
Provided for non-commercial research and educational use only. 
Not for reproduction, distribution or commercial use. 

 
This chapter was originally published in the book Advances In Ecological Research, 
Vol. 49 published by Elsevier, and the attached copy is provided by Elsevier for the 
author's benefit and for the benefit of the author's institution, for non-commercial 
research and educational use including without limitation use in instruction at your 
institution, sending it to specific colleagues who know you, and providing a copy to 
your institution’s administrator. 
 

 
 
All other uses, reproduction and distribution, including without limitation commercial 
reprints, selling or licensing copies or access, or posting on open internet sites, your 
personal or institution’s website or repository, are prohibited. For exceptions, 
permission may be sought for such use through Elsevier's permissions site at: 

http://www.elsevier.com/locate/permissionusematerial 
 

From Alireza Tamaddoni-Nezhad, Ghazal Afroozi Milani, 
Alan Raybould, Stephen Muggleton, David A. Bohan, Construction and Validation of 

Food Webs Using Logic-Based Machine Learning and Text Mining. In Guy 
Woodward and David A. Bohan, editors: Advances In Ecological Research, Vol. 49, 

Amsterdam, The Netherlands: Academic Press, 2013, pp. 225-289. 
ISBN: 978-0-12-420002-9 

© Copyright 2013 Elsevier Ltd 
Elsevier 



Author's personal copy
CHAPTER FOUR
ConstructionandValidationofFood
Webs Using Logic-Based Machine
Learning and Text Mining
Alireza Tamaddoni-Nezhad*,1, Ghazal Afroozi Milani*,
Alan Raybould}, Stephen Muggleton*, David A. Bohan†
*Computational Bioinformatics Laboratory, Department of Computing, Imperial College London, London,
United Kingdom
†UMR 1347 Agroécologie, AgroSup/UB/INRA, Pôle Ecologie des Communautés et Durabilité de Systèmes
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Abstract
Network ecology holds great promise as an approach to modelling and predicting the
effects of agricultural management on ecosystem service provision, as it bridges the gap
between community and ecosystem ecology. Unfortunately, trophic interactions
between most species in agricultural farmland are not well characterised empirically,
and only partial food webs are available for a few systems. Large agricultural datasets
of the nodes (i.e., species) in the webs are now available, and if these can be enrichedwith
information on the links between them then the current shortage of network data can
potentially be overcome. We demonstrate that a logic-based machine learning method
can be used to automatically assign interactions between nodes, thereby generating
plausible and testable food webs from ecological census data. Many of the learned tro-
phic links were corroborated by the literature: in particular, links ascribed with high prob-
ability by machine learning corresponded with those having multiple references in the
literature. In some cases, previously unobserved but high probability links were suggested
and subsequently confirmed by other research groups. We evaluate these food webs
using a new cross-validationmethod and present new results on automatic corroboration
of a large, complex food web. The simulated frequencies of trophic links were also cor-
related with the total number of literature ‘hits’ for these links from the automatic corrob-
oration. Finally, we also show that a network constructed by learning trophic links
between functional groups is at least as accurate as the species-based trophic network.
1. INTRODUCTION

1.1. Ecosystem services and agricultural management

The requirements from agricultural land are becoming more diverse. In many

parts of the world, there has been a change from the immediate post-WWII

focus on increasing crop productivity from agricultural land, to a view that

managed agricultural landscapes provide humans with a suite of ecosystem ser-

vices, some of which are essential for the long-term productivity of agriculture

(Raffaelli and White, 2013). Sustainable intensification of agriculture (SIA)

describes the process whereby crop productivity increases, but not at the

expense of other services provided by non-crop biodiversity that maintain

crop production and the intrinsic cultural value that humans place on biodi-

versity (Baulcombe et al., 2009). The policy shift from increasing crop pro-

ductivity towards SIA means that decisions about the best way to manage

agricultural land are becoming more complicated. To help decision-making

for SIA, we need to predict the effects of agricultural management on biodi-

versity, and to predict the effects of changed biodiversity on the delivery of

ecosystem services. However, ongoing changes in management practice, cli-

mate, water, etc., mean that decisions cannot always wait for the full comple-

ment of empirical evidence or data to be gathered.
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The Millennium Ecosystem Assessment (MEA, 2005) considered the ser-

vices provided by nature as humanity’s ‘life-support system’. It concluded that

human activity is having a significant and escalating impact on the biodiversity

of world ecosystems, reducing both their long-term resilience and productiv-

ity. The MEA developed a framework for evaluating the effects of changes in

biodiversity on ecosystems, and the valueof those changes in service tohuman-

ity. It posited four key types of service that ecosystems provide, all of which are

relevant to agriculture: provisioning services, such as the production of food,

fuel and fibre; regulation services, such as pollination, biological control and

carbon sequestration; cultural services, such as cultural heritage, education

and recreation spaces; and, support services, including the cycling of nitrogen

and carbon. There have been numerous refinements and modifications to this

schema in recent years, but these general principals and terms are now widely

used in both the natural and social sciences (Raffaelli and White, 2013).

Changing in biodiversity, and particularly its loss, affects ecosystem struc-

ture and resilience, and may result in the partial or complete loss of ecosystem

services (Chapin et al., 1998; Costanza et al., 1997), which are ultimately pro-

vided by processes driven by particular functional groups within the biota

(Bennett et al., 2009). Economically and socially, biodiversity provides func-

tions that become ecosystem services only if a human ‘beneficiary’ can be

identified (Busch et al., 2012; Fisher et al., 2009), as illustrated in the ‘cascade

model’ (De Groot, 2010; Haines-Young and Potschin, 2010).

Although the links between species, functioning and services are neither

simple nor linear, it has become increasingly evident that the loss of biodi-

versity has affected agricultural ecosystem services (e.g., biological control,

Cardinale et al., 2003). Human-driven management, whether at local or

landscape scales, will alter ecosystem services (Lavorel et al., 2010;

Mulder et al., 2012). The use of pesticides and modern intensive farming

techniques over the past century, directed to increasing provisioning services

in agriculture, have been used at the expense of local decreases in regulation

and cultural services, and farmland biodiversity in general (Raudsepp-

Hearne et al., 2010).

This picture is complicated by interactions between services; for exam-

ple, the provisioning service of food production is directly affected by the

regulation service of biological control of agricultural pests. Food produc-

tion is also indirectly affected by support and regulation services, such as soil

erosion and preservation of genetic resources, which affect long-term sus-

tainability. Cultural services, including landscape aesthetics and the conser-

vation of threatened and flagship species, may also affect production (Tilman

et al., 2002).
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Furthermore, increasing provisioning services from land already culti-

vated may protect other ecosystem services on uncultivated land (Green

et al., 2005).
1.2. Biodiversity, ecosystem functioning and services
Species-based, autecological studies of regulatory processes and services in

agriculture, such as control of the slug Deroceras reticulatum and weeds by

the carabid beetle Pterostichus melanarius (Bohan et al., 2000, 2011), have long

been a staple subject of applied ecology. The benefits of studying interactions

between two species are clear: the interaction is often defined by a specific

problem, such as damage caused by slugs to a particular crop; and questions

about the interaction can be broken down into conceptually simple steps

that are experimentally tractable. There is also a considerable body of eco-

logical theory within which any experimental results can be placed, for

instance to gauge how and when ecological regulation occurs.

A limitation of these autecological approaches is that they are explicitly

non-general. They are species-based, and species are often limited to particular

systems. In arable agricultural systems, there aremarked changes in species com-

position between crops (e.g., Smith et al., 2008). Hence making statements

about likely regulatory effects in a novel system, even between closely related

and previously studied species, can be difficult. Working through all combina-

tions of species in a system, across all systems, is not feasible for describing or

managing ecosystem services; it is too slowgiven the urgent need. Furthermore,

autecological approachesmaynot capture large-scale processes effectively,many

of which underpin ecosystem services. This is because interactions among

species, processes and services all play an important role in the behaviour of

the ecosystem and ultimately how it will respond to management.

Extrapolating from species to functioning, and ultimately to ecosystem ser-

vices, is not straightforward. Functional approaches hold that resource use effi-

ciency by each species is a key determinant of ecological functioning. The null

model might therefore be that each species interaction contributes additively;

each species using the available resources similarly. Replacing any one species

by another does not affect overall resource use and resource use efficiency is, in

effect, independent of species diversity. However, based upon the simple

observation that diverse systems, containing a great many species and conse-

quently interactions, tend to be robust, stable and productive, alternative

hypotheses for the contribution of species to functioning have been proposed

(e.g., Reiss et al., 2009). These theories fall into two broad classifications:

assemblages with greater diversity use resources more efficiently; and
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assemblages with greater diversity are more likely to contain at least one spe-

cies that uses resources more efficiently, all other things being equal.

Differentiation of niches, or complementarity of niche requirements,

promotes co-existence: a more diverse community should therefore be able

to use resources more efficiently, and thus be both more productive and sta-

ble (Fargione et al., 2007; Kraft et al., 2008; Loreau and Hector, 2001).

Certain species may also be able to modify the environment, facilitating

co-occurring species (Stachowicz, 2001), as observed in the plants where

there is competition for nutrients, water and space, and direct competitive

interactions with invertebrate herbivores and other plants (e.g., allelopathy).

Legumes are regularly used in agriculture as facilitators to enrich soil nitro-

gen, with clear economic benefit (i.e., an ecosystem service). Intraspecific

competition is often more intense than its interspecific form, so substituting

individuals of the same species by individuals of different species can reduce

the competition experienced by an individual leading to greater productivity

(Griffin et al., 2009) resulting in overyielding (Hector et al., 2002). The

so-called sampling effect can arise due to an increased probability of includ-

ing one species with atypically high productivity or efficient resource use, as

the total species pool broadens (Fargione et al., 2007). The portfolio effect

(Tilman et al., 1998) hypothesises that conditions that are bad for one species

might be good for another, so across a portfolio of species (a community),

the variation in performance is much lower, and this tends to increase with

species diversity. All these examples highlight the inadequacy of considering

species in isolation, and how biodiversity does not necessarily scale linearly

with functioning, as it is modulated by complex species interactions. In addi-

tion, to these indirect competitive effects, trophic interactions in the food

web can have powerful, and often counterintuitive effects, and these are best

examined using network-based approaches (Reiss et al., 2009), although

these are only now starting to be considered in agroecology (e.g., Bohan

et al., 2013; Loeuille et al., 2013; Massol and Petit, 2013; Mulder et al.,

2013; Tixier et al., 2013; Traugott et al., 2013).

1.3. A network approach to model field-scale agricultural
management

Tomanage agricultural land for the optimal delivery of ecosystem services, we

need theories that accurately predict the effects of perturbation on agro-

ecosystems that affect their productivity and stability through impacts ondiver-

sity. Until recently, two very different approaches were available: community

ecology and ecosystem ecology (Thompson et al., 2012). The former concen-

trates on the spatial and temporal distribution of individuals, populations and
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species, and seeks explanations for distribution patterns in processes such as dis-

persal, selection and speciation (Vellend, 2010). While it can provide detailed

explanations of the behaviour of the basic units of ecosystems, these explana-

tions cannot be combined and scaled up to provide predictions of the behav-

iour of whole ecosystems (Thompson et al., 2012). Ecosystem ecology focuses

on the flows of energy, biomass and nutrients through ecosystems, and explains

these processes in terms of chemistry and thermodynamics (Jørgensen and

Fath, 2004). It can provide models of dynamics at large scales, for example,

global carbon fluxes, but is often weak at predicting the effects of changes

in species composition on individual ecosystems.

Both approaches have drawbacks for developing general theories that are

useful for agro-ecosystemmanagement. Amore fruitful approachmay be food

web ecology, which bridges the gap between community and ecosystem ecol-

ogy (Ings et al., 2009; Reiss et al., 2009; Thompson et al., 2012; Woodward

et al., 2005a,b). Food webs represent the trophic interactions between

organisms in an ecosystem as a network of species and the flow of energy (or

biomass) between them. Foodwebs combine the species distribution elements

of community ecology and the energy flows of ecosystem ecology, and as such

offer a means of linking changes in species abundance to changes in ecosystem

functioning (e.g.,Mulder et al., 2012;O’GormanandEmmerson, 2010). Food

web approaches therefore offer a potentially powerfulmeans to predict changes

in the delivery of ecosystem services that result from the effects of agricultural

management on biodiversity (see Fig. 4.1).

Recent theoretical and empirical work has suggested that there might be

a simplifying framework underlying food webs. In a seminal study of Tues-

day Lake, Michigan, United States, Cohen et al. (2003) established the food

web links between 56 phytoplankton, zooplankton and fish species (see also

Carpenter and Kitchell, 1988, 1993). In parallel, the authors used a simple

energetic theory for how trophic height in a food web might be correlated

with abundance and body mass: essentially, a few big things eat many little

things (Cohen, 1991; Elton, 1927; Petchey et al., 2008). All other factors

being equal, species at similar trophic heights had similar body mass and

abundance: it is possible, then, to infer that food webs might be simplified

by an amalgamation of species-based nodes to nodes that combine the three

key biological variables of trophic height, individual abundance and body

mass with little loss of explanatory power (Cohen et al., 2003). These

so-called ‘trivariate food webs’ have been used in various forms to assess pat-

terns of energy or biomass flux and size-structure, mostly in natural aquatic

ecosystems (e.g., Layer et al., 2010, 2011; O’Gorman and Emmerson, 2010;
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Woodward et al., 2005a,b), but also increasingly in their terrestrial counter-

parts (e.g., Mulder et al., 2012; Reuman et al., 2009) and also in experimen-

tal systems (Ledger et al., 2013; Woodward et al., 2012).

About 200 species of plants and aboveground invertebrates are com-

monly present in arable ecosystems across the UK (Smith et al., 2008).

The crop and weeds compete for available resources. The invertebrates

compete feed on the plants, on each other, or both. Conceptually, this sys-

tem consists of primary producers, which transform resources into biomass,

and primary consumer invertebrates that feed on this biomass, converting it

to invertebrate biomass (Bohan et al., 2005; Hawes et al., 2003, 2009).

Higher trophic levels of secondary consumer invertebrates then feed on

and convert this invertebrate biomass (Brooks et al., 2003). Detritivores con-

sume dead organisms from across all trophic levels.

This ecosystem can be represented using ecological network theory

(Dunne et al., 2002). This theory treats the different species as discrete nodes,

with particular properties of biomass and abundance, with the links between

the nodes representing the interactions between the species. This approach

has proved useful for yielding important information on the structure of the

system and for evaluating the likelihood of node extinction and

network collapse in a changing environment (Pascual and Dunne, 2006).

Food webs are the most familiar form of ecological network, in which

the links are trophic and represent the flow of energy or biomass between

the nodes, and these have been used successfully to explain structural

and dynamical properties of ecological systems (Dunne et al., 2002), partic-

ularly aquatic systems (Cohen et al., 2003; Emmerson and Raffaelli, 2004;

Layer et al., 2010, 2011; Reuman and Cohen, 2004; Woodward et al.,

2005a,b). Terrestrial food webs have proved less easy to explain (Polis,

1991; Rott and Godfray, 2000), although notable progress has been made

in recent years (Hagen et al., 2012; Mulder and Elser, 2009; Mulder

et al., 2011; Petchey et al., 2008). Arable farmland networks have only

recently begun to be investigated and this work has concentrated on

pollinator and parasitoid webs (Gibson et al., 2006; Van Veen et al.,

2008), and increasing efforts have been devoted to understanding how these

networks operate in fragmented agricultural landscapes (Hagen et al., 2012;

Loeuille et al., 2013).

Recently, Pocock et al. (2012) showed that the species in an arable agri-

cultural system in the UK provide distinct ecological functions and services,

and that they are linked together through a network of different types of

ecological interactions. There are, therefore, clear routes of interaction
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between species providing different ecological functions, which will affect

services. Changes in the highly linked species, such as certain flowering

plants will affect both the regulation service provided by pollinators (through

the ecosystem process of pollination) and the regulation service of biological

control (through predation by parasitoids).
1.4. Networks and interactions in agriculture
The agro-ecological, mechanistic underpinning of ecosystem services, their

response to change and how they interact are still poorly understood, as

exemplified by the so-called ‘optimist’s scenario’ (Pocock et al., 2012),

which may be summarised as ‘The management of one ecosystem service,

for improved outcomes, benefits the outcomes of all ecosystem services’.

However, the dependencies of one service and any other are often only

poorly understood and the validity of this scenario at system-relevant scales

can only be guessed at.

Pocock et al. (2012) tested the applicability of a food web approach to the

analysis of delivery of ecosystem services using an extensive ecological net-

work from UK agriculture. They showed considerable linkage between ser-

vices, with particular plant and invertebrate species being disproportionately

involved in the network of links. Managing, and therefore changing, the

abundance or presence of certain species for the benefits from one service,

such as pollination, would not always necessarily benefit other services, such

as biocontrol of aphids. The optimist’s scenario could not bemaintained in this

ecosystem. The large-scale problems presented by juggling the needs of dif-

ferent ecosystem services in the agricultural ecosystem could therefore benefit

from some of the solutions that large-scale network ecology could provide.

Since ecosystems are structured by flows of energy (biomass) between

primary producer plants (autotrophs) and consumers (heterotrophs), such

as invertebrates, mammals and birds (Dickinson and Murphy, 1998;

Lindeman, 1942), the food web is key for explaining ecosystem structure

and dynamics and understanding and predicting responses to environmental

change (Caron-Lormier et al., 2009; Cohen et al., 2009; Odum, 1971;

Woodward et al., 2012).

Still relatively few ecosystems have been described and detailed using

food webs because establishing predation relationships between the many

hundreds of species in an ecosystem is resource intensive, requiring consid-

erable investment in field observation and laboratory experimentation (Ings

et al., 2009). Across such large datasets, it is often difficult to relate observa-

tional data sampled in protocols that have different, basic metrics; such as
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density or activity-density or absolute abundance. Increasing the efficiency

of testing for trophic links by filtering out unlikely interactions is typically

not possible because of uncertainty about basic background knowledge of

the network, such as whether any two species are likely even to come into

contact and then interact (Ings et al., 2009). In addition, it may require con-

siderable analysis and interpretation to translate from the ecological ‘lan-

guage’ of sample data (count, abundance, density, etc.) to the network

language of links within a trophic network. Consequently, of those ecosys-

tems that have been studied using trophic network approaches, component

communities that provide known, valuable ecosystem services or those that

are experimentally tractable or under threat have most often been evaluated

(Ings et al., 2009).

In a recent paper, Bohan et al. (2011) demonstrated that machine learn-

ing has the potential to construct realistic food webs, using a logic-based

approach called abductive/inductive logic programming (A/ILP), and that

it can generate plausible and testable networks from field sample data of the

taxa (network nodes) alone. The data Bohan et al. (2011) used came from a

national-scale Vortis suction sampling of invertebrates from arable fields in

the UK: 45 invertebrate species or taxa, representing approximately 25% of

the sample, and about 74% of the invertebrate individuals included in the

learning, were hypothesised to be linked. As might be expected,

detritivorous Collembola were consistently the most important prey, and

generalist and omnivorous carabid beetles were hypothesised to be the dom-

inant predators of the system. One surprising result, however, was the

importance of carabid larvae, suggested by themachine learning, as predators

of a wide variety of prey. High probability links were also hypothesised for

widespread, potentially destabilising, intra-guild predation; predictions that

could be experimentally tested.

A review of the literature revealed that many of the high probability links

in the model had already been independently observed or suggested for this

system, supporting the contention that A/ILP learning could produce plau-

sible food webs from sample data, independent of preconceptions about

who-eats-whom. Well-known links in the literature corresponded with

links ascribed with high probability through A/ILP. Arguably, therefore,

this very general machine learning approach has great power and could

be used to extend and test theories of agricultural ecosystem dynamics

and function. In particular, it could be used to support the development

of a wider theory of ecosystem responses to environmental change.

There were, however, clear problems with the learning and validation

methodology in Bohan et al. (2011) that required addressing and further
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study. While showing great promise, the review was done by hand and

reflects, at best, a partial knowledge of the literature that could lead to some

links not being validated. In turn, certain links were likely overrepresented

because of good operator knowledge of particular parts of the trophic liter-

ature. Finally, some reports came from what might be termed the ‘grey lit-

erature’, information that was not peer-reviewed; this literature should be

considered anecdotal information at best.

Further, the network was learned for a single protocol, the Vortis suction

sampling, which sampled species of invertebrates at the soil surface and in

association with the weed plants. It was also explicitly species-based and

therefore limited to the four cropping systems studied, due to the system-

specific species compositions of agricultural cropping systems (Smith

et al., 2008). The approach produced a testable network, but one that

was not likely to be general.

Here, we extend both the work of Bohan et al. (2011) and tackle some of

the inherent problems encountered in the initial work. Specifically, we will

attempt to: (i) develop a robust (general) validation methodology for net-

works (originally discussed in Tamaddoni-Nezhad et al., 2012b and

Afroozi Milani et al., 2012); (ii) grow the network by learning across dispa-

rate sampling protocols; and, (iii) develop a generic approach to networks

that might allow us to move between systems, based on a more functional,

as opposed to a purely taxonomic, approach.
1.5. Machine learning network models from data
Machine learning is the sub-area of computer science that studies methods for

building predictive computational models from observational data (Mitchell,

1997). The area is divided into various sub-topics that are largely related to the

form of computational model employed, many of which are presently being

applied to complex biological systems (Bernot et al., 2004; Calzone et al.,

2006; Chen and Xu, 2004; Dale et al., 2010; Lin et al., 2012; Mazandu

and Mulder, 2012; Tamaddoni-Nezhad et al., 2007; Xiong et al., 2006).

Modelling techniques can be broadly divided into three classes:

Logical: These representations (Bernot et al., 2004; Calzone et al., 2006;

Lin et al., 2012; Tamaddoni-Nezhad et al., 2007) are typically discrete,

with particular strengths in the ease with which models can be under-

stood by domain experts. Existing applications include shape-oriented

models of large and small molecules, as well as biochemical network

representations.
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Probabilistic: These include probabilistic descriptions of complex net-

works of interactions (Dale et al., 2010; Mazandu and Mulder, 2012), sto-

chastic processes modelling individual molecular and cellular dynamics, and

inferential procedures that analyse the underlying evolutionary process.

Mixed: These include approaches such as Bayesian networks (Chen and

Xu, 2004) that support both probabilistic and logical interpretation. The

advantage of such techniques is that they are readily understandable by

domain experts, while still allowing the modelling of uncertainty. Applica-

tions include Bayes net models of gene regulation networks as well as com-

plex hierarchical models that integrate transcriptomic, proteomic,

metabonomic and phenotypic data.

1.5.1 Inductive logic programming (ILP) and abductive ILP (A/ILP)
Standard forms of machine learning, such as neural nets and support-vector

technology, cannot make use of large-scale background knowledge within

the learning process. By contrast, techniques from Inductive Logic Pro-

gramming (ILP) support the inclusion of such background knowledge

and allow the construction of hypotheses that describe structure and rela-

tionships between sub-parts. ILP (Muggleton, 1991; Muggleton and De

Raedt, 1994) is the sub-area of machine learning concerned with inductive

inference of logic programs. ILP systems use given example observations E

and background knowledge B to construct a hypothesis H that explains E

relative to B. The components E, B andH are each represented as logic pro-

grams. Since logic programs can be used to encode arbitrary computer pro-

grams, ILP is arguably the most flexible form of machine learning, which has

allowed it to be successfully applied in a number of complex areas

(Tsunoyama et al., 2008; Bohan et al., 2011; Santos et al., 2012).

The main role of abductive reasoning in machine learning of scientific

theories is to provide hypothetical explanations of empirical observations

(Flach and Kakas, 2000). Then, based on these explanations, we try to inject

back into the scientific theory new information that helps complete the the-

ory. This process of generating abductive explanations and updating theory

can be repeated as new observational data become available. The process of

abductive learning can be described as follows. Given a theory, T, that

describes our incomplete knowledge of the scientific domain and a set of

observations, O, we can use abduction to extend the current theory

according to the new information contained inO. The abduction generates

hypotheses that entail a set of experimental observations subject to the

extended theory being self-consistent. Here, entailment and consistency



238 Alireza Tamaddoni-Nezhad et al.

Author's personal copy
refer to the corresponding notions in formal logic. Abductive logic pro-

gramming (Kakas et al., 1993) is typically applied to problems that can be

separated into two disjoint sets of predicates: the observable predicates

and the abducible predicates. In practice, observable predicates describe

the empirical observations of the domain that we are trying to model.

The abducible predicates describe underlying relations in our model that

are not observable directly but can, through the theory T, bring about

observable information. Hence, the hypothesis language (i.e., abducibles)

can be disjoint from the observation language. We may also have back-

ground predicates (prior knowledge), which are auxiliary relations that help

us link observable and abducible information.

In many implementations of abductive reasoning, such as that of Progol

5.0 used in this chapter (Muggleton and Bryant, 2000), the approach taken is

to choose the explanation that ‘best’ generalises under some form of induc-

tive reasoning. This link to induction then strengthens the role of abduction

to machine learning and the development of scientific theories. We refer to

this approach as Abductive ILP (A/ILP). Other frameworks of tight integra-

tion of abduction and induction include: ACL (Kakas and Riguzzi, 2000),

CF-Induction (Inoue, 2001) and HAIL (Ray et al., 2003). Technically, we

refer to induction as a process of taking a set of examples encoded as logical

sentences that are free of variables and replacing them with more general

hypotheses expressed as logically encoded sentences that contain universally

quantified variables. By contrast, in abduction the hypotheses are also free of

variables, and thus cannot be viewed as general rules since they do not con-

tain universally quantified variables. A/ILP technology supports both

abductive and inductive generalisation. In the present application we use

an A/ILP system, Progol5.0, in abductive mode to construct food webs.

This system is freely available for academic purposes.

1.5.2 Machine learning of biological networks using A/ILP
A/ILP has been used in a series of studies involving the revision of biological

network models from example data. In the Metalog project (Tamaddoni-

Nezhad et al., 2006), encoding and revising logical models of biochemical

networks was done using A/ILP to provide causal explanations of rat liver

cell responses to toxins. The observational data consisted of up- and down-

regulation patterns found in high-throughput metabonomic data.

The approach used in Metalog was further extended in the CISBIC pro-

ject (Sternberg et al., 2013), in which a mixture of linked metabonomic and

gene expression data was used to identify biosynthetic pathways for bacterial
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polysaccharides. In this case, ILP was shown to provide a robust strategy to

integrate results from different experimental approaches.

1.6. Text mining
Text mining is the process of automatic extraction of information from tex-

tual resources using different techniques like information retrieval, machine

learning, statistics and computational linguistics and natural language

processing (NLP). There has been an increasing interest in using text mining

in Bioinformatics and Systems biology (Harmston et al., 2010). In general,

there are three main approaches (Cohen and Hunter, 2008): the first simply

searches for the co-occurrence of concepts in the same textual unit (Jenssen

et al., 2001); the second is related to rule-based systems (Blaschke et al.,

1999) emphasising on the knowledge of language structure; and the third

includes statistical and machine learning based systems (Cohen and

Hunter, 2004) that generate classifiers operating on different levels of the

text-mining process.

Although the applications of text mining are increasing rapidly, in most

cases it can only be viewed as a tool to facilitate and help reveal relevant infor-

mation hidden in a large volume of text data more efficiently and it cannot

replace human in processing and understanding the text (Korhonen et al.,

2012; Swanson, 1986): it is a useful means to an end, for processing and fil-

tering huge volumes of information, and not necessarily an end in itself.

It is desirable to automate the corroboration of hypothetical trophic

links, because manual corroboration of a large food web is difficult and

requires significant amounts of time. The text-mining method described

here can be categorised as a simple co-occurrence-based approach, but it

can potentially be extended to more sophisticated approaches. To the best

of our knowledge, this is the first attempt for automatic construction and

corroboration of food webs from ecological data.

2. METHODS

2.1. Ecological data

2.1.1 The farm-scale evaluations data
The count data for Vortis and Pitfall-trap sampled invertebrate species comes

from 66 spring-sown beet, 59 spring maize, 67 spring oilseed rape and

65 winter oilseed rape fields sampled as part of the farm-scale evaluations

(FSE) of genetically modified, herbicide-tolerant (GMHT) crops (Bohan

et al., 2005; Champion et al., 2003).
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In late 1998, varieties of the crops, maize (Zea mays L.), beet (Beta vulgaris

L.), spring oilseed rape and winter oilseed rape, or canola (Brassica napus L.)

engineered to make them tolerant to broad-spectrum herbicides, had satis-

fied most of the regulatory requirements for commercial growing in the UK.

The maize and oilseed rape varieties were resistant to the herbicide

glufosinate-ammonium and the beet to glyphosate. It was argued that such

varieties had the potential to allow greater flexibility in the timing of herbi-

cide use (Dewar et al., 2003; Elmegaard and Bruus Pedersen, 2001; Firbank

and Forcella, 2000), to facilitate the control of herbicide-resistant weeds

(Gressel and Rotteveel, 2000) and to reduce reliance on persistent and rel-

atively hazardous chemicals (Phipps and Park, 2002). The FSE project was

established to test both whether GMHT varieties influenced the biodiversity

of farmland relative to the management of conventional, non-GMHT, vari-

eties and to what extent farmland biodiversity might change if GMHT crops

were introduced commercially (DEFRA 2002; Firbank et al., 1999). For

each crop, the FSE aimed to test the null hypothesis that there is no differ-

ence between the management of GMHT varieties and that of comparable

conventional varieties in their effect on the abundance and diversity of arable

plants and invertebrates.

The fields were spread across the geographical regions (Fig. 4.2) and con-

ditions under which these four crops are grown commercially in mainland

UK and each field was sampled for one cropping year (Firbank et al., 2003)

between 2000 and 2004. Fields ranged in size from 2.7 to 70.8 ha, with an

average of 11 ha, approximately 80% of which had hedgerows. Each field

was split in half, and the two treatments (GMHTor conventional) were allo-

cated at random to half-fields (Perry et al., 2003). Herbicide management

was applied by the farmers to the conventional varieties of the crops at levels

designed to achieve cost-effective weed control (Champion et al., 2003).

Applications of herbicides varied between fields from 1 to 6 applications

of either dicotyledon (broadleaved) or monocotyledon grass-specific herbi-

cides or broad-spectrum herbicides against all weeds. Fields also received up

to five applications of insecticide (including seed treatments) that could

directly affect invertebrates.

2.1.2 Pitfall-trapping soil-surface-active invertebrates
Pitfall traps were used to survey populations of invertebrates active at the soil

surface (after Luff, 1996) and consisted of 6 cm diameter plastic cups, sunk in

the ground with the cup-lip level with the soil surface. Each was two-thirds

filled with a 50:50 mixture of tap water and ethylene glycol as a preservative.



Figure 4.2 Distribution of the 66 spring-sown beet, 59 spring maize, 67 spring oilseed
rape and 65 winter oilseed rape fields sampled as part of the farm-scale evaluations
(FSE) of GMHT crops (Bohan et al., 2005; Champion et al., 2003).
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Twelve traps were distributed across each half-field, with single traps posi-

tioned at 2, 8 and 32 m from the crop edge along 4 of 12 transects (Fig. 4.3).

Transect numbers 1, 5, 7 and 12 were used for pitfall trapping, and these

were chosen to avoid the proximity of other experimental protocols where

possible. Trapping was conducted in the spring (April/May) and summer

(June/July), and in the late summer (August) for the spring-sown crops

and in the autumn (September/October), spring (April/May) and summer



Figure 4.3 Locations of sample points in a standard half-field. Solid lines, transects
numbered 1–12; þ, Vortis suction sampling; x, Pitfall-trap sampling.
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(June/July) for winter oilseed rape. On each occasion traps were opened for

two weeks. These dates were chosen both to reflect the invertebrate phe-

nologies and the timing of herbicide management. When returned to the

laboratory, the samples were preserved by freezing or placement in 70%

alcohol, before identification under a binocular dissecting microscope. All

species of carabid beetles were counted and identified, as were five taxa

of Araneae: the families Linyphiidae and Lycosidae, the genus Pardosa,

Erigone agg. (consisting of E. atra and E. dentipalpis) and the species

Lepthyphantes tenuis. Collembola and staphylinid beetles were counted at

the family level. Nomenclature followed Lindroth (1974), Forsythe

(2000), Speight et al. (1986) and Aukema (1990) for Carabidae; Fjellberg
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(1980) for Collembola; Unwin (1988) for Staphylinidae; andRoberts (1993)

for Araneae. Data were then pooled, by summation to give in each field a

year-total estimate of the pitfall count of each species sampled.

2.1.3 Vortis suction sampling invertebrates on or around the weeds
In-field Vortis suction sampling for invertebrates living either on the weeds

or on the underlying soil surface was conducted after Haughton et al. (2003).

Five 10-sec suction samples, spaced 1 m apart, were taken at 2 and 32 m

along transects 2, 6 and 12 (Fig. 4.3). Samples for each position were bulked

together. Samples were taken in June and August for the spring-sown crops

and on one occasion in the autumn (September/October) and one in the

summer (May/June) for winter oilseed rape. Identification and counting

of the invertebrates were done to the taxonomic levels specified by

Haughton et al. (2003) and Roy et al. (2003) and followed Roberts

(1993) for Araneae, Fjellberg (1980) for Collembola, Southwood and

Leston (1959) for Heteroptera and Lindroth (1974) and Forsythe (2000)

for Carabidae. The count data were then pooled, by summation to give

in each field a year-total estimate of the Vortis count of each species sampled.

2.1.4 Trophic-functional type classifications for the invertebrates
Detailed measurements of life history and resource acquisition strategies are

not available for many species sampled in the Vortis and pitfall protocols.

Consequently, we classified the sampled invertebrates into ‘trophic-

functional types’ using more general traits that reflect their functional, pri-

marily resource acquisition and attributes. FollowingHawes et al. (2009) and

the simplifications made by Caron-Lormier et al. (2009), primary and sec-

ondary consumers were subdivided according to three characteristics:

1. Trophic behaviour. Phytophagous insects were divided into leaf chewers,

sap feeders and pollen or seed feeders. Predators were defined as special-

ists (mono- and oligophagous species) or generalists (polyphagous spe-

cies). The remaining groups were detritivores/fungivores, omnivores

and mixed feeding groups (taxa that include both herbivorous and pred-

atory species) and parasitic wasps.

2. Body size. Invertebrates were classified into four size classes (<4 mm,

4–5.9 mm, 6–8 mm and >8 mm) that are highly correlated with both

prey selection behaviour and vulnerability to different predators.

3. Activity pattern. As with body size, activity level and period influences

foraging behaviour and apparency. Activity level was divided into

mobile or sessile categories. Mobile invertebrates were further separated
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into the activity periods: diurnal, nocturnal and both. As the Vortis sam-

pling was carried out during daylight hours only, invertebrates in the

strictly nocturnal category were not found in this protocol. Sessile organ-

isms such as aphids are difficult to place into an activity category because

they are essentially inactive in their apterous form (at least as sampled in

the FSEs).

The invertebrate taxa recorded in the Vortis and pitfall samples were

assigned to these functional types using information from Southwood and

Leston (1959), Roberts (1993), Luff (1978), Fjellberg (1980) and the Hand-

books for the Identification of British Insects, Royal Entomological Society

of London (see Appendix B). Although other general ecological traits, such

as dispersal mechanism and reproduction were not included, these types

reflect a range of feeding strategies important in considering trophic rela-

tions, and encompass the main types of invertebrates sampled in the FSE.

It should be noted that this particular functional type representation is only

one of many that could be conceived for the invertebrates.

2.2. Machine learning of probabilistic food webs from data
Machine learning, in the form of A/ILP, has recently been used to automat-

ically generate a probabilistic food web from FSE data (Bohan et al., 2011;

Tamaddoni-Nezhad et al., 2012a). Here, we review the machine learning

approach for generating probabilistic food webs from data and extend the

initial study by: (1) presenting new food webs generated from pitfall and

merged Vortis and pitfall data; (2) describing a new approach for cross-

validation of food webs across different crops; and (3) describing a novel

approach for learning trophic links between functional groups and evaluat-

ing new functional food webs learned from Vortis data.

2.2.1 Abduction of trophic relations from FSE data
The FSE data include information about the change in the abundance of

invertebrates between the current, conventional herbicide management

of spring-sown maize (M), beet (B) and oilseed rape (R) and winter-sown

oilseed rape (W), and the herbicide management of GMHT varieties of the

same crops using a split-field design. We used FSE data to measure a treat-

ment effect ratio: counts from each conventional and GMHT half-field pair

were converted to a geometric treatment ratio, as used in Haughton et al.

(2003). Counts were log-transformed, using formula Lij¼ log10(Cij þ1),

where Cij is the count for a species or taxon in treatment i at site j. Sites

where (C1jþC2j)�1 were removed from the learning dataset (as in
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Haughton et al., 2003). The treatment ratio, R, was then calculated as

R¼10d where d¼ (L2j�L1j). Following the rationale in Squire et al.

(2003), important differences in the count between the two treatments were

considered to be greater than 50%. Thus, treatment ratio values of R<0.67

and R>1.5 were regarded as important differences in count with direction

of down (decreased) and up (increased) in the GMHT treatment, respec-

tively. This information on up and down abundances has been considered

as our observational data for the learning that can be represented by predicate

abundance(X, S, up) (or abundance(X, S, down)) stating the fact that the abun-

dance of species X at site S is up (or down).

The existence of a trophic relationship between species is the knowledge

gap that needs to be filled by machine learning. This can be represented by

an abducible predicate eats(X, Y) capturing the hypothesis that species X eats

species Y. It is clear that this problem has properties that require an abductive

learning approach such as A/ILP: firstly, the given background knowledge is

incomplete; and secondly, the problem requires learning in the circumstance

in which the hypothesis language is disjoint from the observation language.

In order to use abduction, we also need to provide the rules that describe

the observable predicate in terms of the abducible predicate. An example of

such a rule is shown below:

abundance(X, S, up) if

predator(X) and

co_occurs(S, X, Y) and

bigger_than(X, Y) and

abundance(Y, S, up) and

eats(X, Y).

Similarly, a rule for abundance(X, S, down) can be defined. This rule

expresses the inference that following a management-driven perturbation in

the ecosystem, the increased abundance of speciesX at site S can be explained

by the fact that (1) speciesX eats species Y, and (2) the increased abundance of

species Y. This rule also includes additional conditions to constrain the search

for abducible predicate eats(X, Y). These constraints are (1) X should be a

predator, (2) X and Y should co-occur, and (3) X should be bigger than

Y. Predicates predator(X) and bigger_than(X, Y) are provided as part of the back-

ground knowledge and co_occurs(S, X, Y) is compiled directly from FSE data.

Thismodel describes at an appropriately high level the possible transitive effect

of management leading to increased (or decreased) abundance of species.

Given the model described above and the observational data, a set of

abduced hypotheses, in the form of ‘eats’ relations between species, can be
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generated usingA/ILP as shown in Fig. 4.4. AnA/ILP system such as Progol 5

(Muggleton and Bryant, 2000) can generate abductive hypotheses by

matching observable input against the background knowledge (which

includes rules describing the observable predicate in terms of abducible pred-

icate). In general, many choices for matching could bemade, leading to a vari-

ety of alternative hypotheses and a preference is imposed by Progol 5 using an

information-theoretic criterion known as compression (Muggleton and

Bryant, 2000). Here, compression can be defined as p–n–h, where p is the

number of observations correctly explained by the hypothesis, n is the number

incorrectly explained and h is the length of the hypothesis (e.g., 1 for a single

fact such as a trophic link).

As shown in Fig. 4.4, the output of the learning is a set of abduced

hypotheses, in the form of ‘eats’ relations between species. This can be vis-

ualised as a network of trophic links (the food web) in which the abductive

hypothesis that a particular species a eats a particular species b (eats(a, b)) is

represented by a trophic link from b to a. Figure 4.5 shows the trophic net-

work hypothesised by A/ILP from Vortis sampled invertebrates in the FSE

dataset as appeared in Bohan et al. (2011) and Tamaddoni-Nezhad et al.

(2012a). Each link between a species or taxon represents a learnt ‘eats’ rela-

tionship that could be tested either against the literature or by experimen-

tation. The thickness of the link indicates the estimated probability of

occurrence, based on the relative frequency from 10 random permutations
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of the training data. This probability estimation method is called hypothesis

frequency estimation (HFE).

2.2.2 Hypothesis frequency estimation
We use hypothesis frequency estimation (Tamaddoni-Nezhad et al., 2012a)

to estimate probabilities for hypothetical trophic links based on their fre-

quency of occurrence when randomly sampling the hypothesis space.

HFE is a Probabilistic ILP (PILP) technique that is based on direct sampling

from the hypothesis space. In some ILP systems, including Progol 5.0, train-

ing examples also act as seeds to define the hypothesis space (e.g., a most spe-

cific clause is built from the next positive example). Hence, different

permutations of the training examples define different parts of the hypothesis

space. We use this property to sample from the hypothesis space by random

permutations of the training data. Probability of ground hypotheses can be

estimated based on the frequency of occurrence when random permutations

of the training data (and hence different seeds for defining the hypothesis

space) are considered. Using this technique, the thickness of trophic links

in a probabilistic food web represents probabilities that are estimated based

on the frequency of occurrence from random permutations of the training

data (e.g., see Fig. 4.5). A probabilistic trophic network can be also represen-

ted using standard PILP representations such as Stochastic Logic Programs

(SLPs) (Muggleton, 1996) or ProbLog (De Raedt et al., 2007). For this we

can use relative frequencies in the same way probabilities are used in PILP.

We can then use the probabilistic inferences based on these representations

to estimate probabilities. For example, the probability p(abundance(a, s, up))

can be estimated by relative frequency of hypotheses that imply a at site s is

up. Similarly, p(abundance(a, s, down)) canbe estimated andby comparing these

probabilities we can decide to predict whether the abundance is up or down.

This method has been used in the leave-one-out cross-validation exper-

iments in (Tamaddoni-Nezhad et al., 2012a) to measure the predictive accu-

racies of probabilistic tropic networks. In this chapter, we use HFE together

with a new cross-validation approach that measures predictive accuracies

across different crops.

2.2.3 Cross-validation of food webs across different crops
In this chapter, we use a new cross-validation test strategy to measure the

predictive accuracies of probabilistic trophic networks. This test strategy

is similar to the leave-one-out test described in Tamaddoni-Nezhad et al.

(2012a), however, in the new approach we cluster the data across different
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crops. In this cross-validation method, we evaluate a food web constructed

from a set of crops on unseen data from a different crop. The new cross-

validation method can be summarised as follows:

For each crop c ¼ ‘B’, ‘M’, ‘S’ and ‘W’ do

For each (predator) species s

1) Testcs ¼ the abundance of species s in sites for crop c (leave-out test data)

2) Generate food web Ncs using the data from all crops excluding Testcs
3) Acs ¼ Predictive Accuracy of Ncs on Testcs

End

End

The average of predictive accuracies Acs for a particular crop ‘c’ show

how well the food webs generated from all crops except crop ‘c’ can predict

the data for crop ‘c’. By plotting the average predictive accuracies Acs for all

species and crops we can generate the learning curves. Predictive accuracy is

defined as the proportion of correctly predicted left-out test examples. This

cross-validation method is used in Section 3.3.

2.2.4 Machine learning of functional food webs
The limitations of the species-based approaches and the need for considering

functions were discussed in Section 1.2. In particular, the trophic interactions

between functional groups of species are important in functional ecology for

predicting changes in agro-ecosystem diversity and productivity (Caron-

Lormier et al., 2009; Duffy, 2008). Here, we extend the initial study in

Bohan et al. (2011) to also learn and evaluate functional food webs directly

from the same data used in the initial study to learn species-based food

webs, by assuming that the functional types of species are given as part of back-

ground knowledge. In this new setting, the abducible predicate eats(A, B) is

defined between functional groups rather than (individual) species. The

observable predicate is the same as before: abundance(X, S, up) (or abundance(X,

S, down)) indicates that the abundance of X at site S is up (or down). Given this

information and the background information on functional type of each spe-

cies, trophic networks for functional groups can be learned using a similar

approach to the one used for learning species-based food webs, as described

in the previous sections.We also need a rule that describes the observable pred-

icate in terms of eats relation between functional groups as shown below:

abundance(X, S, up) if

predator(X) and

co_occurs(S, X, Y) and

bigger_than(X, Y) and
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abundance(Y, S, up) and

ft(X, XFunc_ID) and

ft(Y, YFunc_ID) and

eats(XFunc_ID, YFunc_ID ).

This rule is similar to that used for learning species-based food webs,

except that instead of defining the abducible predicate eats on the species

X and Y, it is defined on the functional types for X and Y, that is, XFunc_ID

and YFunc_ID. Functional types of species are defined by the predicate ft that

is given as part of the background knowledge. As discussed in Section 2.1,

species can be classified into ‘trophic-functional types’ using general traits

that reflect their functional, primarily resource acquisition and attributes.

As in the previous setting for learning species-based food webs, an A/ILP

system such as Progol 5 can generate abductive hypotheses in the form of eats

relation between some functional types, such that a positive compression

over data is provided by the suggested hypotheses.
2.3. Automatic corroboration of trophic links using text mining
2.3.1 Text mining and literature networks
The hypothetical Vortis food web proposed by machine learning (see

Fig. 4.5) was examined manually and comparison with the literature showed

that many of the links are corroborated (Bohan et al., 2011). Figure 4.6

shows manual corroboration for some prey (columns) and predator (rows)

species combination in Fig. 4.5. Each pairwise hypothesised link has a

strength (i.e., frequency between 1 and 10) followed by references (in square

brackets) in the literature (listed in Appendix A) supporting the link. This

table is a subset of the manual corroboration presented in Bohan et al.

(2011) and only prey/predators are shown that have at least one link with

strength more than or equal to 7. This table shows that many of the links,

suggested by the model, are corroborated by the literature. In particular,

links in the model ascribed with high frequency correspond well with those

having multiple references in the literature. For example, there are 15 links

with more than 2 references and 8 of these are with frequency 10 and

from these all the 3 links with 3 references (marked by green circles) have

frequency 10. In addition, there are also highly frequent links with no ref-

erences in the literature, and these could potentially be novel hypotheses for

future testing with targeted empirical data.

A manual corroboration is therefore useful to confirm some of hypoth-

eses and also to identify potential novel hypotheses. However, manual
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pairwise hypothesised link has a strength (i.e., frequency between 1 and 10) followed by references (in square brackets) in the literature (listed
in Appendix A) supporting the link. Multiple references are indicated by yellow and green circles and potential novel hypotheses by dashed
red circles.
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corroboration of hypothetical trophic links is difficult and requires signifi-

cant amounts of time. Here, we demonstrate how a text-mining technique

can be adopted for automatic corroboration of hypothetical food webs from

ecological resources. This is particularly useful for larger food webs such as

the pitfall food web and merged Vortis and pitfall food web that we consider

in this chapter (see Figs. 4.8 and 4.11).

Many existing text-mining techniques, as used in different domains,

work by relating given terms based on their co-occurrence in the literature.

For example, PubGene (Jenssen et al., 2001) is a public web service that can

generate a network of possible relationships between biomedical terms based

on their co-occurrence in medical texts from MEDLINE database. In a lit-

erature network like this the co-occurrence of a pair of entities (e.g., genes)

is shown by an edge annotated by the number of papers where the

co-occurrences have been found.

2.3.2 Generating literature network for the species in a food web
The text mining of trophic links used in our project was inspired

by PubGene and other similar text-mining tools that are based on

co-occurrences: we search for co-occurrences of pairs of ecological species

that are related by a trophic interaction lexicons, for example, eat, feed, prey

and consume.

Figure 4.7 shows manual corroboration versus automatic corroboration

using text mining, illustrating how a literature network can be generated

automatically based on the co-occurrences of predators/prey in the relevant

context. The pairs of predators/prey species (from a given food web) and the

interaction lexicons (from a dictionary file) are used to generate queries. Then

the text-mining module searches through the text of available publications

to match each query. The publications can be in a local database or accessed

via a search engine (e.g., Google Scholar). The output of the text mining for

each query is the number of publications that matched that query. The out-

put for a whole food web can be represented by a literature network in

which the number associated with each edge is related to the number of

papers where the co-occurrences of the predator/prey species have been

found with at least one trophic interaction lexicon (eat, feed, prey, or

consume).

We refer to the numbers of references generated by this approach as Lit-

erature Hits (LH). LH is not as accurate as manual corroboration; however,

it would be a useful estimate for comparison between different links. In

order to normalise the number of co-occurrences for a pair of species we



Food web

da

mi

Figure 4.7 Manual corroboration versus automatic corroboration. In automatic corroboration, a literature network is automatically generated
for a food web using text mining from publications.
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divide it by the sum of the occurrences of each individual species extracted

from the same sources. We refer to this as text-mining ratio (TMR). The

text-mining module is implemented as a program that reads queries from

a file and returns number of references, that is, the LH.

There are many publication databases for gene and protein interactions,

which has been used for text-mining purposes. However, the databases that

can be used for trophic interactions are very limited. We examined several

general publications databases including Web of Knowledge,1 Web of

Science2 and Cab Direct.3 However, to gain access to a larger and more cur-

rent set of publications, the search engine used in this study is Google

Scholar.4 Unlike most of other available publication databases, this method

allows us to have access to full text as well as abstract and keywords. The

numbers of hits is therefore based on the co-occurrences in the abstract

and full text (whenever available).

3. RESULTS

3.1. Pitfall versus Vortis food webs
1 http:/
2 http:/
3 http:/
4 http:/
The pitfall dataset is larger than that for the Vortis samples and therefore the

newly learned food webs are significantly larger than the initial webs.

Figure 4.8 shows the food web resulted from pitfall data. Thickness of tro-

phic links represent probabilities that are estimated based on the frequency of

occurrence from 10 random permutations of the training data using the HFE

approach described in Section 2. The food web constructed from pitfall data

is more complex than the Vortis food web. While the number of nodes is

very close to the number of nodes in the Vortis food web (51 vs. 48), the

number of trophic links in pitfall food web is more than two times the num-

ber of links in Vortis food web (318 vs. 137). In other words, more trophic

interactions can be learned from pitfall data.

This increase in link density could be partly explained by the different

sample coverage of the two methodologies. The Vortis only samples those

invertebrate species present on the surface of plants or the soil at the time of

sampling. The protocol therefore only samples day-active species that are

small or weak enough to be sucked up. As open traps, the pitfall traps can
/www.webofknowledge.com

/scientific.thomson.com/products/wos/

/www.cabdirect.org/

/scholar.google.com

http://www.webofknowledge.com
http://www.webofknowledge.com
http://scientific.thomson.com/products/wos/
http://scientific.thomson.com/products/wos/
http://www.cabdirect.org/
http://www.cabdirect.org/
http://scholar.google.com
http://scholar.google.com
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Figure 4.8 New hypothetical food web constructed by machine learning from pitfall data.
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sample much larger species and this sampling takes place over a much longer

period, while the traps are open, collecting both day- and night-active spe-

cies and increasing overall sample diversity.

Figure 4.9 shows the frequencies of common links from Vortis versus

pitfall in a scatter diagram. Figure 4.10 shows a food web constructed by

common links from Vortis and pitfall. The Pearson correlation between

Vortis and pitfall frequencies is 0.773: thus the frequencies of common links

from Vortis and pitfall data are correlated, which suggest that the method

used to generate the trophic links produces compatible results using data

from two different sampling methods and is therefore robust. It also suggests

that the Vortis and pitfall data are sufficiently compatible to be merged

together for learning a larger food web.

The food web learned from merged Vortis and pitfall data is shown in

Fig. 4.11 and has 72 nodes and 407 edges. Note that this food web is not

necessarily the same as that constructed by merging trophic links from

Vortis and pitfall food webs. For example, machine learning can suggest

trophic links between species present in one data as predator and species

sampled in the other as prey: these trophic relations cannot be captured

by merging trophic links from Vortis and pitfall food webs. From a

machine learning point of view, one would also expect some sort of

sharpening and convergence of the previous hypotheses as the observa-

tional data increase.
3.2. Functional food webs
Figure 4.12 shows trophic network constructed by learning trophic interac-

tions between functional groups from Vortis data. In this food web, each

functional group is represented by a species that can be viewed as an arche-

type for the functional group as in Caron-Lormier et al. (2009).

The functional food web appears to bear all the hallmarks we would

expect of the species-based food web: the detritivores and many small her-

bivores sit at the base of the structure while predators of various sizes sit at

higher trophic levels, capped by the generalist functional group to which the

large carabids belong. The spiders appear to reside at the base of the web and

while these animals are small, they are predators and at least at face value they

would appear to be in a rather unexpected position. Recent work on pre-

dation on spiders, however, has suggested that this hypothesised position in

an animal–animal network is correct (Davey et al., 2013), at least for part of

the agricultural season.
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Figure 4.9 Frequencies of common links from Vortis (red) and pitfall (blue) data. The Pearson correlation between Vortis and pitfall frequen-
cies is 0.773.
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Figure 4.10 Common trophic network from Vortis and pitfall data.
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3.3. Cross-validation of species and functional food webs
across different crops

Evaluating food webs constructed from a set of crops on unseen data from a

different crop was done by repeatedly constructing food webs from all crops

data, excluding test data from a particular crop ‘c’ and measuring the predic-

tive accuracy on these test data. Figure 4.13A and B shows predictive accu-

racies of Vortis species-based and functional food webs on different crops.

The average predictive accuracies (the proportions of correctly predicted

left-out test examples) are reported with standard errors associated with each

point. Due to different default accuracies for different crops, the learning cur-

ves start from different levels of accuracies. However, the overall increase in

the average accuracies (when 0–100% of the training examples are provided) is

around 16 for crops M and S and around 18 for crops W and B in the species-

based food webs and around 16 for crops S and W and around 20 for crops

M and B in the functional food webs. By averaging the predictive accuracies

over different crops, we get overall predictive accuracies for species and func-

tional food webs, as shown in Fig. 4.13C. According to this figure, in all cases

the predictive accuracies were significantly higher than the default accuracy of

the majority class (55.6% for Vortis data).

Predictive accuracies for the functional foodwebs were the same or higher

than their species-based counterpart, particularly at low to medium size of

training examples. This suggests that the functional food webs are at least as

accurate as their species-based counterpart, despite being much more com-

pact. The apparent decline in the predictive accuracy for the functional food

webs after the 50% point could be related to overfitting the training data.

Figure 4.14A–C shows similar learning curves for pitfall food webs and

compare predictive accuracies of species and functional food webs when dif-

ferent percentage of the training data is provided. As shown in the graphs,

the differences between the default accuracies for different crops are less than

those from Vortis data, which makes the comparison easier. As for the Vortis

data, the food web tested on crop B appear to have the highest overall



Figure 4.11 Trophic network from merged Vortis and pitfall data. The information in this probabilistic food web is also given in tabular format in
Appendix A.
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Figure 4.12 Functional food webs learned from Vortis data. Thickness of trophic links
represents probabilities estimated using HFE.
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increase in the predictive accuracies, both in the species-based and func-

tional food webs (Fig. 4.14A and B). Figure 4.14C suggests that the pitfall

functional food webs closely follow their species-based counterpart, con-

firming what was observed for Vortis food webs, that is, functional food

webs can accurately estimate species-based food webs.

A comparison between Figs. 4.13A and 4.14A shows that the pitfall food

webs have a higher overall increase in predictive accuracy (19 vs. 16), which

suggest a relatively higher accuracy for pitfall food webs. This difference

probably stems from the differences between the two protocols: the pitfall

dataset is larger than the Vortis dataset, and it contains both day- and

night-active species, resulting in a food web with more edges.

It would be interesting to test how sensitive the functional food webs are

with respect to the particular choice of functional groups: we are currently

working on a new approach aimed at learning trophic links as well as func-

tional groups from data, using predicate invention in a meta-interpretive

learning setting (Muggleton et al., 2013) to learn the best functional group-

ing from data and does not require a pre-specified grouping.

3.4. Automatic corroboration of learned trophic links
3.4.1 Common trophic network
Here we use the automatic corroboration approach described in Section 2.3

and provide the pairs of trophic interactions from the common trophic

interaction as input to generate a literature network. Figure 4.15 shows a



Figure 4.13 Learning curves for Vortis probabilistic food webs: (A) species food web
and (B) functional food web on different crops; (C) overall species and functional food
webs.
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Figure 4.14 Learning curves for pitfall probabilistic food webs: (A) species food web
and (B) functional food web on different crops; (C) overall species and functional food
webs.
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Figure 4.15 A literature network for common trophic links from Vortis and pitfall data.
The number on each edge represents the number of papers where the co-occurrences
of species have been found with a trophic interaction lexicon.
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literature network generated for the common trophic links from Vortis and

pitfall data. The number on each edge represents the number of papers

where the co-occurrences of species have been found with at least one tro-

phic interaction lexicon (eat, feed, prey or consume). These numbers are

based on the co-occurrences in the abstract and full text (whenever available)

using Google Scholar as the search engine for the text mining. In order to
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normalise the number of co-occurrences, we divide them by the sum of the

occurrences of each individual species in the pair to compute the TMR.

Here, we test whether the TMRs from the literature network in

Fig. 4.15 are correlated with: (1) the frequencies of learned trophic links

(HFE); and (2) the number of references from the manual corroboration

used by Bohan et al. (2011).

First, we test if the frequencies of common trophic links and the TMR

for these links are correlated using the probabilistic food webs generated

from Vortis and pitfall data and considering the frequencies of links common

to both methods. As in Tamaddoni-Nezhad et al. (2012a), we removed spe-

cies that only have weak links (Araneae and Linyphiidae). We also use the

literature network generated for the common trophic links from Vortis and

pitfall data as shown in Fig. 4.15. This includes the number of

co-occurrences of a pair of species in the common trophic network.

Figure 4.16 shows the correlation between the hypothesis frequencies for

common Vortis links and the TMR. Spearman’s correlation r value is

0.699 with p-value 0.01, so the frequencies are strongly correlated.

This figure also suggests that the points which are uncorrelated corre-

spond to cases with high values of HFE but low values for TMR: we will

return to these cases later.

In the second experiment, we test if the TMR and the number of ref-

erences from manual corroboration are correlated, using the number of

references in the literature (from manual corroboration) for common Vortis

links. Spearman’s correlation r value is 0.731 with p-value 0.01, suggesting
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Figure 4.16 Correlation between the hypothesis frequencies for common links and the
text-mining ratio (TMR). Spearman’s correlation value, r¼0.699 with p�0.01.
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that the automatic corroboration using text mining is consistent with the

manual corroboration by the domain experts (Fig. 4.17).
3.4.2 Merged trophic network
We use the automatic corroboration approach described in Section 2.3 and

provide the pairs of trophic interactions from the merged network as input

to generate a literature network. Figure 4.18 shows a literature network that

is generated for the merged trophic network from Vortis and Pitfall

data (Section 3.1). As for the common literature network, each edge repre-

sents co-occurrences of species, however, instead of using numbers, the

thickness of each edge now represents a degree of strength based on the

number of LH of species that have been found with at least one trophic

interaction lexicon (eat, feed, prey or consume). These numbers are based

on the co-occurrences in the abstract and full text (whenever available) using

Google Scholar as the search engine for the text mining.

The frequencies of the learned trophic links (HFE), the number of hits from

the literature (Lit. Hits) and the TMR for the trophic network learned from

Vortis and pitfall are given in Appendix B. As in Tamaddoni-Nezhad et al.

(2012a), we removed weak links with frequencies less than 3 (out of 10) from

the analysis. We computed Spearman’s correlation between the frequencies

(HFE) and the total number of hits from the literature (Lit. Hits). Unlike the

common literature network, a manual corroboration for merged trophic links

is not available and sowe can only study the correlation between the frequencies

of the learned trophic links (HFE) and the automatic corroboration.
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Figure 4.18 Literature network for merged Vortis and pitfall data.
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Figure 4.19 shows the correlation between the hypothesis frequencies

(HFE) for merged trophic links and the total number of hits for these links

(Lit. Hits). Spearman’s correlation r value is 0.821 with p-value 0.01: fre-

quencies of merged trophic links (using HFE) were consistent with the total

text mining hits for those links, especially for links with high HFE values.

This figure also suggests that the points which are not well correlated

correspond to cases with high values of HFE but low values for total number

of hits: that is, there are trophic links which have been learned with high

frequencies but with little or no references in the literature. These out-

of-correlation cases are comparable with potential novel hypotheses marked

by dashed red circles in Fig. 4.6 (hypotheses with high values of HFE and no

references in the literature), and merit further study to test whether they are

realised in nature.

In general, the numbers of references found by automated corrobora-

tions are higher and also include those found by manual corroboration.
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However, the automated corroboration is not as accurate as manual corrob-

oration and the results also include the co-occurrences that are not directly

relevant to a trophic interaction. Nevertheless, the numbers of references

generated by automated corroboration are useful as a relative measure for

comparison between different trophic links.

4. DISCUSSION AND CONCLUSIONS

We find that, as with the much smaller Vortis dataset, the machine
learning methodology developed by Bohan et al. (2011) produced convinc-

ing food webs from a pitfall sampling dataset from UK agricultural fields.

Comparison of the trophic links between species present in both the learned

Vortis and pitfall webs revealed a significant correlation, consistent with two

non-independent a priori expectations: firstly, that for a learning methodol-

ogy to be working correctly it should produce similar links from indepen-

dent datasets, such as the Vortis and pitfall data; and secondly, that we would

expect that similar network structure would be learned amongst the same

suite of species sampled using different protocols. The A/ILP learning meth-

odology does indeed appear to be working and we are learning the same
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information from distinct protocols, and we take this to mean that we can

merge these two datasets and learn larger networks of trophic interactions.

Comparison of our automatic validation methodology with both a man-

ual literature review, for the Vortis-learned food web, and the web learned

from the merged Vortis and pitfall data also produced significant rank cor-

relations, suggesting that we can validate, automatically, food webs using

large online databases and that the food web learned from the merging of

the datasets has a valid footprint in the literature. In essence, the data pro-

duced by combining distinct protocols can be learned to produce a valid

food web. Finally, we have shown that functional approaches to trophic net-

works appear to have similar explanatory power to species-based food webs,

but with apparently greater parsimony.

This chapter brings together a series of important developments that we

believe could, potentially, greatly facilitate and speed up the construction of

food webs and advances in network ecology in general, and not just for agro-

ecosystems. Prior to developing the methodologies we describe here, con-

struction of empirical food webs, or any ecological interaction network,

entails observation of the interactions between species. This has typically

been done through direct observation in the field (e.g., Woodward et al.,

2012) and laboratory and/or through more indirect methods such as

searching the literature for published evidence of interactions (e.g., Layer

et al., 2010). In a system with 300 species, such as might exist in a typical

arable agricultural system in northern Europe, this could entail researching

evidence of around 90,000 interactions (3002 interactions in a system of 300

species, with cannibalism) at a huge cost in terms of time and money. While

some ecological knowledge of interactions between species would greatly

reduce the number of interactions to be searched, the amount of work

involved is still considerable.

Our methodologies move things on to a rather different position. Now it

should be possible, with appropriate baseline data, to: (i) automatically learn

networks of interactions, quickly and efficiently; (ii) validate those networks

using automated validationmethodologies; and (iii) in place of searching for/

observing interactions between all the species in the system,only then attempt

to directly observe those species interactions that strike us as unexpected, such

as the ‘spiders as prey’ links (Bohan et al., 2011; Davey et al., 2013), saving

considerable research time and money. Moreover, our work suggests that

data fromdifferent protocols can bemerged, following satisfaction of the tests

we have developed, to produce much larger networks. In principal, we can

also show that functional descriptions, as exemplified by the functional



269Construction and Validation of Food Webs

Author's personal copy
description developed by Caron-Lormier et al. (2009) and Hawes et al.

(2009), have considerable power of explanation for agricultural food webs.

As with the work of Bohan et al. (2011), the results we present are indi-

vidual, hypothetical ‘eats’ trophic relationships that have been assembled

into candidate heterotrophic, arable food webs that are relevant to the

national scale. The learned webs are for the soil-surface active (pitfall-trap

protocol) and epigeal (Vortis protocol) invertebrates present within the ara-

ble system and the learning allows us to consider, in turn, each hypothesised

trophic link. The food web learned from merged data is richer than either

the individual pitfall or Vortis food webs alone or merged together. For

example, machine learning can suggest trophic links between species present

in one dataset as predator and species sampled in the other as prey. These

trophic relations cannot be captured by simply merging trophic links from

Vortis and pitfall food webs.

As with the findings of Bohan et al. (2011), detritivore Collembola were

hypothesised to be the predominant prey items within the putative

network, as expected from direct observation. The learnt food web suggests

that these large generalist or omnivorous carabid beetles were indeed the

important predators within the food web; an expectation also supported

by their high abundance and large biomass in the two sampling protocols.

As previously, members of the Pterostichus, Nebria, Bembidion and Trechus

genera were hypothesised to prey upon a variety of species and taxa, includ-

ing one another, suggesting that predation within the guild of predators

could play an important role in the structuring and dynamics of agricultural

ecosystems.

Trophic links discovered through learningmight be tested formally using

molecular diagnostics, or the more traditional gut dissection and observa-

tional methodologies (Traugott et al., 2013). However, we feel that beyond

an acceptable period of testing to show that learning methods produce valu-

able trophic hypotheses in different situations and for different species com-

binations, repeated testing of whole networks would miss the value of the

approach, and resources could be better directed elsewhere. Automated dis-

covery will have most value when it is used for rapid network learning with-

out the burden of observation that is currently required for food web

construction (Ings et al., 2009). After the method has ‘proved its mettle,’

however, such network learning and generation will still require some level

of testing and verification. This should probably be limited to testing links

that were not expected, or cannot be accounted for, rather than extensive

retesting of well-established trophic interactions.
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The example of the spiders would appear as a model for this statement: in

Bohan et al. (2011), and again here, spiders were found to be at the base of

the food web, as prey. Yet the very great majority of spiders, and all those in

the dataset, are obligate predators (Bell et al., 2005). Why were these at the

base of the food web? Our initial concern was that this positioning was an

artefact of the small size of the spiders, identifying them by default as prey

items for the learning. Recently, however, Davey et al. (2013) tested this

learnt trophic link explicitly using molecular methods and found that this

apparently illogical hypothetical link was indeed supported by the molecular

data: carabids, such as P. melanarius, prey extensively upon spiders; a finding

corroborated by Eitzinger and Traugott (2011).

Bohan et al. (2013) raised the question of generality in ecological data and

‘growing’ larger datasets for learningwider networks. For them, onemeasure

of generality was whether the links learnt for a suite of species in two inde-

pendent datasets, say the data from the Vortis and pitfall protocols, were sim-

ilar; put simply, the Vortis ‘eats’ predicates should apply with high predictive

power to the pitfall, and vice versa. By this criterion, the learningmethods are

general because the link structures learnt from the two protocols were signif-

icantly correlated. It further suggests that the two protocols contain the same

information; at least as far as shared species. Thus, we argue that the sets of

treatment ratios calculated from theVortis and pitfall sample data can bemer-

ged and we could ‘grow’ the food web by learning hypothetical trophic links

across a dataset larger than that derived from any one sampling protocol. This

is potentially important as many ecosystems have physical attributes, such

as the water column and benthos in aquatic systems, that necessitate the

use of differentmethods to sample different habitats and parts of the foodweb.

The text-mining approach, for validating learnt food webs, presented in

this chapter was inspired by PubGene and other similar text-mining tools

that are based on the co-occurrence of given terms. For our case, however,

co-occurrences of pairs of ecological species are considered that are related

by trophic interaction lexicons, that is, eat, feed, prey, consume. Inspection of

the results suggests that the numbers of references generated by automated

corroboration are useful as a relative measure for comparison between dif-

ferent trophic links. In general, the numbers of references found by auto-

mated corroborations are higher and also include those found by manual

corroboration. However, the automated corroboration is not as accurate

as manual corroboration and the results also include the co-occurrences that

are not directly relevant to a trophic interaction. The results presented in this

report indicate the feasibility of automatic corroboration of food webs that

are too large for manual corroboration. The results also suggest that the
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frequencies of merged trophic links (using HFE) are consistent with the total

number of hits for these links. As future work, we would like to improve the

accuracy of automated corroboration by extending the approach to include

more advanced techniques, for example, natural language processing. How-

ever, the results presented in this chapter indicate the feasibility of automatic

corroboration of food webs. Moreover, the current approach was able to

successfully identify hypothetical trophic relations for which there are little

or no information in the literature (potential novel hypotheses).

This is to our knowledge the first time that text mining has been used to

automate corroboration of food web particularly by full text searches

through ecological papers. The text-mining work presented here can be

viewed as a first step towards automatic corroboration of machine learned

food webs and we believe that the initial results are encouraging.

Using functional approaches for understanding and predicting system

change is currently a topic of much debate amongst ecologists in both ter-

restrial and aquatic systems (e.g., Friberg et al., 2011). Functional explana-

tions potentially have value as a synthetic taxonomy for the organisms

present in agriculture. Whereas species presence changes between crops

and before/after management, and therefore species-based webs of these sys-

tems might be expected to have low generality, functionally based webs

could allow relatively straightforward analysis and prediction of ecological

differences between crops or managements, while preserving some of the

details of diversity that humans prize. Machine learning approaches might

be used to provide a test of ecological functionality. Using the ecosystem-

wide description of the arable food web, it might be possible to ask whether

species- or functionally based descriptions yield food webs that have greater

parsimony and might, therefore, be more robust predictors of the effects of

environmental change on agro-ecosystem diversity and productivity.

We demonstrated that a functional network, constructed by learning tro-

phic links between functional groups is at least as accurate as the trophic net-

work for individual species, despite being less complex (i.e., having fewer

nodes and edges). This could offer insights into the role of trophic unique-

ness and functional redundancy in natural food webs. We believe that this

chapter represents a breakthrough for ecosystem and food web research,

which should lead to important advances in ecological theory and improved

management of ecosystems under environmental change. While we envis-

age immediate opportunities to apply this knowledge to optimise the deliv-

ery of food and other ecosystem services from agricultural land, the next step

is to demonstrate whether functional explanations learned in one cropping

situation also have predictive value for novel situations.
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APPENDIX B

Hypotheses frequency estimation (HFE), literature hits and text-
mining ratio (TMR) for pair of predator/prey for food web and literature

network generated from merged Vortis and pitfall data.
Predator
 Prey
 HFE
 Lit. hits
 TMR
Bembidion lampros
 Lepthyphantes tenuis
 10
 48
 0.026
Trechus quadristriatus
 Bembidion tetracolum
 10
 65
 0.054
Pterostichus cupreus
 Agonum dorsale
 9
 97
 0.081
Loricera pilicornis
 Bembidion aeneum
 9
 41
 0.037
Bembidion guttula
 Isotomidae
 10
 3
 8.049e�04
Leistus spinibarbis
 Isotomidae
 8
 1
 2.773e�04
Agonum dorsale
 Bembidion lampros
 9
 202
 0.105
Asaphidion stierlini
 Isotomidae
 7
 1
 2.826e�04
Carabid larvae
 Trechus quadristriatus
 8
 45
 0.031
Continued
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Predator
 Prey
 HFE
 Lit. hits
 TMR
Nebria brevicollis
 Lepthyphantes tenuis
 5
 32
 0.016
Pterostichus melanarius
 Sminthuridae
 10
 19
 5.000e�03
Calathus fuscipes
 Isotomidae
 10
 3
 7.145e�04
Pterostichus cupreus
 Notiophilus biguttatus
 7
 52
 0.033
Calathus fuscipes
 Bembidion guttula
 9
 37
 0.038
Pterostichus niger
 Isotomidae
 10
 3
 6.749e�04
Carabid larvae
 Bembidion lampros
 5
 58
 0.032
Agonum obscurum
 Clivina fossor
 8
 13
 0.014
Bembidion lampros
 Poduridae
 10
 4
 1.825e�03
Pterostichus niger
 Trechus quadristriatus
 10
 84
 0.045
Trechus quadristriatus
 Bembidion

quadrimaculatum
10
 78
 0.054
Pterostichus niger
 Stomis pumicatus
 9
 58
 0.042
Stomis pumicatus
 Bembidion tetracolum
 10
 30
 0.043
Coccinelid larvae
 Demetrias atricapillus
 4
 0
 0.000eþ00
Bembidion biguttatum
 Lepthyphantes tenuis
 9
 2
 2.915e�03
Nebria brevicollis
 Agonum obscurum
 5
 13
 8.398e�03
Pterostichus strenuus
 Entomobryidae
 10
 2
 6.341e�04
Bembidion

quadrimaculatum
Sminthuridae
 10
 1
 4.558e�04
Bembidion lunulatum
 Lepthyphantes tenuis
 10
 4
 5.908e�03
Carabid larvae
 Notiophilus biguttatus
 7
 54
 0.036
Asaphidion stierlini
 Lepthyphantes tenuis
 5
 2
 3.350e�03
Coccinelid larvae
 Poduridae
 4
 2
 2.186e�03
Agonum dorsale
 Entomobryidae
 10
 15
 4.583e�03
Pterostichus strenuus
 Bembidion aeneum
 9
 27
 0.044
Synuchus nivalis
 Notiophilus biguttatus
 5
 20
 0.018
Bembidion obtusum
 Sminthuridae
 10
 4
 2.096e�03
Nebria brevicollis
 Poduridae
 8
 5
 2.126e�03
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Predator
 Prey
 HFE
 Lit. hits
 TMR
Stomis pumicatus
 Entomobryidae
 10
 2
 6.513e�04
Nebria brevicollis
 Notiophilus biguttatus
 6
 196
 0.080
Pterostichus melanarius
 Amara familiaris
 9
 99
 0.038
Calathus fuscipes
 Lepthyphantes tenuis
 7
 13
 0.010
Coccinella septempunctata
 Isotomidae
 9
 31
 2.860e�03
Pterostichus niger
 Curculionidae
 10
 55
 8.140e�04
Stomis pumicatus
 Bembidion

quadrimaculatum
10
 36
 0.038
Nebria brevicollis
 Bembidion guttula
 4
 55
 0.032
Loricera pilicornis
 Entomobryidae
 10
 13
 3.569e�03
Synuchus nivalis
 Sminthuridae
 9
 2
 1.110e�03
Synuchus nivalis
 Trechus quadristriatus
 10
 19
 0.018
Loricera pilicornis
 Notiophilus biguttatus
 7
 150
 0.077
Agonum obscurum
 Sminthuridae
 8
 0
 0.000eþ00
Synuchus nivalis
 Bembidion tetracolum
 4
 12
 0.028
Notiophilus biguttatus
 Sminthuridae
 10
 7
 2.657e�03
Pterostichus cupreus
 Curculionidae
 9
 49
 7.294e�04
Bembidion

quadrimaculatum
Poduridae
 10
 1
 7.062e�04
Trechus quadristriatus
 Isotomidae
 9
 23
 5.230e�03
Nebria brevicollis
 Agonum dorsale
 8
 156
 0.075
Clivina fossor
 Entomobryidae
 10
 7
 1.995e�03
Notiophilus biguttatus
 Lepthyphantes tenuis
 10
 20
 0.013
Stomis pumicatus
 Bembidion obtusum
 9
 30
 0.046
Bembidion aeneum
 Cimicidae nymphs
 9
 1
 7.874e�03
Demetrias atricapillus
 Isotomidae
 10
 8
 2.099e�03
Trechus discus
 Poduridae
 9
 0
 0.000eþ00
Stomis pumicatus
 Lepthyphantes tenuis
 10
 5
 5.269e�03
Trechus obtusus
 Bembidion tetracolum
 6
 26
 0.036
Continued
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Predator
 Prey
 HFE
 Lit. hits
 TMR
Trechus quadristriatus
 Demetrias atricapillus
 10
 65
 0.052
Bembidion guttula
 Sminthuridae
 10
 1
 5.244e�04
Coccinelid larvae
 Sminthuridae
 9
 1
 5.907e�04
Trechus quadristriatus
 Lepthyphantes tenuis
 10
 37
 0.025
Notiophilus substriatus
 Isotomidae
 9
 0
 0.000eþ00
Pterostichus cupreus
 Trechus quadristriatus
 9
 66
 0.044
Pterostichus cupreus
 Bembidion tetracolum
 5
 28
 0.032
Bembidion aeneum
 Poduridae
 10
 1
 9.930e�04
Trechus quadristriatus
 Bembidion guttula
 10
 44
 0.038
Pterostichus cupreus
 Isotomidae
 8
 18
 4.430e�03
Agonum dorsale
 Bembidion lunulatum
 10
 12
 0.016
Notiophilus substriatus
 Bembidion aeneum
 8
 12
 0.047
Notiophilus biguttatus
 Entomobryidae
 10
 18
 4.952e�03
Pterostichus melanarius
 Miridae nymphs
 6
 1
 4.507e�04
Dyschirius globosus
 Entomobryidae
 10
 3
 9.836e�04
Agonum muelleri
 Poduridae
 4
 0
 0.000eþ00
Bembidion lampros
 Isotomidae
 10
 28
 5.846e�03
Bembidion lunulatum
 Entomobryidae
 8
 1
 3.573e�04
Bembidion aeneum
 Lepthyphantes tenuis
 9
 2
 3.017e�03
Trechus obtusus
 Bembidion obtusum
 8
 26
 0.039
Bembidion guttula
 Entomobryidae
 10
 2
 6.880e�04
Carabid larvae
 Isotomidae
 10
 10
 2.499e�03
Leistus spinibarbis
 Entomobryidae
 8
 2
 7.179e�04
Bembidion aeneum
 Sminthuridae
 10
 1
 5.602e�04
Calathus fuscipes
 Curculionidae
 9
 60
 8.913e�04
Bembidion biguttatum
 Poduridae
 9
 1
 9.709e�04
Coccinelid larvae
 Isotomidae
 9
 2
 5.693e�04
Pterostichus niger
 Amara aenea
 7
 66
 0.036
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Predator
 Prey
 HFE
 Lit. hits
 TMR
Asaphidion stierlini
 Bembidion guttula
 4
 4
 0.013
Nebria brevicollis
 Sminthuridae
 9
 8
 2.556e�03
Calathus fuscipes
 Entomobryidae
 10
 4
 1.184e�03
Leistus spinibarbis
 Demetrias atricapillus
 7
 16
 0.035
Synuchus nivalis
 Isotomidae
 10
 2
 5.522e�04
Nabidae nymphs
 Sminthuridae
 10
 1
 5.959e�04
Leistus rufomarginatus
 Entomobryidae
 10
 1
 3.505e�04
Carabid larvae
 Miridae nymphs
 9
 2
 3.333e�03
Nebria brevicollis
 Isotomidae
 8
 24
 4.848e�03
Pterostichus melanarius
 Bembidion tetracolum
 10
 90
 0.037
Clivina fossor
 Sminthuridae
 10
 7
 2.791e�03
Nebria salina
 Entomobryidae
 10
 0
 0.000eþ00
Bembidion aeneum
 Acupalpus dorsalis
 9
 3
 0.017
Pterostichus niger
 Miridae nymphs
 9
 0
 0.000eþ00
Saldula saltatoria
 Entomobryidae
 10
 2
 7.080e�04
Bembidion

quadrimaculatum
Isotomidae
 10
 5
 1.246e�03
Agonum dorsale
 Bembidion tetracolum
 9
 48
 0.053
Nebria salina
 Trechus quadristriatus
 7
 28
 0.025
Leistus spinibarbis
 Clivina fossor
 9
 20
 0.021
Trechus obtusus
 Lepthyphantes tenuis
 9
 6
 6.231e�03
Demetrias atricapillus
 Sminthuridae
 10
 3
 1.506e�03
Nebria salina
 Bembidion tetracolum
 10
 20
 0.040
Coccinelid larvae
 Bembidion lampros
 10
 2
 1.489e�03
Carabid larvae
 Lepthyphantes tenuis
 9
 9
 8.499e�03
Bradycellus verbasci
 Cimicidae nymphs
 10
 1
 6.711e�03
Nebria brevicollis
 Trechus quadristriatus
 10
 181
 0.076
Notiophilus biguttatus
 Piesma maculatum
 10
 1
 9.643e�04
Carabid larvae
 Bembidion tetracolum
 4
 9
 0.011
Continued
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Predator
 Prey
 HFE
 Lit. hits
 TMR
Coccinelid larvae
 Lepthyphantes tenuis
 9
 2
 3.503e�03
Nabidae nymphs
 Bembidion lampros
 9
 1
 7.530e�04
Carabid larvae
 Curculionidae
 9
 63
 9.386e�04
Notiophilus substriatus
 Bembidion

quadrimaculatum
9
 14
 0.021
Propylea

quattuordecimpunctata
Lepthyphantes tenuis
 10
 4
 6.601e�03
Pterostichus niger
 Sminthuridae
 10
 1
 3.810e�04
Trechus quadristriatus
 Entomobryidae
 10
 14
 3.913e�03
Bembidion aeneum
 Isotomidae
 10
 1
 2.774e�04
Pterostichus strenuus
 Bembidion guttula
 6
 46
 0.062
Bembidion obtusum
 Poduridae
 10
 1
 8.850e�04
Trechus secalis
 Isotomidae
 9
 4
 1.079e�03
Pterostichus strenuus
 Poduridae
 4
 2
 1.453e�03
Demetrias atricapillus
 Cimicidae nymphs
 9
 0
 0.000eþ00
Agonum muelleri
 Bembidion guttula
 9
 37
 0.059
Pterostichus cupreus
 Sminthuridae
 8
 8
 3.567e�03
Demetrias atricapillus
 Entomobryidae
 10
 3
 1.003e�03
Loricera pilicornis
 Bembidion tetracolum
 6
 68
 0.053
Trechus obtusus
 Entomobryidae
 8
 3
 9.724e�04
Agonum dorsale
 Poduridae
 10
 3
 2.007e�03
Trechus obtusus
 Notiophilus biguttatus
 4
 59
 0.042
Pterostichus cupreus
 Amara aenea
 8
 43
 0.030
Agonum dorsale
 Notiophilus biguttatus
 10
 92
 0.058
Asaphidion stierlini
 Bembidion aeneum
 6
 2
 0.011
Notiophilus biguttatus
 Cimicidae nymphs
 9
 1
 1.024e�03
Agonum muelleri
 Isotomidae
 10
 4
 1.038e�03
Nabidae nymphs
 Cimicidae nymphs
 10
 1
 0.050
Loricera pilicornis
 Poduridae
 10
 4
 2.146e�03
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Predator
 Prey
 HFE
 Lit. hits
 TMR
Bembidion

quadrimaculatum
Metabletus

obscuroguttatus
9
 2
 3.591e�03
Bembidion guttula
 Cimicidae nymphs
 9
 1
 4.016e�03
Bembidion biguttatum
 Isotomidae
 9
 2
 5.513e�04
Nebria salina
 Amara familiaris
 9
 28
 0.040
Agonum muelleri
 Lepthyphantes tenuis
 7
 8
 8.762e�03
Nebria salina
 Loricera pilicornis
 9
 37
 0.031
Clivina fossor
 Poduridae
 10
 1
 5.780e�04
Pterostichus cupreus
 Entomobryidae
 5
 8
 2.467e�03
Nebria brevicollis
 Amara familiaris
 9
 80
 0.041
Agonum obscurum
 Bembidion guttula
 9
 10
 0.031
Bembidion lampros
 Metabletus foveatus
 9
 16
 0.012
Dromius linearis
 Metabletus

obscuroguttatus
7
 3
 0.015
Bembidion lampros
 Entomobryidae
 10
 18
 4.534e�03
Loricera pilicornis
 Lepthyphantes tenuis
 10
 19
 0.013
Agonum dorsale
 Demetrias atricapillus
 9
 70
 0.074
Clivina fossor
 Lepthyphantes tenuis
 10
 12
 8.658e�03
Carabid larvae
 Entomobryidae
 5
 11
 3.458e�03
Pterostichus melanarius
 Bembidion guttula
 9
 59
 0.025
Calathus fuscipes
 Miridae nymphs
 7
 0
 0.000eþ00
Coccinelid larvae
 Entomobryidae
 7
 2
 7.427e�04
Pterostichus melanarius
 Isotomidae
 10
 42
 7.473e�03
Trechus quadristriatus
 Cimicidae nymphs
 10
 2
 2.174e�03
Pterostichus melanarius
 Agonum dorsale
 10
 196
 0.071
Agonum muelleri
 Sminthuridae
 9
 1
 4.914e�04
Bembidion

quadrimaculatum
Lepthyphantes tenuis
 10
 11
 0.010
Nebria brevicollis
 Entomobryidae
 10
 13
 3.148e�03
Continued
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Predator
 Prey
 HFE
 Lit. hits
 TMR
Agonum muelleri
 Bembidion aeneum
 8
 25
 0.050
Calathus fuscipes
 Sminthuridae
 9
 3
 1.261e�03
Dromius linearis
 Entomobryidae
 10
 4
 1.410e�03
Bembidion lampros
 Piesma maculatum
 10
 1
 7.289e�04
Clivina fossor
 Cimicidae nymphs
 8
 1
 1.176e�03
Demetrias atricapillus
 Acupalpus dorsalis
 9
 4
 0.010
Bembidion lunulatum
 Cimicidae nymphs
 9
 1
 7.092e�03
Patrobus atrorufus
 Isotomidae
 10
 2
 5.218e�04
Bembidion lampros
 Sminthuridae
 10
 11
 3.704e�03
Agonum dorsale
 Sminthuridae
 9
 9
 3.960e�03
Bembidion lunulatum
 Sminthuridae
 10
 1
 5.559e�04
Notiophilus biguttatus
 Poduridae
 10
 4
 2.154e�03
Agonum muelleri
 Amara bifrons
 4
 38
 0.060
Trechus quadristriatus
 Sminthuridae
 10
 11
 4.267e�03
Agonum dorsale
 Lepthyphantes tenuis
 10
 37
 0.032
Bembidion lunulatum
 Poduridae
 10
 1
 9.794e�04
Coccinellidae
 Bembidion lampros
 10
 172
 5.991e�03
Bembidion

quadrimaculatum
Entomobryidae
 9
 4
 1.252e�03
Bembidion obtusum
 Isotomidae
 10
 8
 2.146e�03
Pterostichus strenuus
 Isotomidae
 7
 5
 1.258e�03
Calathus fuscipes
 Trechus quadristriatus
 9
 109
 0.067
Coccinelid larvae
 Miridae nymphs
 9
 2
 0.018
Loricera pilicornis
 Sminthuridae
 9
 13
 4.921e�03
Loricera pilicornis
 Demetrias atricapillus
 9
 57
 0.043
Calathus fuscipes
 Bembidion tetracolum
 10
 47
 0.046
Bembidion guttula
 Poduridae
 10
 1
 8.857e�04
Carabid larvae
 Agonum dorsale
 10
 40
 0.035
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Predator
 Prey
 HFE
 Lit. hits
 TMR
Trechus discus
 Entomobryidae
 10
 0
 0.000eþ00
Pterostichus niger
 Bembidion guttula
 9
 47
 0.039
Asaphidion stierlini
 Notiophilus biguttatus
 10
 6
 5.803e�03
Agonum dorsale
 Isotomidae
 9
 31
 7.574e�03
Pterostichus strenuus
 Lepthyphantes tenuis
 9
 12
 0.012
Stomis pumicatus
 Clivina fossor
 5
 62
 0.049
Stomis pumicatus
 Sminthuridae
 10
 1
 4.829e�04
Asaphidion stierlini
 Clivina fossor
 5
 3
 3.308e�03
Pterostichus niger
 Agonum dorsale
 10
 56
 0.035
Loricera pilicornis
 Bembidion guttula
 9
 62
 0.050
Nebria salina
 Sminthuridae
 9
 0
 0.000eþ00
Agonum obscurum
 Entomobryidae
 10
 0
 0.000eþ00
Carabid larvae
 Sminthuridae
 10
 7
 3.210e�03
Nebria salina
 Notiophilus biguttatus
 10
 40
 0.034
Loricera pilicornis
 Isotomidae
 10
 18
 4.034e�03
Bembidion

quadrimaculatum
Onychiuridae
 10
 2
 8.834e�04
Bembidion aeneum
 Entomobryidae
 10
 1
 3.591e�04
Trechus secalis
 Entomobryidae
 9
 1
 3.463e�04
Pterostichus cupreus
 Bembidion lampros
 5
 150
 0.079
Pterostichus melanarius
 Lepthyphantes tenuis
 10
 44
 0.016
Clivina fossor
 Isotomidae
 10
 11
 2.542e�03
Nabidae nymphs
 Bembidion tetracolum
 8
 0
 0.000eþ00
Nebria brevicollis
 Bembidion tetracolum
 10
 60
 0.034
Agonum muelleri
 Entomobryidae
 7
 3
 9.885e�04
Patrobus atrorufus
 Bembidion guttula
 9
 25
 0.042
Agonum dorsale
 Bembidion aeneum
 9
 23
 0.031
Synuchus nivalis
 Agonum dorsale
 6
 26
 0.034
Nebria salina
 Bembidion aeneum
 7
 15
 0.045
Continued
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Predator
 Prey
 HFE
 Lit. hits
 TMR
Patrobus atrorufus
 Agonum dorsale
 9
 26
 0.027
Synuchus nivalis
 Lepthyphantes tenuis
 5
 5
 7.353e�03
Bembidion aeneum
 Onychiuridae
 7
 0
 0.000eþ00
Trechus quadristriatus
 Poduridae
 6
 3
 1.667e�03
Calathus fuscipes
 Amara familiaris
 9
 67
 0.055
Trechus quadristriatus
 Notiophilus biguttatus
 10
 139
 0.073
Pterostichus strenuus
 Clivina fossor
 10
 82
 0.061
Stomis pumicatus
 Bembidion lunulatum
 9
 13
 0.024
Nabidae nymphs
 Bembidion

quadrimaculatum
6
 1
 1.812e�03
Demetrias atricapillus
 Poduridae
 10
 0
 0.000eþ00
Bembidion obtusum
 Lepthyphantes tenuis
 10
 11
 0.014
Pterostichus melanarius
 Trechus quadristriatus
 10
 218
 0.071
Agonum muelleri
 Agonum dorsale
 9
 40
 0.040
Notiophilus biguttatus
 Isotomidae
 10
 22
 4.938e�03
Pterostichus strenuus
 Sminthuridae
 5
 4
 1.857e�03
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