(LC ,LL).

Next we show that given a maximal consistent configuration Cmax of a LDCL, the
canonical interpretation is a semantic structure of the LDCL. To show this property,
we have to prove that MCmax is a model of the algebra A+.

Lemma 5.25 (Model Existence for Extended Algebra) Let Cmax be a maxi-
mal consistent configuration of our LDCL system, let A+ be the extended algebra
of LDCL and FOT (Cmax) be its first-order translation. Then MCmax is a model of
A+.

Proof. For the proof see [33].

Lemma 5.26 (Model Existence Lemma) Let Cmax be a maximal consistent con-
figuration of our LDCL system. For any δ as above, there exist a model structure
M such thatM |=LDCL δ if δ ∈ Cmax andM 6|=LDCL δ if δ is not in Cmax.

Proof. We have to consider the two possibilities (δ as a declarative unit or as an
R-literal). If δ is a declarative unit and α : ω ∈ Cmax then JαKω ∈ FOT (Cmax);
Then MCmax |=FOL JαKω; hence MCmax |=LDCL JαKω. If α : ω /∈ Cmax then
JαKω /∈ FOT (Cmax). Therefore ω /∈

f
α
fıCmax and MCmax 6|=FOL JαKω. Hence

MCmax 6|=LDCL α : ω.
If δ is an R-literal it can be either of the form Rωiωj or of its negation. If δ = Rωiωj
and δ ∈ Cmax we have that Rωiωj ∈ FOT (Cmax). Thus MCmax |=FOL Rωiωj and
from that MCmax |=LDCL Rωiωj .
If, on the other hand, Rωiωj /∈ Cmax then Rωiωj /∈ FOT (Cmax). Therefore,
MCmax 6|=FOL Rωiωj , and MCmax 6|=LDCL Rωiωj.
Now, if δ is the negation of Rωiωj, i.e., δ = ¬Rωiωj. In this case, if δ ∈ Cmax
the Rωiωj /∈ Cmax. Therefore Rωiωj /∈ FOT (Cmax) and MCmax 6|=FOL Rωiωj and
MCmax |=FOL ¬Rωiωj. Thus, MCmax |=LDCL ¬Rωiωj

150 Labelled Natural Deduction for Conditional Logics of Normality

Corollary 5.27 Let C be a consistent configuration of a LDCL. Then MCmax
satisfies C.

Proposition 5.28 Let LDCL be a labelled deductive conditional logic system and
let C be a configuration of it; let δ be a declarative unit or R-literal such that δ /∈ C.
If C 6`LDCL δ then C + [¬δ] is a consistent configuration.

Theorem 5.29 (Completeness) Let C and CI be two LDCL configurations such
that their difference is finite and let A+ be the extended algebra of LDCL. If
C |=LDCL C

I then C `LDCL CI .

Proof. Assuming that C 0LDCL C
I then by theorem 5.14 there exists a δ ∈ CI −C

(δ is a declarative unit or R-literal) such that C 0LDCL δ. Therefore by proposition
5.28 C + [δ] is a consistent configuration. By the corollary of the model existence
lemma, the interpretation of the maximal consistent configuration Mi([C + [¬δ]])
satisfies the configuration C + [¬δ]; thus, by definition, Mi |=LDCL C and also
Mi |=LDCL ¬δ. When δ is a declarative unit α : ω, we have Mi |=FOL FOT (¬δ)
where FOT (¬δ) = J¬αKω, then Mi |=FOL J¬αKω, and by lemma 5.25, Mi |=FOL

¬JαKω. Therefore, Mi 6|=FOL JαKω, and as a consequence, A+, FOT (C) 6|=FOL

δ; thus C 6|=LDCL CI . When δ is an R-literal, Mi |=FOL ¬δ. By satisfiability
of first order logic Mi 6|=FOL δ and by definition of satisfiability of configurations
A+, FOT (C) 6|=FOL δ; thus C 6|=LDCL C

I .

5.2 Correspondence Results

We show that our logical system is a generalisation of the conditional logic of normal-
ity, since it allows reasoning about structures of (possibly singleton) actual worlds. In
order to show this we prove that, if we impose appropriate restrictions on initial con-
figurations, then there exists a correspondence between a labelled conditional logic of
normality and the corresponding axiomatic presentation of conditional logic systems.
This generalisation is possible due to the fact that the correspondence with the BCL
logic exists if and only if the initial configuration is empty. In addition we prove that
the correspondence does not hold if we do not impose any restrictions. To prove that
there is such a correspondence one has to identify a particular constant symbol, for
instance w0, in the labelling language LL and to allow only initial configurations of
the form Ci = 〈∅, fi〉 where for any label ω ∈ ext(LC ,LL), ω 6= w0, we have fi(ω) = ∅.
This restriction imposes that the only initial assumptions are formulae associated to
the label w0 and this corresponds to the concept of local assumptions from modal log-
ics. The set D is empty so that the only assumptions at the beginning are formulas
of the conditional logic. Next we are going to prove that any declarative unit α : ω
can be derived from an empty initial configuration Ci if and only if the formula α is
derivable in the axiomatic system of Normal Conditional Logic presented in Definition
2.5, from the set of formulae that appears in Ci.

Theorem 5.30 (Correspondence for the Normal Conditional Logic BCL)
Let 〈BCL,`BCL〉 be the axiomatic system for the logic BCL given in Def.2.5; let
C∅ = 〈∅, f∅〉 be the initial configuration of an LDCL, where f = ∅ for any label ω,
and let α ∈ LC . Then `BCL α ⇐⇒ ∀ω ∈ ext(LC ,LL), C∅ `LDCL α : ω.

5. SEMANTICS, SOUNDNESS AND COMPLETENESS 151

Proof. The proof is divided into two parts. The first is the “if ” part, for which we
show the contrapositive statement. We prove that, for a given α ∈ LC , if 0BCL α
then there exists a label ω ∈ ext(LC ,LL) such that C∅ 0LDCL α : ω. Since both
`BCL and `LDCL are sound and complete, it is sufficient to prove that if 6|=BCL α
then there exists an ω ∈ ext(LC ,LL) such that C∅ 6|=LDCL α : ω. Now, suppose
that 6|=BCL α; since C∅ is empty we show that there exists a model structure which
satisfies ¬α : ω; by hypothesis and by semantic validity, there exists a Kripke model
which satisfies the formula ¬α. Now, let M = 〈W,R,v〉 be this model. Thus there
exists a possible world w ∈W such that M,w |=BCL ¬α. Let us assume a canonical
well-ordering on the set W, let SAT = {wi|wi ∈ W and M,wi |=BCL ¬α}, and
let w⊥ be the first element of SAT according to W canonical well-ordering. Then
M,w⊥ |=BCL ¬α. Let ι be an interpretation over the language ext(LC ,LL), where
its universe of discourse W is defined as follows.
(1) For constants wi:

f
wi

fι = w⊥.
(2) For function symbols:

(a)
f
fφ

fι = fφ : W → W such that for each w ∈ W we define: for a
non-empty set SATφ(w) = {ws|ws ∈ W,Rwws and M,ws |=BCL φ}, we de-
fine fφ(w) = w⊥s where w⊥s is the first element of SATφ(w) with respect to the
assumed order of W. Otherwise, fφ(w) = w⊥W , where w⊥W is the first element of W.

(b)
f
gφ

fι = gφ : W →W such that for each w ∈W we define: if for all w′ ∈W
not Rww′, then gφ(w) = w. If for each wi ∈ ACCESS(w) = {w′|w′ ∈W ∧Rww′}
we have M,wi |=BCL φ, then gφ(w) = w⊥a where w⊥a is the first element of
ACCESS(w) with respect to the assumed order of W. Otherwise, gφ(w) = w⊥s′
where w⊥s′ is the first element of the non-empty set SAT¬φ = {w′|w′ ∈ W,Rww′

and M,w′ |=BCL ¬φ}, according to W’s order.

(c)
f
hfφ,ψ

fι = hfφ,ψ : W → W such that for each w ∈ W we define: for a non-
empty set SATφ,ψ(w) = {ws|ws ∈W, ∃w′′(w′′ ∈W, Rww′′, Rw′′ws, M,ws |=BCL φ
and M,ws |=BCL �(φ ⊃ ψ)}, we define hfφ(w) = w⊥s where w⊥s is the first element
of SATφ,ψ(w) with respect to the assumed order of W. Otherwise, hfφ,ψ (w) = w⊥W ,
where w⊥W is the first element of W.

(d)
f
hgφ,ψ

fι = hgφ,ψ : W → W such that for each w ∈ W we define: if for all
w′ ∈ W not Rww′, then hgφ,ψ(w) = w. If for each wi ∈ Acc(w) = {ws|ws ∈ W
and Rwws, either ¬(M,ws |=BCL φ) or ∃w′′ ∈ W(Rwsw′′, M,w′′ |=BCL φ and
M,w′′ |=BCL �(φ ⊃ ψ))} then ghφ,ψ(w) = w⊥s where w⊥s is the first element of
Acc(w) with respect to the assumed order of W. Otherwise ghφ,ψ(w) = w⊥s′ , where
w⊥s′ is the first element of the non-empty set Sat′ = {ws′ |w ∈W and ws′ /∈ Acc(w)},
according to the assumed order of W.
(3) For the predicate JφK, fJφK fι = {w|w ∈W and M,w |=BCL φ}.
(4) For the binary predicate R,

f
R
fι = R.

Now we have to show that 〈W, ι〉 is a LDCL semantic structure. We have to prove
that 〈W, ι〉 is a classical model of A+. We proceed by cases on each of the axioms;
see [33] for the proof. The cases for axioms Ax9 and Ax10 are shown here.

152 Labelled Natural Deduction for Conditional Logics of Normality

(Ax9) There are two cases to consider. Let w be an arbitrary element of W. First,
suppose Rwhgφ,ψ(w) is false. Then for all w′ ∈W it is not the case that Rww′

and by the Kripke definition of α > β, M,w |=BCL α > β; hence w ∈
fJφ >

ψK fι. For the second case, ∃w′′(w′′ ∈ W, Rww′′, Rw′′ws, M,ws |=BCL φ and
M,ws |=BCL �(φ ⊃ ψ). According to the Kripke definition of φ > ψ these are
exactly the required conditions for M,w |=BCL α > β and hence w ∈

fJφ > ψK fι.
(Ax10) Let w,w′ be two arbitrary elements of W such that w ∈

fJφ > ψK fι, Rww′

and w′ ∈
fJφK fι. Then by the Kripke definition of φ > ψ and the definition of

the 3 operator, the set SATφ,ψ(w) is non-empty and ∃w′′(Rww′′, Rw′′ hfφ,ψ(w),
hfφ,ψ (w) ∈

fJφK fι and hfφ,ψ (w) ∈
fJ�(φ ⊃ ψ)K fι.

For the “only if ” part of the proof, suppose that `BCLα and that α1, ..., αn where
n ≥ 1 and αn=α is the shortest derivation of α with length length≥ 1. The
proof that C∅ `LDCL α : ω is by induction on length. The base case is as follows
(length=1). In this case α is an instance of the axioms of BCL. Then we have
to show that C∅ `LDCL α : ω by cases considering each axiom schema of BCL.
Propositional rules are proven by application of the corresponding labelled natural
deduction rules. The proofs for K,T, 4, CC,CM,RCM,RT,Or,Nec and MP are
shown in [33]. For axiom C, C∅ `LDCL �(α ⊃ 3(α ∧ �(α ⊃ β))) ≡ α > β : ω
as proven below. The abbreviations h1, h2, f1 and g1 are used, respectively,
for the labels hgα,β (ω0), hfα,β (g1), fα∧�(α⊃β)(h1) and gα⊃3(α∧�(α⊃β))(ω0).
C∅
C1〈[�(α ⊃ 3(α ∧�(α ⊃ β)) : ω0]〉 (Assump,C8)
C2〈[α : h1, Rω0h1]〉 (Assump,C7)
C3〈α ⊃ 3(α ∧�(α ⊃ β)) : h1〉 (�E,C1, C2)
C4〈3(α ∧�(α ⊃ β)) : h1〉 (⊃ E,C2, C3)
C5〈α ∧�(α ⊃ β)) : f1, Rh1f1〉 (3E,C4)
C6〈α : f1,�(α ⊃ β) : f1〉 (∧E,C5)

C7〈α > β : ω0〉 (> I,C2 − C6)
C8〈(�(α ⊃ 3(α ∧�(α ⊃ β)))) ⊃ (α > β) : ω0〉 (⊃ I, C1 − C7)

C∅
C1〈[α > β : ω0]〉 (Assump,C9)
C2〈[Rω0g1]〉 (Assump,C8)
C3〈[α : g1]〉 (Assump,C7)
C4〈Rg1h2, α : h2,�(α ⊃ β) : h2〉 (> E,C1 − C3)
C5〈α ∧�(α ⊃ β) : h2〉 (∧I, C4)
C6〈3(α ∧�(α ⊃ β) : g1)〉 (3I, C4, C5)

C7〈α ⊃ 3(α ∧�(α ⊃ β) : g1〉 (⊃ I, C3 − C6)
C8〈�(α ⊃ 3(α ∧�(α ⊃ β))) : ω0))〉 (�I, C2 − C7)

C9〈(α > β) ⊃ (�(α ⊃ 3(α ∧�(α ⊃ β)))) : ω0〉 (⊃ I, C1 − C8)

Now for the inductive step. Assume by inductive hypothesis that for any formula φ
such that `BCL φ and such that there exists a proof φ1, ..., φn where φn = φ, that
n > 0. Then for any ωi, C∅ `LDCL φ : wi. Next, suppose that there exists a shortest
proof α1, ..., αn+1 where αn+1 = α, with n > 0 such that `LDCL α. By theorem
5.14, the finiteness theorem 5.16 and by inductive hypothesis for any arbitrary wi

6. EXTENTION WITH ADDITIONAL MODALITIES 153

there exists a configuration Cwi such that αi : wi ∈ Cwi for all i ∈ [1, n], such that
C∅ `LDCL Cwi . Since we are dealing with n + 1, the formula α is not an axiom
of BCL, then it can only be obtained using either the rule MP or Necessitation.
Therefore, we construct the derivations for the cases when α is derived by an
application of Modus Ponens(MP), and second when α is derived by an application
of the Necessitation(Nec) rule. For MP , we suppose that the last step in a proof is
an application of MP ; then we have αk, (αk ⊃ α) ∈ α1, ..., αn. Thus αk : ω ∈ Cω and
αk ⊃ α : ω ∈ Cω. By definition of the (⊃ E) rule, Cω `LDCL α : ω; by transitivity of
`LDCL, C∅ `LDCL α : ω. For Nec, we suppose that the last step is an application
of Nec. Then α = �αk where αk ∈ α1, ..., αn. Thus αk : gαk(ω) ∈ Cgαk (ω) and
C∅ `LDCL Cgαk (ω). Reflexivity of the derivation renders Cgαk (ω) `LDCL α : gαk(ω),
and transitivity of derivability renders Cgαk (ω) + [Rωgαk(ω)] `LDCL αk : gαk(ω),
which by definition of the (�I) rule implies that Cgαk (ω) `LDCL �αk : ω, and again
by transitivity of `LDCL, C∅ `LDCL �αk : ω.

6 Extending the Labelled Deductive Conditional Logic with
Additional Modalities

In this section we introduce a labelled deductive approach for an improved conditional
logic of normality. According to Makinson, the normality conditional of Lamarre and
Boutilier does not strictly correspond to the intuition underlying normality semantics
[37]. The interpretation of the conditional of normality at a world ω looks only at
the worlds that are at least as normal as ω; however, Makinson argues that one
should look at all worlds satisfying the antecedent. In order to make its normality
semantics closer to the intuition of normality, Boutilier introduced two unary modal
operators: one for truth in all worlds less than or equal to the worlds in which the
evaluation is effected and another modality to indicate truth in all other possible
worlds of the model [6]. Extending the labelled deductive conditional language with
an additional modal operator will allow us to express normality properties in another
way. This additional unary modal connective denoted by

�@ is employed to represent
truth at “less normal” or inaccessible worlds. Thus,

�@α denotes that α is true at
all inaccessible worlds; since the binary relation between elements of W represents a
metric of normality, we say that the syntactic formula

�@α should be read as α holds
at all less normal - or incomparable - worlds under the accessibility relation. Here a
conditional of normality is represented via a bimodal language. The relation between
inaccessible or “less normal” worlds is the complement of R and shall be denoted by
R. Therefore two modal operators are introduced: one for dealing with truth “at all
less normal or incomparable worlds” (denoted by

�@) and another for dealing with
truth “at all equally or more normal worlds” (denoted by �). Truth at all worlds
in the model is the conjunction of these two modalities, defined as

↔� α ≡
�@α ∧ �α.

We shall define natural deduction rules for these operators later on. By adding new
modalities to the language, we can capture in our LDCL system the conditional logic
of normality, named by Boutilier as CT 4O. We shall refer to this logic as BCL+.
The new modalities are defined as follows.
(i)
�

3α ≡ ¬
�@¬α (ii)

↔�α ≡ �α ∧ �@α (iii)
↔
3α ≡ 3α ∨ �3α

154 Labelled Natural Deduction for Conditional Logics of Normality

The models for BCL+ are defined as in BCL (analogously to definition 2.3).
However, the new connectives shall have different satisfiability conditions based on
the accessibility relation R (conjugate of R). We extend that definition with the
satisfiability conditions for the additional operators as follows.
1. (M,ω) |=

�@α ⇐⇒ for each ω1 such that Rωω1, (M,ω1) |= α

2. (M,ω) |=
↔�α ⇐⇒ for all ω1 ∈ W we have(M,ω1) |= α

3. (M,ω) |= �

3α ⇐⇒ for some ω1 such that Rωω1, (M,ω1) |= α

4. (M,ω) |= ↔3α ⇐⇒ for some ω1 ∈W, (M,ω1) |= α

Another axiom that is present in the modal logic with reference to inaccessi-
ble worlds is an instance of the axiom (*) proposed by Humberstone ([28] p.348)
and applied to the logics of normality by Boutilier. In [7] an instance of (*) is
renamed H :

↔
3(�α ∧ �@β) ⊃

↔�(α ∨ β). This axiom represents the property that
the accessibility relations are complementary to each other. The models for BCL+

include a relation which is reflexive, transitive and connected (i.e. for all worlds
ωi, ωj,Rωiωj or Rωjωi). In [28] it is proved that the modal logic K + H is sound and
complete with respect to the semantics of the modal logic K2 + (∗) (where K2 + (∗)
is a bimodal extension of K, with an additional relation which is complementary to
the standard relation R).

Definition 6.1 (BCL+ Axiomatisation) The propositional conditional logic
BCL+ is the set of formulae that includes, for any arbitrary wffs α and β, proposi-
tional tautologies, all formulae of the form K, T, 4, (as in definition 2.5), and K′,
S, H given below, and that is closed under the inference rules Necessity, MP and
Subs (as in definition 2.5):
K′

�@(α ⊃ β) ⊃ (
�@α ⊃ �@β)

S α ⊃
�@3α

H
↔
3(�α ∧ �@β) ⊃

↔�(α ∨ β)

The system BCL+, is also proved to be sound and complete wrt the class of BCL+

models [7].

Theorem 6.2 ([7]) The system BCL+ is sound and complete with respect to the
class of BCL+ models, ie `BCL+ α ⇐⇒ |=BCL+ α.

In BCL+, the definition of the conditional operator is slightly different from that
given in Section 4 (recall that in BCL models the relation is reflexive and transitive,
whereas in BCL+ connectivity is an added property of the relation).

Definition 6.3 The normality conditional α > β for the logic BCL+ is defined as:
[C+] α > β ≡

↔�(α ⊃ 3(α ∧�(α ⊃ β))).

When the relation is totally connected, there is only one chain of normality in the
ordering relation. In that case, every world is comparable to each other and α > β
holds either if α is false, then it holds vacuously, or if the most normal worlds in which

6. EXTENTION WITH ADDITIONAL MODALITIES 155

α holds, �(α ⊃ β) holds as well. Therefore we would have the following definition for
the connective:
[C++] α > β ≡

↔�¬α ∨ ↔3(α ∧ �(α ⊃ β)). However, we shall adopt the definition
which resembles the definition given in section 4, and is expressed by C+. The
adoption of this definition will not affect the logic in any way, since both definitions
are equivalent [7]. This equivalence allows us to present natural deduction rules which
are in the same spirit as the ones defined for the conditional operator in section 4.
In addition to the axiom schemas defined above, some theorems that are provable in
BCL, namely ID,CC,CM,RCM,RT,Or, are also valid in the bimodal extension.
Recall that we used the symbols fα and gα to refer to worlds in which formulae α

hold true. When extending with additional modalities, the symbols
�

fα,
�

gα are used
in a similar way to refer to inaccessible worlds. For instance,

�@α means that α is true
at all less normal and incomparable worlds, and we would use

�

gα(ω) to refer to an
inaccessible possible world associated to α.

6.1 Rules for Unconventional Modalities

These rules describe the interaction between possible worlds containing information
syntactically expressed by the unconventional modalities, and aim to represent the
additional modalities defined in the logic BCL+. In order to prove that

↔�α holds
at a possible world ω we have to show that α holds at all worlds in the model,
no matter how normal they are. This is expressed by showing that both

�@α and
�α holds at the world ω. Table 6 presents the diagrammatic representation of
these rules. For the rule

↔
3I, in order to introduce

↔
3α : ω we have to be able to

show α : ω′ for some ω′. This is correct, as from α : ω′ we may derive 3α : ω or
�

3α : ω′, depending on whether Rωω′ or Rωω′. Since these are complements at
least one must hold. A similar simplification allows the derivation of the rule for
↔�E. Two further rules, called Comp and Conn are given. These allow the use in
derivations of disjunctions involving R-literals, namely Rxy ∨ ¬Rxy and Rxy ∨Ryx.
The rules are necessary as the DExp rule only allows for the derivation of R-literals,
not the arbitrary use of the labelling algebra. Derivations of axioms H and S
are given to illustrate application of the rules in Table 6. For more examples see
[33]. For axiom H, C∅ `LDCL

↔
3(�α ∧ �@β) ⊃

↔�(α ∨ β) as proven below. Similar

to before some abbreviations have been used: f1 abbreviates f
�α∧�@β(ω0) and

�

f 2

abbreviates
�

f
�α∧�@β(ω0). The proof also uses a Theorem, called Th, which states

that C〈�α : ω′,
�@β : ω′〉 `LDCL

↔�(α ∨ β) : ω′. Its derivation is shown below also.

156 Labelled Natural Deduction for Conditional Logics of Normality

Table 6. Rules for the Additional Modalities

C〈[Rω
�

gα(ω)]〉
···

CS〈α :
�

gα(ω)〉�@I
CI〈

�@α : ω〉

C〈
�@α : ω1, Rω1ω2〉 �@E
CI〈α : ω2〉

C〈Rω1ω2, α : ω2〉 �
3I

CI〈
�

3α : ω1〉

C〈�3α : ω〉 �

3E

CI〈α :
�

fα(ω), Rω
�

fα(ω)〉

C〈
�@α : ω,�α : ω〉 ↔�I
CI〈
↔�α : ω〉

C〈
↔�α : ω〉 ↔�E

CI〈α : ω′〉

C〈↔3α : ω〉 ↔
3E

CI〈3α ∨
�

3α : ω〉

C〈α : ω′〉 ↔
3I

CI〈
↔
3α : ω〉

C〈[Rωω0)]〉···
CS〈γ : ω′〉

C〈[Rωω0]〉···
CS′〈γ : ω′〉

Comp
CI〈γ : ω′〉

C〈[Rωω0)]〉···
CS〈γ : ω′〉

C〈[Rω0ω]〉
···

CS′〈γ : ω′〉
Conn

CI〈γ : ω′〉

C∅
C1〈[

↔
3(�α ∧ �@β) : ω0]〉 (Assump,C11)

C2〈[3(�α ∧ �@β) : ω0]〉 (Assump,C10)
C3〈�α ∧

�@β) : f1, Rω0f1〉 (3E,C2)

C4〈�α : f1,
�@β) : f1〉 (∧E,C3)

C5〈
↔�(α ∨ β) : ω0〉 (Th,C4)

C6〈[
�

3(�α ∧ �@β) : ω0]〉 (Assump,C10)

C7〈�α ∧
�@β) :

�

f 2, Rω0

�

f 2〉 (
�

3E,C6)

C8〈�α :
�

f 2,
�@β) :

�

f 2〉 (∧E,C7)

C9〈
↔�(α ∨ β) : ω0〉 (Th,C8)

C10〈
↔�(α ∨ β) : ω0〉 (

↔
3E,C1, C2 − C5, C6 − C9)

C11〈
↔
3(�α ∧ �@β) ⊃

↔�(α ∨ β) : ω0〉 (⊃ I, C1 − C10)

The derivation of the aforementioned theorem now follows, in which g1 abbreviates
gα∨β(ω0) and

�

g2 abbreviates
�

gα∨β(ω0).

6. EXTENTION WITH ADDITIONAL MODALITIES 157

C0〈�α : ω0,
�@β : ω0〉 (InitialData)

C1〈[Rω0g1]〉 (Assump,C4)
C2〈[α : g1]〉 (�E,C0, C1)
C3〈α ∨ β : g1〉 (∨I, C2)

C4〈�(α ∨ β) : ω0〉 (�I, C1 − C3)

C5〈[Rω0

�

g2]〉 (Assump,C8)

C6〈β :
�

g2〉 (�E,C0, C5)

C7〈α ∨ β :
�

g2〉 (∨I, C6)
C8〈

�@(α ∨ β) : ω0〉 (
�@I, C5 − C7)

C9〈
↔�(α ∨ β) : ω0〉 (

↔�I, C4, C8)

The derivation of axiom S follows.

C∅
C1〈[α : ω0]〉 (Assump,C11)

C2〈[Rω0

�

g3α]〉 (Assump,C10)

C3〈R
�

g3αω0〉 (DExp, C2, Conn)

C4〈3α :
�

g3α〉 (3I, C1, C3)
C5〈

�@3α : ω0〉 (
�@I, C2 − C4)

C6〈α ⊃
�@3α : ω0〉 (⊃ I, C1 − C5)

6.2 Rules for the Additional Conditional Connective

Recall that the definition of the conditional operator in BCL+ is as follows: α > β ≡
↔�(α ⊃ 3(α∧�(α ⊃ β))). The natural deduction rule has to take into account the fact
that worlds related via the co-relation of R, represented by R should be considered
in the scale of normality. The intuition underlying the rules is similar to the intuition
behind the rules we defined for the case of the single modality. In addition we have
to consider the co-existent relation R. Recall that, according to Makinson [37], when
assessing if α > β is true at ω one should not look only at the worlds that are at least
as normal as ω, but to all the worlds satisfying α, and then assess the conditional.
Therefore the co-relation R is introduced to look at the all the other worlds that are
not at least as normal as ω. The rules for the conditional operator are defined next.
It will be helpful in this section to introduce the notation α

↔
> β in place of α > β,

to remind the reader of the presence of the co-relation R. This will also prove helpful
in the formulation of the

↔
> I rule, in which a new operator

←
> is used, analogous to

>, but in which R is used in place of R. Introduction and elimination rules for
←
> are

given next.

Definition 6.4 Let C be an arbitrary configuration, ω be an arbitrary ground
term and α, β well-formed formulae. We say that C C + [α

←
> β : ω] is a

158 Labelled Natural Deduction for Conditional Logics of Normality

member of the inference rule (
←
> I) if C + [α : hgα,β (ω), Rωhgα,β (ω)] `LDCL

[α : υ,�(α ⊃ β) : υ,Rhgα,β (ω)υ]. The diagrammatic representation of the rule is as
follows.

C〈[α : hgα,β (ω), Rωhgα,β (ω)]〉
···

CS〈α : υ,�(α ⊃ β) : υ,Rhgα,β (ω)υ]〉
(
←
> I)

CI〈α
←
> β : ω〉

Definition 6.5 Let C be an arbitrary configuration, ω, ω′ be arbitrary
ground terms and α, β well-formed formulae. We say that C C +
[Rω′hfα,β (ω

′), α : hfα,β (ω
′),�(α ⊃ β) : hfα,β (ω

′)] is a member of the inference rule

(
←
> E) if α > β : ω,Rωω′, α : ω′ ∈ C. The diagrammatic representation of the rule is

as follows.

C〈α > β : ω,Rωω′, α : ω′〉
(
←
> E)

CI〈Rω′hfα,β (ω′), α : hfα,β (ω
′),�(α ⊃ β) : hfα,β (ω

′)〉

The introduction and elimination rules for
↔
> are given in terms of > and

←
>, since

α
↔
> β is defined to be equivalent to α > β ∧ α

←
> β. The graphical representation of

each rule is given below.

Definition 6.6 Let C be an arbitrary configuration, ω, ω′ be arbitrary ground terms
and α, β well-formed formulae. We say that C C + [α

↔
> β : ω] (respectively

C C + [α > β ∧ α
←
> β : ω]) is a member of the inference rule

↔
> I (resp.

↔
> E) if

α > β : ω, α
←
> β : ω ∈ C (resp. α

↔
> β : ω ∈ C). The diagrammatic representation of

the rules are as follows.

C〈α > β : ω, α
←
> β : ω〉 ↔

> I
CI〈α

↔
> β : ω〉

C〈α
↔
> β : ω〉 ↔

> E
CI〈α > β ∧ α

←
> β : ω〉

The use of the new conditional rules is illustrated in the following derivation of
α
↔
> β ⊃ ↔3α ⊃ ↔3(α ∧ 2(α ⊃ β)) : ω0, that proves part of the equivalence of α

↔
> β

and
↔
3α ⊃ ↔3(α ∧2(α ⊃ β)).

6. EXTENTION WITH ADDITIONAL MODALITIES 159

C0〈α
↔
> β : ω0〉 (InitialData(Part(i)))

C1〈[
↔
3α : ω0]〉 (Assump,C18)
C2〈[3α : ω0]〉 (Assump,C7)
C3〈α : f1, Rω0f1〉 (3E,C2)
C4〈α : h1, Rf1h1,2(α ⊃ β) : h1〉 (

↔
> E,∧E,> E,C0, C3)

C5〈Rω0h1〉 (DExp, C3, C4, T rans)
C6〈3(α ∧2(α ⊃ β)) : ω0〉 (3I, C4, C5)
C7〈
↔
3(α ∧ 2(α ⊃ β)) : ω0〉 (

↔
3I, C6)

C8〈
�

3α : ω0〉 (Assump,C17)

C9〈α :
�

f2, Rω0

�

f 2〉 (
�

3E,C8)

C10〈α : h2, R
�

f2h2,2(α ⊃ β) : h2〉 (
↔
> E,∧E,

←
> E,C0, C9)

C11〈[Rω0h2]〉 (Assump,C13)
C12〈3(α ∧ 2(α ⊃ β)) : ω0〉 (3I, C10, C11)

C13〈
↔
3(α ∧ 2(α ⊃ β)) : ω0〉 (

↔
3I, C12)

C14〈[Rω0h2]〉 (Assump,C16)
C15〈

�

3(α ∧ 2(α ⊃ β)) : ω0〉 (
�

3I, C10, C14)
C16〈

↔
3(α ∧ 2(α ⊃ β)) : ω0〉 (

↔
3I, C15)

C17〈
↔
3(α ∧ 2(α ⊃ β)) : ω0〉 (Comp,C11 − C13, C14 − C16)

C18〈
↔
3(α ∧ 2(α ⊃ β)) : ω0〉 (

↔
3E,C2 − C7, C8 − C17)

C19〈
↔
3α ⊃ ↔3(α ∧ 2(α ⊃ β)) : ω0〉 (⊃ I, C1 − C18)

6.3 Semantics

If we want to express the semantics of the operators based on the bimodal logic we
need an additional set of axiom schemas to be included in the extended algebra A+,
namely:

∀x((Rx
�

gα(x) ⊃ JαK�gα(x)) ⊃ J�@αKx) (Ax11)

∀x(J�@αKx ⊃ (∀y(Rxy ⊃ JαKy))) (Ax12)

∀x(∃y(Rxy ∧ JαKy) ⊃ J�3αKx) (Ax13)

∀x(J�3αKx ⊃ (Rx
�

fα(x) ∧ JαK
�

fα(x))) (Ax14)

∀x(J↔3αKx ⇐⇒ ∃y(JαKy)) (Ax15)

∀x(J↔�αKx ⇐⇒ ∀y(JαKy)) (Ax16)

∀x(((Rxhgα,β (x) ∧ JαKhgα,β (x)) ⊃ (Ax17)

∃y(Rhgα,β (x)y ∧ JαKy ∧ J�(α ⊃ β)Ky)) ⊃ Jα ←> βKx)

160 Labelled Natural Deduction for Conditional Logics of Normality

∀x(Jα ←> βKx ⊃ ∀y(Rxy ∧ JαKy ⊃ (Ax18)
(Ryhfα,β (x) ∧ JαKhfα,β (x) ∧ J�(α ⊃ β)Khfα,β (x))))

∀x(Jα ↔> βKx ⇐⇒ (Jα > βKx ∧ Jα ↔> βKx) (Ax19)

6.4 Soundness, Completeness and Correspondence for BCL+

The extensions of the soundness and completeness theorems have to take into con-
sideration the new modalities and the new conditional operator. However the proof
technique is the same. For details the reader is referred to [33]. Correspondence
results can also be obtained using the same proof technique we used before. Here we
state the main correspondence theorem.

Theorem 6.7 (Correspondence for BCL+) Let LDCL be the propositional labelled
deductive conditional logic system whose associated labelling algebra A+ contains the
axiom schemas K,T, 4, C; let 〈BCL+,`BCL+〉 be the axiomatic system for the logic
BCL+, let C∅ = 〈∅, f∅〉 be the initial configuration where f = ∅ for any label ω, and
let α ∈ LC . Then `BCL+ α ⇐⇒ ∀ω ∈ ext(LC ,LL), C∅ `LDCL α : ω.

The theorems concerning correspondence with respect to global and local assumptions
are analogous to the proofs of the corresponding theorems stated for the monomodal
conditional logic.

7 Discussion

We have presented a labelled approach to a propositional conditional logic of normal-
ity in natural deduction style. It is important to observe that our methodology is
distinct from Boutilier-Lamarre’s, as it allows for the reference to specific worlds, be-
ing an explicit approach to normality reasoning. Explicity approaches to logics based
on possible worlds semantics have the advantage of clearly expressing what is true
at possible worlds; moreover it enjoys uniformity, as extensions in the properties of
the relation between possible worlds do not alter the rules, i.e. the natural deduction
rules are independent from the particular labelling algebra. As far as our knowledge
goes, no proof system based on natural deduction for conditional logics of normality
had been developed so far. We have extended the Labelled Deductive Conditional
Logic System with additional modalities. Labelled natural deduction rules for addi-
tional modalities and for a new conditional operator were also proposed. The system
presented here is sound and complete with respect to the semantic models proposed,
and the correspondence results showed that our system is as powerful as Boutilier’s
CT 4 and its extensions.

In addition, our formalisation supports Gabbay’s programme of developing LDS’s
as a general framework for logical systems. Another advantage of using the labelled
deductive system methodology is that it not only allows the combination of two
existing logics into a new logic, but also shows how to extend a logic in order to
generalise it by combining existing logics; in our case, the CLDS methodology made

7. DISCUSSION 161

possible to represent and to develop a proof system for conditional reasoning using
modal operators in a hybrid system. An automated approach to the conditional
logic presented in this paper is currently under investigation. By using the extended
algebras one could make use of a classical first-order theorem prover. The extension
of our approach to the first-order case was presented in [33]. There, we show how LDS
allows for a uniform presentation of a quantified conditional logic which corresponds
to the first-order conditional logic presented in [16]. Although the work presented in
this paper considers the family of conditional logics of normality that are definable in
terms of modalities, we believe that the expressive power of our CLDS system would
make it possible to extend the approach to other classes of conditional logics. In
particular, our future research includes the investigation of how the CLDS framework
could be used in other conditional logics not defined in terms of modalities, such as
Adams’s approach, in which conditional sentences have associated probabilities [1],
Lewis’s analysis of counterfactuals using sphere semantics [35], and the conditional
logics based on plausibility structures of Friedman et al [20].

Acknowledgements

We would like to thank Sanjay Modgil and Artur Garcez for the conversations that
helped in the improvement of this paper and to two anonymous referees for their
constructive comments. Lúıs Lamb was partially sponsored by the Brazilian agency
CAPES. Paul Taylor’s LATEX packages were used in the composition of this document.

References

[1] Ernest W. Adams. The Logic of Conditionals. D. Reidel, Dordrecht, 1975.

[2] Horacio Arlo-Costa and Scott Shapiro. Maps between nonmonotonic and conditional logic. In
Proc. of KR’92, pages 553–564. Morgan Kaufmann, 1992.

[3] Alberto Artosi and Guido Governatori. A tableau methodology for deontic conditional logic. In
Proc. of the Fourth Internat. Workshop on Deontic Logic in Computer Science, 1998.

[4] Jonathan Bennett. Classifying conditionals: The traditional way is right. Mind, 104:331–354,
1995.

[5] Craig Boutilier. Conditional logics of normality as modal systems. In Proceedings of AAAI,
pages 594–599, Boston, August 1990.

[6] Craig Boutilier. Inaccessible worlds and irrelevance: Preliminary report. In Proc. of the IJCAI,
pages 413–418, Sydney, 1991.

[7] Craig Boutilier. Conditional logics of normality: a modal approach. Artificial Intelligence,

68:87–154, 1994.

[8] K. Broda, A. Russo, and D. Gabbay. A unified compilation style natural deduction system for
modal, substructural and fuzzy logics. In V. Novak and I.Perfileva, editors, Discovering World
with Fuzzy logic: Perspectives and Approaches to Formalization of Human-consistent Logical
Systems. Springer, 2000.

[9] Krysia Broda, Marcelo Finger, and Alessandra Russo. Labelled natural deduction for substruc-
tural logics. Logic Journal of the IGPL, 7(3):283–318, 1999.

[10] Krysia Broda and Alessandra Russo. A unified compilation style labelled deductive system for
modal and substructural logic using natural deduction. Technical report, Dept. of Computing,
Imperial College, London, Oct. 1997.

[11] John P. Burgess. Quick completeness proofs for some logics of conditionals. Notre Dame Journal
of Formal Logic, 22:76–84, 1981.

162 Labelled Natural Deduction for Conditional Logics of Normality

[12] Brian F. Chellas. Basic conditional logics. Journal of Philosophical Logic, 4:133–153, 1975.

[13] G. Crocco, L. Farinas del Cerro, and A. Herzig, editors. Conditionals: from Philosophy to
Computer Science. Oxford Univ. Press, 1995.

[14] Gabriella Crocco and Luis Farinas del Cerro. Counterfactuals: Foundations for nonmonotonic

inferences sequent systems. In Andre Fuhrmann and Hans Rott, editors, Logic, Action, and
Information - Essays on Logic in Philosophy and Artificial Intelligence. de Gruyter, 1996.

[15] James P. Delgrande. An approach to default reasoning based on a first-order conditional logic:
Revised report. Artificial Intelligence, 36:63–90, 1988.

[16] James P. Delgrande. On first-order conditional logics. Artificial Intelligence, 105:105–137, 1998.

[17] Michael Dummett. Natural deduction. In Ted Honderich, editor, The Oxford Companion to
Philosophy, page 604. Oxford Univ. Press, 1995.

[18] Dorothy Edgington. On conditionals. Mind, 104:235–329, 1995.

[19] Nir Friedman and Joseph Halpern. On the complexity of conditional logics. In Proceedings
of the 4th International Conference on Principles of Knowledge Representation and Reasoning
KR’94, 1994.

[20] Nir Friedman, Joseph Y. Halpern, and Daphne Koller. First-order conditional logic for default
reasoning revisited. ACM Transactions on Computational Logic, 1(2), 2000.

[21] Dov M. Gabbay. Labelled Deductive Systems, Vol. I. Clarendom Press, Oxford, 1996. Oxford
Logic Guides, Vol. 33.

[22] Ian Gent. A sequent- or tableau-style system for lewis’s counterfactual logic vc. Notre Dame
Journal of Formal Logic, 33(3):369–382, 1992.

[23] Moises Goldszmidt and Judea Pearl. Rank-based systems: a simple approach to belief revision,
belief update and reasoning about evidence and actions. In Proceedings of KR’92, pages 661–672,
1992.

[24] Nelson Goodman. The problem of counterfactual conditionals. Journal of Philosophy, 44:113–

128, 1947.

[25] Chris Groeneboer and James P. Delgrande. A general approach to determining the validity of
commonsense assertions using conditional logics. Intl. Journal of Intelligent Systems, 5:505–520,
1990.

[26] W. L. Harper, Robert Stalnaker, and G. Pearce. Ifs. Reidel, Dordrecht, 1981.

[27] Leon Henkin. The discovery of my completeness proofs. Bulletin of Symbolic Logic, 2:127–158,
1996.

[28] I. Humberstone. Inaccessible worlds. Notre Dame Journal of Formal Logic, 24:346–352, 1983.

[29] Frank Jackson, editor. Conditionals. Oxford Univ. Press, 1991.

[30] H. Katsuno and K. Satoh. A unified view of consequence relation, belief revision and conditional
logic. In Crocco et al. [13], pages 33–65.

[31] Sarit Kraus, Daniel Lehmann, and Menahem Magidor. Nonmonotonic reasoning, preferential
models and cummulative logics. Artificial Intelligence, 44:167–208, 1990.

[32] Philippe Lamarre. S4 as the conditional logic of nonmonotonicity. In Proccedings of KR’91,
pages 357–367, 1991.

[33] Lúıs da Cunha Lamb. Labelled Proof Theory for Conditional Logic. PhD thesis, Imperial College
of Science, Technology and Medicine, London, 2000.

[34] Daniel Lehmann and Menachem Magidor. What does a conditional knowledge base entail?
Artificial Intelligence, 55(1):1–60, May 1992.

[35] David K. Lewis. Counterfactuals. Blackwell, Oxford, 1973.

[36] David Makinson. On some completeness theorems in modal logic. Zeitschrift für math. Logik
und Grundlagen der Mathematik, 12:379–384, 1966.

[37] David Makinson. Five faces of minimality. Studia Logica, 52:339–379, 1993.

[38] John McCarthy. Circumscription - a form of non-monotonic reasoning. Artificial Intelligence,
13:27–39, 1980.

[39] Drew McDermott. Non-monotonic logic II: Non-monotonic modal theories. Journal of the ACM,
29(1):33–57, 1982.

[40] D. H. Mellor. How to believe a conditional. Journal of Philosophy, 90:233–248, 1993.

[41] Judea Pearl. Probabilistic semantics for nonmonotonic reasoning:a survey. In R. J. Brachman,
H. J. Levesque, and R. Reiter, editors, Proc. KR’89, pages 505–516. Morgan Kaufmann, 1989.

7. DISCUSSION 163

[42] Ray Reiter. A logic for default reasoning. Artificial Intelligence, 13:81–132, 1980.

[43] Alessandra M. Russo. Generalising propositional modal logic using labelled deductive systems.
In F. Baader and K. U. Schulz, editors, Frontiers of Combining Systems, Applied Logic Series
(APLS),, volume 3, pages 57–74. Kluwer, 1996.

[44] Alessandra M. Russo. Modal Logic as Labelled Deductive Systems. PhD thesis, Imperial College
of Science, Technology and Medicine, London, 1996.

[45] David H. Sanford. If P then Q, Conditionals and the Foundations of Reasoning. Routledge,
London and New York, 1989.

[46] Robert C. Stalnaker. A Theory of Conditionals, volume 2 of American Philosophical Quarterly
Monograph Series (Nicholas Rescher, ed.), pages 98–112. Blackwell, Oxford, 1968.

[47] Robert C. Stalnaker and Richmond H. Thomason. A semantic analysis of conditional logic.
Theoria, 36:23–42, 1970.

[48] Richmond H. Thomason. A Fitch-style formulation of conditional logic. Logique et Analyse,
52:397–412, 1970.

[49] Michael Woods. Conditionals. In D. Wiggins, editor, Conditionals. Clarendon Press, Oxford,
1997. With a Commentary by Dorothy Edgington.

Received February 2002

The Unrestricted Combination of
Temporal Logic Systems

MARCELO FINGER, Departamento de Ciência da Computação,
Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Rua
do Matão 1010, 05508-090 São Paulo, SP, Brazil.
E-mail: mfinger@ime.usp.br

M. ANGELA WEISS, Departamento de Matemática, Instituto de
Matemática e Estat́ıstica, Universidade de São Paulo, Rua do Matão
1010, 05508-090 São Paulo, SP, Brazil. E-mail: weiss@ime.usp.br

Abstract

This paper generalises and complements the work on combining temporal logics started by Finger
and Gabbay [11, 10]. We present proofs of transference of soundness, completeness and decidability
for the temporalisation of logics T(L) for any flow of time, eliminating the original restriction that
required linear time for the transference of those properties through logic combination. We also
generalise such results to the external application of a multi-modal system containing any number
of connectives with arbitrary arity, that respect normality.

This generalisation over generic flows of time propagates to other combinations of logics that
can be interpreted in terms of temporalisations. In this way, the independent combination (also
called fusion) of temporal logics is studied over generic flows of time. We show the transfer of
soundness, completeness and decidability for independent combination of temporal logics. Finally,
we also discuss the independent combination of any finite number of normal multi-modal logics.

Keywords: Temporal Logics, Combinations of Logical Systems, Completeness of Combination of

Logical Systems, Decidability of Combination of Logical Systems.

1 Introduction

This paper is concerned with the study of methods for combining temporal logics. In
its first part, we extend the study of the temporalisation of logic systems introduced by
Finger and Gabbay in [11]. There, the temporalisation process was restricted to linear
flows of time. Here, we aim to generalise it to any flow of time. We are interested in
studying the transference of properties from the logic system L into its temporalised
version T(L). In the case of linear flows of time, temporalisation was shown to be
a useful building block in obtaining the independent combination of two temporal
logics [10]. In the second part of this paper, we show that the same construction is
applicable to any class of flows of time.

The logic system T(L) combines two logics: a temporal logic T, which is applied
externally to a given logic system L. This combination process, called temporalisation,
involves the combination of the languages, inference systems, and model structures
of T and L into a language, inference system and model structure of T(L). We show
that if the logic systems T and L are sound, complete or decidable, then T(L) is also

165L. J. of the IGPL, Vol. 10 No. 2, pp. 165–189 2002 c©Oxford University Press

166 The Unrestricted Combination of Temporal Logic Systems

sound, complete or decidable; no constraints are imposed on the nature of the flow of
time.

To show the transference of completeness and decidability via temporalisation, we
maintain the same general proof strategy of Finger and Gabbay [11]. However, be-
cause here we can no longer rely on the linearity of the flow of time in T, the underlying
proof construction has to be almost fully reworked in Section 2.1. For that, we in-
troduce a bound associated to the number of steps in “the past” and the number of
steps in “the future” one must take to evaluate a given formula ψ in a temporalised
model. This construction allows us to select the “relevant” time points in the evalua-
tion of a formula. As is explained in Section 2.2, the set of “relevant” time points may
be infinite, but each point can be reached in finitely many steps. This construction
allows us to do without the original restriction of linearity. Our approach naturally
leads us to decision procedures. In Section 2.3 we show that provided that L and T
are decidable, so is T(L).

We then use these transference results as a building block in the transference of
similar properties for the independent combination of two temporal logics (also called
fusion of temporal logics) over any class of flows of time. Section 3 shows that the
transference of completeness and decidability can be obtained in terms of unions
of alternating temporalisation of two temporal logics; furthermore, we show that
such transference occurs even in temporal logics containing the highly expressive
binary temporal operators “until” and “since”. The mere temporalisation of two
US-logics gives us a very limited logic, US1(US2), which does not allow the nesting
of US2-operators inside the temporal operators of US1; the independent combina-
tion US1 ⊕ US2 does allow for any nesting of temporal operators. We explore a
property that was initially noted in [10], namely that the independent combination
US1⊕US2 can be seen as the infinite union of several temporalisations US1,US1(US2)
and US1(US2(US1)), . . ., and thus we show how the temporalisation results can be
employed to obtain the transference of soundness, completeness and decidability for
US1 ⊕ US2 over generic flows of time.

Combination of logics have been previously analysed in the literature. The first
property of independently combined modal logics, namely its conservativity, was pre-
sented by Thomason in [25]. Fine and Schurz [7] and Kracht and Wolter [22] have
studied the transfer properties of systematically combining independently axiomatis-
able monomodal systems. The work of Fine and Schurz [7] is applicable to more than
two independent normal modalities. A generalisation of such results for many-place
multi-modal systems is presented by Wolter in [28]; we discuss in more detail some of
Wolter’s results in Section 3.

Finger and Gabbay [11, 10] were the first to address the issue of combining logics
with two-place modalities, S (“since”) and U (“until”), and with modalities that
were not all independent, for “since” and “until” interact with each other. The results
of [11, 10], however, are restricted to the case of linear flows of time and, because non-
linear flows, e.g. over trees or over some other partially ordered sets, often appear in
Mathematics as well as in Computer Science, our approach is needed.

1. INTRODUCTION 167

1.1 Applications of combinations of temporal logics

Since it was initially proposed, temporalisation has been applied in several systems.
Its initial application was the description of the evolution of a temporal database [8, 9],
which needed two temporal references, one external (evolution) and one internal (the
actual temporal database). The two-dimensional view of temporal database evolution
is detailed in [15].

In temporal databases, time is generally considered to be linear, which explains the
initial focusing on linear flows of time only. Also, linearity simplified the proofs of
transference of completeness and decidability, for on a linear time one is allowed to
express that “a formula A holds at all times”.

Another application of linear temporalisation, involving two-dimensional time, is
the work on temporal logic programming within the paradigm of imperative future [19,
3]. Such paradigm permitted both the specification of formally verifiable programs as
well as the execution of such specifications as a temporal logic program. Its original
formulation involved only one temporal dimension, which meant that no update on
past states could be done, ie no temporal reasoning was carried on the program itself.
To deal with temporal programs, the imperative dimension was applied externally to
a system, generating a temporalised two-dimensional version of the imperative future
in [12, 13].

Besides temporal databases and software specification, temporalisation was applied
in the combination of grammar logics in the work of Blackburn et al. [4]. Here,
however, the limitations of linearity started to show and the use of temporalisation
for grammar formalisms lost preference in the face of other formalisms. Still in the
realm of grammar formalisms, Blackburn’s and Meyer-Viol’s tree logics [5] is one
possible formalism that can be externally applied to other logics with the results
below, but not with the linearity restriction.

More recently, the work of Montanari and Franceschet [17, 16] on the study of
structures representing time with multiple granularities has shown that temporalisa-
tion can be used to generate logics for several classes of granular structures, even with
the linear restriction. It would be interesting to see if new logics would arise if we
have more flexibility on the structure of the external flow of time.

As for the independent combination (or fusion) of two modal/temporal logics, sev-
eral applications arise when combining two logics, the most common of which are
the combinations of temporal and knowledge logics for the specification of algorithms
and protocols, which are best described in [6]. Of course, the logics needed for prac-
tical purposes usually demand a stronger interaction between the component logics
than that provided by the independent combination. So the logic obtained by the
independent combination is in a sense a minimal logic and the addition of further
properties and stronger interaction has to be analysed separately. This fact has been
noted already in the first works of fusion of logics in [7, 22].

1.2 The organisation of this paper

This paper addresses several generalisations. As described above, we aim to generalise
the notions of temporalisation and independent combination for generic flows of time.
Once such generalisations are done, it is normal to ask if these methods also apply

168 The Unrestricted Combination of Temporal Logic Systems

to multi-modal modal and temporal logics, where the connectives may have arbitrary
arity. It is our aim here to show how the methods applied here can be extended to
this generalised case.

The rest of this paper is organised as follows. Extended temporalisations are studied
in Section 2. The basic notions are initially described in Section 2.1, and transfer-
ence of soundness, completeness and decidability is proven in Sections 2.2 and 2.3.
In Section 2.4 it is explained why and how those results are applicable to iterated
temporalisations, as a prelude to the analysis of the independent combination in Sec-
tion 3. Those results all concern temporal US-logics, and generalising them form
multi-modal logics is the aim of Section 2.5.

The study of the independent combination of temporal logics starts with general
definitions in 3 and the transference of basic properties in Sections 3.2, 3.3 and 3.4.
Finally, the generalisation of the independent combination of any number of multi-
modal logics is discussed in 3.5.

Section 4 concludes with a discussion on the relationship between the constructions
of Sections 2.1 and 3, and an open problem is reported.

2 The temporalised system T(L)

2.1 Definition of a temporalised system

In this section we describe the system T(L) introduced in [11]. By a logic system we
mean a quadruple S = (LS ,`S ,KS , |=S), where LS is the system’s language, `S is
an inference system, KS is a class of models for the system and |=S ⊆ KS × LS is a
semantic relation such that M |=S A means that the formula A ∈ LS is satisfied in
the model M ∈ KS .

The language of T(L)
The language LUS of the temporal system T is built from a denumerable set of atoms
A, applying the two-place modalities U (until) and S, (since), and the Boolean con-
nectives ¬ (negation) and ∧ (conjunction).

Very little is required of the internal logic L, except that its language is described
from a denumerable set of atoms and that it has the classical Boolean connectives ¬
and ∧. We also demand that the connectives of T and L be disjunct. Apart from
that, any other type of modalities or predicates are accepted in the language.

Before we define the language of the temporalised system T(L) we need to introduce
a few definitions.

The language LL of L is partitioned into the sets BCL and MLL, where:

• BCL, the set of Boolean combinations consists of the formulas built up from any
other formulas with the use of the Boolean connectives ¬ or ∧;
• MLL, the set of monolithic formulas is the complementary set of BCL in LL.

If the external logic L does not contain the classical connectives ¬ and ∧, we assume
that MLL = LL and BCL = ∅, so every formula in L is considered monolithic.

The set of temporalised formulas, LT(L), is defined as the smallest set closed under
the rules

2. THE TEMPORALISED SYSTEM T(L) 169

1. If A ∈MLL, then A ∈ LT(L);
2. If A,B ∈ LT(L), then ¬A ∈ LT(L) and A ∧B ∈ LT(L);
3. If A,B ∈MLL, then S(A,B) ∈ LT(L) and U(A,B) ∈ LT(L).

We say that a formula in LT(L) is monolithic if it is a formula that is in the language
of L that is monolithic in L.

Note that the atoms of LUS are not elements of LT(L). As an example of a tempo-
ralised language, consider the atoms p, q ∈ LL and � is a modal symbol in L, then
�p and �(p∧ q) are monolithic formulas whereas ¬�p and �p∧�q are two Boolean
combinations.

The mirror image of a given formula is given by replacing U by S and vice-versa.
We will use the connectives ∨ and→ and the constants > and ⊥ in its usual meaning.
Also, the formulas PA, FA, GA and HA abbreviate respectively S(A,>), U(A,>),
¬F (¬A) and ¬P (¬A). The complexity of a formula A is the cardinality of its subfor-
mulas.

The semantics of T(L)
A flow of time is a pair (T,<) where T is a set of time points and < is a binary
relation on T . By imposing restrictions on < we generate classes of flows of time, e.g.
the class Klin of all transitive, irreflexive and linear flows of time.

When dealing with a simple temporal logic, a model is a triple (T,<, h), where
(T,<) is a flow of time and h : T → 2P is a mapping that associates every time point
t ∈ T with a set of propositions, namely with the set of propositions that are true at
that point. If we restrict the class of flows of time to K′, we also restrict the class of
models; it is usual practice to also call this class of models K′, leaving the context to
disambiguate whether we mean the class of flows of time or the class of models.

This definition of temporal model indicates that every time point is mapped into a
classical propositional model, and such a view will be generalised in the temporalised
case.

For that, we have to specify some restrictions on the semantic relation |=L for the
logic L, whose class of models will be called KL. The basic restriction imposes that,
for eachM ∈ KL and A ∈ LL we have

eitherM |= A orM |= ¬A. (∗)
This may need some adaptation on the notion of class of model. For instance, if
L is modal logic S5, it is not the case that, for each Kripke frame (W,R) where
R is an equivalence relation and every modal valuation V , either W,R, V |= A or
W,R, V |= ¬A. However, this problem is solved if we consider as the class of models
the set of pairs 〈M, w〉, where M is an S5 model (W,R, V) and w ∈ W . For that
class of models the property (∗) above holds.

Let (T,<) be a flow of time and let g be a mapping from T into KL, such that
(∗) holds for g(t), for all t ∈ T . A triple MT(L) = (T,<, g) is a temporalised model
of T(L). We say that a temporal model (T,<, g) belongs to a class K iff (T,<) ∈ K.
In general, we will use the term temporalised model to refer to a model of T(L) and
temporal model to refer to a model of T.

The satisfaction relation |= is defined recursively over structure of temporalised
formulas:

170 The Unrestricted Combination of Temporal Logic Systems

1.MT(L), t |= A, A ∈MLL, iff g(t) =ML andML |= A;
2.MT(L), t |= ¬A iffMT(L), t 6|= A;
3.MT(L), t |= A ∧B iffMT(L), t |= A and MT(L), t |= B;
4.MT(L), t |= S(A,B) iff there exists s < t such that MT(L), s |= A and for all r,
s < r < t, MT(L), r |= B;

5.MT(L), t |= U(A,B) iff there exists t < s such that MT(L), s |= A and for all r,
t < r < s, MT(L), r |= B.

A formula is valid in a class K if it is verified at all times at all models over that
class.

The inference system of T(L)
We assume that an inference system for a generic logic system is a mechanism capable
of recursively enumerating the set of all provable formulas of the system, here called
theorems of the logic system.

An inference system is sound with respect to a class of models C if all its theorems
are valid over C. Conversely, it is complete if all valid formulas are theorems. We
assume that L’s inference system is sound and complete.

We will assume that the temporal logic T’s inference system is given in an axiomatic
form, consisting of a set of axioms and a set of inference rules. For example, consider
the possible axiomatisations of US over several classes of flows of time presented in [29]
or in [20]. When a temporal logic T is sound and complete over the class K of flows,
we write T/K.

Given T/K, the inference system of T(L) is denoted by T(L)/K and consists of the
following elements:

• The axioms of T/K;
• The inference rules of T/K;
• The inference rule Preserve: For every formula ϕ in LL, if `L ϕ then `T (L) ϕ.

In [11] it is shown that if T/K and L have a sound inference system, then the
inference system of T(L)/K is sound; no extra restrictions are made on the nature of
K. Also, in case L has a complete inference system and Klin is a class of linear flows
of time, then the inference system of if T(L)/Klin is complete. We want to eliminate
this restriction on linearity.

2.2 Completeness of T(L)

To show the transference of completeness we maintain the same proof strategy of [11],
but we introduce a new technique and rework its underlying constructions. In the
presence of linearity, one can write a formula that expresses the fact that a formula A
“is true everywhere” in a model. This simplifies life a lot, but cannot be reproduced
in a generic model. So we introduce a technique that picks up the “relevant” worlds
in a model for the evaluation of a given formula, and we construct a formula that
forces A to be true over all such relevant worlds.

The strategy of the proof is illustrated in Figure 1. We start with a consistent
LT(L)-formula ϕ, translate it into a pure LUS-temporal logic consistent formula A; then

2. THE TEMPORALISED SYSTEM T(L) 171

consistentϕ

model for A

model for ϕ

translation

completeness

model
manipulation

derived
completeness

A consistent

T(L)

US

Fig. 1. Completeness proof strategy

completeness of LUS/K gives us a model for A; after some model manipulation using
the completeness of L, we obtain a T(L)/K-model for ϕ, thus deriving the completeness
for T(L)/K. The more sophisticated bit of the proof is the initial translation step,
which in the generic case has to deal with the nesting of temporal operators in ϕ
instead of the simpler translation used for the linear case. Such initial elaboration
allows us later to do a straightforward model manipulation to construct a model for
ϕ.

To deal with the nesting of temporal operators in a formula, we define the operator
nesting tree of a temporal or temporalised formula ψ, Dψ. A tree is represented
here as a set of strings of 0’s and 1’s, with the symbol ∗ representing concatenation of
strings; the empty string is represented by ε. The tree is closed under prefix formation
of its strings, that is, if 101 ∈ Dψ, then ε, 1, 10 ∈ Dψ as well. The 0 represents a past
operator (a step to the past) and the 1 represents a future operator (or a step to the
future).

Notation 2.1 In the following we will use the Greek letters ϕ, ψ and χ to indicate
T(L) formulas, and the letters A, B and C to indicate temporal US formulas. We
use the Greek letters ϕ, ψ and χ also to refer to either a temporal or temporalised
formula.

Definition 2.2 Given a formula ψ ∈ LUS ∪ LT(L) we build its operator nesting tree
Dψ recursively over the structure of ψ:

1. If ψ is a literal or monolithic, then Dψ = {ε};
2. If ψ = ϕ1 ∧ ϕ2, then Dψ = Dϕ1 ∪Dϕ2 ;

3. If ψ = ¬ϕ, then Dψ = Dϕ;

4. If ψ = S(ϕ1, ϕ2), then Dψ = {ε} ∪ {0 ∗ s|s ∈ Dϕ1 ∪Dϕ2};
5. If ψ = U(ϕ1, ϕ2), then Dψ = {ε} ∪ {1 ∗ s|s ∈ Dϕ1 ∪Dϕ2}.

This definition implies that ε ∈ Dψ for any ψ and, as a consequence, the prefix of
any string in Dψ will also be a member of Dψ. For example, consider the US formula

A = S(U(p, S(p, q)), S(p, p)) ∧ U(¬U(p, q), S(p, q))

172 The Unrestricted Combination of Temporal Logic Systems

It’s associated operator nesting tree will be:

DA = DS(U(p,S(p,q)),S(p,p)) ∪DU(¬U(p,q),S(p,q)),
DA = {ε} ∪ {0 ∗ s|s ∈ DU(p,S(p,q)) ∪DS(p,p)} ∪ {1 ∗ r|r ∈ DU(p,q) ∪DS(p,q)},
DA = {ε, 0, 1} ∪ {01 ∗ s′|s′ ∈ Dp ∪DS(p,q)} ∪ {00 ∗ s′′|s′′ ∈ Dp}∪
{11 ∗ r′|r′ ∈ Dp ∪Dq} ∪ {10 ∗ r′′|r′′ ∈ Dp ∪Dq},
DA = {ε, 0, 1, 01, 00, 11, 10}∪ {010 ∗ s′′′|s′′′ ∈ ∪Dp ∪Dq} ,
DA = {ε, 0, 1, 01, 00, 11, 10, 010}.

Let 1m represent a string of m 1’s, and similarly for 0m. Let 00 and 10 repre-
sent the empty string. So each string in the nesting operator can be represented as
1m10m2 . . .1mn−10mn , where all mi > 0, except for m1 and mn, that can be 0. Note
that n is always an even number.

Each such string is then associated to a temporal operator over H and G. Let
H0ψ = G0ψ = ψ; let Gn+1ψ = G(Gnψ); and Hn+1ψ = H(Hnψ). So each string
1m10m2. . .1mn−10mn is associated with the temporal operator Gm1Hm2 . . . Gmn−1Hmn ,
which we abbreviate as �m1,m2,...,mn−1,mn .

As an example, �0,2(�0,3,1,0ψ) ≡ �0,5,1,0ψ instead of �0,2,0,3,1,0ψ.
We can now start defining the translation of consistent formulas in T(L) into con-

sistent formulas in US. The first step is the correspondence mapping.

Definition 2.3 Let {p1, p2,. . .} be an enumeration of the set of atoms of US, and let
{ψ1, ψ2, . . .} be an enumeration of MLL, the set of monolithic formulas of T(L). Define
the correspondence mapping σ from LT(L) into LUS, inductively over a formula as:

(∀ψi ∈MLL)(σ(ψi)) = pi
σ(¬χ) = ¬σ(χ)

σ(χ1 ∧ χ2) = σ(χ1) ∧ σ(χ2)
σ(S(χ1, χ2)) = S(σ(χ1), σ(χ2))
σ(U(χ1, χ2)) = U(σ(χ1), σ(χ2))

The following two lemmas are shown in [11]:

Lemma 2.4 (The correspondence Lemma) The correspondence mapping σ is a
bijection.

Lemma 2.5 For all T(L)-consistent χ ∈ LT(L), σ(χ) is US-consistent.

The reverse of Lemma 2.5 is not true, as we can see in this example:

Example 2.6 In a modal normal logic with the modality �, for all atoms ϕ, ψ,

χ ≡ �(ϕ→ ψ)→ (�ϕ→ �ψ)

is a theorem in L. The formulas �(ϕ → ψ), �ϕ and �ψ are monolithic, so they are
mapped by σ into some atoms of US, say p1, p2 and p3, respectively.

Thus, σ(χ) = p1 → (p2 → p3), that is not a theorem in T.

For the model manipulation in the final part of the proof of completeness, we will
need also the converse of Lemma 2.5, that is, T(L) theorems must be mapped into
US theorems. To achieve that, we define the transformation η(ψ), which makes use
of the operator nesting tree Dψ, and preserves ψ’s consistency; such transformation
will guarantee that T(L)-theorems are mapped into US-theorems.

2. THE TEMPORALISED SYSTEM T(L) 173

Definition 2.7 Given two formulas ϕ, ψ ∈ LT(L), define:

1. Mon(ϕ) is the set of monolithic subformulas of ϕ.
2. Lit(ϕ) = Mon(ϕ) ∪ {¬ψ|ψ ∈Mon(ϕ)};
3. Inc(ϕ) = {

∧
F |F ⊆ Lit(ϕ) and F `L⊥}; that is Inc(ϕ) is the set of L-inconsistent

formulas that can be built using the monolithic subformulas of ϕ;
4. �ϕψ is the conjunction of all formulas of the form �m1,...,mnψ such that �m1,...,mn

is a temporal operator associated to a string in the operator nesting tree Dϕ;
5. η(ϕ) =

∧
{�ϕ¬ψ|ψ ∈ Inc(ϕ)}.

Example 2.8 If ϕ = S(p, q), then Dϕ = {ε, 0}. So, for any formula ψ, �ϕψ =
�0,0ψ ∧�0,1ψ = ψ ∧Hψ.

The terminology used in Definition 2.7 was introduced in [11]. The modification
for the general case we had to make here is restricted to the definition of �ϕψ (used
in the definitions of η(ϕ)).

The following Lemma is an adaptation of [11] for a the case of generic flows of time.

Lemma 2.9 `T(L) η(ψ).

Proof. Every formula ϕ in Inc(ψ) is a contradiction, and therefore its negation is a
theorem of T(L). Now, if ¬ϕ is a theorem, so are H¬ϕ and G¬ϕ; by induction we get
that �m1,...,mn¬ϕ is a theorem too, for any m1, . . . ,mn.

Using Lemmas 2.5 and 2.9, we have that if ψ is T(L)-consistent, then σ(ψ ∧ η(ψ))
is US-consistent. We can apply completeness of US/K and obtain a US-model MUS

for σ(ψ ∧ η(ψ)) over K. Furthermore, the theoremhood of the monolithic L-formulas
in ψ is captured in η(ψ) and will guarantee that its translation will be true in the
“relevant part” ofMUS. It is this notion of “relevant part” of a temporal model that
we define next by associating subflows of time to binary trees (not very surprisingly).
At this part of the proof we will be working at the US level.

Let (T,<) ∈ K be a flow of time, and let t, s ∈ T . We say that s is 1-related to t
if t < s (s is in the future of t); similarly, s is 0-related to t if s < t (s is in the past
of t). Let t1, . . . , tn ∈ T be a sequence of time points such that each pair ti, ti+1 is
0- or 1-related. Such a sequence can then be associated to a string of 0’s and 1’s of
length n− 1, where the ith position is 1 if ti and ti+1 are 1-related, and 0 otherwise;
we represent it as string(t1, . . . , tn).

The “relevant part” of a flow of time (T,<), with respect to a temporal formula A
at a point t, is formally defined as the range of A at t over (T,<), Rg(A, t):

Rg(A, t) = {t} ∪ {s ∈ T | string(t, t1, . . . , tn, s) ∈ DA for some t1, . . . , tn ∈ T }

Note that since DA = D¬A, it follows that Rg(A, t) = Rg(¬A, t).
It is important to highlight that we are not constructing a submodel of a given

model generated by Rg(A, t). Our aim is to construct a model that belongs to a class
K. If we start in a model over K and generate a submodel based on Rg(A, t), there
is no way to guarantee that the generated submodel belongs to K, and in general it
does not. So Rg(A, t) will be used to focus on a relevant part of the model. The
satisfaction of a formula A at a point t in a temporal model depends only on the
temporal valuation at points in Rg(A, t), as shown below.

174 The Unrestricted Combination of Temporal Logic Systems

Lemma 2.10 Consider a temporal model M = (T,<, g), a formula A ∈ LUS, and a
point t ∈ T . Then for any model M′ = (T,<, g′) such that g′(s) = g(s) for every
s ∈ Rg(A, t),

M, t |= A iff M′, t |= A.

Proof. Initially note that, both M and M′ are based on the same flow of time, so
for every subformula B of A and for every s ∈ T , Rg(B, s) is the same set for both
models. We proceed by structural induction over A.

• If A is atomic, then g(t) = g′(t).
• If A = ¬B, then Rg(A, t) = Rg(B, t), so the induction hypothesis directly gives

us the result.
• If A = B1 ∧ B2, then Rg(A, t) = Rg(B1, t) ∪ Rg(B2, t), and therefore for every
s ∈ Rg(Bi, t), g(t) = g′(t) [i = 1, 2], so the induction hypothesis applies and gives
us thatM, t |= Bi iff M′, t |= Bi, from which the result follows immediately.
• If A = S(B,C), then M, t |= A iff there exists a t′ < t with M, t′ |= B and for

every t′′ such that t′ < t′′ < t, M, t′′ |= C. Note that both t′, t′′ ∈ Rg(A, t).
Furthermore, because the temporal nesting of B and C is smaller than that of A,
we have Rg(B, t′) ⊆ Rg(A, t) and therefore g(s) = g(s′) for every s ∈ Rg(B, t′), so
the induction hypothesis applies and yieldsM, t′ |= B iffM′, t′ |= B; analogously,
we get that for every t′′ such that t′ < t′′ < t, M, t′′ |= C iffM′, t′ |= C, and
therefore the result follows.
• If A = U(B,C) the reasoning is totally analogous to the previous case, finishing

the proof.

The following lemma shows that the definition of η(ψ) preserves ψ’s truth value
over that “relevant part” of a model.

Lemma 2.11 Let MUS = (T,<, g) be a temporal model over K and ϕ, ψ ∈ LT(L).
Let t ∈ T so thatMUS, t |= σ(�ϕψ). Then for every s ∈ Rg(σ(ϕ), t),MUS, s |= σ(ψ).

Proof. We know that

�ϕψ =
∧

1m1 ...0mn∈Dϕ
�m1,...,mnψ.

A simple induction shows that Dϕ = Dσ(ϕ), and therefore

σ(�ϕψ) =
∧

1m1 ...0mn∈Dσ(ϕ)

�m1,...,mnσ(ψ).

Consider s ∈ Rg(σ(ϕ), t). Then either s = t or there are t1, . . . , tn ∈ Rg(σ(ϕ), t)
such that string(t, t1, . . . , tn, s) ∈ Dσ(ϕ). If s = t, since ε ∈ Dσ(ϕ), it follows that
MUS, s |= σ(ψ). In the latter case, we show the result by induction on n.

For n = 0, we have that either s < t, in which case we have that MUS, t |= Hσ(ψ)
soMUS, s |= σ(ψ), or t < s, in which case we have thatMUS, t |= Gσ(ψ) soMUS, s |=
σ(ψ).

2. THE TEMPORALISED SYSTEM T(L) 175

For the inductive case, we have that string(t, t1, . . . , tn, s) ∈ Dσ(ϕ). Again we have
two possibilities. If tn < s then the rightmost operator in �m1,...,mn is a G, and the
induction hypothesis gives us that MUS, tn |= Gσ(ψ) so MUS, s |= σ(ψ). If s < tn
then the rightmost operator in �m1,...,mn is an H , and the induction hypothesis gives
us thatMUS, tn |= Hσ(ψ) soMUS, s |= σ(ψ).

This finishes the induction and the proof.

We can now finally glue the pieces of the completeness proof.

Theorem 2.12 If the logical system L is complete and US is complete over a class of
flows of time K, then the logical system T(L) is complete over K.

Proof. Let ψ be a T(L)/K-consistent formula. We will construct a T(L)-model for
ψ over the class K.

By Lemma 2.9, ψ ∧ η(ψ) is also a T(L)-consistent formula. So, by Lemma 2.5,
σ(ψ ∧ η(ψ)) is a T-consistent formula. As we assume that US/K is complete, then
there exists a temporal model MUS = (T,<, g) with (T,<) ∈ K such that for some
t ∈ T ,MUS, t |= σ(ψ ∧ η(ψ)). For every s ∈ Rg(ψ, t), define:

Gψ(s) = {ϕ ∈ Lit(ψ)|MUS, s |= σ(ϕ)}

Claim: For every s ∈ Rg(ψ, t), Gψ(s) is finite and L-consistent.
Indeed, Gψ(s) is finite because Lit(ψ) is finite. To prove consistency, suppose by

absurd that for some s ∈ T , Gψ(s) is L-inconsistent. Then there exists a subset of
Gψ(s), {ϕ1, . . . , ϕn} such that `L

∧
1≤i≤n ϕi → ⊥. Thus

∧
1≤i≤n ϕi ∈ Inc(ψ).

Let ξ = �ψσ(¬
∧

1≤i≤n ϕi). By the definition of η and σ, it follows that ξ is a
conjunct of σ(ψ ∧ η(ψ)). From MUS, t |= σ(ψ ∧ η(ψ)) it follows MUS, t |= ξ, so by
Lemma 2.11MUS, s |= ¬σ(

∧
1≤i≤n ϕi). However, by the definition of Gψ(s) we have

thatMUS, s |=
∧

1≤i≤n σ(ϕi) = σ(
∧

1≤i≤n ϕi), which is clearly a contradiction.
Therefore Gψ(s) is always L-consistent, proving the claim.
This claim is then used to build a model for ψ in the following way. By Lemma 2.11,

for each s ∈ Rg(ψ, t), MUS, s |= σ(Gψ(t)). By hypothesis, L is complete, so for each
s ∈ Rg(ψ, t) there exists a model for the L-consistent set Gψ(s), Ms

L. So, we can
define a valuation h as:

h(s) =Ms
L

for every s ∈ Rg(ψ, t); for s ∈ T −Rg(ψ, t), h(s) can be any model of L.
ConsiderMT(L) = (T,<, h). To obtain completeness, all we have to do is to prove

that MT(L), t |= ψ. First, note that for every s ∈ Rg(ψ, t), and every monolithic
subformulaB of ψ,MT(L), t |= ϕ iffMUS, t |= σ(ϕ). Then a straightforward structural
induction on ϕ generalises this to show that MT(L), t |= ψ iff MUS, t |= σ(ψ); details
omitted.

But since we have that MUS, t |= σ(ψ), it follows that MT(L) is a temporalised
model for ψ over K, finishing the proof.

The following is a nice consequence of soundness and completeness. Let Th(L) be
the set of all theorems of logic L. A logic L′ is an extension of logic L if Th(L) ⊆ Th(L′).
Furthermore, such an extension is said to be conservative if the language of L′ is a
superset of the language of L and for every formula A in the language of L, A ∈ Th(L′)
only if A ∈ Th(L).

176 The Unrestricted Combination of Temporal Logic Systems

Lemma 2.13 If the systems US and L are sound and complete, with disjoint sets of
connectives, then the temporalised system US(L) is a conservative extension of both
US and L.

Proof. It is obvious from the definition of US(L) that it is an extension of both US
and L.

For conservativeness, suppose A is a formula of US that is a theorem of US(L).
Suppose for contradiction that A is not a theorem of US, 6`US A. Then, since US
extends classical logic, we have that ¬A is a consistent formula, and by completeness,
we have a model M for ¬A. We construct a temporalised model MT(L) = (T,<, g)
such that g(t) =M for every t ∈ T . Such a model is indeed T(L)-countermodel of A,
contradicting the soundness of T(L). So A is a theorem of US.

If A is a formula of L, because the sets of connectives are disjoint, the only way
it can be deduced is via the inference rule of Preserve, in which case it clearly is a
theorem of L. Which finishes the proof.

Remark 2.14 Note that the last step of the proof above relies on the fact that the
languages of L and US are disjoint. If there is a connective of L that also appears in US,
the result above would not hold. This seems a vacuous assertion, since we have always
assume the disjunction of the languages in this section, but it will be particularly
important when we discuss the decomposition of the independent composition in
several temporalisations.

2.3 Decidability of T(L)

Transference of decidability is shown in [11] conditioned to the underlying flow of time
being linear. We extend here that result to any class of flows of time. Recall that
a given system L is decidable if for any formula ψ ∈ L, there exists a procedure that
outputs “yes” if ψ is a theorem and “no” otherwise. So, if L is complete then L is
decidable if for any formula ψ ∈ L, it is possible to decide whether ψ is valid or not.

Let us suppose that both the temporal system T and the external system L are
decidable. We assume that both T and L are sound and complete. Then, T(L) is also
sound and complete, decidability is obtainable if we can decide the validity of a T(L)
formula ψ in any temporalised model.

The transference of decidability is obtained through a construction similar to that
used for completeness. The definitions of η(ψ) and the mapping σ are the same. We
have:

Lemma 2.15 Let L and T be sound and complete systems. A formula ψ is T(L)-valid
iff σ(η(ψ)→ ψ) is US-valid.

Proof. If σ(η(ψ) → ψ) US-valid, by US-completeness it is also a theorem, then we
can simply mimic the US-proof at the temporalised level, since all US axioms and
inference rules are present at T(L), so η(ψ) → ψ is also a T(L)-theorem. And since,
by construction, η(ψ) is always a theorem, so is ψ. By derived soundness, it is also
T(L)-valid.

Suppose by contradiction that ψ is T(L)-valid and σ(η(ψ)→ ψ) is not valid. From
Lemmas 2.10 and 2.11 follows that if there was a countermodel for σ(η(ψ)→ ψ), we
would be able to construct a countermodel for η(ψ)→ ψ, and thus also a countermodel
for ψ, which contradicts completeness. So σ(η(ψ)→ ψ) must be US-valid.

2. THE TEMPORALISED SYSTEM T(L) 177

It is simple now to see the transference of decidability.

Theorem 2.16 If T and L are sound, complete and decidable, T(L) is decidable.

Proof. From the definition of η(ψ), if L is decidable then we have a direct way to
construct η(ψ). From Lemma 2.15, it follows that the decision of ψ is equivalent to
the decision of σ(η(ψ)→ ψ). Since such a formula is constructible, we can apply the
decision procedure of T, thus deciding ψ.

It is straightforward to show the following complexity result:

Lemma 2.17 Let N be the size of a formula, and let O(cL(N)) and O(cUS(N))
be upper bounds of the complexity of the decision procedures of L and T, respec-
tively. Then an upper bound of the complexity of the decision procedure for T(L) is
O(cT(2N) + 2N × cL(N)).

Proof. The complexity of the decision procedure for T(L) is divided in two parts.
The first corresponds to the computation of η(ψ), where N is the size of ψ. This this
process consists of computing Lit(ψ), which is O(N) and then testing all subset of
it for inconsistency. Since there is O(2N) potential subsets, this part has complexity
O2N × cL(N)).

The second part is to apply the decision procedure of T to σ(η(ψ) → ψ). The
size of η(ψ) is O(2N), so this part has complexity O(cT(2N)), leading to the overall
complexity O(cT(2N) + 2N × cL(N)).

2.4 Iterated temporalisations

This section serves as a prelude to the independent combinations of logics to be
presented in Section 3. Here we analyse what happens when we apply US to a logic
L = T(US), where T may contain a renaming of U and S. This violates the initial
assumption that the set of connectives from the external US and the internal L are
disjoint, for U and S, without renaming, now appear in both systems.

To be a little bit more generic, let us consider a temporalisation US1(Ln), where
Ln = US2(US1(. . .)) corresponds to n iterated temporalisations having US2 as the out-
ermost external application.

It is important to note, however, that the internal and external occurrence of the
connectives obey the same logic rules (inference rules and semantics).

We now analyse how the results obtained so far can be brought to US1(Ln).

Completeness and decidability of US1(Ln)
The main problem here is what is considered a monolithic subformula. For example,
if we find a subformula of the format G1p in a formula of US1(Ln), is it considered
monolithic, for it is part of Ln, or is it considered part of US1, and thus not monolithic?

This question affects the constructions of the proofs of completeness and decidabil-
ity in that it affects is how to compute η(ψ).

The answer to this problem is: for the purpose of computing η(ψ) a monolithic
subformula is any subformula that is a member of the language of Ln that is not a

178 The Unrestricted Combination of Temporal Logic Systems

Boolean combination. This is in the spirit of the way η(ψ) was defined and preserves
its properties for the case of US1(Ln).

As defined for a normal temporalisation of T(L) where T and L have disjoint sets
of operators,

η(ψ) =
∧ {

�ψ¬ϕ|ϕ ∈ Inc(ψ)
}

where each ϕ consists of a Boolean combination of formulas of L only.
In US1(Ln), ϕ may contain now subformulas that belong to the language of US1.

This, however, does not pose a problem anywhere on the proofs. Let us clarify this
point with an example.

Consider the following formula ψ in US1(US2(US1))1.

ψ = G1(p ∧ F2H2G1¬p)

Such a formula is inconsistent if US1 is complete in transitive flows of time with no
end-points. In fact:

• ` FHA→ A is a theorem of any temporal logic, so ψ implies G1(p ∧G1¬p).
• By normality we get G1p∧G1G1¬p and, by transitivity, we get G1G1p∧G1G1¬p.
• By normality, this implies that G1G1(p∧¬p). which contradicts the no-endpoints

property of US1.

One may, by mistake, construct a temporalised model for ψ, if one considers
Mon(ψ) = {p, F2H2G1¬p,H2G1¬p}, ignoring G1¬p. Indeed, in this case, η(ψ) = >,
so σ(η(ψ) ∧ ψ)) = G1(qp ∧ qF2H2G1¬p), which clearly has a model. And since we
can get models to p ∧ F2H2G1¬p, we have constructed a temporalised model to an
inconsistent formula!

The problem with the construction above is that what we have to consider now as
monolithic subformulas is the set.

Mon(ψ) = {p, F2H2G1¬p,H2G1¬p,G1¬p}

With suchMon(ψ), we see that F2H2G1¬p and ¬G1¬p contradict (because F2H2A→
A is a theorem of any temporal logic). We see that a formula of US1, namely G1¬p
occurs in σ(η(ψ) ∧ ψ)). So among the conjuncts of σ(η(ψ) ∧ ψ)) we find:

G1(qp ∧ qF2H2G1¬p), qF2H2G1¬p → G1¬qp

The first is σ(ψ) and the second is σ(�0(F2H2G1¬p → G1¬p)) These two formulas
imply inconsistency, in the same pattern as we derived the inconsistency of ψ above,
and by soundness of US1, no model can be built for it.

With this in mind, the proof of completeness of Section 2.2 applies immediately
to US1(Ln). This can be seen by an inspection on the proof. We see that nowhere
else in that construction was it necessary to use the fact that the set of connectives
of the external US1 and those of internal logic Ln is disjoint. In particular, any
occurrence of a connective of US1 inside Ln always occurred within the scope of a US2

connective, avoiding any interaction between the external and internal occurrences of
a US1 connective.

Similarly, the proof of decidability also applies to US1(Ln).

1This example was suggested by Massimo Franceschet.

2. THE TEMPORALISED SYSTEM T(L) 179

Conservativeness of US1(Ln)
The proof of Lemma 2.13, stating that US(L) is a conservative extension of both US
and L uses the fact that the sets of connectives are disjoint.

However, in the case of US1(Ln), because the internal and external occurrences of
connectives of US1 respect the same semantic rules and inference rules, it is possible
to adapt the of Lemma 2.13 to US1(Ln). For that, we have to assume that US1 and
US2 are sound and complete, which gives us the soundness of Ln.

In fact, the interesting case arises when we prove A in US1(Ln) and A is a formula
of Ln. Then we have to analyse two cases:

• If A is not in the language of US1, then the only way A could have been derived
is by the use of Preserve rule. In which case A is also a theorem of Ln.
• Suppose A is in the language of US1. This means that A is a pure US1 formula.

As in Lemma 2.13, we show that A is a theorem of US1. Suppose for contradiction
that it is not. Then ¬A is a consistent formula, and by completeness of US1,
¬A has a model MA. We construct a temporalised model MT(L) = (T,<, g)
such that, for every t ∈ T , g(t) = MA, thus building a T(L)-countermodel for
A, contradicting the soundness of T(L). So A is a theorem of US. But since the
temporalisation is an extension of its components, any theorem of US1 is also a
theorem of Ln.

So if A is a theorem in US1(Ln) that is in the language of Ln, it is a theorem of Ln.
The second item above also showed that if A is in the language of US1, it is a theorem
of US1. We have thus proved the following.

Lemma 2.18 If US1 and US2 are sound and complete, then US1(Ln) is a conservative
extension of both US1 and Ln.

2.5 Extension to multimodal, non-temporal logics

Before we move to the independent combination of logics, we would like to discuss
how the results presented so far generalise when in the external logic T the connectives
may have any arity, and instead of only two (U and S) we may have n connectives
41, . . . ,4n, such that the arity of 4i is ri > 0.

On the semantical side, we assume that each connective 4i is associated with a
binary relation Ri. The semantics of formulas is based on a multidimensional frame
(W,R1, . . . , Rn). We have, however, to impose certain semantic restrictions:

• The semantics of 4i(p1, . . . , pri) is a monadic first-order formula (or connective
truth table in the sense of [20, Chapter 8]) build from predicates P1(·), . . . , Pri(·),
the relational symbols R1, . . . , Rn, and equality.
• For each relational symbol Ri, we must be able to express a derived connective
�i such that �ip expresses ∀x(t Ri x⇒ P (x)). Furthermore, the inference system
must be able to derive that if ` A then ` �iA, 1 ≤ i ≤ n.

This second restriction correspond to the notion of normality. Note, however, that
the demand of normality made here is weaker than that made in [28], for there it
is required that every argument position in 4i(p1, . . . , pri) be normal, a requirement

180 The Unrestricted Combination of Temporal Logic Systems

that even U and S fail to keep, for they are only normal in the first position and not
in the second. A weaker requirement, however, can be found in [2].

Let us call the resulting system a generalised modal/temporal logic. The process of
applying it externally to a logic L will be called a generalised modalisation of L.

In the case of US-temporal logic, each connective has arity 2, U is associates with
binary relation R1 = < and S with R2 = >; also, �1 = G and �2 = H are derivable
connectives. The fact that R1 and R2 are related is no limitation for this setting.
This setting allows for many well-known modal logics, including the branching time
modalities in CTL and CTL∗ and multi-arity connectives. The restriction (*) for the
internal logics, however, remains.

We can then examine how our proof of completeness can be adapted. The definition
of the operator nesting tree Dψ of a formula ψ is simply extended to :

1. If ψ is a literal or monolithic, then Dψ = {ε};
2. If ψ = ϕ1 ∧ ϕ2, then Dψ = Dϕ1 ∪Dϕ2 ;
3. If ψ = ¬ϕ, then Dψ = Dϕ;
4. If ψ = 4i(ϕ1, . . . , ϕri), then Dψ = {ε} ∪ {i ∗ s|s ∈ Dϕi ∪ . . . ∪Dϕri

}.

This implies that the strings that compose our strings take as atoms the elements
of the interval [1, i] and that each node in the tree can be at most i-branching. A
temporal operator can then be associated with each string in a straightforward way,
that is, each j ∈ [1, i] is associated with the derived operator �j and a string j1 · · · jp
is associated with the string of connectives �j1 · · ·�jp .

The definition of �ϕψ remains the same as before, namely the conjunction of all
formulas of the form�m1,...,mnψ such that�m1,...,mn is a temporal operator associated
to a string in the operator nesting tree Dϕ.

Given a multi-dimensional frame (W,R1, . . . , Rn) and t1, . . . tm ∈ W , such that tk
is related with tk+1 by some Ri, we represent by string(t1, . . . tm) the string of length
m− 1 obtained by a path through all those points.

Finally, the correspondence mapping σ can be modified, remaining a homomor-
phism, so as to deal with generic modalities of the form 4i(ϕ1,. . ., ϕri):

σ
(
4i(ϕ1,. . ., ϕri)

)
= 4i

(
σ(ϕ1),. . ., σ(ϕri)

)
.

The monolithic and Boolean cases remain the same.
Given those constructions all others constructions remain exactly the same. In

particular, this way preserves the central notion of Rg(A, t) as the “relevant part”
of a multi-dimensional frame (W,R1, . . . , Rn) with respect to a formula A at a point
t ∈ W , which plays a crucial role in the proof of transference of completeness. With
such generalised construction, all lemmas and theorems are straightforwardly gener-
alised and the transference of completeness and decidability follows for the temporal-
isation/modalisation of a logic with n connectives of arbitrary arity that respect the
semantical restrictions above. The reader is invited to verify the details.

What deserves note is the fact that in our construction the fact that U and S
are mirror images is taken care by the definition of η(ψ). In the same way, in the
generalised modalisation, if there is any iteration between the connective and their
respective semantical relations, this remains hidden in the construction of η(ψ), and
the proof generalises smoothly. We can then state the following result.

3. THE INDEPENDENT COMBINATION OF TEMPORAL SYSTEMS 181

Theorem 2.19 The properties of completeness and decidability are transferred via
generalised modalisation/temporalisation.

3 The independent combination of temporal systems

Once we have generalised the transference results for the unrestricted temporalisation
of a logic system over any class of flows of time, the next obvious question is whether
such results generalise for the independent combination of two temporal logics.

Such an investigation was pursued for the linear case in [10], in which the transfer-
ence of completeness was obtained by the “unravelling” of the independent combina-
tion in a finite number of temporalisations. Here we investigate if such technique is
still applicable for the unrestricted case.

The work of Frank Wolter [28] on independent combination of logics (there called
fusion of logics) is perhaps the work in the literature that more closely relates to the
goals of the present work. That work explores the fusion of any number of logics
containing any number of operators, of arbitrary arity. One restriction of such work
was that each modality had to respect a restriction of normality in every argument,
and it turns out the U and S do not respect such condition. Such a restriction was
only eliminated as a side effect in a later work [2].

The present work compares with Wolter’s in the following ways:

•We present a proof of transfer of decidability for US over any class of flows of time.

•Wolter’s presentation is algebraic, while ours is based on Kripke semantics.

• Our construction shows how the independent combination can be seen as an infi-
nite union of alternating temporalisations.

3.1 Definitions

We now deal with the independent combination of two temporal logic systems, US1

and US2. If we temporalise US1 with US2, we obtain a very weakly expressive system;
in such a system, if US1 is the internal temporal logic (F1 is a derived connective in
US1), and US2 is the external one (F2 is also derived in US2), we cannot express that
vertical and horizontal future operators commute,

F1F2A↔ F2F1A.

In fact, the subformula F1F2A is not even in the temporalised language of US2(US1),
nor is the whole formula. In other words, the interplay between the two-dimensions
is not expressible in the language of the temporalised US2(US1).

The idea is then to define a method for combining temporal logics that is symmetric.
As usual, we combine the languages, inference systems and classes of models.

Definition 3.1 Let Op(T) be the set of non-Boolean operators of a generic temporal
logic T. Let T1 and T2 be two temporal logic systems such that Op(T1) ∩Op(T2) =
∅. The fully combined language of logic systems T1 and T2 over the set of atomic
propositions P is obtained by the union of the respective set of connectives and the
union of the formation rules of the languages of both logic systems.

182 The Unrestricted Combination of Temporal Logic Systems

Let the operators U1 and S1 be in the language of US1 and U2 and S2 be in that of
US2. Their fully combined language over a set of atomic propositions P is given by

• every atomic proposition is in it;

• if A,B are in it, so are ¬A and A ∧B;

• if A,B are in it, so are U1(A,B) and S1(A,B).

• if A,B are in it, so are U2(A,B) and S2(A,B).

The two languages taken to be independent of each other and the set of axioms of
the two systems are supposed to be disjoint. The following combination method is
the independent combination of two temporal logics. An axiomatisation is given by a
pair (Σ, I), where Σ is a set of axioms and I is a set of inference rules.

We have very few limitations on the axiomatisations, namely:

• US1 and US2 are extensions of classical logic, so classical manipulations are ad-
missible in the system; ie. if they are not primitive, they can be derived.

• Because the we are assuming a Kripke-style semantics, the logics have to be nor-
mal. This means that the axioms of normality (ie, the K-axioms) must be derivable
for G1, H1, G2 and H2.

• The rule of necessitation has to be admissible: from ` A derive ` G1A, ` H1A,
` G2A and ` H2A.

Note that, since the set of operators of the two logics is disjoint, the set of axioms
and inference rules referring to those operators will be disjoint.

Definition 3.2 Let US1 and US2 be two US-temporal logic systems defined over the
same set P of propositional atoms such that their languages are independent. The
independent combination US1 ⊕ US2 is given by the following:

• The fully combined language of US1 and US2.

• If (Σ1, I1) is an axiomatisation for US1 and (Σ2, I2) is an axiomatisation for US2,
then (Σ1 ∪ Σ2, I1 ∪ I2) is an axiomatisation for US1 ⊕ US2.

• The class of independently combined flows of time is K1 ⊕ K2 composed of bi-
ordered flows of the form (T,<1, <2) where the connected components of (T,<1)
are in K1 and the connected components of (T,<2) are in K2, and T is the (not
necessarily disjoint) union of the sets of time points that constitute each connected
component.
A model structure for US1 ⊕ US2 over the combined class K1 ⊕ K2 is a 4-tuple
(T,<1, <2, g), where (T,<1, <2) ∈ K1 ⊕ K2 and g is an assignment function g :
T → 2P .

• The semantics of a formula A in a model M = (T,<1, <2, g) is defined as the
union of the rules defining the semantics of US1/K1 and US2/K2. The expression
M, t |= A reads that the formula A is true in the (combined) model M at the
point t ∈ T . The semantics of formulas is given by induction in the standard way:

3. THE INDEPENDENT COMBINATION OF TEMPORAL SYSTEMS 183

M, t |= p iff p ∈ g(t) and p ∈ P .
M, t |= ¬A iff it is not the case thatM, t |= A.
M, t |= A ∧B iffM, t |= A andM, t |= B.
For i = 1, 2:
M, t |= Si(A,B) iff there exists an s ∈ T with s <i t and M, s |=

A and for every u ∈ T , if s <i u <i t then
M, u |= B.

M, t |= Ui(A,B) iff there exists an s ∈ T with t <i s and M, s |=
A and for every u ∈ T , if t <i u <i s then
M, u |= B.

The independent combination of two logics also appears in the literature under the
names of fusion or join. The language of such a logic is referred to in the literature
as a two-dimensional temporal language, even though its semantics is based on the
evaluation of formulas at a single point (thus still one dimensional). The topic of
two-dimensional modal/temporal languages and logics has been extensively discussed
in the literature, e.g. [21, 23, 1, 26, 27, 20, 18].

We now proceed to examine the transference of properties through the independent
combination.

3.2 Soundness of T1 ⊕ T2

Before we show the transference of soundness, it is worth noting an early result by
Thomason [25], which is indeed more general than the independent combination of
two US-logics. This result is useful in the proof of both soundness and completeness.

Proposition 3.3 (Thomason [25]) With respect to the validity of formulas, the
independent combination of two modal logics is a conservative extension of the original
ones.

In algebraic presentations, Proposition 3.3 is considered a kind of soundness result.
However, for our purposes, soundness has to do with the validity of all deductions. We
present soundness as a consequence of Proposition 3.3, but it could also be obtained
by verifying the validity of axioms and inference rules.

Theorem 3.4 (Soundness Transference) If US1/K1 and US2/K2 are sound logic
systems, so is US1 ⊕ US2/K1 ⊕K2.

Proof. By induction of the length of a deduction. For the base case, we have to
establish the validity of all axioms, which follows directly from the soundness of
US1/K1 and US2/K2 and the fact that by Proposition 3.3, all US1/K1- and US2/K2-
valid formulas are valid in the combined system (alternatively, their validity could be
verified directly).

For the inductive case, all we are left to do is to verify that the inference rules
transform valid formulas into valid formulas, which is a routine, straightforward task.

184 The Unrestricted Combination of Temporal Logic Systems

3.3 Completeness

In the proof of completeness, just as in [10], we will use the temporalisation as an
inductive step in the construction of a combined model. However, as discussed in
the presentation of the semantics of temporalised logics in Section 2.1, the class of
temporal models of the internal logic must also include the evaluation time point, so
that a member of the class of models of US1 or US2 is a quadruple (T,<, g, t), where
t ∈ T .

Let us first define the degree of alternation of a (US1 ⊕ US2)-formula A, dg(A), as
the maximum number of alternate times a connective of one of the temporal logics
occurs inside a connective of the other temporal logic. In this way, formulas of US1

and of US2 all have degree of alternation 0. If we take a temporal formula of US1, say
F1p and place it inside a connective of US2, say H2, the formula H2F1p has degree 1;
similarly, U1(H2F1p, q) has degree 2, and so on.

The main idea of the completeness proof is based on the fact that any formula
A of US1 ⊕ US2 can be seen as a formula of some finite number of alternating
temporalisations of the form US1(US2(US1(. . .))); more precisely, A can be seen
as a formula of US1(Ln), where dg(A) = n, US1(L0) = US1, US2(L0) = US2, and
Ln−2i = US2(Ln−2i−1), Ln−2i−1 = US1(Ln−2i−2), for i = 0, 1, . . . , dn2 e − 1.

The following Lemma actually allows us to obtain transference of completeness to
the independent combination via finite number of alternating temporalisations of US1

and US2.

Lemma 3.5 Let US1 and US2 be sound and complete. A is a theorem of US1 ⊕ US2

iff it is a theorem of US1(Ln), where dg(A) = n.

Proof. IfA is a theorem of US1(Ln), all the inferences in its deduction can be repeated
in US1 ⊕ US2, so it is a theorem of US1 ⊕ US2.

Suppose A is a theorem of US1 ⊕ US2; let B1, . . . , Bm = A be a deduction of A in
US1⊕US2 and let n′ = max{dg(Bi)}, n′ ≥ n. We claim that each Bi is a theorem of
US1(Ln′). In fact, by induction onm, if Bi is obtained in the deduction by substituting
into an axiom, the same substitution can be done in US1(Ln′); if Bi is obtained by
some inference rule from Bj1 , . . . , Bjk , j1, . . . , jk < i, then by the induction hypothesis,
each Bj` is a theorem of US1(Ln′) and so is Bi.

So A is a theorem of US1(Ln′). It follows from the semantic definitions that the
set of valid formulas in US1(Ln′) is a subset of the valid formulas in US1 ⊕ US2.
Since US1 and US2 are two complete logic systems, by Theorem 2.12 we know that
US1(Ln′) is complete for each n′. So Lemma 2.18 yields that each of the alternating
temporalisations in US1(Ln′) is a conservative extension of Ln′ ; it follows that A is a
theorem of US1(Ln), as desired.

Theorem 3.6 (Completeness of US1 ⊕ US2) Let US1/K1 and US2/K2 be two sound
and complete logic systems. Then their independent combination US1⊕US2 is sound
and complete over the class K1 ⊕K2.

Proof. Soundness is given by Theorem 3.4. For completeness, suppose that A is a
consistent formula in US1 ⊕ US2; by Lemma 3.5, A is consistent in US1(Ln), so we
construct a temporalised model for it, and we obtain a model (T 1, <1

1, g
1, o1), where

o1 ∈ T 1 is the “current time” considered as part of a model to respect the restriction
(∗) of Section 2.1. We show now how it can be transformed into a model over K1⊕K2.

3. THE INDEPENDENT COMBINATION OF TEMPORAL SYSTEMS 185

Without loss of generality, suppose that US1 is the outermost logic system in the
multi-layered temporalised system US1(US2(US1(. . .))), and let n be the number of
alternations. The construction is recursive, starting with the outermost logic. Let
i ≤ n denote the step of the construction; if i is odd, it is a US1-temporalisation,
otherwise it is a US2-temporalisation. At every step i we construct the sets T i+1,
<i+1

1 and <i+1
2 and the function gi+1.

We start the construction of the model at step i = 0 with the temporalised model
(T 1, <1

1, g
1, o1) such that (T 1, <1

1) ∈ K1, and we take <1
2= ∅. At step i < n, consider

the current set of time points T i; according to the construction, each t ∈ T i is
associated to:

• a temporalised model gi(t) = (T i+1(t), <i+1
1 (t), gi+1(t), oi+1(t)) ∈ K1 and take

<i+1
2 (t) = ∅, if i is even; or

• a temporalised model gi(t) = (T i+1(t), <i+1
2 (t), gi+1(t), oi+1(t)) ∈ K2 and take

<i+1
1 (t) = ∅, if i is odd.

The point t is made identical to oi+1(t) ∈ T i+1(t), so as to add the new model to
the current structure; note that this preserves the satisfiability of all formulae at t.
Let T i+1 be the (possibly infinite) union of all T i+1(t) for t ∈ T i; similarly, <i+1

1 and
<i+1

2 are generated. And finally, for every t ∈ T i+1, the function gi+1 is constructed
as the union of all gi+1(t) for t ∈ T i.

Repeating this construction n times, we obtain a combined model over K1 ⊕ K2,
M = (T n, <n1 , <

n
2 , g

n), such that for all t ∈ T n, gn(t) ⊆ P . Since satisfiability of for-
mulae is preserved at each step, it follows thatM is a model for A, and completeness
is proved.

3.4 Decidability

We are going to show the transference of decidability by a recursive application of the
temporalisation, generalising the proof of decidability of T(L) in Section 2.3.

The idea of the recursive proof is to consider a formula ψ of the independent
language US1 ⊕ US2 of alternation depth n as a temporalised formula US(Ln). By
Lemma 3.5, ψ is a US1⊕US2-theorem iff it is a US(Ln)-theorem. Thus the decidability
of ψ in US1 ⊕ US2 reduces to its decidability in US(Ln). The following is the basic
result in the transference of decidability.

Lemma 3.7 Let US1/K1 and US2/K2 be two sound, complete and decidable temporal
logics. Then for every formula ψ of US1 ⊕ US2, there exists a US1 formula A that is
effectively constructible such that ψ is US1 ⊕ US2-valid iff A is US1-valid.

Proof. Let ψ be a US1 ⊕ US2 formula of alternation depth n. We propose the
following decision procedure, US1 ⊕ US2-Decide(ψ):

Let n be ψ’s alternation degree. If n = 0, then ψ is a US-formula and we apply
the US1- or US2-decision procedure to decide ψ, according to which language
ψ belongs to.
Otherwise, we construct the formula η(ψ)→ ψ in the following way:
• Let Lit(ψ) = Mon(ψ) ∪ {¬φ|φ ∈ Mon(ψ)}, where Mon(ψ) is the set of

monolithic subformulas of ψ.

186 The Unrestricted Combination of Temporal Logic Systems

• Let Inc(ψ) be set of inconsistent conjunctions φi in Lit(ψ); this inconsistency
is obtained by a recursive call to US1 ⊕ US2-Decide(φi), where each φi now
has alternation degree at most n− 1.
• Build η(ψ) from Inc(ψ) as in Definition 2.7.
Apply US1-decision procedure to σ(η(ψ)→ ψ) and return its output.

The recursive construction of η(ψ) always terminates, for in each recursive call of
the decision process, the degree of alternation decreases, and the procedure stops
when it reaches a degree of alternation 0.

The correctness of the procedure is proven by induction on n. For n = 0 we simply
apply the temporal decision procedure of the corresponding temporal logic.

For n > 0 we claim that deciding φ is equivalent to deciding σ(η(ψ)→ ψ). In fact:

• ψ is US1 ⊕ US2-valid iff it is US(Ln)-valid by completeness and Lemma 3.5.
• ψ is US(Ln)-valid iff σ(η(ψ) → ψ) is US1-valid by Lemma 2.15 and η(ψ) is con-

structed deciding the validity of a set of formulas with alternation degree at most
n− 1, so by induction hypothesis η(ψ) is constructible.

Thus we have a correct, terminating decision procedure for US1 ⊕ US2.

The transference of decidability directly follows from the previous Lemma.

Theorem 3.8 Let US1/K1 and US2/K2 be two sound, complete and decidable tem-
poral logics. Then US1 ⊕ US2 is decidable.

Proof. Let ψ be a US1 ⊕ US2-formula. By Lemma 3.7, we construct a US1-formula
whose decision problem is equivalent to ψ and then apply US1’s decision procedure.

With regards to the complexity of the decision problem, the algorithm outlined
above does not give us a good starting point. However, a very detailed analysis of the
complexity of such systems was done in [24].

3.5 Extension to an arbitrary number of multimodal logics

In Section 2.5 we showed how the process of applying a logic externally to another
could be generalised to modal logics with n connectives of arbitrary arity. In the case
of the independent combination, we can go even further. For the temporalisation (or
the extended modalisation) is a combination process that involves only two logics:
the external T and the internal L.

However, in the independent combination of logics, this limitation does not hold.
For in a generalised independent combination any number of logics may be taken as
input, each with any number of connectives of arbitrary arity.

Does the transference of properties hold is such a generalised form?
Let us first concentrate on the a combination of two generalised modal logics, M1

and M2. We start noting that the format of the combined model (T,<1, <2) in
the independent combination is basically the same of that of the generalised frame
(W,R1, . . . , Rn). As usual, we assume that the connectives of M1 are distinct from
those of M2. Combining the languages and inferences systems poses no problems.
In combining the two classes of frames, we would end up with frames of the form
(W,R1

1, . . . , R
1
n1
, R2

1, . . . , R
2
n2

), which has the same format of a generalised frame.

3. THE INDEPENDENT COMBINATION OF TEMPORAL SYSTEMS 187

This means that M1 ⊕M2 has the same format of a generalised modal logic, so the
process can be iterated once more. That is we can independently combine M1 ⊕M2

with a generalised modal logic M3 obtaining yet another generalised modal logic,
(M1 ⊕M2) ⊕M3. Of course, this process can be iterated any number of time. And
its not hard to see that the process, at least on the level of combining language and
inference systems, is associative and commutative. On the semantic level, note that
we do not distinguish, say, the frames (W,R1, R2) from (W,R2, R1), so the resulting
frame will have a single set of points and the disjoint union of all relations involved
which of course is associative and commutative.

This shows that if we can independently combine two generalised modal logics, we
can easily independently combine any number of such logics. It remains to be shown
that the generalised modalisation/temporalisation can still be used as a building block
for the independent combination of M1 and M2.

To show that this is indeed the case, we will show how the construction above can
be modified for multimodal logics.

The main thing to note here is that, no matter what the modal connectives are, the
independent combination of two modal systems can be decomposed in a successive
number of modalisations/temporalisations, for a formula of M1 ⊕M2 can always be
seen as a formula of some finite number of temporalisations: M1(M2(M1(. . .))).

The notion of degree of alternation in this case is exactly the same as in the US
case. The core of the completeness proof remains the same, namely the proof of the
following lemma.

Lemma 3.9 Let M1 and M2 be two sound and complete generalised modal logics.
The formula A is a theorem of M1 ⊕M2 iff it is a theorem of some modalised system
M1(M2(M1(. . .))).

The depth of the temporalised system, as before, is bounded by the degree of
alternation d in A of the nesting modal of M1 inside M2 operators, and vice-versa.
Such a notion is exactly as it was in the US case. Also, the remarks made in Section 2.4
as to what should be a monolithic formula in M1(M2(M1(. . .))) also apply here.

With Lemma 3.9 all there is to do now is to mimick the construction of the model in
Theorem 3.8. IfA is a consistent M1⊕M2 formula, by Lemma 3.9 it is also consistent in
some temporalised logic M1(M2(M1(. . .))) with at most d alternations. We apply the
generalised modalisation transference of completeness to obtain a modalised model for
A and then mimick the steps of Theorem 3.8 to transform such a model into a model
of the independent combination. This is straightforward and we ommit the details.
This shows that completeness is transferred through independent combination.

To obtain the transference of decidability we hardly have to make any changes to
the proof in Section 3.4. There the decision procedure is based on the fact that a
formula of T1 ⊕ T2 is valid iff it is valid in some temporalised system. But the same
result was generalised in Lemma 3.9. So the decision procedure for the generalised
case is the same as the decision procedure for the US case, with barely any difference,
for we have already shown in Section 2.5 how to extend the mappings σ and η to the
generalised case, which are all that is needed in the decision procedure. So decidability
is transferred.

And since soundness is transferred by the result of Thomason [25], we can then
conclude the following.

188 The Unrestricted Combination of Temporal Logic Systems

Theorem 3.10 Let M1 and M2 be two sound, complete and decidable extended modal
logics. Then M1 ⊕M2 is sound, complete and decidable.

4 Conclusion

We have extended the original results on temporalisation of [11] to any class of flows
of time, extending the original result for linear classes only. This results was also
extended to multi-modal logics with n-ary connectives.

Recursive temporalisations were used in [10] to show the transference of complete-
ness and decidability for the independent combination of two linear US-temporal
logics. Such construction was shown to generalise to the unrestricted case and was
developed inside the traditional Kripke semantics for temporal logics. The same tech-
nique could also be applied to the independent combination of arbitrary number of
multi-modal logics with n-ary connectives.

Recently, the work in [2] has generalized Wolter’s algebraic results in [28] for the
independent combination of US-logics in the algebraic tradition. That work was
developed independently from ours, and did not have in mind US-logics, but was
developed for Description Logics; The generalization of Wolter’s result for decidability
developed in [2] also applies to US-logic. So the relevant points of the results in here are
the fact the independent combination was achieved using kripke-style semantics and
that we can consistently see any kind of independent combinations as an iterations of
modalisations/temporalisations. Note that in all such works, including ours, at least
some form of normal behaviour was assumed from the connectives.

It remains an open problem whether the decidability of the logics with arbitrary
operators (normal or non-normal) is transferred by their independent combination.
The investigation of non-normal temporalisations/modalisations remains a viable way
to explore such a question and is a path to be explored in the future.

Acknowledgements

We would like to thank Massimo Franceschet, Angelo Montanari, Maarten de Rijke
and Frank Wolter for helpful discussions. Marcelo Finger was partly supported by
the Brazilian Research Council (CNPq), grant PQ 300597/95-5.

References

[1] Aqvist, L.. A Conjectured Axiomatization of Two-dimensional Reichenbachian Tense Logic. J.
of Philosophical Logic, 8:1–45, 1979.

[2] Baader, F., Lutz, C., Sturm, H. and FWolter, F.. Fusions of description logics. In F. Baader
and U. Sattler, editors, Proceedings of the 2000 International Workshop on Description Logics,
pages 21–30. Aachener Beitraege zur Informatik, Wissenschaftsverlag Meinz in Aachen, 2000.

[3] Barringer, H., Fisher, M., Gabbay, D., Owens, R. and Reynolds, M. editors. The Imperative
Future — Principles of executable temporal logic. Johh Wiley & Sons, 1996.

[4] Blackburn, P., Gardent, C. and Meyer-Viol, W.. Talking About Trees. In 6th Conference of the
European Chapter of the Association of Computational Linguistics, pages 21–29, 1993.

[5] Blackburn P. and Meyer-Viol, W.. Linguistics, logic, and finite trees. Logic Journal of the IGPL,
2:3–29, 1994.

[6] Fagin, R., Halpern, J. Y., Moses, Y. and Vardi, M.Y.. Reasoning about Knowledge. MIT Press,
1995.

4. CONCLUSION 189

[7] Fine, K. and Schurz,G.. Transfer theorems for stratified multimodal logics. To appear in the
Proceedings of Arthur Prior Memorial Conference, Christchurch, New Zeland, 1991.

[8] Finger, M.. Handling Database Updates in Two-dimensional Temporal Logic. J. of Applied
Non-Classical Logic, 2(2):201–224, 1992.

[9] Finger, M.. Changing the Past: Database Applications of Two-dimensional Temporal Logics.
PhD thesis, Imperial College, Department of Computing, February 1994.

[10] Finger, M. and Gabbay, D. M.. Combining Temporal Logic Systems. Notre Dame Journal of
Formal Logic, 37(2):204–232, Spring 1996.

[11] Finger, M. and Gabbay, D. M.. Adding a Temporal Dimension to a Logic System. Journal of
Logic Language and Information, 1:203–233, 1992.

[12] Finger, M. and Reynolds, M.. Two-dimensional executable temporal logic for bitemporal
databases. In 2nd International Conference on Temporal Logic (ICTL’97), Manchester, July
1997. Kluwer.

[13] Finger, M. and Reynolds, M.. Imperative history: Two-dimensional executable temporal logic.
In H.-J. Ohlbach and U. Reyle, editors, Logic, Language and Reasoning — Essays in Honour
of Dov Gabbay, pages 73–98. Kluwer Academic Publishers, 1999.

[14] Finger, M. and Weiss, M. A.. The unrestricted addition of a temporal dimension to a logic
system. In 3rd International Conference on Temporal Logic (ICTL2000), Leipzig, Germany,
4–7 October 2000.

[15] Finger, M.. A logical reconstruction of temporal databases. Journal of Logic and Computation,
10(6):847–876, 2000.

[16] Franceschet, M.. Dividing and Conquering the Layered Land. PhD thesis, University of Udine,
2002. Forthcoming.

[17] Franceschet, M., Montanari, A. andcde Rijke, M.. Model checking for combined logics. In
Proceedings of the 3rd International Conference on Temporal Logics (ICTL2000), 2000.

[18] Gabbay, D. M. Reynolds, M. and Finger, M.. Temporal Logic: Mathematical Foundations and
Computational Aspects, volume volume 2. Oxford University Press, 2000.

[19] Gabbay, D. M. The Declarative Past and the Imperative Future. In B. Banieqbal et al., editors,
Coloquium on Temporal Logic and Specifications — Lecture Notes in Computer Science 389,
Manchester, April 1987. Springer-Verlag.

[20] Gabbay, D. M. , Hodkinson, I. M. and Reynolds, M. A.. Temporal Logic: Mathematical Foun-
dations and Computational Aspects, volume 1. Oxford University Press, 1994.

[21] Kamp, H.. Formal Properties of Now. Theoria, 35:227–273, 1971.

[22] Kracht, M. and Wolter, F.. Properties of independently axiomatizable bimodal logics. Journal
of Symbolic Logic, 56(4):1469–1485, 1991.

[23] Segerberg, K.. Two-dimensional Modal Logic. J. of Philosophical Logic, 2:77–96, 1973.

[24] Spaan, E.. Complexity of Modal Logics. PhD thesis, Free University of Amsterdam, Falculteit
Wiskunde en Informatica, Universiteit van Amsterdam, 1993.

[25] Thomason, S. K.. Independent Propositional Modal Logics. Studia Logica, 39:143–144, 1980.

[26] Venema, Y.. Expressiveness and Completeness of an Interval Tense Logic. Notre Dame Journal
of Formal Logic, 31(4), Fall 1990.

[27] Venema, Y.. Many-Dimensional Modal Logic. PhD thesis, Department of Mathematics and
Computer Science, University of Amsterdam, 1991.

[28] Wolter, F.. Fusions of modal logics revisited. In Marcus Kracht, Maarten de Rijke, Heinrich
Wansing, and Michael Zakharyaschev, editors, Advances in Modal Logic, volume Volume 1 of
Lecture Notes 87, pages 361–379. CSLI Publications, Stanford, CA, 1996.

[29] Xu, M.. On some U,S-Tense Logics. Journal of Philosophical Logic, 17:181–202, 1988.

Received 30 October 2001. Revised 12 March 2002

A Fibring Semantics for the
Semantic-Morphological Interface in

Natural Language

RALF NAUMANN, Seminar für Allgemeine Sprachwissenschaft,
University of Düsseldorf, Germany.
E-mail: naumann@mail.phil-fak.uni-duesseldorf.de

Abstract

Lexical Decomposition Grammar assumes that there is a flow of information in grammar that con-
strains the distribution of linguistic information at the different levels of grammatic representation.
In particular, there is a flow of information from the semantic to the morphological level. Particu-
lar argument positions correspond to particular cases. This relationship is mediated by intervening
constraints at other levels like the theta structure and the syntactic level.

In this paper a formal reconstruction of the flow of information is presented. The grammar is
represented by a tuple < S1, ...,Sn, γ1, ..., γm >. Each Si is the substructure corresponding to the
i-th level of linguistic analysis and each γj is a mapping relating the domains of two substructures.
If S and S′ are related by some γ, this means that elements of the domain DS ‘constrain’ the
information associated with objects from the domain DS′ in the sense that if some d ∈ DS satisfies
the information expressed by φ, then γ(d) ∈ DS′ satisfies the information expressed by ψ. Second,
appropriate languages (logics) to talk about the structures are defined. The combination of different
ontologies is reflected at the syntactic level by fibring these languages across each other. This means
that instead of building a language L over a base of propositional variables VAR, it is defined over a
base which corresponds to the wffs of a second language L′. The resulting language L(L′), ‘L layered
over L′’, has two layers: a top layer consisting of the non-atomic formulas and a base layer built by
means of the formulas from L′.1

1 Lexical Decomposition Grammar and the Flow of
Information

Is there a flow of information in grammar? In Lexical Decomposition Grammar,
Wunderlich (1997, 1999), a positive answer to this question is given. It is assumed
that, at least normally, the case assigned to an argument of a verb can be predicted
from the place that the object denoted by that argument occupies in the dynamic-
temporal structure of an event denoted by the verb. E.g. the object that is involved
first is denoted by an argument that is linked to the verb by nominative case and
the object that is involved last is denoted by an argument that is either linked by
accusative case or which is realized as a PP. The empiricial basis for this claim is
given by generalizations about the relationship between the default word order and
the assignment of case to arguments. Consider the following examples taken from

1Full version of a contributed paper presented at the 7th Workshop on Logic, Language, Information and Computation

(WoLLIC’2000) (http://www.cin.ufpe.br/~wollic/wollic2000/), August 15–18, 2000, Natal (Rio Grande do Norte),

Brazil, organized by Univ. Federal de Pernambuco (UFPE) and Univ. Federal do Rio Grande do Norte (UFRN),

with scientific sponsorship by IGPL, FoLLI, ASL, SBC, SBL, and funded by CAPES (grant CDS/PAEP/0099/00-7),

CNPq (grant 450994/00-7), FUNPEC.

191L. J. of the IGPL, Vol. 10 No. 2, pp. 191–226 2002 c©Oxford University Press

192 Fibring semantics for natural language

German.

(1)a. Der Mannx rannte. (The man was running)
b. Der Schneex schmolz. (The snow melted)

(2)a. Der Mannx aß den Apfely . (The man ate the apple)
b. Die Primadonnax sang eine Ariey. (The primadonna sang an aria)

(3)a. Der Lehrerx gab dem Schülery ein Buchz. (The teacher gave the pupil a book)
b. Die Fraux zeigte dem Manny ein Bildz. (The woman showed the man a picture)

Each verb in the above examples subcategorizes for a fixed number of arguments.
Morphologically, these arguments are related (or linked) to the verb by a particular
linker. In German, nominal arguments are linked by cases like nominative, dative
or accusative. At the syntactic level, the subcategorized arguments are realized in a
particular default (word) order. This order is determined at the level of subordinate
clauses; ‘daß Hans rannte’, ‘daß der Mann einen Apfel aß’ or ‘weil der Lehrer dem
Schüler ein Buch gab’. The place of an argument in the default word order and the
case it is assigned are not independent of each other. Particular places correspond to
particular cases and vice versa. From the data in (1)-(3) the generalizations in (4)
and (5) can be derived.

(4)a. Nominative case is assigned only to the first element (x in (1)-(3))
b. Accusative case is assigned only to the last element (y in (2), z in (3))
c. Dative case is assigned only to the intermediate element (y in (3))

(5)a. The first element of the default word order is always assigned nominative case
b. If there are at least two elements, the last gets accusative case
c. If there are more than two elements, the intermediate one is realized by dative

case.

The next task consists in relating the semantic interpretation of verbs with the
default word order. LDG is based on an event ontology, i.e. n-place verbs are inter-
preted in the lexicon as n + 1-ary relations on (E ∪ O)n × E with E the domain of
events and O the domain of ‘ordinary’ objects. It differs from event-based approaches
like that of Krifka by defining the relation between an event and its participants not in
terms of thematic roles like actor or undergoer. The interpretation of a verb is rather
based on a minimal decomposition that reflects the temporal-dynamic structure of
events. An example for such a decomposition is given in (6).

(6) (ACT(x) & BEC(POSS(y,z)))(e)

Decompositions like (6) are called semantic forms (SF). Usually, a semantic form
generalizes over a class of verbs. For instance (6) is the semantic form of all trans-
fer verbs like ‘geben’ (give) where the transfer is from the actor to some recipient
which is not identical to the actor. The intended interpretation of (6) can be para-
phrased as ‘By acting (in a particular way) (Act(x)) x brings about (&) that y has
z (Poss(y,z)). Each conjunct αi is interpreted as a unary relation on the domain E
of events. The connective & expresses a kind of temporal succession in the following
sense: α1 & ... & αn denotes a complex property of events that is true of an event e
just in case there are initial stages (prefixes) e1, ..., en of e with αi being true of ei,
1 ≤ i ≤ n, and ei being an initial stage of ej for 1 ≤ i < j ≤ n. If the SF is evaluated

1. LEXICAL DECOMPOSITION GRAMMAR 193

with respect to a given event e (and suitable values for the remaining variables), each
conjunct αi is therefore evaluated with respect to a subevent of e. The connective &
is not commutative. From this non-commutative character it follows that the αi are
linearly ordered. This linear ordering induces a corresponding linear ordering on the
free variables of the SF. For ‘geben’, one gets: x < y < z. This ordering is used to
define the notion of theta structure (TS) in terms of the Hierarchy Principle (HP).

(7) Hierarchy Principle: The order of arguments in TS is the inverse of the order of
arguments in SF.

If SFv(x1, ..., xn, e) is the decomposition of v in the representation language with the
free variables x1, ..., xn and e, and xi <v xj for i < j means that the first occurrence
of xi lies before that of xj , the translation of v in the lexicon that is in accordance
with the HP is λxn...λx1λe.SFv(x1, ..., xn, e). The HP defines a relationship between
the two parts of the semantic level that are assumed in LDG. What is missing is the
relation between the theta structure and the syntactic level. This relation is defined
by the rule in (8).

(8) Mapping between TS and the syntactic component (S)
The order of arguments in TS is the inverse of the default word order, i.e. the
arguments are realized inversely to the way they are abstracted over.

When taken together, the HP in (7) and the mapping rule in (8) say that the order
of arguments at the SF level is identical to the (default) order in which they are
syntactically realized. Thus, there is a ‘flow of information’ from the level of SF to
the morphological component M that is mediated by the level of TS and the syntactic
component S.

(9) SF a→ TS b→ S c→ M

a = Hierarchy Principle (7)
b = mapping rule in (8)
c = generalizations in (4) and (5)

Linking rules are the result of composing the mappings b and c. In LDG, they
directly relate elements of TS to assignments of case. Three examples are given in
(10).

(10)a. The highest (= last) element of TS is assigned nominative case.
b. If there are at least two elements in the TS, the lowest (= first) element gets

accusative case.
c. If there are more than two elements in TS, the intermediate one is realized by

dative case.

As it stands, LDG faces several problems. First, and foremost, the different levels
of grammatical representation are not formalized. E.g. the syntactic and the mor-
phological component are not fixed and the logical decomposition predicates BEC
and & used at the level of semantic form are not formally defined. Consequently,
the idea of a ‘flow of information’ is not made linguistically precise and can only be
understood in an intuitive sense. But also for the linking component, where LDG is

194 Fibring semantics for natural language

formulated more explicitly, problems arise. Recall that the theta structure is taken
as a finite sequence. In LDG, the elements of this sequence are characterized by two
binary features [hr] and [lr], the intended interpretation of which is ‘a higher role’ and
‘a lower role’, respectively. On this interpretation, [±hr] ([±lr]) means ‘there is a/no
higher role’ (‘there is a/no lower role’). The basic idea underlying the definition of the
cases in LDG, first formulated in Kiparsky (1992), is: what is linguistically relevant
with respect to a case (in a particular language) is the range of positions in the theta
structure it can occur at. Linguistically, a case is therefore related to a subset of the
positions of an arbitrary TS. In LDG, this idea is made precise by defining the cases
in terms of the two features [hr] and [lr]. The definitions are given in (11) ([] means
that the case is completely unspecified with respect to both features).

(11) NOM = [] DAT = [+hr,+lr] ACC = [+hr]

When taken in isolation, these definitions do not comply with the linking rules.
E.g. for a transitive verb, both NOM and ACC can be assigned to the lowest (first)
position of the theta structure because the structural specification of this position,
[+hr,−lr], is compatible with the definitions of both cases (whereas DAT is excluded
due to [+lr]). The determination of a case is therefore constraint by the Princi-
ple of Secificity (SP): The case assigned to an argument is the most specific case
that is compatible with the specification of the former. The SC yields the ranking
NOM < ACC < DAT . Applying the SC to the first position of the theta structure
of a transitive verb excludes NOM because the matching between ACC = [+hr] and
[+hr,−lr] is more specific than that between NOM = [] and [+hr,−lr]. In the table
below the linking mechanism is illustrated for a three-place verb.

λz λy λx.Pv(x)(y)(z)
[+,−] [+,+] [−,+]
ACC, DAT, NOM
[+hr], [+hr,+lr], []

Table 1

A problem arises because the generalizations in (4) and (5), or the corresponding
linking rules, are not without exceptions. They only capture what are called the
canonical patterns of linking. The corresponding verbs are called canonical verbs .

Canonical verb order according to TS
z > y > x

ditransitive verb ACC-DAT -NOM
transitive verb ACC-NOM
intransitive verb NOM

Table 2

An example for a class of verbs with a non-canonical linking pattern are so-called
dative verbs. Examples for this class in German are the verbs ‘helfen’ (help) and
‘folgen’ (follow).2

2Dative verbs are not the only verbs in German that are non-canonical. The other classes are discussed and analyzed

in Naumann (2001) using a non-monotonic logic.

1. LEXICAL DECOMPOSITION GRAMMAR 195

(12)a. Hans half einem Freund. (Hans helped a friend)
b. Maria folgte einem Fremden. (Mary followed a stranger)

The internal argument is assigned DAT instead of ACC. This contradicts the
generalizations (4c) and (5b). In Wunderlich (1997:51) this class is analyzed as follows.
It is assumed that the lower argument is lexically marked by [+lr]. From this it is
said to follow that the other argument must be interchanged with respect to the [lr]
feature, yielding the assignment of [−lr] to the highest argument. Since the values of
the feature [hr] are not interchanged, the lowest argument is specified by [+hr,+lr]
and the highest one by [−hr,−lr]. Using the SC, the former is assigned dative and the
latter nominative case (accusative case is excluded for this position because it requires
[+hr]). This ‘explanation’ is either inconsistent with the intended meanings of the two
features or it assumes that the meaning of these features is not restricted to the purely
structural interpretation that has been assumed in the case of canonical patterns of
linking. In the second case the meaning is too weak to sustain the inferences drawn
from them to capture these canonical patterns. Thus, although LDG has a workable
mechanism for canonical linking, there is no comparable strategy for dealing with
non-canonical linking.3

One solution to the problem that non-canonical patterns of linking pose consists in
considering not only structural properties of elements of the theta structure, which
are defined using the two features [hr] and [lr], but also non-structural ones. E.g.
if the theta structure of a verb is taken as the linearly ordered sequence of thematic
roles that are defined for the verb, non-structural properties are the properties of the
thematic roles, or, more simply, the thematic roles themselves. Linking rules will
then take the form α ∧ β → γ with α expressing a structural and β expressing a
non-structural property. E.g. instead of one linking rule for the lowest element of the
theta structure, one will have two (θdat is the thematic role assigned to the internal
argument of dative verbs like ‘helfen’ (help)).

(13)a. If x is the lowest element of a TS with length greater 1 and if x is θdat, the
argument corresponding to x is realized by dative case.

b. If x is the lowest element of a TS with length greater 1 and if x is not θdat, the
argument corresponding to x is realized by accusative case.

Non-canonical patterns of linking show that the generalizations in (4) and (5) are
true only if they are understood as being relativized to canonical patterns. The
relativization can be made explicit by adding information about thematic roles. The
general form of a linking rule which covers both canonical and non-canonical patterns
is (14).

(14) The argument corresponding to the i-th position of a TS (of length m) is morpho-
logically realized by
a. case C1 if i satisfies φ1 or . . . or by case Cn if i satisfies φn
b. otherwise it is realized by case C

Clause (a) covers instances of non-canonical patterns of linking whereas clause (b)
captures those instances belonging to canonical patterns. According to this form,
canonical patterns are licensed by the absence of non-structural information, e.g.

3This argument still applies to the OT version of LDG presented in Wunderlich (2001).

196 Fibring semantics for natural language

about thematic roles, in the sense that the arguments do not satisfy particular infor-
mation. Non-canonical patterns of linking, on the other hand, explicitly require the
presence of particular non-structural information.4

In the second part of the article, the idea of a flow of information will be made
formally precise. To this end, it is necessary to formalize each of the four grammatical
levels that are involved in this flow. This will be done as follows. Instead of using the
minimal decomposition format from LDG, the formalization of the semantic level is
based on Dynamic Event Semantics (DES) developed in Naumann (1998, 2001) and
Naumann and Osswald (1999). The theta structure is defined in terms of the linearly
ordered sequence of so-called dynamic roles which are defined in terms of sets of
results. The syntactic component is an ordered finite binary tree the nodes of which
are decorated with subcategorization information. The morphological component
consists of a feature structure for each node of the tree that contains information
appropriate for the corresponding categorial information like case, gender and number
insofar as this information is already determined by the verb. The flow of information
is modeled by defining mappings between the structures formalizing each of the four
grammatical levels. At the syntactic level, languages (logics) for talking about the
ontologies underlying the structures and for expressing the mappings between the
structures are specified.

2 Formalizing the Flow of Information

The outline of the basic ideas on which LDG is built has shown that the linguistic
analysis of a verb in the lexicon is cast in terms of a composite ontology. There are
events and ‘ordinary’ objects (SF), dynamic roles (TS), (tree) nodes (S) and points
(in feature structures) (M). Each sort of entity comes equipped with a set of relations,
giving rise to a structure in the model-theoretic sense, with the set of entities as the
domain that underlies the structure. Suitable structures for the analysis of verbs will
therefore have a complex ontology consisting of a dynamic eventuality (sub-)structure,
ordered finite binary trees, feature structures and, most importantly from a linguistic
point of view, mappings between the different substructures that mutually constrain
the relations given in the structures.

2.1 LDG Structures

LDG structures for a verb are tuples 〈DES,MTS,TS ,MM , Rzf , {R�v}v∈VERB, Rzs , γ,
∆,�, {Rdr∗ | dr∗ ∈ DR∗}〉 such that

• DES = 〈E,S,O, {Rdr | dr ∈ DR} , {Rprop | prop ∈ PROP} , α, ω, τ, µ〉 is a dy-
namic eventuality structure

•MTS is an ordered set together with a set of unary relations on this set

• TS = 〈N,R�1 , R�2 , root,Θ〉 is a finite ordered binary tree

4The solution to the problem of non-canonical patterns of linking adopted in this article is neither the only possible

nor the linguistically most satisfactory one. Alternative approaches are developed in Naumann (2001) and Wun-

derlich (2001). Whereas the former analyzes linking phenomena as a form of non-monotonic reasoning, the latter

develops an analysis using optimality theory. The advantage of the solution adopted here is that it admits to model

the flow of information in a simple way.

2. FORMALIZING THE FLOW OF INFORMATION 197

•MM = 〈{FSn | n ∈ NS}, δ〉 is a set of feature structures together with a func-
tion δ; each FSn = 〈Wn, {Rf}f∈F , {Qa}a∈A, w0,n〉 is a point-generated feature
structure; for n 6= n′, FSn and FSn′ are disjoint in the sense that Wn ∩Wn′ = ∅
• The R�v , Rzs and Rzf are mappings which relate E and TTS , TTS and TS as

well as TS and MM , respectively
• γ, ∆, � and the Rdr∗ are defined below in Section 2.5.1

Each of the four (sub)structures represents one of the four levels of grammatical
representation. The mappings are used to define the linguistically relevant relation-
ships between the various levels. At the logical level, to each mapping corresponds
a modality (or a set of modalities) that is used to express constraints between two
levels.

2.2 Languages for talking about LDG Structures

Recall from Section 1 that constraints between different levels of linguistic analysis
are of the form ‘If at level n place α contains information A, then place β (or places
β) at the m-th level contains (contain) information B’. ‘Place’ refers to a particular
element (or particular elements) of the domain underlying the structure representing
a level of grammatical representation. ‘Information’ must be understood as properties
which the elements of the domain have and which can be expressed by a formula of
the language that is used to talk about the structure. The constraint, then, relates an
element belonging to the domain of the n-th structure that satisfies φA to an element
(or elements) belonging to the domain of the m-th structure that satisfies (satisfy)
φB. Let R be the relation that maps elements from DSn , i.e. the domain of the n-th
structure, to elements of DSm , i.e. the domain of the m-th structure, as required by
the constraint. The constraint will then have the form (15).

(15) Sn, d |= φA ⇒ there is a d′ s.t. R(d, d′) and Sm, d′ |= φB

Sn

d |= φA

Sm

d′ |= φB

R(d, d′)

Figure 1

(15) does not express the constraint in the language LSn . Expressing this constraint
in LSn requires that it be possible to refer in this language to elements from DSm . One
way of satisfying this requirement consists in using a modality • which is interpreted
by R. The formula 〈•〉φB , for φB a formula from LSm , is then satisfied at an element
d from DSn just in case an element d′ from DSm that stands in the relation R to d
satisfies φB . The constraint can then be expressed by the LSn formula φA → 〈•〉φB.
Evaluating this formula at d yields (16).

(16) Sn, d |= φA → 〈•〉φB iff if Sn, d |= φA, then Sn, d |= 〈•〉φB iff if Sn, d |= φA, then
there is a d′ s.t. R(d, d′) and Sm, d′ |= φB

198 Fibring semantics for natural language

Following Blackburn et al. (1993) and Blackburn and Meyer-Viol (1997), the result-
ing language, LSn(LSm), will be called the language LSn layered over the language
LSm so that a language with two ‘layers’ is used. The top layer are the formulas from
LSn . The base layer are formulas of the form 〈•〉φ with • a modality and φ a formula
from LSm .

In the following sections the four levels of grammatical representation will be for-
malized. First the structures for the level in question are defined. In a next step a
suitable language for talking about these structures is specified, followed by a defini-
tion of the relation which links this structure to another one. Finally, the languages
are combined so that it is possible to talk about the combined ontology. Language
LA will be layered over language LB whenever there is a flow of information from
level A to level B. Since in LDG the flow is given by SF → TS → S → M, LSF is
layered over LTS , LTS over LS and LS over LM . In addition, since linking rules can
be formulated as relating TS to M, LTSwill also be layered over LM .

2.3 The Syntactic Level

2.3.1 The Structures: Finite Ordered Binary Trees

Structures for the syntactic level are finite ordered binary trees. We will use the
definition given in Blackburn and Meyer-Viol (1997).

Definition 2.1 A finite ordered binary tree T is a tuple 〈N,R�1 , R�2 , root,Θ〉 such
that

• N is a finite, non-empty set of (tree) nodes
• R�i for 1 ≤ i ≤ 2 is a binary relation on N that is a partial function; R�1(n, n

′)
just in case n′ is the first daughter of n and R�2(n, n′) just in case n′ is the second
daughter of n
• root is the (unique) root of the tree
• Θ ⊆ N is the set of terminal nodes of the tree: ∀n(n ∈ Θ → ∀n′(n′ ∈ N →
¬R�i(n, n′))), i.e. terminal nodes do not immediately dominate any other node
of the tree

¿From the fact that T is a binary tree it follows that if R�2(n, n′), then there is a
unique n′′ with R�1(n, n′′): ∀n, n′(R�2(n, n′)→ ∃n′′(R�1(n, n′′)∧∀n′′′(R�1(n, n′′′)→
n′′′ = n′′))). Furthermore, ∀n, n′, n′′(R�1(n, n′) ∧ R�2(n, n′′) → n′ 6= n′′). In terms
of R�1 and R�2 the following binary relations are defined.

(17)a. R� = R�1 ∪R�2 (the ‘daughter of’ relation)
b. R≺ = (R�)c = {(n, n′) | (n′, n) ∈ R�} (the ‘mother of’ relation)

R≺ is a partial function that is defined on N − {root}
c. R�∗ and R≺∗ are the transitive, reflexive closure of R� and R≺, respectively.
R�∗ is the ‘dominates’ relation whereas R≺∗ is the ‘is dominated by’ relation;
note that due to the reflexive character one has ∀n(R�∗(n, n) ∧R≺∗(n, n)).

d. RP = {(n, n′) | ∃n1∃n2∃n3(R�∗(n1, n)∧R�1(n2, n1)∧R�2(n2, n3)∧R�∗(n3, n
′))}

(the precedence relation on N)
e. RF , the succession relation on N , is defined as the converse of RF : RP = (RF)c

2. FORMALIZING THE FLOW OF INFORMATION 199

2.3.2 The Language LS

In order to talk about finite ordered binary trees, the tree language LS of signature
〈VAR〉 is defined.

Definition 2.2 Well-formed formulas of LS: (i) if p ∈ VAR , then p ∈ LSwff ; (ii) if
φ, ψ ∈ LSwff , then φ ∧ ψ ∈ LSwff and ¬φ ∈ LSwff , (iii) if φ ∈ LSwff , then αφ ∈ LSwff
for α ∈

{
↓1, ↓2, ↑, ↓∗, ↑∗, P, F

}
.

In terms of the modalities used in clause (iii) the following modalities and constants
are defined.

(18)a. ↓ φ =def.↓1 φ ∨ ↓2 φ
b. ⇓i φ =def. ¬ ↓i ¬φ for 1 ≤ i ≤ 2; ⇓ φ =def. ¬ ↓ ¬φ and ⇑ φ =def. ¬ ↑ ¬φ
c. ⇑∗ φ =def. ¬ ↑∗ ¬φ and ⇓∗ φ =def. ¬ ↓∗ ¬φ
d. s0 =def.⇑ ⊥ and t =def.⇓ ⊥

The wffs of LS are interpreted on finite ordered binary trees. The satisfaction
relation is defined as follows (for the base clause see (22) below).

(19)a. TS , n |= ¬φ iff TS , n 2 φ
b. TS , n |= φ ∧ ψ iff TS , n |= φ and TS , n |= ψ
c. TS , n |= ↓1 φ iff there is an n′ s.t. R�1(n, n′) and TS , n

′ |= φ
d. TS , n |= ↓2 φ iff there is an n′ s.t. R�2(n, n′) and TS , n

′ |= φ
e. TS , n |= ↑ φ iff there is an n′ s.t. R≺(n, n′) and TS , n

′ |= φ
f. TS , n |= ↓∗ φ iff there is an n′ s.t. R�∗(n, n′) and TS , n

′ |= φ
g. TS , n |= ↑∗ φ iff there is an n′ s.t. R≺∗(n, n′) and TS , n

′ |= φ
h. TS , n |= Pφ iff there is an n′ s.t. RP (n, n′) and TS , n

′ |= φ
i. TS , n |= Fφ iff there is an n′ s.t. RF (n, n′) and TS , n

′ |= φ

The clauses for the defined constants s and t are given in (20) from which it follows
that they are true only at the root node and at terminal nodes, respectively.

(20)a. TS , n |= s0 iff n = root
b. TS , n |= t iff t ∈ Θ

2.4 The Morphological Level M

2.4.1 The Structures: Finite Rooted Feature Structures
Structures for the morphological level M are based on features structures. Blackburn
and Meyer-Viol (1997) and Blackburn et al. (1993) define feature structures as labeled
decorated directed graphs that are multi-modal Kripke models in which every relation
is a partial function.

Definition 2.3 A finite rooted feature structure FS of signature 〈F ,A〉, F the set of
features and A the set of attributes (or decorations) is a quadruple
〈W, {Rf}f∈F , {Qa}a∈A, w0〉 such that

• W is a non-empty set, the set of (feature structure) points
• each Rf , f ∈ F , is a binary relation on W that is required to be a partial function

200 Fibring semantics for natural language

• each Qa, a ∈ A, is a unary relation on W
• w0 is the (unique) root of FS, i.e. FS is generated by w0 in the sense that each

point w ∈W can be reached from w0 in a finite number of steps

Structures for the morphological level are pairs MM = 〈{FSn | n ∈ NS}, δ〉 such
that

• {FSn | n ∈ NS} is a set of feature structures

• δ is a function that maps each FSn to its root w0,n

The set {FSn | n ∈ NS} is the image of the functional and injective relation Rzf ,
which assigns to each node n ∈ N from the finite ordered binary tree TS a feature
structure Rzf (n) = FSn. TS therefore is, in effect, a feature decorated tree. Since
each node has its own ‘decorating’ feature structure, the morphological level is based
on the set of decorating feature structures. The composition of Rzf with the function
δ assigns to each node n ∈ NS the root w0,n of the feature structure FSn assigned to
n by Rzf : [δ ◦Rzf](n) = w0,n.

2.4.2 The Language LM

The wffs of LM are defined as follows.

Definition 2.4 Well-formed formulas of LM of signature 〈F ,A〉: The set LMwff is the
smallest set such that (i) a ∈ LMwff for each a ∈ A (i.e. the set of attributes functions
as the set of propositional variables for LM), (ii) if φ, ψ ∈ LMwff , then ¬φ,φ∧ψ ∈ LMwff
and (iii) if φ ∈ LMwff , then 〈f〉φ ∈ LMwff for each f ∈ F , i.e. the elements of F function
as modal operators.

The choice of both A and F depends on the application as well as on the linguistic
theory that is used. For present purpose, A will be assumed to contain at least s, np,
v and vp, which are used to express purely categorial information about nodes, nom,
dat and acc, which are the values of the feature CASE as well as pl and sg, that are
admissible values for the NUM feature. Thus, A can be taken as the union of the
label sets Cat = {s, np, v, vp}, Case = {nom, dat, acc} and Num = {sg, pl}. The set
F contains at least the features CASE and NUM(BER). An example of a wff of
LM is np ∧ 〈CASE〉 acc ∧ 〈NUM〉 sg.

Elements of LMwff are interpreted on feature structures FS. The satisfaction relation
is given in (21).

(21)a. FS, w |= a iff w ∈ Qa for a ∈ A
b. FS, w |= ¬φ iff FS, w 2 φ

c. FS, w |= φ ∧ ψ iff FS, w |= φ and FS, w |= ψ

d. FS, w |= 〈f〉φ iff there is a w′ s.t. Rf (w,w′) and FS, w′ |= φ

Furthermore, a feature structure FS satisfies an element φ of LMwff just in case its
root δ(FS) satisfies φ, (21e).

(21) e. FS |= φ iff FS, δ(FS) |= φ

2. FORMALIZING THE FLOW OF INFORMATION 201

2.4.3 Combining LS and LM

The non-structural properties of a tree node are its syntactic and morphological prop-
erties. E.g. a node can be of syntactic category NP and is morphologically marked
by dative case, singular number and masculine gender. The morphological properties
refine the syntactic one: a node is not simply an NP but it is an NP of a particular
sort. The sorting is defined by the morphological properties. The morphological level
can therefore be said to give internal structure to the atomic categorial information
at the syntactic level. Yet, nothing hinges on the fact that the categorial information
is defined at the syntactic level. It is equally possible to treat it on a par with the
morphological one, i.e. to analyze syntactic and morphological properties both at
the morphological level M. Consequently, the non-structural information about a tree
node is completely determined by its decorating feature structure.

At the level of structures, TS and MM are related by the injective function Rzf
which assigns to each node n ∈ NS its decorating feature structure Rzf (n) = FSn.
Syntactically, this means that instead of building the tree language LT on top of a
set VAR of propositional variables, it is built in terms of a set of structured atomic
formulas of the form 〈zf 〉φ, where φ is a formula from LM and the modality zf is

interpreted by Rzf . Thus, VAR is taken to be the set
{
〈zf 〉φ | φ ∈ LMwff

}
so that

syntactically the propositional variables p ∈ VAR in Definition 2.2 are replaced by
formulas of the form 〈zf 〉φ as defined above.5 The base clause in the definition of
satisfaction is given in (22).

(22) TS , n |= 〈zf〉φ iff there is a FS s.t. Rzf (n,FS) and FS |= φ iff FSn |= φ

The resulting language LS(LM) is called LS layered over the language LM . This
language consists of two layers. The top layer are formulas from LS as defined in
Definition 2.2(ii) and 2.2(iii) above. They move us around the syntactic tree and are
used to talk about structural (or configurational) properties of the tree. The base layer
are formulas of the form 〈zf〉φ for φ ∈ LM . These formulas express both syntactic
and morphological information about a node n: what is the syntactic category of n?;
what are the values of features like CASE and NUM(BER)? They are therefore
used to talk about the non-structural properties of nodes.

2.4.4 Constraining LS(LM)

So far no constraints have been imposed on the binary relations Ri in TS so that
the atomic information can, in effect, be freely distributed at (the decorating feature
structures of) the nodes of TS . For a feature decorated tree to be linguistically admis-
sible, it must satisfy a number of constraints of how this information is distributed.
One prominent example of a constraint are phrase structure rules, which constrain
the distribution of purely categorial information. A typical example is S → NP V P
which says that a local tree with root node of sort s is admissible if it immediately
dominates a left node of sort vp and if it immediately dominates a right node of sort
np. Formally, these rules impose restrictions on R�1 and R�2 , i.e. the ‘immediately

5In effect, there is a second type of atomic formulas which are of the form
D
z−1
s

E
φ with φ a well-formed for-

mula from the language LTS of the TS level. Consequently, VAR is taken to be the set
n

zf
�
φ | φ ∈ LMwff

o
∪nD

z−1
s

E
φ | φ ∈ LTSwff

o
. See Section 2.6.3 below for details.

202 Fibring semantics for natural language

left (right) dominates’ relation. In LS(LM) this rule is expressed by the formula in
(23).

(23) 〈zf 〉 s→ ↓1 〈zf 〉np ∧ ↓2 〈zf 〉 vp
Examples for other constraints of this sort are (i) each node n must be labeled by

exactly one element from Cat and (ii) the root node of a tree must be labeled by s.
These two constraints are expressed by

∨
p∈Cat 〈zf〉 p ∧ 〈zf 〉 (p →

∧
q∈Cat\{p} ¬q)

and s0 → 〈zf〉 s, respectively.
These constraints concern the distribution of purely categorial (syntactic) infor-

mation and are not specific to LDG. The structural information, expressed by pure
LS formulas, plays no role. Constraints on the relation between the syntactic and
the morphological component imposed by LDG are of the form 〈zf 〉 p ∧

∧
α 〈zf〉 p→

〈zf 〉 〈CASE〉φ (p ∈ Cat ,
∧
α 〈zf 〉 p is a conjunction of formulas of the form α 〈zf 〉 p

for α ∈ {(¬)F, (¬)P}). The antecedent expresses both purely categorial information,
〈zf 〉 p, and a combination of structural and non-structural information,

∧
α 〈zf〉 p.

The latter formula (or formulas) make a move in the tree to find a node that carries
the same categorial information as the node at which the whole formula expressing
the constraint is evaluated. The antecedent, therefore, expresses information about
the relative position of a node of category p among the nodes in the tree that are of
category p. The antecedent of the constraint formula requires the evaluating node to
satisfy particular morphological information about the case feature of the node. When
taken together, a formula of the form 〈zf 〉 p ∧

∧
α 〈zf 〉 p → 〈zf〉 〈CASE〉φ therefore

imposes the constraint that a node of category p which occupies a particular position
among the nodes of that category has a particular case feature. Thus, particular
categorial information at one place of the tree TS requires some case information to
be present at that node too. For a three-place verb like ‘geben’ the constraints are
those in (24). (24a) and (24c) are illustrated in Figure 2.

(24)a. 〈zf 〉np ∧ ¬P 〈zf〉np→ 〈zf〉 〈CASE〉nom
b. 〈zf 〉np ∧ P 〈zf 〉np ∧ F 〈zf 〉np→ 〈zf 〉 〈CASE〉 dat
c. 〈zf 〉np ∧ ¬F 〈zf〉np ∧ P 〈zf〉np→ 〈zf〉 〈CASE〉 acc

n |= ¬P 〈zf 〉np
V P

V n′ |= P 〈zf 〉np ∧ ¬F 〈zf 〉np

w0,n �
np
〈CASE 〉nom

� w0,n′ �
np
〈CASE 〉acc

�

Figure 2

In effect, the constraints in (24) hold for any n-place verb that is canonical. If
non-structural patterns of linking are taken into account, the constraints must be
modified. This issue will be discussed in Section 2.6.3 below.

2. FORMALIZING THE FLOW OF INFORMATION 203

2.5 The SF- and the TS-Level

2.5.1 Dynamic Event Semantics
The formalization of the semantic level, consisting of the semantic form and the theta
structure, is based on Dynamic Event Semantics (DES), Naumann (1998, 1999),
Naumann and Osswald (1999, 2001). DES is based on the intuition that non-stative
verbs express changes. A change can be conceived of either as an object (event)
or as a transformation of state (TS). Events bring about results by transforming a
state s at which a result does not hold into a state s′ where the result holds. This
double perspective is modeled in DES by having both an eventuality structure E with
an underlying domain E of events and a transition structure S with an underlying
domain S of states that is linearly ordered by <S. Results Q are subsets of S. Each
event e ∈ E is assigned its execution sequence τ(e), that is a convex subset of S.

The basic idea will be illustrated by two examples. Consider an event e of type
‘John give Mary a book’. If such an event occurs, a state in which John does have
and Mary does not have the book is transformed into a state in which Mary but not
John does have the book, i.e. the book is transferred from John to Mary. There
are therefore two results that are brought about by the event which did not hold at
its beginning: Mary has the book and John does not have the book. Besides these
two results, there are the results which are brought about by the actions of John and
which, when taken in isolation, do not constitute an event of giving. An example
are his movements towards Mary. The corresponding results do usually not continue
to hold after the event and can be evaluated only relative to the beginning point of
the event. An event of type ‘John eat apple’ transforms a state in which the apple
exists and is outside of John’s stomach into a state where the apple no longer exists
and its mass is inside the stomach of John. These results are brought about in stages
with corresponding results ‘Part of the apple decreased’ and ‘Part of the apple is in
the stomach of John’. Similarly to the first example, there are in addition the results
brought about by John which are not events of eating.

Linguistically, there are three aspects of results that are relevant. Results are of
different types, they are temporally ordered and they are always brought about with
respect to at least one object participating in the event. The first aspect concerns the
way a result is evaluated on the execution sequences of events that bring it about.
E.g. the results that Mary has but John does not have the book are true only at
the end point of the event of giving. The same is true of the result that the mass of
the apple is in the stomach of John. The corresponding result that part of the apple
is in John’s stomach, on the other hand, holds at all initial stages of the event that
are eatings. The results corresponding to the actions that are no givings (or eatings)
hold during the whole event, except at its beginning point. These distinctions classify
results according to their type (relative to an event type, i.e. a set of events). Results
that only hold at the end point of an event are called maximal (relative to an event
type). Minimality of a result (relative to an event type) requires that it be true at all
initial stages of the event that belong to the event type. A result that holds during
the whole occurrence of an event belonging to an event type is s-minimal relative to
this event type. In terms of these basic types of results further results are defined
which exclude each other. The resulting classification is given in Table 3.6

6There are only five possibilities because s-minimality implies minimality so that the combinations +−+ and −−+

204 Fibring semantics for natural language

maximal minimal s-minimal
s-maximal + − −
w-maximal + + −
w-minimal − + −
s*-minimal − + +
min-max + + +

Table 3

E.g. the results that Mary has but John does not have the book are w-maximal.
The result that the mass of the apple is in the stomach of John is s-maximal since it
is brought about incrementally. The corresponding result that part of the mass of the
apple is in John’s stomach is w-minimal. Examples for s*-minimal results are those
corresponding to the initial actions by John.

The second aspect, the temporal ordering, is closely related to the first: s-minimal
results are brought about not later than minimal results which are brought about not
later than maximal results. This ordering is captured by the relation � on ℘(S) ×
℘(S)×℘(E) which preorders the set of results determined by an event type relative to
the event type. If (Q,Q′, P) ∈ � , the result Q is brought about on elements of P not
later than the result Q′, i.e. whenever Q′ holds at a point of the execution sequence
of an event e ∈ P , Q holds at some point weakly preceding the former point.7

Each result is brought about with respect to at least one participant of an event.
For an event of type ‘John give Mary a book’, one gets the assignment in Table 4.
The number in brackets indicates the number of results of the type assigned to the
participant.

s*-min w-max
John + + (1)
Mary − + (1)
the book − + (2)

Table 4

The above examples show that in DES all participants of an event undergo changes.
E.g. although none of the objects in the event of giving is involved incrementally,
Mary comes to have the book whereas John ceases to have it. Consequently, all
three undergo a change effected by the event. The crucial observation is that each
participant is assigned a different set of results. This makes it possible to uniquely
pick out participants of events in terms of sets of results. The general idea is the
following. The sets of results assigned to participants of events can be characterized
by properties of their elements, e.g. the type to which they belong or, more generally,
in terms of the preorder �. The sets of results assigned to the participants of an event
form a cover of the set of results determined by the basic event type to which the
event belongs. Using the preorder � on this latter set, it is possible to define a linear

are excluded. The combination − − −, finally, is excluded because a result must be of at least one basic type.

7Thus, it is possible that Q and Q′ are brought about at the same time.

2. FORMALIZING THE FLOW OF INFORMATION 205

order on this cover. In a second step relations Ri on E×O×℘(E) are defined. A pair
(e, d, P) is an element of Ri just in case d, which participates in e ∈ P , is assigned
the i-th element of the cover of the set of results determined for e. In a final step,
functional relations on E ×O, so called dynamic roles, are defined in terms of the Ri
by existentially quantifying over the event type argument.

Besides the preorder �, the construction is based on two primitive relations. The
relationship between event types, their elements, objects participating in those el-
ements and results that the latter can bring about with respect to the former is
captured by the relation ∆ on ℘(E) × E × O × ℘(S). A quadruple (P, e, d,Q) is an
element of ∆ just in case Q is a result that the event e ∈ P can bring about with
respect to its participant d. The set Q

d,e,P
= {Q | Q ∈ ∆(P, e, d)} is the set of all

results assigned to d by e (relative to P) and the set Q
e,P

= {Q | ∃d : ∆(P, e, d,Q)}
is the set of all results determined by P for e. The set of latest results deter-
mined for an event relative to an event type and the ordering � is defined by
Latest(e, P) = {Q | Q ∈ Q

e,P
∧ ∀Q′(Q′ ∈ Q

e,P
→ � (Q′, Q, P))}. The relation

∆∗ on ℘(E) × E ×O × ℘(S) is defined in terms of ∆ as follows. For events that are
neither point-like nor the elements of stative event types, ∆ and ∆∗ are identical, i.e.
one has: ∆(P, e, d) = ∆∗(P, e, d). For point-like events, ∆∗(P, e, d) is ∆(P ′, e′, d) with
e′ ∈ P ′ the largest event of which e is a boundary. For events belonging to stative
event types, ∆∗(P, e, d) is ∆(P ′, e′, d) with e′ ∈ P ′ the event that brings about the
only element of Q

e,P
and of which e is the consequent state (or consequent event).

The function γ maps an event e and an event type P to a particular cover of the
set of results Qe,P assigned to e. This cover is verb-dependent although it depends
on the verb’s aspectual classification. For instantaneous event types, i.e. event types
the elements of which are point-like, γ is a cover of the set of results brought about
by the presupposed event, i.e. a cover of the set of results determined for the event
of which e is a boundary. For events denoted by stative event types, the value of γ
is the set of results determined for the event that brings about the result that is the
only element of Q

e,P
, i.e. e′ is the event of which e is the consequent state. In (26), γ

is illustrated for the examples in (25). If both s-maximal and w-minimal results are
determined, only the former are listed. (j = john, m = mary, b = the book, d = the
door, a = the apple, c = the cart, s = the station, p = paul). Be-affected(d) is used
in a twofold sense. It either means that d produces a sound or that d is hurt.

(25)a. John gave Mary the book.
b. John closed the door.
c. John ate the apple.
d. John pushed the cart.
e. John reached the station.
f. John hit Paul.

(26)a. γ(e, Pgive) = {{Act(j),¬Poss(j, b)}, {Poss(m, b)}, {Poss(m, b),¬Poss(j, b)}}
b. γ(e, Pclose) = {{Act(j)}, {Closed(d)}}
c. γ(e, Peat) = {{Act(j), Be-in(a, j)}, {Be-in(a, j),¬Exist(a)}}
d. γ(e, Ppush) = {{Act(j)}, {Move(c)}}
e. γ(e, Preach) = {{Move(j), Be-at(j, s)}, {Be-at(j, s)}}
f. γ(e, Phit) = {{Act(j)}, {Be-affected(p)}}

206 Fibring semantics for natural language

The elements of the cover of the set of results determined for an event can be
linearly ordered in terms of the temporal ordering � defined on the set of results.
The basic distinction is that between elements of the cover which contain a result
that is brought about first, i.e. that is a minimal element relative to � (and a basic
event type) and elements which contain a result that is brought about last, i.e. which
is a maximal element relative to � (and a basic event type). The exact definitions
are given in (27) (Q is a set of states and Q a set of set of states).

(27)a. W-Prec(Q,Q, P) iff Q ∈ Q ∧ ∃Q ∈ Q : ∀Q′ ∈ Q : ∀Q′ ∈ Q′ :� (Q,Q′, P)

b. W-Suc(Q,Q, P) iff Q ∈ Q ∧ ∃Q ∈ Q : ∀Q′ ∈ Q : ∀Q′ ∈ Q′ :� (Q′, Q, P)

This distinction does in general not linearly order the elements of the cover in the
sense that for a given Q and P Q is uniquely determined. E.g. the elements of the
cover in (26a) all contain a result that is brought about last so that they all stand in
the relation of weak succession to γ(e, Pgive) and Pgive. It is therefore necessary to
apply further criteria. An element of a cover can both weakly precede and weakly suc-
ceed the other elements of the cover. This is the case for the set {Act(j),¬Poss(j, b)}
from (26a). This set can therefore be distinguished from the other elements of this
cover by satisfying both relations. The two remaining sets can be discerned from each
other in terms of their cardinality. Let s1 = {Act(j),¬Poss(j, b)}, s2 = {Poss(m, b)}
and s3 = {Poss(m, b),¬Poss(j, b)}. Using the criteria from above, one gets Table 5.

W-Prec s1
W-Suc s1, s2, s3
¬W-Prec ∧ W-Suc s2, s3
¬W-Prec ∧ W-Suc s3

∧ MaxCard

Table 5

MaxCard is counted relative to the elements that satisfy ¬W-Prec and W-Suc.8

Whereas set s1 is the element of the cover that weakly precedes all other, set s3 is
the largest set among the sets that weakly succeed but that do not weakly precede
all other elements. Set s2, finally, is the set that satisfies none of the criteria picking
out the other two sets. This is made precise in the definitions below.

(28)a. First(Q,Q, P) iff W-Prec(Q,Q, P) ∧ ∀Q′(Q′ ∈ Q∧ W-Prec(Q′, Q, P) → |Q| ≤
|Q′|)

b. Last(Q,Q, P) iff W-Suc(Q,Q, P) ∧ ¬W-Prec(Q,Q, P) ∧
∀Q′(Q′ ∈ Q∧ W-Suc(Q′, Q, P) ∧ ¬W-Prec(Q′, Q, P)→ |Q′| ≤ |Q|)

c. Int(Q,Q, P) iff ¬
(
First(Q,Q, P) ∨ Last(Q,Q, P)

)

Using the relations in (28), each of the three sets can be uniquely determined. Ap-
plying the relations to the examples in (25), one gets the table below.

8In general, MaxCard can be defined in terms of the subset relation.

2. FORMALIZING THE FLOW OF INFORMATION 207

First Int Last
give {Act(j),¬Poss(j, b)} {Poss(m, b)} {Poss(m, b),¬Poss(j, b)}
close {Act(j)} − {Closed(d)}
eat {Act(j), Be-in(a, j)} − {Be-in(a, j),¬Exist(a)}
push {Act(j)} − {Move(c)}
reach {Move(j), Be-at(j, s)} − {Be-at(j, s)}
hit {Act(j)} − {Be-affected(p)}

Table 6

If Q is the value of γ for an event e belonging to the event type P , each of its
elements is a subset of the set of results assigned to an object participating in e. It
is therefore possible to define, for each of the relations R in (28), a corresponding
relation R∗ on E×O×℘(E) that holds between an event e, an object d and an event
type P just in case d participates in e, e belongs to P and the set of results that bears
R to γ(e, P) and P is a subset of ∆∗(P, e, d). The relations are defined in (29).

(29)a. First*(e, d, P) iff ∃Q(Q ⊆ ∆∗(P, e, d)∧ First(Q, γ(e, P), P))
b. i Last**(e, d, P) iff ∃Q(Q ⊆ ∆∗(P, e, d)∧ Last(Q, γ(e, P), P))
b. ii Last*(e, d, P) iff Last**(e, d, P)∧∀d′(d 6= d′∧ Last**(e, d′, P)→ First*(e, d′, P)∨

Int*(e, d′, P))
c. Int*(e, d, P) iff ∃Q(Q = ∆∗(P, e, d)∧ ¬(First(Q, γ(e, P), P)∨ Last(Q, γ(e, P), P)))

For First* and Last*, only a subset of the set of results is required to bear the
corresponding relation to γ(e, P) and P because if a verb is used reflexively there is
a single object that is assigned both roles. Since for transfer verbs no reflexive uses
are possible, one can set Q = ∆∗(P, e, d). The more complicated definition of Last*
is necessary to exclude objects that bear both the relation First* and Last** to an
event because a subset of the results assigned to them bears Last to γ(e, P) and P .
For instance for an event e of type ‘John reach the station’, the set {Be−at(j, s)}
stands in the relation Last to γ(e, Preach) and Preach. It is a proper subset of the
results assigned to John and the set of results assigned to the station. Thus, Last**,
which is defined analogously to First*, is not functional in its second argument given
e and Preach. For John, there is an additional result assigned to him that, together
with the result Be-at(j, s), stands in the relation First to γ(e, Preach) and Preach.
Consequently, John stands both in the relation First* and Last** to e and Preach. He
is therefore excluded by the second conjunct of the definition of the relation Last*.
An analogous argument applies to events belonging to event types corresponding to
transfer verbs of the ‘kaufen’ and ‘legen’ type. In this case an object participating in
an event of this type can stand both in the relation Last** and Int* to an event and
an event type. Verbs of these types are discussed below in Section 2.5.2.

The relations in (29) are functional in the following sense: ∀e∀P∀d∀d′(R∗(e, d, P)∧
R∗(e, d′, P)→ d = d′) for R∗ ∈ {First*, Last*, Int*}. The relations in (29) therefore
determine participants of an event (relative to an event type) by requiring that a
subset of the set of results assigned to it both be an element of γ(e, P) and satisfy
one of the properties defined in (28). Since those relations are functional in their first
argument for a given γ(e, P) and P and since that argument is assigned to a unique
participant, a unique participant of events is determined by the relations in (29).
Similarly to thematic roles, the relations in (29) are required to be independent of a

208 Fibring semantics for natural language

particular event type, i.e. one has ∀e∀P∀P ′∀d∀d′(R∗(e, d, P)∧ R∗(e, d′, P ′) → d =
d′). It is therefore possible to define corresponding functional relations on E × O by
existentially quantifying over the event type. This yields (30). The resulting relations
are called basic dynamic roles.9

(30) Rdr(e, d) iff ∃P : Rdr∗(e, d, P) dr ∈ {First, Int,Last}.
On the dynamic roles an ordering � is defined as follows.

(31) Rfirst � Rint � Rlast

The function µ assigns to each basic event type an ordered set of dynamic roles. E.g.
for ditransitive verbs like ‘give’, µ(Pgive) = {Rfirst, Rint, Rlast}. For transitive verbs
like ‘eat’, Rint is not defined so that one has µ(Peat) = {Rfirst, Rlast}. For intransitive
verbs, one either sets µ(P) = {Rfirst}, or one uses a generalized dynamic role which
subsumes both Rfirst and Rlast (see Naumann and Osswald 2001 for details).

2.5.2 Verbs with Prepositional Arguments

All verbs that have been considered so far link their arguments by case. In German,
there are also verbs which have prepositional arguments. Two examples are given in
(32).

(32)a. Hans kaufte ein Buch von Maria. (Hans bought a book from Mary)
b. Hans legte ein Buch auf den Tisch. (Hans put a book on the table)

Similarly to ‘geben’ verbs, these verbs express transfers. E.g. the book is transferred
from Mary to Peter by the event of buying and it is transferred to the table from some
unspecified source by the event of putting. For elements of the ‘kaufen’ class, it is the
source and for elements of the ‘legen’ class, it is the destination which is realized by
a prepositional argument. In (33), the values of γ for the different types of transfer
verbs are given (h = Hans, b = book, m = Mary and t = table).

(33)a. γ(e, Pgive) = {{Act(h),¬Poss(h, b)}, {Poss(m, b)}, {Poss(m, b),¬Poss(h, b)}}
b. γ(e, Pbuy) = {{Act(h), Poss(h, b)}, {Poss(h, b),¬Poss(m, b)}, {¬Poss(m, b)}}
c. γ(e, Pput) = {{Act(h)}, {Move(b), Be-at(b, t)}, {Be-at(b, t)}}10

The example of ‘kaufen’ verbs in (33b) shows that the definition of the Last relation
is too simple. For ‘kaufen’, it picks out the transferred object since it is assigned
the largest set which weakly succeeds the elements of the cover γ(e, Pbuy). But the
transferred object is denoted by the intermediate argument. Similarly, the source
is picked out by the relation Int so that it should be realized as the intermediate
argument. Yet it is realized as the last argument. The revised definition is given in
(34). (≈ (Q,Q′, P) =def.≺ (Q,Q′, P)∧ ≺ (Q′, Q, P).)

(34) Last(Q,Q, P) iff W-Suc(Q,Q, P) ∧ ¬W-Prec(Q,Q, P) ∧
∀Q′(Q′ ∈ Q∧ W-Suc(Q′, Q, P) ∧ ¬W-Prec(Q′, Q, P) → (∃Q ∈ Q∀Q′ ∈ Q′(≺
(Q,Q′, P)) ∨ (∀Q ∈ Q∀Q′ ∈ Q′(≈ (Q,Q′, P) ∧ ∃Q ∈ Q∀Q′ ∈ Q′(Q′ ⊆ Q) ∧ ∃Q′ ∈
Q′∀Q ∈ Q(Q′ ⊆ Q)))

9The way dynamic roles are defined can be taken as a formalization of Dowty’s (1991) notion of a proto role.

10Instead of the cover in (33c), the following cover can be used: {{Act(h),¬Be-at(b, h)}, {Move(b), Be-

at(b, t)}, {Be-at(b, t),¬Be-at(b, h}}. The argument given below applies to both analyses.

2. FORMALIZING THE FLOW OF INFORMATION 209

The first disjunct in the succedent of the last conjunct is used for verbs of the ‘legen’
class for which the destination is assigned exactly one w-maximal result whereas the
transferred object is in addition assigned a non-latest result.

Events of type buying differ from those of type giving in the direction that the
transfer takes. For an event of giving, the transfer is always away from the actor
whereas for an event of type buying it is always towards the actor. Consequently,
for the former type of event the actor is the source of the transfer and the object
denoted by the intermediate argument is the destination (or the recipient). For an
event of type buying, on the other hand, the actor is the destination of the transfer
whereas the source is realized by the prepositional argument. For putting events, the
destination is never the actor but the object denoted by the prepositional argument.
In addition, the transfer is not or need not be directed away from the actor.

The similarities and differences between the three types of transfer verbs are re-
flected at the level of result as follows. Independently of the subclass, the transferred
object is always assigned all latest results. For elements of the ‘kaufen’ class, these
results are derived from the same property of individuals as for the ‘geben’ class,
though the assignments to participants is different as shown above. For an element
of the ‘legen’ class, there is only one latest result: y is at z, with y the transferred
object and z the destination. For a verb of the ‘geben’ class, the actor is assigned
the logically weaker whereas the recipient is assigned the logically stronger of the two
latest results. For an element of the ‘kaufen’ class, the actor is assigned the logically
stronger and the source the logically weaker of the latest results. Consider next the
three roles defined in (35).

(35)a. Role1 = {(e, d, P) | ∀Q(∆(P)(e)(d)(Q)↔
(Q ∈ Latest(e, P) ∧ ∀Q′(Q′ ∈ Latest(e, P)→ Q ⊆ Q′)))}

b. Role2 = {(e, d, P) | ∀Q(∆(P)(e)(d)(Q)↔ (Q ∈ Latest(e, P)))}
c. Role3 = {(e, d, P) | ∀Q(∆(P)(e)(d)(Q)↔

(Q ∈ Latest(e, P) ∧ ∀Q′(Q′ ∈ Latest(e, P)→ Q′ ⊆ Q)))}
Role1 is assigned to an object that is assigned only the logically strongest of the

latest results. Conversely, an object bears Role3 to an event and an event type if
the results assigned to it are the logically weakest of the latest results. Role2, finally,
is assigned to an object if all and only the latest results are brought about with
respect to it. Role1 and Role2 apply to the intermediate and the lowest arguments of
verbs belonging to the ‘geben’ class since the sets of results assigned to them satisfy
the conditions in terms of which these roles are defined. Role2 also applies to the
intermediate argument of a verb of the ‘kaufen’ class. Role3, finally, applies to the
source argument of a verb belonging to the ‘kaufen’ class. Since the object denoted
by this argument also satisfies Rlast∗ , a sufficient condition for an argument of a verb
in German to be realized by a PP is (36).

(36) An argument of a verb in German is realized by a PP if the verb semantically
determines maximal results and if the argument is linked to the verb by Rlast∗

and Role3.

The restriction to verbs that semantically determine latest results of type maximal
is necessary to exclude stative and Activity verbs. The internal arguments of Accom-
plishment verbs are excluded because they are assigned not only latest results (type
s-maximal) but in addition also a non-latest result (type w-minimal).

210 Fibring semantics for natural language

For the prepositional argument of a verb belonging to the ‘legen’ class, the argument
is similar. Since there is only one latest result which is assigned both to the transferred
object and the destination, it is not possible to discern the two participants in terms of
the latest results. The result distinguishing the two participants is that the transferred
object but not the destination is moved. As a consequence, there is an additional (s-
minimal) result assigned to the former but not to the latter. From this it follows that
none of the three roles in (35) applies to the transferred object because they all require
the set of results assigned to an object to be a subset of the latest results. For the
destination, on the other hand, all three roles apply because there is exactly one latest
result and exactly this result is assigned to it. Since the destination bears in addition
Rlast∗ to an event and event type of the ‘legen’ class, the condition in (36) is satisfied.
The argument for ‘legen’ verbs also applies to verbs like ‘werfen’ (throw) if they are
used ditransitively. Consider an event of type ‘Hans throw the ball to Mary’. The
cover is identical to that used for ‘legen’: γ(e, Pthrow) = {{Act(h)}, {Move(b), Be-
at(b, t)}, {Be-at(b, t)}}.11 Consequently, the same argument applies.

So far, no alternations have been considered. In German, alternations are possible
for verbs of the ‘geben’ class: ‘Hans brachte der Frau ein Buch’ vs. ‘Hans brachte ein
Buch zu der Frau’ (Hans brought a book to the woman). This possibility is captured
by the following generalization of (36).

(36’) An argument of a verb in German can be realized by a PP if the verb semantically
determines maximal results and if an object denoted by the argument is assigned
exactly one result which is a latest result.

(36’) not only applies to the prepositional arguments discussed so far but also to
the recipient of a verb of the ‘geben’ class. Formally, this additional possibility is
accounted for by weakening the condition in the relation Last. The conjunct ∃Q ∈
Q∀Q′ ∈ Q′(Q′ ⊆ Q) in the second disjunct must be dropped. This yields (34’). In
addition, the definition of the relation Int* must be adapted.

(34’) Last(Q,Q, P) iff W-Suc(Q,Q, P) ∧ ¬W-Prec(Q,Q, P) ∧
∀Q′(Q′ ∈ Q∧ W-Suc(Q′, Q, P) ∧ ¬W-Prec(Q′, Q, P) → (∃Q ∈ Q∀Q′ ∈ Q′(≺
(Q,Q′, P)) ∨ (∀Q ∈ Q∀Q′ ∈ Q′(≈ (Q,Q′, P) ∧ ∃Q′ ∈ Q′∀Q ∈ Q(Q′ ⊆ Q)))

(29)c’. Int*(e, d, P) iff ∃Q(Q = ∆∗(P, e, d)∧ (¬(First(Q, γ(e, P), P)∨ Last(Q, γ(e, P), P))∨
(Last(Q, γ(e, P), P) ∧ ∃d′(d′ 6= d ∧Q = ∆∗(P, e, d′)))))

Using the above definitions, does not impose an ordering on the recipient and the
transferred object for verbs of the ‘geben’ class. This must be accounted for in the
definition of the theta structure and the semantic form. In the sequel, only the
basic theta structure of ‘geben’ verbs is considered, leaving the further analysis of
alternations to another occasion.

11The difference consists in the way the actor is involved. In a throwing event, he is not involved until the end

whereas this is the case for an event of putting.

2. FORMALIZING THE FLOW OF INFORMATION 211

2.6 The Theta Structure TS

2.6.1 Structures for TS
In DES, the theta structure D of a verb is defined in terms of the inverse of µ(P)
with P the event type corresponding to the verb. Formally, it is a linearly ordered set
of arguments with the latter simply taken as abstract points. The cardinality of D is
that of µ(P) and the i-th element of this set is required to be linked to the i-th element
of the inverse of µ(P). At the formal level this relationship is expressed as follows.
Each element of a TS is characterized by structural and non-structural properties.
Structural properties are those properties which an argument has in virtue of being
an element of a linearly ordered set like being the first (last) element or having a
predecessor (successor). Non-structural properties are those properties an element
has in virtue of being related to particular dynamic roles. In models for the TS, these
properties correspond to unary relations on the underlying domain of arguments. One
has MTS, θ |= φdr just in case the argument θ is semantically linked to the dynamic
role Rdr. The relationship between elements of D and the inverse of µ(P) is then
expressed by axioms of the form ‘if θ is the i-th element of D, then it satisfies φdr’
with Rdr the i-th element of the inverse of µ(P).

Definition 2.5 A model MTS of signature 〈DR∗〉 is a pair 〈D, {Qdr}dr∈DR∗, Rvdat〉
such that

• D is a set that is linearly ordered by <; the elements of D are called arguments

• each Qdr and Rvdat are unary relations on D; DR∗ is a set of dynamic role labels
with DR ⊆ DR∗. The elements of DR∗ −DR are additional dynamic roles like
those defined in (35) above. For each element from DR and the label dat ∈
DR∗, Qdr is either a singleton or the empty set.12 For those dr ∈ DR for which
Rdr does not correspond to elements from D, Qdr is the empty set. Including
labels for all dynamic roles is necessary for the formulation of linking rules. For
canonical linking patterns, it must be required that some argument not be linked
to a particular dynamic role, independently of whether the latter are defined for
P or not.

2.6.2 The Language LTS

The non-logical part of LTS consists of the elements from DR∗ and •dat, which
function as propositional variables, the modal operators ↑ and ↓, in terms of which
two further operators, ⊥↑ and ⊥↓, are defined, the modality zs and the well-formed
formulas from LS .13 The propositional variables express properties of dynamic roles
whereas the modal operators are used to make assertions about the linear ordering
on D

. The interpretation of the modal operators only depends on the ordering < and
not on specific properties of the elements of D. The satisfaction clauses for elements

12Formally the corresponding φdr therefore resemble nominals in the sense of Blackburn (1993): they are true of at

most one element of the underlying domain. Nominals are required to be true at exactly one element of the domain.

13In terms of Section 2.4.3 LTS therefore is, in effect, LTS(LS), LTS layered over LS . Since formulas of the form

〈zs〉φ for φ ∈ LSwff are only discussed below in Section 2.6.3, only the top layer LTS is defined in this section.

212 Fibring semantics for natural language

from DR∗ and for the modal operators are given in (37).14, 15

(37)a. MTS , θ |= φdr iff θ ∈ Qdr
b. MTS , θ |= ↑ iff there is a θ′ s.t. θ < θ′

c. MTS , θ |= ↓ iff there is a θ′ s.t. θ′ < θ
d. MTS , θ |= •dat iff θ ∈ Rvdat

An argument is an element of Rvdat just in case it is an element of the theta structure
of a dative verb like ‘helfen’ or ‘folgen’.16 In terms of ↑ and ↓ two further operators,
⊥↑ and ⊥↓, are defined, (38a,b).

(38)a. ⊥↑ =def.↑ ∨ ¬ ↑
b. ⊥↓ =def.↓ ∨ ¬ ↓

According to (38a,b), ⊥↑ and ⊥↓ hold at each position of D. The relationship
between the features hr and lr in LDG and the modal operators is given in (39).

(39) ↑ ≡ +hr ¬ ↑ ≡ −hr ↓ ≡ +lr ¬ ↓ ≡ −lr

A model MTS has to satisfy certain axioms like those in (40).

(40)a. ↑ ∧ ↓ → ¬φdat
b. ¬ ↑ → φfirst
c. ↑ ∧ ↓ → φint
d. ↑ ∧ ¬ ↓ → φlast
e. ↑ ∧ ¬ ↓ ∧ •vdat → φdat

(40a) says that if a position of TS is an intermediate one, i.e. if there is both a
lower and a higher position, the dynamic role at that position is not Rdat, i.e. the role
assigned by dative verbs like ‘helfen’ to their internal argument. The axioms in (40b-
d) express the relationship between arguments and basic dynamic roles. They can
be derived from the axioms expressing the relationship between the SF and the theta
structure given below in Section 2.7.4. The axioms in (40a-d) are verb-independent
in the sense that the antecedent contains no information that is verb-dependent. In
contrast, the antecedent of axiom (40e) expresses non-structural information that
is specific to a particular verb class the elements of which are non-canonical. The
antecedent determines the arguments of these theta structures that are exceptional
in the sense that case is not assigned in accordance with the generalizations in (4)
and (5) from Section 1. Similarly to •vdat , the propositional variable φdat expresses
non-structural information that is specific to particular argument positions, namely
those arguments of dative verbs which do not comply with the canonical pattern.
Thus, non-structural patterns of linking are explained by introducing non-structural
information that is specific to particular verb classes. This information can be derived
neither from the linear ordering on the set of arguments nor from the verb-independent

14No distinction between modalities and (boolean combinations of) propositional variables is made at the syntactic

level. Modalities and (boolean combinations of) propositional variables can be distinguished by writing 〈Mod〉>
instead of Mod for Mod a modality and adjusting the satisfaction clauses accordingly. see also the next footnote.

15↑ and ↓ can be defined in TL as follows: ↑ =def. F> and ↓ =def. P>. Since Fφ can be defined as 〈>〉φ, where

[[>]] = R>, i.e., M, s |= 〈>〉φ iff ∃s′((s, s′) ∈ R>). Let R< = (R>)c, i.e., (s, s′) ∈ R< iff (s′, s) ∈ R>, as usual.

Then < can be defined as >c, i.e. M, s |= 〈<〉φ iff ∃s′((s, s′) ∈ R< ∧ M, s′ |= φ) iff ∃s′((s′, s) ∈ R>∧ M, s′ |= φ).

16Thus for theta structures of non-dative verbs, •dat is false for each element of D.

2. FORMALIZING THE FLOW OF INFORMATION 213

non-structural information that is derived from the relationship between the semantic
form and the theta structure. Formally, this is done by introducing a second sort of
formulas, i.e. the φdr with dr ∈ DR∗−DR, that express this non-structural informa-
tion. These variables are interpreted by dynamic roles which are more specific than
the three basic ones in terms of which the ordering on the arguments is determined.
Three examples for such roles have been given in Section 2.5.2 above.

The above scheme not only applies to verbs with at most three arguments but
also to verbs with more arguments. If LDG and other approaches are right that
any additional arguments can only be linked non-structurally, this is handled in the
present framework by adding further sorts of propositional variables which express
the required type of information. Linking rules must then be changed accordingly by
adding the required information in the antecedents. If, contrary to what is assumed in
LDG, there are languages with verbs that have more than three structural arguments,
two ways are open. One either continues to use the Priorian tense logic and uses more
complex properties that are expressible in this logic. If the logic is too weak to express
the required properties, one has to use a more expressive temporal logic or any other
logic in which one can talk about linearly ordered sets that admits to express the
linguistically required structural properties.

2.6.3 Constraining LTS(LS)
Recall from Section 1 that the relationship between TS and S concerns the notion of
argument. The order of arguments at the level of TS is the inverse of the order in
which they are realized at the level of word order at S. In the formalization given in
this article, this means that there is a (functional) relationship between D and N :
each element from D is assigned its tree node. The function that maps elements from
D to tree nodes will not be surjective. The image of this function is the subset of
N that consists of all and only those nodes which are arguments (complements) of
the verb, which means that they are of a (maximal) phrasal category. Since in this
article only arguments of category np are considered, the subset consists of all and
only those nodes that are of category np.17 The elements of this subset form a linear
sequence that corresponds to the word order. It is defined in (41).

(41) λ(N) = {n ∈ N | TS , n |= 〈zf 〉np}

The relationship between MTS and TS is defined in terms of λ(N).18

(42) Rzs = {(θ, n) | ∃σ∃σ′(prefix(σ,D)∧ last(σ) = θ∧ prefix(σ′, λ(N))∧ last(σ′) =
n∧ length(σ) = length(D)− length(σ′) + 1)}

Rzs maps the k-th element of D to the n−k+1-th element of λ(N) for n the length
of D. It is not only functional but, in effect a one-to-one correspondence.
17Thus the trees that are considered in this article are those which are determined by the subcategorization frame

of the verb. E.g. for a transitive verb, this tree has a root of category s with a left daughter of category np,

which is a terminal node, and a right daughter of category vp, which has a left daughter of category v and a right

daughter of category np, both of which are terminal nodes. More complex trees can be generated by operations of

tree adjoining.
18In (42) linearly ordered sets are identified with the corresponding sequences. Alternatively, Rzs can be defined as

follows: (θ, n) ∈ Rzs iff ∃M∃M′(M ⊆ D∧M′ ⊆ λ(N)∧min(D) ∈ M∧min(λ(N)) ∈ M′∧ closed(M)∧ closed(M′)∧
card(M) = card(D)−card(M′)+1∧max(M) = θ∧max(M′) = n). Given a linearly ordered set M≤, its maximum

is defined as max(M) = ιs(s ∈ M ∧ ∀s′(s′ ∈ M → s′ ≤ s)). The minimum is defined analogously; ‘closed(M)’ iff

∀s∀s′(s ∈ M ∧ s′ ∈ M ∧ s < s′ → ∀s′′(s < s′′ < s′ → s′′ ∈ M)).

214 Fibring semantics for natural language

Constraints between TS and S are expressed in LTS using formulas of the form
〈zs〉φ for φ a well-formed formula from LS . The satisfaction clause is (43).

(43) MTS , θ |= 〈zs〉φ iff there is an n s.t. Rzs(θ, n) and TS , n |= φ

The constraints between the TS and the syntactic level S are of the general form
(44a). In (44b-d) the special axioms are given.

(44)a. α→ 〈zs〉α′
b. ¬ ↑ → 〈zs〉 (〈zf〉np ∧ ¬P 〈zf 〉np)
c. ↑ ∧ ↓ → 〈zs〉 (〈zf 〉np ∧ P 〈zf 〉np ∧ F 〈zf 〉np)
d. ↑ ∧ ¬ ↓ → 〈zs〉 (〈zf 〉np ∧ ¬F 〈zf 〉np ∧ P 〈zf〉np)

According to (44a), the axioms impose constraints on the distribution of structural
information. The constraints (44b) and (44d) require that the last, respective first
element of a TS is related to the first, respective last element of the word order. The
constraint in (44c) applies to intermediate positions of TSs with length 3. Axiom
(44b) is depicted in Figure 3.

S

TS

n |= 〈zf 〉np ∧ ¬P 〈zf 〉np〈o1, . . . , on〉
on |= ¬ ↑ ∧〈zs〉(〈zf 〉np ∧ ¬P 〈zf 〉np)

Figure 3

When taken together, the constraints in (44b-d) amount to the requirement that the
default word order determined by the verb be the inverse of the order of arguments in
TS. There is the following simple algorithm for calculating α′ from α (and vice versa):
(¬) ↑ ↔ (¬)P and (¬) ↓ ↔ (¬)F . The antecedents of the constraints in (24) and
the argument of 〈zs〉 in the consequents of the constraints in (44b-d) are identical.
Thus, if a constraint in (44b-d) and the corresponding in (24) are required to hold at
a position of D, one gets (45).

(45)a. ¬ ↑ → 〈zs〉 (〈zf〉 〈CASE〉nom)
b. ↑ ∧ ↓ → 〈zs〉 (〈zf 〉 〈CASE〉 dat)
c. ↑ ∧ ¬ ↓ → 〈zs〉 (〈zf 〉 〈CASE〉 acc)

Linguistically, the constraints in (45) require a position in TS to be related to a
particular assignment of case to an argument NP realizing this position. In Figure 4,
(45a) is shown.

Similarly to the constraints in (24), they only hold for canonical verbs, i.e. for verbs
which link their arguments according to a canonical pattern. In order to capture the
distinction between canonical and non-canonical patterns, non-structural information
at the level of TS must be taken into consideration. A linking constraint will have
one of the two forms in (46).

2. FORMALIZING THE FLOW OF INFORMATION 215

S

TS

M

n |= 〈zf 〉〈CASE 〉nom〈o1, . . . , on〉
on |= ¬ ↑ ∧〈zs〉〈zf 〉〈CASE 〉nom w0,n |= 〈CASE 〉nom

nom

CASE

Figure 4

(46)a. α ∧ ¬β → 〈zs〉 〈zf 〉 〈CASE〉φ canonical pattern
b. α ∧ β → 〈zs〉 〈zf〉 〈CASE〉φ′ non-canonical pattern

In (46), α expresses structural and β non-structural information (i.e. β ∈ DR∗).
In order to arrive at constraints of the form in (14) it is not necessary to change the
constraints in (44) because they hold for all verbs which realize their arguments by
case.19 Rather, the constraints in (24) must be adapted.

Since Rzs is a one-to-one correspondence, its inverse R−1
zs exists. It is therefore

possible to express constraints that concern the level of TS in LS by using the inverse
modality z−1

s . This yields (47) as the general scheme.

(47)a. ψ ∧
〈
z−1
s

〉
¬β → 〈zf 〉 〈CASE〉φ canonical pattern

b. ψ ∧
〈
z−1
s

〉
β → 〈zf〉 〈CASE〉φ′ non-canonical pattern

E.g. for the constraint in (24c) one gets the two constraints in (48).

(48)a. 〈zf 〉np ∧ ¬F 〈zf〉np ∧ P 〈zf 〉np ∧
〈
z−1
s

〉
¬φdat → 〈zf〉 〈CASE〉 acc

b. 〈zf 〉np ∧ ¬F 〈zf〉np ∧ P 〈zf 〉np ∧
〈
z−1
s

〉
φdat → 〈zf 〉 〈CASE〉 dat

If these two constraints are combined with those in (46), one gets (49).

(49)a. ↑ ∧ ¬ ↓ ∧ ¬φdat → 〈zs〉 〈zf 〉 〈CASE〉 acc
b. ↑ ∧ ¬ ↓ ∧ φdat → 〈zs〉 〈zf〉 〈CASE〉 dat

(49a) requires the lowest argument of a TS of length greater one to be realized by
accusative case if it is not assigned the dynamic role that characterizes the lowest
argument of dative verbs like ‘helfen’. (49b), on the other hand, captures those cases
where the lowest argument is assigned this role and requires the argument to be
realized by dative case. (49b) is depicted in Figure 5.

¿From the way the constraint between the two levels is defined it follows that the
flow of information between them is bidirectional. It is not only possible to zoom in
from TS into S (by zs) but also to zoom out from S into TS. This possibility is due
to the way positions of a TS are related to elements of the (default) word order at
S. The mapping rule in (8), which requires the order of elements at the level of TS

19If verbs with prepositional arguments are taken into account, the constraints in (44) must be changed too. The

antecedents must contain non-structural information.

216 Fibring semantics for natural language

S

TS

M

S

V P

V n |= 〈zf 〉〈CASE〉dat
〈o1, o2〉

o1 |= ¬ ↓ ∧ ↑ ∧φdat ∧ 〈zs〉〈zf 〉〈CASE〉dat
w0,n |= 〈CASE 〉dat

dat

CASE

Figure 5

to be the inverse of that at the level of S, can be read in the other direction as well:
particular positions of TS correspond to particular positions of the word order at S
and vice versa. In the terminology of Finger and Gabbay (1992) this means that LTS

and LS are fully fibered.

2.6.4 The Definition of the Cases

The analysis of the constraints between TS, S and M given in the preceding sections
assumed that information about cases is atomic information at the level of M. This
is in contrast to LDG where the cases are defined using the same properties that are
used to characterize the TS. Given a position of the TS, the case that is realized at
the morphological level is determined by a matching operation between this position
and the set of cases. In the preceding sections, an LDG-style definition of the cases
was not needed because the constraints were based on the result of the matching
operation whereas the matching operation was not accounted for. In this section the
cases will be defined in the present framework.

Recall from Section 1 that linking rules are of the form α ∧ β → γ, where α ex-
presses structural information, β non-structural information and γ specifies a case.
A γ corresponding to a case C can be implied by more than one conjunction α ∧ β.
Let

∨
1≤i≤n(αi ∧ βi) be the disjunction of these conjunctions, for n the number of

conjuncts that imply γ. Since in LDG the linguistic function of a case C is ex-
hausted by the possible positions relative to a TS at which it can occur, C can be
defined as the disjunction: C =

∨
1≤i≤n(αi ∧ βi). If besides canonical patterns also

the non-canonical pattern of dative verbs is considered, one gets the relationship be-
tween cases, elements of a TS and dynamic roles in Table 7 (AP = argument position).

Case positions of TS dynamic roles
NOM highest AP none
DAT intermediate AP (length of TS > 2) none

lowest AP (length TS > 1) φdat
ACC lowest AP (length TS > 1) ¬φdat

2. FORMALIZING THE FLOW OF INFORMATION 217

Table 7

The rows are to be understood as follows: the argument corresponding to the i-
th position of a TS (of length n) is morphologically realized by case C if they are
related to the dynamic roles R1, ..., Rn. E.g. the argument corresponding to the
lowest position of a TS (of length greater 1) is morphologically realized (i) by ACC if
the dynamic role Rdat is not related to that position, and (ii) by DAT if the dynamic
role Rdat is related to that position.

A sufficient condition for an argument to be realized by a case is given by infor-
mation both about the position and the presence (or absence) of information about
dynamic roles to which that position is related. Canonical linking is characterized by
requiring the absence of information about dynamic roles whereas non-canonical link-
ing requires information about a particular dynamic role. Disjuncts which require the
absence of information about dynamic roles are structural, otherwise they are non-
structural. For structural disjuncts, the structural component is defined using the
definitions from (11), i.e. the specificity condition is not applied. For non-structural
disjuncts, on the other hand, the SC is applied so that the structural component is
maximally specified. This has the effect that the structural disjuncts in the definition
of a case are less specific than the non-structural ones in the definition of other cases
with which the former are compatible. If the SC is applied to the structural compo-
nent of the structural disjunct in the definition of a case, the structural disjuncts are
incompatible with the non-structural ones. The definitions of the cases are given in
(50) (〈α, α′〉 abbreviates α ∧ α′).

(50)a. NOM =def. 〈⊥↑,⊥↓〉
b. DAT =def. 〈↑, ↓〉 ∨ (〈¬ ↑, ↓〉 ∧ φdat)
c. ACC =def. 〈↑,⊥↓〉 ∧ ¬φdat

The linking mechanism is illustrated for a dative verb like ‘helfen’.

TS θ1 θ2
α 〈↑,¬ ↓〉 〈¬ ↑, ↓〉
β φdat ∧ φlast φfirst

Table 8

ACC is excluded at θ1 because the first disjunct requires ¬φdat, which is not
compatible with φdat from the non-structural component β of θ1. The disjunct
〈↑,¬ ↓〉 ∧ φdat of the definition of DAT is compatible with α1 ∧ β1. Since 〈↑,¬ ↓〉
is more specific than 〈⊥↑,⊥↓〉 (= NOM), dative case is assigned to θ1. For θ2, only
NOM is compatible with the structural specification. Consequently, the argument
NP realizing this position is linked by nominative case.

θ1 〈↑,¬ ↓〉 ∧ φdat
NOM 〈⊥↑,⊥↓〉
DAT 〈↑,¬ ↓〉 ∧ φdat
ACC not compatible

Table 9

218 Fibring semantics for natural language

2.7 The SF-Level

We will start by defining the structures which provide a semantics for the language
LSF , that is defined in the following section.

2.7.1 The Structures: Dynamic Eventuality Structures

Structures for the SF-level are dynamic eventuality structures.

Definition 2.6 A dynamic eventuality structure DES is a tuple
〈E,S,O, {Rdr | dr ∈ DR} , {Rprop | prop ∈ PROP} , α, ω, τ, µ〉 such that20

• E = 〈E, {Pv | v ∈ VERB} ,vE , C〉 is an eventuality structure with
– E is (non-empty) set of events
– Pv ⊆ E is the set of all events of type v
– vE is the material part-of relation on E, which is a partial order
– C = {(e, e1, e2) | e1 vE e∧e2 vE e∧ω(e1) = α(e2)∧α(e) = α(e1)∧ω(e) = ω(e2)}

is the composition relation, that is required to be associative
• S = 〈S,<S〉 is a transition structure with S a (non-empty) set of states (or time

points), that is linearly ordered by <S
• O = 〈O,vO〉 is an object structure with O a (non-empty) set of objects, that is

partially ordered by vO, the material part-of relation on O
• each Rdr is a (functional) relation on E ×O, which is a dynamic role
• each Rprop is a relation on On × S; intuitively, an n+ 1-tuple 〈d1, ..., dn, s〉 is an

element of Rprop just in case the property expressed by prop holds between the
n-tuple 〈d1, ..., dn〉 at s
• α : E → S and ω : E → S assign to each event e ∈ E its beginning and end point,

respectively
• τ(e) = {s ∈ S | α(e) ≤S s ≤S ω(e)} is the execution sequence of the event e
• µ assigns to each element of {Pv | v ∈ VERB} a set of dynamic roles which is

linearly ordered by <

2.7.2 The Language LSF

A suitable language for the SF level is hybrid Dynamic Modal Arrow Logic (DMALh),
Naumann and Osswald (1999, 2001). DMALh combines Dynamic Modal Logic and
Arrow Logic, van Benthem (1991), de Rijke (1993). It is a three-sorted language. For
each of the three basic domains of dynamic eventuality structures there is a sort of
formula which can be used to talk about elements of the domain. Besides e-formulas,
that are evaluated with respect to elements of E, there are both s-formulas and d-
formulas, that denote sets of states and objects, respectively. The translation of a verb
in the lexicon is a complex e-formula. This formula must account for three different
aspects of the dynamic-temporal structures of events that are linguistically relevant.
First, events bring about results. As was shown above in Section 2.5.1, an event
usually brings about several results that are of different types. Theoretically, it is

20A DES for a verb v is based on the set E of all events, and not only on Pv, because an event belonging to Pv
can have subevents that do not belong to Pv .

2. FORMALIZING THE FLOW OF INFORMATION 219

sufficient to require that the logically strongest of the latest results be brought about
since then all other results are brought about too. This follows from the way the
results determined for an event are temporally related to each other. Bringing about
the logically strongest of the latest results determined for an event requires bringing
about all results that strictly precede this result relative to �. In addition, the
logically weaker of the latest results are brought about too because they are implied
by the logically strongest one. The principle that is used in DES is taken over from
LDG: the translation of a verb is subject to the Principle of Minimal Decomposition.
In DES, this yields (51).

(51) Principle of Minimal Decomposition
In the translation of a verb the logically strongest of the latest results is repre-
sented; and the logically weakest of the earliest results is represented if the set of
participants to which it is assigned is not identical to that to which the logically
strongest of the latest results is assigned.

For a Transfer verb like ‘give’, the Principle of Minimal Decomposition yields a
decomposition that is similar to the one used in LDG in terms of the properties Act
and Poss. In DES, ⊗Act and⊗Poss are unary and binary modal operators, respectively.
They are interpreted relative to the relationsRAct on O×S and RPoss on O2×S. For
two objects d, d′ ∈ O, RAct(d) and RPoss(d, d′) are sets of states and therefore results
that can be brought about by events.21 These results are evaluated on the execution
sequences of events of type giving which bring them about in a specific way that is
determined by their type. These ways results are evaluated on execution sequences
are captured by variants of dynamic modes from Dynamic Modal Logic. In DES a
dynamic mode is interpreted as a relation on ℘(E) × ℘(S) × E, i.e. it maps a set
of events and a set of states to a set of events. Since the definition of these modes
in DMALh is irrelevant for modelling the flow of information in grammar, they are
skipped. The interested reader is referred to Naumann and Osswald (1999, 2001).

The second aspect that has to be represented in the translation of verbs is the
relationship between events and objects participating in them. This is done in terms
of modal operators that syntactically map d-formulas to e-formulas and that are
interpreted relative to the basic dynamic roles defined in Section 2.5.1. The third
aspect concerns the relationship between results and participants of events: each
result brought about by an event is brought about with respect to at least one object
participating in the event. This aspect is captured in terms of the relations on On×S
like RAct or RPoss. It is at this point that the need for a hybrid language arises. The
arguments of the modal operators corresponding to these relations must be interpreted
relative to the same objects that bear particular dynamic roles to the event at which
the translation of a verb is evaluated. This cannot be expressed in ordinary modal
logics because it requires a mechanism that makes cross-reference possible. A suitable
mechanism to achieve such cross-reference are variables. Modal logics with variables
are called hybrid modal logics.

Hybrid languages share characteristics of both modal and first-order languages
(Blackburn and Seligman 1995). With the former they adopt the internal perspective

21For RAct, this is a simplification because the corresponding result can only be defined relative to the beginning

point of an event that brings it about. Consequently, RAct should be defined as a relation on S × O × S. This

aspect has been suppressed for the sake of simplicity. See Naumann and Osswald (2001) for details.

220 Fibring semantics for natural language

whereas they resemble the latter by making explicit use of variables and binding.
Syntactically, (basic) hybrid languages result from modal languages by augmenting
the latter with a set X of variables. Each element of X functions as a new syntactic
atom. The interpretation of modal formulas is relativized to an assignment of values
to variables g, i.e. g : X → D assigns to each element from X an element g(x) from
the basic domain D. The satisfaction relation is defined between a model M, an
assignment function g, an element from D and a formula from the hybrid language.
The base clause for variables is (52).

(52) M, g, d |= x iff g(x) = d

On top of a basic hybrid language further hybrid languages can be built by adding
various binding operators and, possibly, further modal operators. A binding operator
is a binary operator B that takes a variable x and a formula φ as arguments and
returns a formula Bx.φ. B binds all free occurrences of x in φ. The choice of binders
depends on the application. In the present context the binder ∃ with satisfaction
clause (53) will be used.

(53) M, g, d |= ∃x.φ iff there is an assignment function g′ x= g and M, g′, d |= φ

The binder ∃ is a close analogue to the existential quantifier from first-order logic.
It non-deterministically changes the assignment function, looking for a satisfying as-
signment to the variable bound by it. The variables are sorted. There are event
variables, which take their values in E, and there are object variables, which take
their values in O. Event variables are referred to by ε and object variables by x, y, z
(possibly primed).

Definition 2.7 e-formulas, d-formulas, s-formulas22

• e-formulas: (i) each event variable ε is an e-formula; (ii) v and vv with v ∈
VERB are e-formulas; (iii) if π and π′ are e-formulas, π • π′, π ∩ π′ and ∼ π are
e-formulas; (iv) if φ is a d-formula, ♦drφ is an e-formula for dr ∈ DR; (v) if φ is
an s-formula, Lφ and Rφ are e-formulas; (vi) if π is an e-formula and x an object
variable ∃x.π is an e-formula; (vii) if ψ is an LTS formula, 〈�v〉ψ is an e-formula
• d-formulas: (i) each object variable x is a d-formula; (ii) if φ and ψ are d-formulas,
φ ∧ ψ and ¬φ are d-formulas
• s-formulas: (i) if φi, 1 ≤ i ≤ n, are d-formulas, ⊗prop(φ1, ..., φn) is an s-formula

for prop ∈ PROP; (ii) if φ and ψ are s-formulas, φ ∧ ψ and ¬φ are s-formulas

The satisfaction clauses are given in (54).

(54)a. DES, g, e |= ε iff g(ε) = e
b. DES, g, e |= π • π′ iff there are e1 and e2 s.t. C(e, e1, e2), DES, g, e1 |= π and

DES, g, e2 |= π′

c. DES, g, e |= π ∩ π′ iff DES, g, e |= π and DES, g, e |= π′

d. DES, g, e |= ∼ π iff DES, g, e 2 π
e. DES, g, e |= Lφ iff DES, g, α(e) |= φ

22According to the definition below, non-atomic d- and s-formulas are referred to by φ or ψ (possibly primed).

From this no confusion will arise since in the translation of verbs the only d-formulas used are object variables.

Therefore, φ and ψ are always s-formulas.

2. FORMALIZING THE FLOW OF INFORMATION 221

f. DES, g, e |= Rφ iff DES, g, ω(e) |= φ

g. DES, g, e |= ∃x.π iff there is a g′ s.t. g′ x= g and DES, g′, e |= π

h. DES, g, e |= ♦drφ iff DES, g, Rdr(e) |= φ

i. DES, g, e |= v iff e ∈ E
j. DES, g, e |= vv iff e ∈ Pv
k. DES, g, d |= x iff g(x) = d

l. DES, g, d |= φ ∧ ψ iff DES, g, d |= φ and DES, g, d |= ψ

m. DES, g, d |= ¬φ iff DES, g, d 2 φ
n. DES, g, d |= > for all d ∈ O
o. DES, g, s |= ⊗prop(φ1, ..., φn) iff there are d1, ..., dn s.t. Rprop(d1, ..., dn, s) and

DES, g, di |= φi
p. DES, g, s |= ¬φ iff DES, g, s 2 φ
q. DES, g, s |= φ ∧ ψ iff DES, g, s |= φ and DES, g, s |= ψ

Each type of formula has a particular function which is related to an aspect of
the dynamic-temporal structure of events. The e-formulas v and vv express sortal
information about events. The relationship between events and results is expressed
by e-formulas of the formDM(vv, φ), which are abbreviations of complex e-formulas.
Basically, they are defined in terms of •, L and R. The latter two are used to impose
conditions on the beginning and the end point of an event, respectively. If a formula
Lφ or Rφ is evaluated at an event, the evaluation switches from the level of events
to that of states. This means that, in effect, the language of e-formulas is layered
across that of s-formulas. The modality • is used to decompose an event so that it
is possible to constrain the information that holds at the end points of proper initial
stages, again using R. The relationship between events and objects is expressed using
the modalities ♦dr with dr ∈ DR. Note that at the level of semantic form only the
basic dynamic roles are used since they are sufficient to uniquely pick out the objects
participating in an event that undergo a change relative to an event type. Similarly to
formulas of the form©φ with © ∈ {L,R}, the evaluation of a formula ♦drφ involves
a switch of level. In this case from the level of events to that of objects.

¿From what has been said it follows that the ♦dr and the modalities which take
an s-formula and return an e-formula are used to layer one language over another.
In effect, DMALh can be described as Le(Ls, Ld), the language of e-formulas layered
across the languages of s-formulas and d-formulas. On this perspective, e-formulas
are used to express properties that concern the type of events as well as their internal
structure at the level of the material part-of relation vE and the composition relation
C. The other two types of formulas are used to constrain the linguistically relevant
aspects of the dynamic-temporal structure of events. They impose conditions on the
subevents that are determined at the level of pure e-formulas, i.e. e-formulas that are
not of the form ♦drφ or ©φ, © ∈ {L,R}.

2.7.3 The Translation of Verbs in LDMALh

The translation of a verb in the lexicon has one of the two forms given in (55).

(55)a. v ∃x1...∃xn(vv ∩ ♦dr1x1 ∩ ... ∩ ♦drnxn ∩DM1(v, φ1) ∩DM2(vv, φ2))
b. v ∃x1...∃xn(vv ∩ ♦dr1x1 ∩ ... ∩ ♦drnxn ∩DM(vv, φ))

222 Fibring semantics for natural language

(55a) is used if besides the logically strongest of the latest results also the logically
weakest of the earliest results is represented in accordance with the Principle of Mini-
mal Decomposition. Otherwise, (55b) is used. The first conjunct vv requires an event
that satisfies the e-formula to be an element of the basic event type corresponding to
the verb the formula is the translation of. It therefore expresses sortal information
about events. The conjunction ♦dr1x1 ∩ ... ∩ ♦drnxn expresses the relationship be-
tween an event and its participants. The index n is identical to the length of µ(Pv),
i.e. if a basic dynamic role is defined for the verb, it is represented in the translation.
The conjuncts DM(v, φ) express both the dynamic aspect that events bring about
results as well as the relationship between results and participants of events. DM is
a dynamic mode. It requires its second argument to be evaluated on the execution
sequence of an event satisfying the translation in a particular way. The first argument
is used to (possibly) restrict the relevant points of the sequence at which φ has to be
true. Each s-formula φ in the context DM(v, φ) is of the form ⊗prop(x1, ..., xj). Each
xi, 1 ≤ i ≤ j, occurs exactly once as an argument of an e-formula ♦drx. It is here
that the cross-reference mechanism applies. Since xi is bound by ∃ at the outset of
the translation, each of its occurrences is interpreted relative to the same object from
O. This object bears the dynamic role Rdr to an event satisfying the translation. As
a consequence, ⊗prop(x1, ..., xj) is interpreted relative to an n-tuple of objects each
element of which participates in the event, as required. If one were only interested
in the relationship between an event and its participants and not, in addition, in
the relationship between results and participants, one could use ♦dr1> ∩ ... ∩ ♦drn>
instead of ♦dr1x1 ∩ ... ∩ ♦drnxn. This is possible because a dynamic role is a func-
tional relation so that for a given event a unique object is picked out (provided the
dynamic role is defined for the former). For s-formulas of the form ⊗prop(x1, ..., xj),
on the other hand, there is in general more than one n-tuple 〈d1, ..., dn〉 of objects for
a given state s such that 〈d1, ..., dn, s〉 is an element of Rprop. In (56), the translation
of Transfer verbs like ‘geben’ and of the verb ‘essen’ are given.

(56)a. geben ∃x∃y∃z(vgeben ∩ ♦firstx∩♦inty∩♦lastz∩Con-BECS(v,⊗Act(x))∩
Min-BECS(vgeben,⊗Poss(y, z)))

b. essen ∃x∃y∃z(vessen ∩ ♦firstx ∩ ♦lastz ∩ Con-BECS(v,⊗Act(x)) ∩Min-
BECS(vessen,⊗Be−in(y, x)))

The dynamic mode Con-BECS corresponds to s*-minimal results. It requires its
second argument to be true at each point of the execution sequence of an event satis-
fying Con-BECS(v, φ), except at its beginning point. The mode Min-BECS is the
dynamic mode which captures the way s- and w-maximal results are evaluated. The
second argument is true only at the end point of an event satisfyingMin-BECS(vv, φ)
(for details, the reader is referred to Naumann and Osswald 1999).

2.7.4 The Relationship between SF and TS
Recall that in LDG the relationship between the levels of SF and TS is defined by
the Hierarchy Principle: the order of arguments at the theta structure of a verb is the
inverse of the ordering at the level of SF. Since the relationship between events and
objects participating in events is defined in terms of the three basic dynamic roles,
it follows that the notion of argument is explicated in terms of the notion of a basic

2. FORMALIZING THE FLOW OF INFORMATION 223

dynamic role at the SF level. Syntactically, this relation is expressed in terms of the
modalities ♦dr, with dr ∈ DR, which map d-formulas to e-formulas. The relationship
between the two structures must therefore be defined in terms of the domain E of
events and the union of the argument structures of the verbs under consideration,
which is D =

⋃
v∈VERBDv. For v 6= v′, one has Dv ∩Dv′ = ∅. Formally, this is done

by a family {R�v}v∈ VERB of relations. Each R�v is a relation on E×D. A pair 〈e, θ〉
is an element of R�v just in case e ∈ Pv and θ is an element of the theta structure of
the verb v, i.e. θ ∈ Dv.23 The relationship between the two levels can be expressed
in LDMALh by using the modalities �v, which are interpreted by the R�v , (57).24

(57) DES, g, e |= 〈�v〉φ iff there is an θ ∈ D s.t. R�v (e, θ) and MTS , θ |= φ

The constraints are of the form (58).

(58) vv ∧ ♦dr> → 〈�v〉 (ψ ∧ φdr)

The constraint requires that if an event belonging to the event type corresponding
to the verb v satisfies ♦dr>, then there is an element of the theta structure of v
that satisfies φdr. According to the HP, the argument is uniquely determined by the
place of Rdr in µ(Pv). Thus, the argument can be determined in terms of structural
information. In (58), this is done by the LTS formula ψ, which expresses structural
information about the theta structure. If µ(Pv) contains at least two elements, one
gets the axioms in (59). For intransitive verbs, the axiom in (60) applies.25

(59) transitive and ditransitive verbs
a. vv ∧ ♦first> → 〈�v〉 (¬ ↑ ∧ ↓ ∧ φfirst)
b. vv ∧ ♦last> → 〈�v〉 (↑ ∧ ¬ ↓ ∧ φlast)
c. vv ∧ ♦int> → 〈�v〉 (↑ ∧ ↓ ∧ φint)

(60) intransitive verb
vv ∧ ♦first> → 〈�v〉 (¬ ↑ ∧ ¬ ↓ ∧ φfirst)

¿From (59) and (60) the axioms in (61) about the theta structure can be derived.

(61)a. ¬ ↑ → φfirst
b. ↑ ∧ ↓ → φint
c. ↑ ∧ ¬ ↓ → φlast

Figure 6 illustrates the relationship between the semantic form and the theta struc-
ture for the ditransitive verb ‘geben’.

The constraint between SF and TS can also be formulated in the other direction.
If an element of a theta structure of the verb satisfies ψ ∧ φdr, then all events that
satisfy vv, also satisfy ♦dr>. Thus, it is possible to fully fiber the languages LSF

(= LDMALh) and LTS across each other. When taken together with the fact that
LTS and LS are also fully fibered across each other, it follows that one can zoom
from SF into S (via TS) and zoom out from S into SF (again via TS) so that there

23The dependence on a verb expressed by the index v is necessary because an event can belong to two event types

that have different theta structures.

24MTS is the structure of the theta structures of all verbs. For θ ∈ Dv , one has MTS, θ |= φ iff MTS , θ |= φ with

MTS the theta structure of the verb v.

25Here it is assumed that the dynamic role Rfirst is used.

224 Fibring semantics for natural language

Dgive

〈 o1, o2, o3 〉
|= φlast |= φint |= φfirst

DES, e |= vgive ∧ ♦first> ∧ ♦int> ∧♦last>

Figure 6

is a bidirectional flow of information from SF to S. From a semantic point of view
the direction from SF to S is more important because the decompositional analysis
of verbs provides an explanation for the constraints at the other levels.

3 Conclusion

On the LDG perspective of grammar, there is a ‘flow of information’ from the level
of semantic form to the morphological level that is mediated by the theta structure,
which is part of the semantic level, and the syntactic level. This is summarized in the
table below.

relationship constraint
SF - TS order of arguments in SF Hierarchy Principle (7)

order of arguments in TS
TS - S order of arguments in TS Mapping rules in (8)

default word order
S - M default word order canonical patterns in (4) and (5)

assignment of case to NPs non-canonical patterns

Table 10

In this article this flow has been explained in terms of the dynamic-temporal struc-
ture of events. Events bring about results which are brought about relative to objects
that participate in the events. Objects are related to events by dynamic roles which
are functional relations on E×O. They are defined in terms of sets of results. Results
are brought about in a temporal order. This order is reflected in the way a linear
ordering on the dynamic roles is defined.

The theta structure is defined as a linearly ordered set of abstract points, which,
following linguistic usage, are called arguments. The relationship to the SF level is
established by requiring that at these points particular, non-structural information
be true that expresses the link between arguments and particular dynamic roles: this
information is satisfied at an argument position just in case it is related to the dynamic
role.

At the syntactic level, the order is reversed. This has the effect that the order in
which arguments are realized in syntax is identical to the order on the sets of results
in terms of which the dynamic role corresponding to the argument is defined. From
this it follows that the object participating in the event that is assigned the minimal
set of results is denoted by the first argument of the syntactic order. Since this ar-
gument is assigned nominative case if the verb is canonical and since this object is

3. CONCLUSION 225

involved first in the event, the object that is involved first is normally denoted by
the argument which is linked to the verb by nominative case. In the figure below the
relationship between the levels of SF, TS and M for a three-place verb with canonical
linking pattern (say, ‘geben’) is depicted.

TS SF
θ1 θ2 θ3 e e e
|= |= |= |= |= |=

〈↑,¬ ↓〉∧ 〈↑, ↓〉∧ 〈¬ ↑, ↓〉∧ ♦first> ♦int> ♦last>
φlast φint φfirst
m m m
ACC DAT NOM

M

At the syntactic level the order is reversed.

daß der Lehrer dem Schüler ein Buch gab
NOM DAT ACC

Each grammatical level is formally represented by a mathematical structure to-
gether with a language to talk about elements of this structure. Constraints between
different levels are formulated by layering the languages. If level A constrains level
B, the constraints are expressed in LA by using formulas of the form ©φ with ©
a modality and φ a formula from LB. A constraint is of the form ψ → ©φ: if an
element from level A satisfies the property expressed by ψ, a corresponding element
from level B satisfies the property expressed by φ.

References

[1] van Benthem, J. (1991). Language in Action, Amsterdam, North-Holland

[2] Blackburn, P. (1993). Nominal Tense Logic, Notre Dame Journal of Formal Logic, 14, 56-83

[3] Blackburn, P. et al. (1993). Talking about Trees, In: Proceedings 6th Conference of the European
Chapter of the ACL, 21-29

[4] Blackburn, P./Meyer-Viol, W. (1997). Modal Logic and Model-Theoretic Syntax, In: M. de
Rijke (ed.). Advances in Intensional Logic, Kluwer Academic Publishers, 29-60

[5] Blackburn, P./de Rijke, M. (1997). Zooming In, Zooming Out, JoLLI, 6, 5-31

[6] Blackburn, P./Seligman, J. (1995). Hybrid Languages, JoLLI, 4, 251-272

[7] Dowty, D. (1979). Word Meaning and Montague Grammar, Dordrecht: Reidel

[8] Dowty, D. (1991). Thematic proto-roles and argument selection, Language, 67

[9] Finger, M./Gabbay, D. (1992). Adding a temporal Dimension to a Logic System, JoLLI, 1,
203-233

[10] Kiparsky, P. (1992). Structural Case, Ms., Institute for Advanced Study, Berlin

[11] Krifka, M. (1992). Nominal Reference, Temporal Constitution and Thematic Relations, In: Sag,
I. et al. (eds.). Lexical Matters, Stanford, CSLI Publications, 29-53

[12] Naumann, R. (1998). A Dynamic Logic of Events and States for the Analysis of the Interac-
tion between Verb Aspect and Plural Quantification in Natural Language, In: Proceedings 5th
WoLLIC, Sao Paulo, Brazil, extended version appeared in Journal of the IGPL, 7, 591-627

[13] Naumann, R. (1999). Aspects of Changes: A Dynamic Event Semantics, Journal of Semantics,
18, 27-81

[14] Naumann, R. (2001). Linking as non-monotonic reasoning, ms. University of Düsseldorf; this is
a revised version of an article that appeared in: de Queiroz, R. (ed.). Proceedings 8th WoLLIC

226 Fibring semantics for natural language

[15] Naumann, R./Latrouite A. (2000). Linking and the Dynamic Structure of Verbs: Underspecifi-
cation at the morphological-semantic Interface, In: Obrst, L. (ed.). Proceedings of the Workshop
on Semantic Approximation, Vagueness and Granularity, AAAI Publications

[16] Naumann, R./Osswald, R. (1999). A Dynamic Modal Arrow Logic for the Analysis of Aspectual
Phenomena in Natural Language, In: Proceedings 3rd International Tbilisi Symposium on Logic,
Language and Computation

[17] Naumann, R./Osswald, R. (2001). A Dynamic Modal Arrow Logic for the Analysis of Aspectual
Phenomena in Natural Language, ms. University of Düsseldorf; extended and revised version of
Naumann and Osswald (1999)

[18] de Rijke, M. (1993). Extending Modal Logic, PhD. dissertation, University of Amsterdam

[19] Wunderlich, D. (1997). CAUSE and the Structure of Verbs, Linguistic Inquiry, 28, 27-68

[20] Wunderlich, D. (1999). Predicate Composition and Argument Extension as general Options, In:
Stiebels, B. et al. (eds.). Proceedings of the Conference ‘Lexicon in Focus’, Berlin, Akademie
Verlag

[21] Wunderlich, D. (2001). Optimal Case, ms. University of Düsseldorf

Received 2 October 2000. Revised 5 March 2002.

Acknowledgements

The Editor-in-Chief would like to thank the following colleagues who have helped
maintain the standards set for a scientific journal, through their refereeing of the
papers that have been submitted.1

Torsten Schaub
Anuj Dawar
Erich Graedel
Carsten Lutz
Rainer Osswald
Neil Tennant

1The list includes the referees for the papers in this issue, plus the referees of papers rejected meanwhile.

227

Interest Group in Pure and Applied
Logics (IGPL)

The Interest Group in Pure and Applied Logics (IGPL) is sponsored by The Euro-
pean Association for Logic, Language and Information (FoLLI), and currently has
a membership of over a thousand researchers in various aspects of logic (symbolic,
mathematical, computational, philosophical, etc.) from all over the world (currently,
more than 50 countries). Our main activity is that of a research and information
clearing house.

Our activities include:

• Exchanging information about research problems, references and common interest
among group members, and among different communities in pure and applied
logic.
• Helping to obtain photocopies of papers to colleagues (under the appropriate copy-

right restrictions), especially where there may be difficulties of access.
• Supplying review copies of books through the journals on which some of us are

editors.
• Helping to organise exchange visits and workshops among members.
• Advising on papers for publication.
• Editing and distributing a Newsletter and a Journal (the first scientific journal

on logic which is FULLY electronic: submission, refereeing, revising, typesetting,
publishing, distribution; first issue: July 1993): the Logic Journal of the Interest
Group on Pure and Applied Logics. (For more information on the Logic Journal
of the IGPL, see the Web homepage: http://www.jigpal.oupjournals.org)
• Keeping a public archive of papers, abstracts, etc., accessible via ftp.
•Wherever possible, obtaining reductions on group (6 or more) purchases of logic

books from publishers.

If you are interested, please send your details (name, postal address, phone, fax, e-mail
address, research interests) to:

IGPL Headquarters
c/o Prof. Dov Gabbay
King’s College, Dept of Computer Science
Strand
London WC2R 2LS
United Kingdom
e-mail: dg@dcs.kcl.ac.uk

For the organisation, Dov Gabbay, Ruy de Queiroz and Hans Jürgen Ohlbach

http://www.jigpal.oupjournals.org/
mailto:dg@dcs.kcl.ac.uk
http://www.pms.informatik.uni-muenchen.de/mitarbeiter/ohlbach

