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Abstract. This paper deals with the problem of computing optical flow between
each of the images in a sequence and a reference frame when the camera is view-
ing a non-rigid object. We exploit the high correlation between 2D trajectories of
different points on the same non-rigid surface by assuming that the displacement
sequence of any point can be expressed in a compact way as a linear combination
of a low-rank motion basis. This subspace constraint effectively acts as a long
term regularization leading to temporally consistent optical flow. We formulate
it as a robust soft constraint within a variational framework by penalizing flow
fields that lie outside the low-rank manifold. The resulting energy functional in-
cludes a quadratic relaxation term that allows to decouple the optimization of the
brightness constancy and spatial regularization terms, leading to an efficient opti-
mization scheme. We provide a new benchmark dataset, based on motion capture
data of a flag waving in the wind, with dense ground truth optical flow for evalua-
tion of multi-view optical flow of non-rigid surfaces. Our experiments, show that
our proposed approach provides comparable or superior results to state of the art
optical flow and dense non-rigid registration algorithms.

1 Introduction
Optical flow in the presence of non-rigid deformations is a challenging task and an im-
portant problem that continues to attract significant attention from the computer vision
community given its wide ranging applications from medical imaging and video aug-
mentation to non-rigid structure from motion. Given a template image of a non-rigid
object and an input image of it after deforming, the task can be described as one of
finding the displacement field (warp) that relates the input image back to the template.
In this paper we are interested in the case where we deal with a long image sequence
instead of a single pair of images – each of the images in the sequence must be aligned
back to the reference frame. Our work concerns the estimation of the vector field of
displacements that maps pixels in the reference frame to each image in the sequence.

Two significant difficulties arise. First, the image displacements between the refer-
ence frame and subsequent ones are large since we deal with long sequences. Secondly,
as a consequence of the non-rigidity of the motion, multiple warps can explain the same
pair of images causing ambiguities to arise. A multi-frame approach offers the advan-
tage to exploit temporal information to resolve these ambiguities. In this paper we make
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use of the high correlation between 2D trajectories of different points on the same non-
rigid surface. These trajectories lie on a lower dimensional subspace and we assume that
the displacement field of any point can be expressed compactly as a linear combination
of a low-rank motion basis. This leads to a significant reduction in the dimensionality
of the problem while implicitly imposing some form of temporal smoothness. The flow
field can be represented by the basis and a set of coefficients for each point in the tem-
plate image. In contrast to previous multi-frame optical flow approaches that incorpo-
rate explicit temporal smoothness regularization [2] our subspace constraint implicitly
acts as a long term smoothing term leading to temporally consistent optical flow.

Subspace constraints have been used before both in the context of sparse point track-
ing [3–5] and optical flow [3, 6] in the rigid and non-rigid domains, to allow correspon-
dences to be obtained in low textured areas. While Irani’s original rigid [3] and Torre-
sani et al.’s non-rigid [5] formulations relied on minimizing the linearized brightness
constraint in their discrete form, Garg et al. [6] extended the subspace constraints to
the continuous domain in the non-rigid case using a variational approach. The common
feature of all the above approaches is that the subspace constraint is imposed as a hard
constraint. Hard constraints are vulnerable to noise in the model and can be avoided
by substituting them with principled robust constraints. In this paper we extend the use
of multi-frame temporal smoothness constraints within a variational framework by pro-
viding a more principled energy formulation with a robust soft constraint which leads
to improved results. In practice, we penalize deviations of the optical flow trajectories
from the low-rank subspace manifold, which acts as a temporal regularization term
over long sequences. We then take advantage of recent developments [7, 8] in varia-
tional methods and optimize the energy defining a variant of the duality-based efficient
numerical optimization scheme.

2 Related Work and Contribution
Variational methods formulate the optical flow or image alignment problems as the
optimization of an energy functional in the continuous domain. Stemming from Horn
and Schunck’s original approach [9], the energy incorporates a data term that optimizes
the brightness constancy constraint and a regularization term that allows to fill-in flow
information in low textured areas. Variational methods have seen a huge surge in recent
years due to the development of more sophisticated and robust data fidelity terms which
are robust to changes in image brightness or occlusions [10, 11]; the addition of efficient
regularization terms such as Total-Variation [12, 13] or temporal smoothing terms [2];
and new optimization strategies that allow computation of highly accurate [14] and real
time optical flow [12] even in the presence of large displacements [15, 10, 16].

One of the most successful recent advances in variational methods has been the de-
velopment of the duality based efficient numerical optimization scheme to solve the TV-
L1 optical flow problem [12, 8]. Duplication of the optimization variable via a quadratic
relaxation is used to decouple the data and regularization terms, decomposing the op-
timization problem into two, each of which is a convex energy that can be solved in a
globally optimal manner. The minimization algorithm then alternates between solving
for each of the two variables assuming the other one fixed. One of the key advantages of
this decoupling scheme is that since the data term is point-wise its optimization can be
highly parallelized using graphics hardware [12]. Following its success in optical flow
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computation, this optimization scheme has since been successfully applied to motion
and disparity estimation [17] and real time dense 3D reconstruction [18].

Non-rigid image registration, is a long standing field that has recently seen impor-
tant progress in its robust estimation in the case of severe deformations and large base-
lines both from keypoint-based and learning based approaches. Successful keypoint-
based approaches to deformable image registration include the parametric approach of
Pizarro and Bartoli [1] who propose a warp estimation algorithm that can cope with
wide baseline and self-occlusions using a piecewise smoothness prior on the deforming
surface. A direct approach that uses all the pixels in the image is used as a refinement
step. Discriminative approaches, on the other hand, learn the mapping that predicts the
deformation parameters given a distorted image but require a large number of training
samples. In recent work, Tian and Narasimhan [19] propose to combine generative and
discriminative approaches to reuse training samples far away from the test image which
leads to the use of a significantly lower number of training samples.

Our contribution In this paper we adopt a robust approach to non-rigid image align-
ment where instead of imposing the hard constraint that the optical flow must lie on
the low-rank manifold [6], we penalize flow fields that lie outside it. Formulating the
manifold constraint as a soft constraint using variational principles leads to an energy
with a quadratic relaxation term that allows us to adopt a decoupling scheme, similar to
the one described above [12, 8], for its efficient optimization. Since our regularization
term is parameterized in terms of the basis coefficients, instead of the full flow field,
we achieve an important dimensionality reduction in this term, which is usually the
bottleneck of other quadratic relaxation duality based approaches [12, 8]. Moreover, the
optimization of this regularization step can be parallelized due to the independence of
the orthogonal basis coefficients adding further advantages to the, already efficient, op-
timization scheme of Zach et al. [12]. Our approach can be seen as an extension of this
efficient TV-L1 flow estimation algorithm to the case of multi-frame non-rigid optical
flow, where the addition of subspace constraints acts as a temporal regularization term.

Currently, there are no benchmark datasets for the evaluation of optical flow that in-
clude long sequences of non-rigid deformations. In particular, the most popular one [20]
(Middlebury) does not incorporate any such sequences. In order to facilitate quantita-
tive evaluation of multi-frame non-rigid registration and optical flow and to promote
progress in this area, in this paper we provide a new dataset based on motion capture
data of a flag waving in the wind, with dense ground truth optical flow. Our quantitative
evaluation on this dataset using three different motion bases (Principal Components
Analysis (PCA), Discrete Cosine Transform (DCT) and Uniform Cubic B-Splines)
shows that our proposed approach improves or has equivalent performance to state of
the art large displacement [10] and duality based [12] optical flow algorithms and a
parametric dense non-rigid registration approach [1].

3 Multi-frame Image Alignment
Consider an image sequence of a non-rigid object moving and deforming in 3D. In the
classical optical flow problem, one seeks to estimate the vector field of image point dis-
placements independently for each pair of consecutive frames. In this paper, we adopt
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the following multi-frame reformulation of the problem. Taking one frame as the refer-
ence template, usually the first frame, our goal is then to estimate the 2D trajectories of
every point visible in the reference frame over the entire sequence, using a multi-frame
approach. The use of temporal information in this way allows us to predict the location
of points not visible in a particular frame making us robust to self-occlusions or external
occlusions by other objects.

3.1 Subspace Trajectory Model

In order to solve the multi-frame optical flow problem, we make use of the fact that
the 2D image trajectories of points on an object are highly correlated, even when the
object is deforming. We model this property by assuming that the trajectories are near
a low-dimensional subspace. This is induced by the non-rigid low-rank shape model,
first proposed by Bregler et al. [21], which states that the time varying 3D shape of a
non-rigid object can be expressed as as a linear combination of a low-rank shape basis.
This assumption has been successfully exploited for 3D reconstruction by Non-Rigid
Structure from Motion (NRSfM) algorithms [22] and non-rigid 2D tracking [5].

More precisely, assume that the input image sequence has F frames and the n0-
th frame, n0 ∈ {1, . . . , F} has been chosen as the reference. If Ω ⊂ R2 denotes the
image domain, we define the function u : Ω × {1, . . . , F} → R2 that represents the
point trajectories in the following way. For every visible point x ∈ Ω in the reference
image, u(x; ·) : {1, . . . , F} → R2 is its discrete-time 2D trajectory over all frames of
the sequence. The coordinates of each trajectory u(x; ·) are expressed with respect to
the position of the point x at n = n0, which means that u(x;n0) = 0 and that the
location of the same point in frame n is x+ u(x;n).

Mathematically, the linear subspace constraint on the 2D trajectories u(x;n) can
be expressed in the following way. For all x ∈ Ω and n ∈ {1, . . . , F}:

u(x;n) =

R∑
i=1

qi(n)Li(x) + ε(x;n) , (1)

which states that the trajectory u(x; ·) of any point x ∈ Ω can be approximated as
the linear combination of R basis trajectories q1(n), . . . , qR(n) : {1, . . . , F} → R2

that are independent from the point location. We include a modeling error term ε(x;n)
which will allow us to impose the subspace constraint as a penalty term. We refer to
the subspace where any such combination lies, i.e. the linear span of the basis tra-
jectories, as a trajectory subspace and we denote it by SQ. The linear combination
is controlled by coefficients Li(x) that depend on x, therefore we can interpret the
collection of all the coefficients for all the points x ∈ Ω as a vector-valued image
L(x) , [L1(x), . . . , LR(x)]

T : Ω → RR. Effective choices for the model order (or
rank)R usually correspond to values much smaller than 2F , which means that the above
representation is very compact and achieves a dramatic dimensionality reduction on the
point trajectories. Normally the values of ε(x;n) are relatively small, yet sufficient to
improve the robustness of the multi-frame optical flow estimation.

We now re-write equation (1) in matrix notation, which will be useful in the sub-
sequent presentation. Let U(x) and E(x) : Ω → R2F be equivalent representations of
the functions u(x;n) and ε(x;n) that are derived by vectorizing the dependence on
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the discrete time n and let Q be the trajectory basis matrix whose columns contain the
basis elements q1(n), . . . , qR(n), after vectorizing them in the same way:

U︸︷︷︸
2F×1

(x) ,

 u(x; 1)
...

u(x;F )

 , E︸︷︷︸
2F×1

(x) ,

 ε(x; 1)
...

ε(x;F )

 , Q︸︷︷︸
2F×R

,

 q1(1) · · · qR(1)
...

...
q1(F ) · · · qR(F )


The subspace constraint (1) can now be written as follows:

U(x) = QL(x) + E(x) , ∀x ∈ Ω (2)

3.2 Choice of Basis
Concerning the choice of 2D trajectory basis {q1(n), . . . , qR(n)}, we consider or-
thonormal bases as it simplifies the analysis and calculations in our method (see Sec-
tion 4). Of course this assumption is not restrictive, since for any basis an orthonormal
one can be found that will span the same subspace. We now describe several effective
choices of trajectory basis that we have used in our formulation.

Predefined bases for single-valued discrete-time signals with F samples can be used
to model separately each coordinate of the 2D trajectories. Assuming that the rank R is
an even number, this single-valued basis should haveR/2 elementsw1(n), . . . , wR/2(n)
and the trajectory basis would be given by:

qi(n) =

{
[wi(n), 0]

T , if i = 1, . . . , R/2

[0, wi−R/2(n)]
T , if i = R/2 + 1, . . . , R

(3)

Provided that the object moves and deforms smoothly, effective choices for the basis
{wi(n)} are (i) the first R

2 low-frequency basis elements of the 1D Discrete Cosine
Transform (DCT) or (ii) a sampling of the basis elements of the Uniform Cubic B-
Splines of rank R/2 over the sequence’s time window, followed by orthonormalization
of the yielded basis. An alternative is to compute the basis by applying Principal Com-
ponent Analysis (PCA) to a small subset of reliable point tracks. Reliable tracks are
those where the texture of the image is strong in both spatial directions and could be
selected using Shi and Tomasi’s criterium [23]. Provided that it is possible to estimate
a set of reliable tracks that adequately represent the trajectories of the points over the
whole object, the choice of the PCA basis is optimum for the linear model of given rank
R, in terms of representational power.

4 Variational multi-frame optical flow estimation
In this section we aim to combine dense motion estimation with the trajectory subspace
constraints described in Section 3.1 following variational principles. If I(x;n) : Ω ×
{1, . . . , F} → R denotes the input image sequence and n0 is the index of the reference
frame, then we propose to minimize the following energy:

E
[
u(x;n) , L(x)

]
= α

∫
Ω

F∑
n=1

|I (x+ u(x;n) ; n)− I(x;n0)| dx

+β

∫
Ω

F∑
n=1

∥∥u(x;n)− R∑
i=1

qi(n)Li(x)
∥∥2dx +

∫
Ω

R∑
i=1

‖∇Li(x)‖ dx

(4)
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jointly with respect to the point trajectories u(x;n) and their components on the trajec-
tory subspace that are determined by the linear model coefficients L(x). The positive
constants α and β weigh the balance between the terms of the energy. Note that the
functions u(x;n) and L(x) determine two sets of trajectories that are relatively close
to each other but not exactly the same since the subspace constraint is imposed as a soft
constraint (i.e. the model error ε in equation (1) is not zero). Since we regard the linear
trajectory model as an approximation, we consider that the final output of our method
are the trajectories u(x;n).

The first term in the above energy is a data attachment term that uses the robust
L1-norm and is a direct multi-frame extension of the brightness constancy term used
by most optical flow methods, e.g. [12]. It is based on the assumption that the image
brightness I(x;n0) at every pixel x of the reference frame is preserved at its new lo-
cation, x + u(x;n), in every frame of the sequence. The use of an L1-norm improves
the robustness of the method since it accounts for deviations from this assumption,
which might occur in real-world scenarios because of occlusions of some points in
some frames. The second term of the energy (4) penalizes trajectories u(x;n) that do
not lie on the trajectory subspace QL(x). In fact, this term corresponds to the energy
of the trajectory model error ε (c.f. equation (1)) and serves as a soft constraint that the
trajectories u(x;n) should be relatively close to the subspace spanned by the basis Q.
Concerning the weight β, the larger its value the more restrictive the subspace constraint
becomes. We normally use a relatively high value for this weight. Since the subspace of
Q is low-dimensional, this constraint operates also as a temporal regularization that is
able to perform temporal filling-in in cases of occlusions or other distortions. Note that,
unlike [12], we do not need to introduce an auxiliary variable since this quadratic term
allows us to decouple the data term and the regularizer directly. The third term of (4)
corresponds to Total Variation - based spatial regularization of the trajectory model co-
efficients. This term penalizes spatial oscillations of each coefficient caused by image
noise or other distortions but not strong discontinuities that are desirable in the bor-
ders of each object. In addition, this term allows to fill in textural information into flat
regions from their neighborhoods.

Our approach is related to the recent work of Garg et al. [6] in which dense multi-
frame optical flow for non-rigid motion is computed imposing hard subspace con-
straints. Our approach departs in a number of ways. First, while [6] imposes the sub-
space constraint via re-parameterization of the optical flow, we use a soft constraint and
do not optimize directly on the low-rank manifold but impose that the flow should lie
close to it. Secondly, the use of the L1-norm for the data term and a Total Variation reg-
ularizer instead of the non-robust L2-norm and quadratic regularizer used by [6] allow
us to deal with occlusions and appearance changes and to preserve object boundaries.
Finally, by providing a generalization of the subspace constraint, we have extended the
approach to deal with any orthogonal basis and not just the PCA basis [6].

5 Optimization of the Proposed Energy
As we described in the previous section, the energy in (4) is related to the TV-L1 for-
mulation of the optical flow problem described in [12], therefore we follow a similar
alternating approach to solve the optimization problem. We decouple the data and reg-
ularization terms to decompose the optimization problem into two, each of which can
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be solved in a globally optimal manner. The key difference is that we do not solve for
pairwise optical flow but instead we optimize over all the frames of the sequence while
imposing the trajectory subspace constraint as a soft constraint. In this section we show
how to adapt the method of [12] to our problem, to take advantage of its computational
efficiency and apply it to multi-frame subspace-constrained optical flow. Assuming an
initialization u0(x;n) is available for u(x;n), we apply an alternating optimization,
updating either u(x;n) or L(x) in every iteration, as follows:

– Repeat until convergence:
Step 1. For u(x;n) fixed, update L(x) by minimizing E

[
u(x;n) , L(x)

]
wrt L(x).

Step 2. For L(x) fixed, update u(x;n) by minimizingE
[
u(x;n) , L(x)

]
wrt u(x;n).

Convergence is declared if the relative update of L(x) and u(x;n) is negligible ac-
cording to some appropriate distance threshold.

5.1 Minimization of Step 1
Since in this step we keep u(x;n) fixed, we can observe that only the last two terms of
the energy (4) depend on L(x). Regarding the second term, using the matrix notation
defined in (2), we can write this penalty term as:

F∑
n=1

∥∥u(x;n)− R∑
i=1

qi(n)Li(x)
∥∥2 = ‖E(x)‖2 = ‖U(x)−QL(x)‖2 (5)

Let Q⊥ be an 2F × (2F −R) matrix whose columns form an orthonormal basis of the
orthogonal complement of the trajectory subspace SQ. Then the block matrix [Q Q⊥]
is an orthonormal 2F × 2F matrix, which means that its columns form a basis of
R2F . Consequently, U(x) can be decomposed into two orthogonal vectors as U(x) =
QU in(x)+Q⊥ Uout(x) where U in(x),QTU(x) and Uout(x),(Q⊥)TU(x) are the
coefficients that define the projections of U(x) onto the trajectory subspace SQ and its
orthogonal complement. Equation (5) can now be further simplified:

‖E(x)‖2=
∥∥Q⊥ Uout(x)+Q (U in(x)−L(x))

∥∥2=‖Uout(x)‖2+‖U in(x)−L(x)‖2 ,

due to the orthonormality of the columns of Q and Q⊥ (which makes the corresponding
transforms isometric) and Pythagoras’ theorem. The component ‖Uout(x)‖2 is constant
with respect to L(x); therefore it can be neglected from the current minimization. In
other words, with U being fixed and QL lying on the linear subspace SQ, penalizing
the distance between QL and U is equivalent to penalizing the distance between QL
and the projection of U onto SQ. To conclude, the minimization of step 1 is equivalent
to the minimization of:

β

∫
Ω

‖U in(x)−L(x)‖2+
∫
Ω

R∑
i=1

‖∇Li(x)‖=
R∑
i=1

∫
Ω

{
‖∇Li(x)‖+β

(
U (i)
in (x)−Li(x)

)2}
where U (i)

in (x) is the i-th coordinate of U in(x). We have finally obtained a new form of
the energy that offers a decoupling between the trajectory model coefficientsLi(x). The



8 R. Garg, A. Roussos, L. Agapito

(a) S1 (b) S30 (c) S60 (d) I1 (e) I30 (f) I60 (g) gaus. noise (h) salt-pep. noise

Fig. 1. Rendering process for ground truth optical flow sequence of a non-rigid object. (a-c):
dense surfaces Sn, constructed using thin plate spline interpolation of sparse MOCAP data [25].
(d-f): rendered image sequence In using texture mapping of a graffiti image. Superimposed red
circles indicate regions where intensities have been replaced by black to simulate synthetic oc-
clusions. (g-h): sample reference images for (g) Gaussian and (h) Salt and paper noise.

minimization of each term in the above sum can be done independently and corresponds
to the Total Variation - based denoising model of Rudin,Osher and Fatemi (ROF) [24]
applied to each coefficient Li(x). The optimum Li(x) is actually a regularized version
of U (i)

in (x) and the extent of this regularization increases as the weight β decreases.
The benefits in the computational efficiency of the above procedure are twofold.

First, these independent minimizations can be parallelized. Second, there exist several
efficient algorithms for implementing the ROF model. We have used the method of [7],
which uses a dual formulation of the minimization and proposes a globally convergent
scheme (c.f. [7] for details). Note that this method has been also used by [12] for the
problem of optical flow, but under its classical formulation of finding the frame-by-
frame displacements.

5.2 Minimization of Step 2
Keeping L(x) fixed, we observe that only the first two terms of the energy (4) depend
on u(x;n) and furthermore these terms can be written in the following way:∫

Ω

F∑
n=1

{
α |I (x+ u(x;n) ; n)− I(x;n0)|+ β ‖u(x;n)− u′‖2

}
dx , (6)

where u′ =
∑R
i=1 qi(n)Li(x). This quantity depends only on the value of u on the

specific point x and the discrete time n (and not on the derivatives of u). Therefore
the variational minimization of Step 2 boils down to the minimization of a bivariate
function of the value of u for every spatiotemporal point (x;n) independently.

We implement this pointwise minimization by applying the technique proposed in
[12] to every frame. More precisely, for every frame n and point x the image I(·;n) is
linearized around x+u0(x;n), where u0(x;n) are the initializations of the trajectories
u(x;n). The function to be minimized at every point will then have the simple form of
a summation of a quadratic term with the absolute value of a linear term. The minimum
can be easily found analytically using the thresholding scheme reported in [12].

5.3 Implementation Details
The above image linearizations are effective only if the initialization u0(x;n) is rela-
tively close to the actual solution u(x;n). To ensure the linearisation assumptions hold
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RMS endpoint error (pix) 99th percentile of endpoint error (pix)
Version of input: Original Occlusions Gaus.noise S&P noise Original Occlusions Gaus.noise S&P noise

Ours, PCA basis 0.98 1.33 2.28 1.84 3.08 4.92 8.33 7.09
Ours, DCT basis 1.06 1.72 2.78 2.29 6.70 5.18 7.92 8.53
Pizarro et al. [1] 1.24 1.27 1.94 1.79 4.88 5.05 8.67 8.54

ITV-L1 [26] 1.43 1.89 2.61 2.34 6.28 9.44 9.70 9.98
LDOF [10] 1.71 2.01 4.35 5.05 3.72 6.63 18.15 20.35

Table 1. Measures of endpoint errors for different methods on the benchmark sequences.

in the case of large optic flow we use coarse-to-fine techniques with multiple warping
iterations.

We used a similar numerical optimisation scheme and preprocessing of images to
the one proposed in [26] to minimise the energy (4), i.e. we use the structure-texture
decomposition to make our input robust to illumination artifacts due to shadows and
shading reflections. We also used blended versions of the image gradients and a median
filter to reject flow outliers. Concerning the choice of the parameters of the algorithm,
we used the same values for both ITV-L1 [26] and our method, i.e. 5 warp iterations,
20 alternation iterations and the weights α and β were set to 30 and 2.

6 Experimental results

In this section we evaluate our method and compare its performance with state of the
art optical flow [10, 12] and image registration [1] algorithms. We show quantitative
comparative results on our new benchmark ground truth optical flow dataset and qual-
itative results on real-world sequences. Furthermore, we analyse the sensitivity of our
algorithm to some of its parameters, such as the choice of trajectory basis and regu-
larization weight. Since our algorithm computes multi-frame optical flow and incorpo-
rates an implicit temporal regularization term, it would have been natural to compare
its performance with a spatiotemporal optical flow formulation [2]. However, due to
the lack of publicly available implementations we chose to compare with LDOF (Large
Displacement Optical Flow) [10], one of the best performing current optical flow al-
gorithms, that can deal with large displacements by integrating rich feature descriptors
into a variational optic flow approach to compute dense flow. We also compare with the
duality based TV-L1 algorithm [12] since our method can be seen as its extension to the
case of multi-frame non-rigid optical flow via robust trajectory subspace constraints. To
be more exact, we compare with the Improved TV-L1 (ITV-L1) algorithm [26] since we
use a similar numerical optimization scheme and preprocessing steps (see Section 5.3).
In both cases, we register each frame in the sequence independently with the reference
frame. We also compare with Pizarro and Bartoli’s state of the art keypoint-based non-
rigid registration algorithm [1]. Additionally, we show comparative results with Garg et
al. [6] which support our claim that imposing the subspace constraint as a soft instead
of a hard constraint results in improved performance and higher resilience to noise1.

1 Videos of the results as well as our benchmark dataset can be found on the following URL:
http//www.eecs.qmul.ac.uk/˜lourdes/subspace_flow
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6.1 Construction of a ground truth benchmark dataset

For the purpose of quantitative evaluation of multi-frame non-rigid optical flow and to
promote progress in this area we generated a benchmark sequence with ground truth.
To the best of our knowledge, this is one of the first attempts to generate a long image
sequence of a deformable object with dense ground truth 2D trajectories. We use sparse
motion capture (MOCAP) data from [25] to capture the real deformations of a waving
flag in 3D. We interpolated this sparse data to have a continuous dense 3D surface using
the motion capture markers as the control points for smooth Spline interpolation. This
dense 3D surface is then projected synthetically onto the image plane using an ortho-
graphic camera. We use texture mapping to associate some texture to the surface while
rendering 60 images of size 500x500 pixels. The advantage of this new sequence is that,
since it is based on MOCAP data, it captures the complex natural deformations of a real
non-rigid object while allowing us to have access to dense ground truth optical flow.
We have also used three degraded versions of the original rendered sequence by adding
(a) gaussian noise, of standard deviation 0.2 relative to the range of image intensities,
(b) salt & peper noise of density 10% and (c) synthetic occlusions generated by super-
imposing some black circles of radius 20 pixels moving in linear orbits. Figure 1 shows
the interpolated 3D flag surface and some of the frames of the 60 frame long sequence.

6.2 Quantitative Results on Benchmark Sequence

We tested our algorithm using the three different proposed motion basis: PCA, DCT
and Cubic B-Spline. Similarly to Garg et al. [6] we compute the PCA basis from sparse
tracked features. For the experiments on the benchmark sequence we used the tracks
provided by the feature matching algorithm of Pizarro and Bartoli [1] where a robust
method based on local surface smoothness is used to discard outliers from an initial set
of SIFT feature matches. Temporal cubic spline interpolation is then used to fill in the
missing data in each track independently for the computation of the PCA basis.

In Table 1, the error measures of various methods are compared using the different
versions of the rendered flag sequence as inputs. Note that the results obtained with the
Spline basis were omitted since they were almost equivalent those obtained with the
DCT basis, as Figure 3(a) reveals. We observe that our proposed method yields the best
RMS measure in the case of the original sequence and outperforms ITV-L1 and LDOF
methods in all other cases. Also, in the case of data with synthetic noise it performs
comparably to the best performing method, Pizarro et al. [1]. In the case of external
occlusions, the method of Pizarro et al. [1] yields the best RMS error. As far as the
percentile measures are concerned, the best measures are in all the cases yielded by the
two versions of the proposed method. Furthermore, we can observe from the error maps
of Figs. 2 and 3 that in the case of self-occlusions the situation seems reversed and our
proposed method yields a more accurate result.

Figure 2 shows a comparison of the results on the Flag sequence of our algorithm
using a PCA basis of rank R = 75 and a full rank DCT basis R = 120; ITV-L1 optical
flow [26]; LDOF [10] and Pizarro and Bartoli’s registration algorithm [1]. We show a
closeup of the reverse warped images of 3 frames in the sequence (20 30 60) which
should be identical to the template frame; and the error in flow estimation, expressed
in pixels, encoded as a heatmap. Our method, both using PCA and DCT, gives lower
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Fig. 2. Inverse warpsW−1(In) and error maps εn(x) for some frames of the flag sequence. (a)
Proposed method: PCA basis, (b) DCT basis. (c) ITV-L1 [26]. (d) LDOF [10].(e) Pizarro et al.[1].

errors on these frames than the state of the art methods we compare with. Figure 3(c-g)
shows a similar comparison in the presence of synthetic occlusions and it is evident that
our method and [1] perform much better than others in occluded regions as they model
the flow of a non rigid surface in the reference template.

Figure 3(a) shows a graph of the root mean square (RMS) error (measured in pixels)
over all the frames of the optical flow estimated using the 3 different bases for different
values of the rank and of the weight β associated with the soft constraint. For a reason-
ably large value of β all the basis can be used with a significant reduction in the rank.
The optimization also appears not to overfit when the dimensionality of the subspace
is overly high. Figure 3(b) explores the effect of varying the value of the weight β on
the accuracy of the optical flow. While low values of β cause numerical instability (data
and regularization terms become completely decoupled) high values of β, on the other
hand, lead to slow convergence and errors since the point-wise search is not allowed to
leave the manifold, simulating a hard constraint. Another interesting observation is that
our proposed method with a PCA basis of rank R=50, yields a better performance than
with a full rank PCA basisR=120. This reflects the fact that the temporal regularization
due to the low dimensional subspace is often beneficial. Note that to analyze the sensi-
tivity of our algorithm to its parameters in Figure 3(a-b) we used ground truth tracks to
compute the PCA basis to remove the bias from tracking.

6.3 Experiments on Real Sequences

Figure 4 presents comparative results of optical flow methods in two real sequences of
textured paper bending smoothly. The first input sequence is particularly challenging
because of its length (100 frames) and large rotation of the camera. The trajectory basis
of the proposed method is derived by applying PCA on KLT tracks [27] and keeping
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Fig. 3. (a-b) RMS flow error for proposed method in flag sequence varying basic parameters. (c-f)
Flow error maps εn(x) for flag sequence with synthetic occlusions: (c) Proposed method: PCA
basis, (d) DCT basis. (e) ITV-L1 [26]. (f) LDOF [10]. (g) Pizarro et al. [1].
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Fig. 4. Multi-frame optical flow for different methods, on 2 paper bending sequences (with 100
and 71 frames respectively). (a) Reference frames and (b) frames from the input sequences. (c-e)
Flow-based inverse warpsW−1(In) in the reference frames and color-coded flow fields u(·, n).

only the first 10 components. Note that our method achieves similar results with the
DCT basis of rank R=14. We run the LDOF and ITV-L1 algorithms using a multi-
resolution scaling factor of 0.95, whereas for our algorithm the value 0.75 was sufficient
(pointing to faster convergence). Comparing the warped imagesW−1(In), we observe
that our method yields a significant improvement on the accuracy of the optical flow,
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Fig. 5. Multi-frame optical flow results on a T-shirt and a paper-bending sequences. (a) Reference
frames and (b) representative frames of the input sequences. (c-d) Inverse warps W−1(In) for
different methods: (c) Proposed method, PCA basis. (d) Garg et al. [6].

especially after some frames (see e.g. the artifacts annotated by the red ellipses in the
results of LDOF and ITV-L1). The second input sequence in Fig. 4 is widely used in
the structure from motion literature and contains 71 frames. We ran our method using
a PCA basis on KLT tracks and choosing rank R=6. In this sequence we used the 30th

frame as the reference. We observe that our method yields an accurate result and suffers
from less artifacts than others.

In Fig.5, we show results on 2 input sequences to compare our new approach against
Garg et al. [6]. The first sequence captures a T-shirt deforming as it is stretched from
the bottom two corners and contains 60 frames. The second sequence is the same as in
Fig. 4 (bottom). For the method of [6], we tested different values for the basis rank R
and we kept the best value for each sequence, which turned out to be R=3 for the T-
shirt andR=8 for the paper bending sequence. For our method, the choice of rank is less
crucial and we selected R=8 for the T-shirt and R=6 for the paper bending sequence.
We observe that both methods output a plausible result for the T-shirt sequence. How-
ever, [6] cannot reliably estimate the optical flow in the corners that are marked with red
circles, whereas our proposed method can. On the paper bending sequence, we observe
that our method performs significantly better than [6]. We believe that these improve-
ments can be attributed to our use of robust soft subspace constraints and robust Total
Variation and L1 data terms.

7 Conclusions
We have provided a new formulation for the computation of optical flow of a non-rigid
surface exploiting the high correlation in a long sequence between 2D trajectories of
points by assuming that these lie close to a low dimensional subspace. Our contribu-
tion is to formulate the manifold constraint as a soft constraint which, using variational
principles, leads to a robust energy with a quadratic relaxation term that allows its effi-
cient optimization. We also provide a new benchmark dataset, with ground truth optical
flow. Our proposed approach improves or has equivalent performance to state of the art
optical flow algorithms and a non-rigid registration approach.
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