
SOFTWARE ENGINEERING – DESIGN I

3. Schemas and Theories
The aim of this course is to learn how to write formal specifications of computer systems, using

classical logic. The key descriptional technique is that of a logical theory: you write a specification as

a logical theory, and then the final system implementation is seen as giving a model of that theory.

However, the specification is not entirely prescriptional – “This is how things shall be”. The

implementation will have to work in the real world and so part of the specification will be a logical

description – “This is how things are” – of those aspects of the real world that are relevant to the

specified system. In this respect specification is like a scientific theory. A good specification will

include sharp non-obvious assumptions about how the real world actually behaves, and so will lay

itself open to being proved wrong in the light of experience or closer examination. A specification that

is not potentially falsifiable in this way is almost certainly too vague to be useful.

This course and Z

One widely used language for specifying computer systems is Z, and much of the notation used in

this course is borrowed from Z. However, I must stress that it is not the purpose of this part of this

course to teach you how to use Z but rather to show you how to use logical ideas in specifications,

and in particular the idea of a logical theory. I shall wherever possible use the notation that most of

you are already familiar with, just borrowing a few key good notational ideas from Z.

Schema notation

We borrow the schema notation of Z to present “many-sorted first-order theories”. This is not

exactly the way Z itself thinks of schemas, but it is not far off. Here is what a schema looks like:

Sorts

  &

______ Theory name [X, Y, …]_________________________________________________

f: X"Y # Z Signature (function and predicate symbols)

P ! U"V

' Axioms (called the predicate in Z)

(

In the above example, “f” is a function that assigns to each pair of the Cartesian product X"Y

elements of the sort Z.  The symbol “P” is instead a relation, i.e. a set of pairs from the Cartesian

product U"V. The symbols ' and ( denote instead logical formulae (or axioms), written using the

symbols specified in the signature (i.e. f and P).  In the specification language Z, schemas are used to

specify systems’ states. The part above the line, called declaration, describes the systems’ variables

(i.e. variables, functions, predicates or relations of classical logic), whereas the part below the line,

called predicate, specifies constraints on the variables’ values (e.g. formulae or axioms about the

predicates or about the values that the functions can assume).

We still have to explain what many-sorted first order theories are.
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Logical Theories

A theory comprises a vocabulary of symbols (such as functions and predicates) together with some

axioms; and a model of the theory is a structure that interprets the symbols in the vocabulary in such a

way as to make the axioms hold. We are now going to extend these concepts in some ways, so we

shall give the definitions explicitly.

A many-sorted vocabulary or signature comprises –

• a set of sorts

• a set of function symbols, each with a given function arity

• a set of predicate symbols, each with a given predicate arity

For those of you who are not familiar with this terminology, a predicate symbol with arity n is

essentially a relation with arity n, namely a set of tuples of n elements. In the example above P is a

predicate symbol with arity 2, which can also be seen as a binary relation. It denotes a set of pairs (u,v)

where the first element “u” of the pair is an element from the sort U and the second element “v” of

the pair is an element from the sort V. Notice that the ordering of the elements in the pair counts. So

the pair (u,v) is different from the pair (v,u).

“Many-sorted” refers to the possibility of having numerous sorts. The sorts work like types in a

computer programming language, so that some expressions and formulae can be rejected as

meaningless simply because they are not “well-typed”. To make this work, each function or predicate

symbol has an arity – a declaration of the sorts of its arguments and (for a function) result.

Predicate arities: The arity of a predicate P is a finite list of sorts, Xs = [X1, …, Xn] (say). Then P can

be used only with n arguments, P(x1, …, xn), where each expression xi has sort Xi. To indicate that P

has this arity, we write P ! X1 " … " Xn.

Function arities: The arity of a function f is a pair (Xs, Y) where Xs is a list of sorts and Y is a sort.

Then f can only be used with n arguments, f(x1, …, xn), and its result has sort Y. To indicate that f has

this arity, we write f: X1 " … " Xn # Y.

Terms and formulae: Once we have a signature or vocabulary, we can build up terms and logical

formulae as illustrated in the lecture. There are two novelties between first-order logic and many-

sorted logic. First, in a function or predicate, the arguments have to have the sorts specified by the

arities; and, second, variables must have their sorts specified. For instance, for a quantified variable x

we write $x:X. … or %x:X. … to specify that its sort is X.

Structures: Suppose we are given a signature. Then a structure for it comprises –

• for each sort X, a corresponding set [[X]], the carrier or domain for X.

• for each predicate symbol P ! X1 " … "Xn, a corresponding subset [[P]] of the Cartesian

product

            [[X1]] " … " [[Xn]].

• for each function symbol f: X1 " … " Xn # Y, a corresponding function [[f]] from the

Cartesian product [[X1]] "… "[[Xn]] to [[Y]].

(We shall never really use these “semantic brackets” [[ and ]]. Just for this definition, we want to make

a clear distinction between the syntactic symbols X, f, P, etc. and their set-theoretic meanings [[X]], [[f]],
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[[P]], etc. However, in practice we introduce the syntax just so that we can use it as notation for the sets,

and the semantic brackets are a waste of ink.)

Once these basic ingredients of a structure are given, every term and formula gains a meaning

within the structure. A term of sort Y, with free variables x1, …, xn of sorts X1, …, Xn, gains meaning

as a function from [[X1]] "… " [[Xn]] to [[Y]], and a formula with those free variables, gains meaning as

a subset of [[X1]] "… "[[Xn]]. For instance, if x and y have sorts X and Y, then

[[$x. P(x,y)]] = {b , [[Y]]: for every a , [[X]], (a,b) , [[P]]}

For those who want to know more: Nullary predicates or functions are those predicate and functions

these have no arguments – n = 0 in the arity. The corresponding Cartesian product of no sets is 1, a

set with just one element ( ). (How many tuples are there with no components? Just one.) 1 has two

subsets, the empty set Ø and the set itself {( )}, which are #possible values for [[P]] when P is nullary.

They can be taken as false and true respectively. A nullary function has no arguments but does have a

result. It is the same as a constant.

Theories: Given a signature, a theory is a set of logical sentences (formulae without free variables)

constructed from it. These logical sentences are called the axioms of the theory.

Schemas: The sorts, symbols and axioms of a theory can be written down in the form of a schema as

illustrated earlier. The schema also has a place for a name for the theory, if desired.

Models: Suppose we are given a theory, and a structure for its vocabulary. Then that structure is a

model of the theory if every sentence in the theory is interpreted as true. More pedantically, if ' is any

sentence in the theory, then [[']] is true.

Questions

1. How many sorts do you need for first-order logic?

2. What is a theory with no sorts at all?

Special Purpose Sets as Carriers or Domain of Discourse.

New sorts from old

Sometimes symbols have a particular intended mathematical meaning, for instance –

NN natural numbers {0,1,2,3,…}

ZZ integers (all whole numbers including negative ones)

QQ rational numbers

bool {false, true}

1 {( )} (set whose only element is the unique empty tuple)

Sometimes also, sorts are intended to be constructed from others in a particular way. We shall indicate

this using the obvious set-theoretic notation. For instance,

X"Y Cartesian product of X and Y

X+Y disjoint union of X and Y

seq X finite sequences of elements of X

FFX finite power set of X (i.e. the set of all finite subsets of X)
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When a vocabulary includes constructed sorts like this, a structure for it must have its carriers

constructed in the corresponding way. The same goes for function and predicate symbols that have a

standard mathematical meaning, such as

+: NN"NN #NN

cons: X "seq X #seq X

): FFX " F FX #  F FX.

Examples

A theory is really just a formal way of describing what the models are: so in the following

examples we describe the models first informally and then formally, by schemas.

( i ) A model is a non-negative even integer:

______ Even _______________________________________________________________

c: NN

%a: NN. c = 2*a

Note that we don’t name the constructed sort NN after the schema name, as Even [NN]. That place is

reserved for the “primitive” sorts that are not constructed out of others and for not special purpose

sorts.

( i i) A model is an infinite stream of characters which, when divided into lines by a given “newline”

character, has all lines shorter than a given maximum length:

______ Lines_______________________________________________________________

linemax: NN

NL: char
s: NN # char

$m: NN. %n: NN. (m < n ! m+linemax * s(n) = NL)

In the schema Lines, NL represents the “newline” character, m is the length of a line excluded the NL

character, and n is the position in the line of the newline character.

(iii) A model is a set from the sort people, and two unary functions, pa and ma, such that no

element can be both a pa of some other element and a ma of some other element.

______ People [people]_______________________________________________________

alive ! people

pa: people # people

ma: people # people

$x, y: people. (pa(x) + ma(y))

Note that although the naming suggests that the carrier of “people” should be the set of people, this

is not something that can be imposed mathematically: “people” is not like “NN”. The real-world

characteristics of the set of people are not mathematically defined. Part of the art of specification is to
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formalize – in the schema – those characteristics that are going to be important when considering the

computer system we are specifying. The characteristics I’ve given here – the alive predicate and the pa

and ma functions with the further axiom – are unlikely to be exactly the relevant characteristics in most

applications, but they serve as examples.

When we find a model of People, in practice the carrier of people is not intended to be a

mathematically defined set but an informal “real-world” set. Of course, we don’t expect to have a list

of all possible people in the world. What we do expect from one of these informal sets is an

understanding of

(i) how to know when we’ve found an element, and

(ii) how to know when two elements we’ve found are equal or (usually) unequal.

Without at least these, we cannot make much sense of the formal logic.

More on schemas

Schema inclusion: We can “include” one schema in the signature of another just by writing its

name. For instance,

______ Emp _______________________________________________________________

People

employees: FFpeople

is equivalent to

______ Emp [people] ________________________________________________________

alive ! people

pa: people # people

ma: people # people

employees: FFpeople

$x,y: people. (pa(x) + ma(y))

Note that we have specified employees as a finite subset of people. This has the important

consequence that we are able to get a complete list of all the employees, and record them in a database

if necessary, unlike the case with people itself. We shall be very careful to specify finiteness where

appropriate.

Schema conjunction: Let S and T be two schemas. Their conjunction S*T is constructed by

putting all the vocabulary and axioms of S and T together:

______ S*T _______________________________________________________________

S (two schema inclusions)

T

What is a model of S*T? If the vocabularies of S and T are disjoint, then a model of S*T is a pair

(M,N) where M and N are models of S and T. It is more complicated if S and T have symbols in

common, but this is out of the scope of this course.
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Example

Suppose we have Emp as before, and

______ Cust _______________________________________________________________

People

customers: Fpeople

Then a model for Emp*Cust is a single set people (with pa and ma operations) together with two finite

subsets, employees and customers.

Change and non-change: Special examples of schema conjunction can occur for – in effect –

conjoining a schema S with itself. To see this, we first need the idea of schema decoration. When we

conjoin a schema S with itself, the symbols, which are defined in the same way in both versions of S,

need to be distinguished. “Decorating” means represent all symbols of a “second instance” of S

with some mark to distinguish them from the original symbols of a “first instance” of S. (We shall

assume that S does not already contain that mark in any way that might cause confusion.) For

instance, with 0 as the decorating mark, People0 is

______ People0 [people0] _____________________________________________________

pa0: people0 # people0

ma0: people0 # people0

$x,y:people0. pa0(x) + ma0(y)

For any schema S, we write

______ -S_________________________________________________________________

S

S'

or -S = S*S'. Then a model of -S is simply two models of S.

Operations
The - notation is very useful when describing change (and in fact that is why the symbol - was

chosen): if the possible states of a system are the models of a schema S, then a change in the system,

described as the states before and after, is a model of -S. We shall adopt the usual Z convention that

unprimed variables refer to the state before, primed ones to the state after.

Example

Suppose a computer program uses two variables, x and y, with natural number values. A state is a

model of

______ State _______________________________________________________________

x,y: NN
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Then the Swap operation can be described by

______ Swap_______________________________________________________________

-State

x'=y

y'=x

Some common Z conventions to specify operations with schemas.

• state variables are written unprimed and primed for before and after

• input variables (or arguments) are decorated with “?”

• output values (or results) are decorated with “!”

For example,

______ State _______________________________________________________________

eps: float

eps > 0

______ Sqrt________________________________________________________________

.State

x?, r!: float

pre: x? " 0

post: (|r!2 – x?| < eps) * (r! " 0)

Note that the primes, the decorations “?” and “!”, and the annotations “pre:” and “post:” mean

nothing special if you think of a schema as a presentation of a theory. On the other hand, informally

they do suggest other relevant theories. For instance, the state before, the inputs and the preconditions

together specify a domain of definition for the operation:

______ Sqrt_before__________________________________________________________

State

x?: float

x? " 0

No change

One of the commonest ways of specifying how things change is to say that they don’t! This can be

expressed using the . notation (., a capital Greek letter “xi”, is chosen to look like a big equivalence

sign, /).

______ .S ________________________________________________________________

-S

equalities between all the symbols of S and their corresponding primed versions

On its own, this is little use: for a model of .S is exactly the same as a model of S (why?). However, it

is useful when included in other schemas.
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Examples

Suppose we want to specify an update operation on Emp when a new employee is taken on. The set of

real world people isn’t affected.

______ AddEmp ____________________________________________________________

-Emp

.People

new_emp?: people

employees' = employees ) {new_emp?}

Another example: suppose Lift is a schema whose models are lifts. (This isn’t quite right. Models are

mathematical structures. But any real-world object worthy of the name “lift” will have various

essential properties that can be abstracted as mathematical structure. “Abstraction” is to ignore

inessential properties such as the color of the ceiling or the typefont on the manufacturer’s

nameplate.) Suppose also the schema Lift includes a schema CallButtons. If we have two lifts side by

side serving the same floors then they ought to share their call buttons, and this can be specified by

______ TwoLifts____________________________________________________________

-Lift

.CallButtons

(This example is very silly! The --. notation is designed for and well-adapted to change over time. In

this example it is being used for replication over space, so (1) it’s slightly tricky to describe more than

two lifts together, and (2) when you come to describe how lifts do change over time – and if they

don’t there’s no point in having them – then you can’t use - and . for it.)

A model for TwoLifts is two lifts, L and L', that share CallButtons.

Exercises

1. In the context of Emp, specify an operation RemEmp to remove an employee. Include as

precondition that the employee to be removed is actually an employee.

______ RemEmp____________________________________________________________

-Emp

.People

old_emp?: people

pre: old_emp? , employees

post: old_emp? 0employees’

employees = employees' ) {old_emp?}

Note that the precondition is actually a logical consequence of the postcondition, so as a theory

presentation this schema is equivalent to one with the precondition omitted. But informally it carries

the suggestion that nothing is guaranteed if you try to perform the operation with the precondition

failing.
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Schema disjunction

This is a construction on schemas that is very useful for expressing alternatives or exceptions. It is

slightly more complicated that schema conjunction.

Suppose schema S includes (or can be considered to include) a schema S' (not a decorated

version of S, just another schema) such that the only difference between them is that S contains some

extra axioms. Suppose similarly T is T' with some extra axioms, and suppose also that S' and T' have

compatible vocabularies – any symbols that they share are declared with the same sort in both S' and

T' – so that S'*T' is meaningful. Then the schema disjunction S1T is

______ S1T _______________________________________________________________

S'*T'

(extra axioms of S) 1 (extra axioms of T)

A model is a model (M,N) of S'1 T' such that either M is a model of S or N is a model of T.

The easiest case of this is when S' and T' are just the vocabularies of S and T: then S1T has the

merge of the vocabularies and the disjunction of the axioms. Notice that the notation S1T has avoided

mentioning S' and T': in practice you use the notation when it is more or less obvious what S' and T'

are expected to be. (Z gives rules for “normalizing” arbitrary schemas S, that in effect extract

canonical schemas S'. However, the process depends critically on Z’s notion of “types”, and it is not

possible to explain it just in terms of logical theories.)

As an example, consider AddEmp. If we try to add a new employee who’s actually already on the

payroll, the operation will succeed but it would probably be better if it returned some kind of error or

exception message. This can be done with a result variable r! as follows. First, we need to specify a set

of possible reports, which we do by

REPORT := {success, already_in}

This is in effect extending our background mathematics by a special purpose sort constructor. Of

course, we may want to add in extra possible reports later, as extra elements of REPORT, but that

won’t be a problem. Now we can use these report elements:

______ AddEmpSuccess______________________________________________________

-Emp

.People

new_emp?: people

r!: REPORT

pre: new_emp? 0 employees

post: employees' = employees ) {new_emp?}

r! = success

______ AddEmpAlreadyEmployed______________________________________________

.Emp

new_emp?: people

r!: REPORT

pre: new_emp? , employees

post: r! = already_in

AddEmp = AddEmpSuccess 1 AddEmpAlreadyEmployed
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Expressed as one big schema, we should have

______ AddEmp ____________________________________________________________

-Emp

.People

new_emp?: people

r!: REPORT

(new_emp? 0employees * employees' = employees ) {new_emp?} * r! = success)

1 (new_emp? , employees * r! = already_in * employees' = employees)

The advantage of this style is that the main part of the operation – the successful case – can be

written in a single schema without the distraction of the exceptional cases. These are added on

separately as we need for them.

Notice –

• .Emp in AddEmpAlreadyEmployed: in the error case, we do not want any change of

   state. In the combined schema for AddEmp this has to appear as employees' = employees

   in the predicate. Remember from the general discussion of schema disjunction that each

   schema has to be considered to be a smaller schema with some extra axioms; in this case

       the .Emp in AddEmpAlreadyEmployed is being considered as -Emp with extra axiom

       employees' = employees.

    • The new AddEmp is a defensive specification and so does not need preconditions.


