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Abstract Most search techniques within ILP require the evaluation of a large number of
inconsistent clauses. However, acceptable clauses typically need to be consistent, and are
only found at the “fringe” of the search space. A search approach is presented, based on
a novel algorithm called QG (Quick Generalization). QG carries out a random-restart sto-
chastic bottom-up search which efficiently generates a consistent clause on the fringe of the
refinement graph search without needing to explore the graph in detail. We use a Genetic
Algorithm (GA) to evolve and re-combine clauses generated by QG. In this QG/GA setting,
QG is used to seed a population of clauses processed by the GA. Experiments with QG/GA
indicate that this approach can be more efficient than standard refinement-graph searches,
while generating similar or better solutions.

Keywords Stochastic search · Refinement · Genetic Algorithms

1 Introduction

There is a long-standing and increasing interest in stochastic search methods in Inductive
Logic Programming (ILP) (Page and Srinivasan 2003; Srinivasan 2005). Stochastic methods
have been explored both for clause evaluation (e.g. Sebag and Rouveirol 2000) and for
searching the space of candidate clauses (e.g. Kovacic 1994; Srinivasan 2000; Tamaddoni-
Nezhad and Muggleton 2000; Ruckert and Kramer 2003; Zelezny et al. 2004; Paes et al.
2006).

Most search techniques within ILP are based on clause refinement. Such searches are
typically time-consuming, requiring the testing of a large number of clauses. Acceptable
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Table 1 Number of consistent clauses (Cs) versus total number of clauses (All) considered by Progol4.5 in
training over a range of Progol’s example data sets

Data Set Cs All Cs (%)

animals 16 44 36.4

append 16 100 16

arch 9 200 4.5

book 1 7 14.3

chess 16 2904 0.6

cyclic 26 200 13

delete 9 66 13.6

drug 101 8808 1.2

eleusis1 8 75 10.7

eleusis2 19 404 4.7

eleusis3 2 134 1.5

even 4 20 20

family 2 15 13.3

grammar 4 14 28.6

last 5 16 31.3

mult 61 636 9.6

nim 17 43 39.5

order0 51 200 25.5

order1 44 200 22

oeder2 25 119 21

order3 11 28 39.3

order4 14 28 50

order6 3 58 5.2

range 36 374 9.6

range1 6 23 26.1

reverse 19 72 26.4

set 6 51 11.8

train 7 2273 0.3

TOTAL 538 17112 3.14

clauses typically need to be consistent, and are only found at the “fringe” of the search (see
Sect. 2.1).

Table 1 shows the number of consistent clauses considered out of all the clauses eval-
uated by Progol4.5 over a range of Progol’s example data sets. The low average density
of consistent clauses in Table 1 (around 3%) motivates an investigation in this paper into
a novel algorithm called QG (Quick Generalization). QG carries out a random-restart sto-
chastic bottom-up search which efficiently generates a consistent clause on the fringe of the
refinement graph search without needing to explore the graph in detail.

QG has been implemented in Progol4.6 and has been compared with Progol’s standard
generalization search on a range of datasets. The results indicate that when the proportion
of consistent clauses is small, QG is more efficient than standard refinement-graph searches,
while still generating the same (or similar) solutions in most cases. In this paper we also
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examine a combination of QG with a Genetic Algorithm (GA). In this QG/GA setting, QG is
used to seed a population of clauses processed by the GA. Experimental results suggest that
a combination of QG and GA can provide higher predictive accuracy than each individual
approach.

This paper is arranged as follows. Section 2 introduces the idea behind QG, gives the
background and describes the QG algorithm. An analysis of the QG algorithm is also given
in Sect. 2. Section 3 describes an implementation of QG and QG/GA in Progol. Section 4
presents the empirical evaluation of QG and QG/GA on a range of datasets and Sect. 5
concludes the paper.

2 Quick generalization (QG)

Mitchell (1997) notes that most Machine Learning algorithms can be viewed as approxima-
tions to the following general Bayesian statistical inference algorithms.

MAP—returns the hypothesis having maximum posterior probability.
Gibbs—randomly samples a consistent hypothesis according to the posterior distribution.
Bayes Prediction—classifies unseen instances based on weighted joint prediction of the en-

tire consistent hypothesis space.

All of the above assume a Bayes’ prior distribution over the hypothesis space. In the
case of Gibbs this is used for sampling. We can easily imagine Gibbs-like approximations
to MAP and Bayes Prediction, based on sampling. We might call these Gibbs-MAP and
Gibbs-Bayes-Predictor. However, the key to effective implementation of such algorithms is
the availability of algorithms for efficiently sampling from the set of consistent hypotheses.
As indicated in Sect. 1 refinement-based algorithms, such as Progol, have severe difficulties
in this respect since the density of consistent clauses within the hypothesis space is typi-
cally low. The QG algorithm described in this section is a Gibbs-MAP algorithm, which
constructs maximally general consistent clauses by stochastically pruning Progol bottom
clauses. The algorithm can be made arbitrarily efficient by choice of sample size (down
to 1). We might also view Genetic Algorithms (GAs), Boltzman machines and even neural
net algorithms as Gibbs-MAP algorithms. However, for every such algorithm there is an
obvious trade-off between sample size and expected predictive accuracy. A sampling mech-
anism based on QG as well as the combination of QG with a GA are explored in Sect. 3.
In (Haussler et al. 1994) the authors showed that average-case error bounds for Gibbs algo-
rithms are comparable to other Bayesian algorithms. These theoretical results are consistent
with the empirical results in this paper.

Before describing the details of the QG algorithm, we provide some mathematical pre-
liminaries.

2.1 Mathematical preliminaries

The Progol algorithm (Muggleton 1995) is based on successive construction of definite
clause hypotheses H from a language L. H must explain the examples E in terms of back-
ground knowledge B. Each clause in H is found by choosing an uncovered positive example
e and searching through the graph defined by the refinement ordering � bounded below by
the bottom clause associated with e. We define this setting more formally as follows.
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Definition 1 (Progol refinement setting) Let S = 〈B,E,L,�〉 be Progol’s ILP setting as de-
fined in (Muggleton 1995). Let E = 〈E+,E−〉 consist of a set of positive and negative exam-
ples (ground unit clauses) respectively. The “top” clause, denoted by �, is the maximal�,L
element in L. The “bottom” clause, denoted by �e,S , is the least�,L element such
that B,�e,S |= e. Refinement of clause C, denoted by ρe,S(C), is the set of maximal�,L
clauses D such that C � D � �e,S .

We now introduce the notion of consistency within the Progol setting S to be used in the
QG algorithm.

Definition 2 (S-consistency) Given S = 〈B,E,L,�〉, e ∈ E and � � C � �e,S we say that
C is S-consistent iff B,E,C is satisfiable.

It is normal in ILP to restrict attention to clausal hypotheses which are “head-connected”
in the following sense.

Definition 3 (Head-connectness) A definite clause h ← b1, . . . , bn is said to be head-
connected iff each body atom bi contains at least one variable found either in h or in a
body atom bj , where 1 ≤ j < i.

Next we introduce the idea of a “minimal support set”, which is a set of body atoms
which is an irreducible set of atoms which ensure that a clause is head-connected.

Definition 4 (Minimal support set) Let h ← B be a definite clause and B be a set of atoms.
S ⊆ B is a minimal support set for b from B iff h ← S,b is head-connected and there does
not exist a set S ′ ⊂ S for which h ← S ′, b is head-connected.

Lastly, we introduce the notion of the “fringe” set of maximally general clauses in the
hypothesis space, from which QG samples.

Definition 5 (Fringe) Clause C is in Fringe(e,S) iff it is head-connected and for every D it
is the case that C ∈ ρe,S(D) implies D is not S-consistent.

2.2 QG algorithm

The QG algorithm (see Fig. 1) works by finding successively smaller consistent subsets of
a Progol-style bottom clause. The notion of a cutoff atom is used within the algorithm to
define the minimal consistent prefix of a given clause body.

Definition 6 (Profile and cutoff atom) Let C = h ← b1, . . . , bn be a definite clause and B
be background knowledge. Ei ⊆ E− is the ith negative profile of C, where Ei = {e : ∃θ ,
e = hθ , B |= (b1, . . . , bi)θ}. bi is the cutoff atom iff i is the least value such that Ei = ∅.

The QG algorithm works by randomly permuting the given clause body and then apply-
ing to the result the deterministic “Reduce” algorithm.1 The result is a randomly constructed
“fringe” clause (see Definition 5).

1The Reduce algorithm was first introduced in the Golem system (Muggleton and Feng 1990).
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Quick Generalization (QG) algorithm
Input: Bottom clause �e,S and setting S
R is a random head-connected permutation of �e,S

Output: Reduce R wrt S
Reduce algorithm

Input: Clause C = h ← b1, . . . , bn and setting S
Res is C

While there is an unseen cutoff atom bi in the body of Res

For bi find minimal support set Si = {b′
1, . . . , b

′
m} ⊆ {b1, . . . , bi−1}

such that h ← Si, bi is head-connected
Res is h ← Si, bi, Ti

where Ti is b1, . . . , bi−1 with Si removed
Repeat

Output: Reduced clause Res

Fig. 1 Quick Generalization (QG) algorithm

2.3 QG analysis

Let us now consider the correctness of the QG algorithm.

Theorem 1 (Correctness of QG) Let �e,S = h ← b1, . . . , bn be a bottom clause of example
e with associated setting S . The clause F = QG(�e,S,S) is in Fringe(e,S).

Proof Assume F �∈ Fringe(e,S). In this case, either F is not head-connected or there exists
a clause D such that F ∈ ρe,S(D) and D is S-consistent. However, since by construction QG
returns a head-connected clause F which is a subset of �e,S , then assuming completeness
of ρe,S it follows that D must exist. Thus D must be S-consistent. Since D ⊂ F it follows
that there must be an atom bj found in the body of F and not in the body of D. However,
by construction every body atom bj in F was either a cutoff atom or in a minimal support
set in one of the iterations of the Reduce algorithm, and by definition the removal of a cutoff
atom makes the resultant clause not S-consistent. This implies D is not S-consistent, which
contradicts the assumption and completes the proof. �

Let us now consider whether every element of the fringe associated with a given example
can be generated by QG.

Theorem 2 (Completeness of QG) Let �e,S = h ← b1, . . . , bn be a bottom clause of exam-
ple e with associated setting S . For each F ∈ Fringe(e,S) there exists a stochastic deriva-
tion such that F = QG(�e,S,S).

Proof Assume false. Thus there exists F ∈ Fringe(e,S) such that there is no stochastic
derivation such that F = QG(�e,S,S). Assume F = h ← b1, . . . , bj . Now suppose that in
QG the random head-connected permutation R of �e,S is R = h ← b1, . . . , bj , . . . , bn, i.e.
the body of F is a prefix of the body of R. However, in this case, since F ∈ Fringe(e,S) it
follows that F is S-consistent and that bj is a cutoff atom. In this case the Reduce algorithm
will return F after j + 1 cycles. This refutes the assumption and completes the proof. �
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1. eastbound(A) :- has_car(A,B), infront(A,B), has_car(A,C), has_car(A,D), has_car(A,E),
load(D,circle,1), long(B), short(D), infront(C,E), shape(B,rectangle), load(E,hexagon,1),
closed(C), wheels(B,2), open(B), short(C), long(E), infront(B,C), wheels(C,2),
shape(D,rectangle), open(D), infront(E,D), shape(E,rectangle), wheels(E,3), load(B, rec-
tangle,3), wheels(D,2), open(E), load(C,triangle,1), shape(C,rectangle).

2. eastbound(A) :- has_car(A,B), load(B,hexagon,1), has_car(A,C), infront(A,C),
has_car(A,D), has_car(A,E), load(E,circle,1), long(C), short(E), infront(D,B),
shape(C,rectangle).

3. eastbound(A) :- has_car(A,B), load(B,hexagon,1).

Fig. 2 An example of the iterative reduction of a clause by the QG algorithm

We lastly consider the complexity of QG in terms of the number of cycles required for
completion.

Theorem 3 (Cycle-complexity of QG) Let �e,S = h ← b1, . . . , bn be a bottom clause of
example e with associated setting S . The clause F = h ← b1, . . . , bm = QG(�e,S,S) is
returned after at most m + 1 cycles of the Reduce algorithm.

Proof By construction each atom bj in the body of F = h ← b1, . . . , bm was either a cutoff
atom or an element of one of the minimal support sets in one of the cycles of the Reduce
algorithm. Thus, since the last atom is a cutoff atom twice, the Reduce algorithm returns F

in at most m + 1 cycles. �

Assuming time-bounded theorem proving of the kind used in Progol, Theorem 3 indi-
cates that the time complexity of QG is linear in the size of the returned clause.

2.4 Example QG executions

Figure 2 gives an illustration of the cycle-complexity result given in Theorem 3. In the first
iteration the atom load(B,hexagon,1) is identified as the cutoff atom. The atom is placed im-
mediately after the atom has_car(A,B) in order to ensure that variable B has been introduced
before being used. In the second iteration load(B,hexagon,1) is once more identified as the
cutoff atom. Since this atom has already been seen, the algorithm terminates and returns the
resulting clause in step 3.

3 QG and QG/GA in Progol

The QG algorithm described in the previous sections can be used for efficiently sampling
from consistent clauses. Clauses generated by QG are consistent but not necessarily com-
pressive wrt the positive examples and they may have small or even no positive coverage. On
the other hand, an ILP system such as Progol generates hypotheses which provide a positive
compression over training data (Muggleton 1995). A simple integration of QG in Progol can
be realized by replacing Progol’s A∗ search by a QG sampling mechanism. This involves an
algorithm, QG-sample, which returns the clause with highest positive compression from a
sample of S calls to QG. In this mechanism the sample size S is set by the user so that at
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Table 2 Binary encoding of the occurrences of literals in a clause wrt a bottom clause. (a) a bottom clause
(b) binary encoding of clause eastbound(A):- has_car(A,C), closed(C), short(C)

(a)

eastbound(A):- has_car(A,B) has_car(A,C) closed(C) open(B) short(C) . . .

1 1 1 1 1 1 . . .

(b)

1 0 1 1 0 1 . . .

eastbound(A):- has_car(A,C) closed(C) short(C) . . .

least one of the clauses has positive compression. In this setting, the algorithm simply re-
turns a consistent clause with the highest positive compression. A good sample size can be
estimated based on the percentage of consistent clauses which have positive compression.
An example of choosing a sample size for QG is given in Sect. 4.1. Clauses generated by the
simple QG setting described above lack diversity and also it is likely that the optimal solu-
tions are not among them. In this paper we also examine a more advanced setting in which
a Genetic Algorithm (GA) is used to evolve and re-combine clauses generated by QG. In
this setting QG is used to seed a population of clauses processed by the GA. The GA-ILP
setting used in the present study is similar to the one described in (Tamaddoni-Nezhad and
Muggleton 2002). In this framework, encoding of hypotheses is based on a most specific
clause (or bottom clause) which is automatically constructed using an ILP method (e.g. in-
verse entailment). In the GA implementation used in the present study, the occurrences of
literals from the bottom clause are directly encoded as bit strings as described as further
work in (Tamaddoni-Nezhad and Muggleton 2002). Table 2 shows how the occurrences of
literals in a clause is encoded as a bit-string. In a “GA only” setting, the initial population
of the GA consists of randomly generated bit-strings with length L, where L is the num-
ber of literals in the bottom clause. In the QG/GA setting, the initial population of the GA
consists of clauses generated by the QG algorithm. As the QG algorithm generates clauses
from the permutations of the same bottom clause, encoding these clauses into bit-strings
is straightforward and follows the same scheme as shown in Table 2. In order to provide a
better comparison, the fitness value used in GA and QG/GA is the same as the evaluation
function of A∗ (i.e. the compression provided by each clause).

4 Empirical evaluation

4.1 Experiment 1

The goal of this experiment is to compare the performance of QG and A∗ on the datasets
shown in Fig. 1. In particular we examine the following null hypothesis:

Null hypothesis 1: On our benchmark problems QG cannot provide increased efficiency
over Progol’s standard A∗ search without decrease in accuracy.



128 Mach Learn (2008) 70: 121–133

4.1.1 Material and methods

In this experiment we use a set of learning problems from Progol4.1 example datasets.2

This includes an early version of the mutagenesis dataset (drug) which in this experiment
is replaced with the mutagenesis 42 dataset with atom-bond background knowledge (King
et al. 1996). We use a leave-one-out test strategy and compare total time and predictive
accuracies for the following algorithms:

A∗—Progol’s standard refinement-graph search.
QG—An implementation of the QG-sample algorithm as described in Sect. 3.

In this experiment the sample size for the QG-sample algorithm is estimated based on
the percentage of consistent clauses which have positive compression. These have been es-
timated from the output of single runs of QG (e.g. with sample size 10) on each dataset and
then used for the leave-one-out experiments. For example, if 1 out of 5 consistent clauses
have positive compression the probability of QG-sample finding a consistent and compres-
sive clause is 1 − (4/5)S where S is the sample size. By choosing S = 10 this probability
will be around 0.9. In most problems considered in this experiment, clauses generated by
QG all have positive compression (i.e. the sample size can be set to one).

4.1.2 Results

Table 3 shows predictive accuracies and total learning and testing times for A∗ and QG. This
table also shows an estimation for the density of consistent clauses based on the proportion
of consistent clauses considered by the A∗ search. According to this table, in most cases
QG finds a solution with the same or similar accuracies in less time. Null hypothesis 1 is
therefore rejected. These results also suggest that the efficiency advantage of QG is more
evident when the density of consistent clauses is small. For example, in the train problem, in
which only 0.3% of clauses are consistent, QG is far more efficient that A∗ (i.e. around 26
times faster) while still generating the same solution. As one might expect from general con-
siderations it appears that the ratio TA∗/TQG increases with decreasing density of consistent
clauses.

4.2 Experiment 2

In this experiment we examine a combination of QG and GA as described in Sect. 3.

Null hypothesis 2: On our benchmark problems a combination of QG and GA cannot pro-
vide higher predictive accuracy than each individual approach.

4.2.1 Material and methods

In this experiment we use the mut42 dataset from the previous experiment. We use a leave-
one-out test strategy and compare average time and predictive accuracies for the following
algorithms:

A∗—Progol’s standard refinement-graph search.
QG—An implementation of the QG-sample algorithm as described in Sect. 3.

2Available from:http://www.doc.ic.ac.uk/~shm/Software/progol4.1/.
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Table 3 Predictive accuracies (Acc) and total learning times from leave-one-out experiments for A∗
and QG. Density of consistent clauses is taken as being the proportion of consistent clauses in the A∗ search
(Cs(%))

Dataset A∗ QG

Cs (%) Acc(%) TA∗ (s) Acc(%) TQG(s) TA∗/TQG

animals 36.4 93 ± 3 3.01 95 ± 3 2.68 1.12

append 16 96 ± 4 1.46 100 ± 0 0.56 2.61

arch 4.5 50 ± 18 0.87 50 ± 18 0.20 4.35

book 14.3 100 ± 0 0.03 100 ± 0 0.04 0.75

chess 0.6 23 ± 8 69.32 8 ± 4 4.94 14.03

cyclic 13 40 ± 22 0.12 40 ± 22 0.05 2.00

delete 13.6 50 ± 18 0.40 13 ± 11 0.10 4.00

eleusis1 10.7 88 ± 6 0.52 92 ± 5 0.24 1.53

eleusis2 4.7 65 ± 9 3.05 69 ± 8 0.33 2.28

eleusis3 1.5 87 ± 6 2.14 87 ± 6 0.24 2.40

even 20 87 ± 6 0.59 48 ± 9 0.13 1.16

family 13.3 80 ± 8 0.17 84 ± 7 0.62 0.27

grammar 28.6 100 ± 0 0.11 100 ± 0 0.08 1.38

last 31.3 50 ± 16 0.11 50 ± 16 0.17 0.65

mult 9.6 96 ± 3 21.56 94 ± 3 5.90 3.65

mut42 0.1 86 ± 5 6226.03 86 ± 5 378.34 16.46

nim 39.5 96 ± 4 0.4 30 ± 9 1.07 0.03

order0 25.5 94 ± 5 1.95 100 ± 0 0.49 3.98

order1 22 100 ± 0 2.02 94 ± 5 1.22 1.66

order2 21 100 ± 0 0.6 92 ± 8 0.88 0.68

order3 39.3 100 ± 0 0.19 92 ± 7 0.48 0.40

order4 50 100 ± 0 0.43 94 ± 6 1.84 0.23

order6 5.2 38 ± 17 0.23 50 ± 17 0.21 0.09

range 9.6 90 ± 6 6.07 62 ± 10 0.77 7.8

range1 26.1 70 ± 14 0.07 70 ± 14 0.03 2.33

reverse 26.4 85 ± 8 0.93 65 ± 10 0.82 1.13

set 11.8 54 ± 10 1.51 54 ± 10 1.57 0.96

train 0.3 100 ± 0 6.07 100 ± 0 0.23 26.39

GA—A Genetic Algorithm (GA) as described as “GA only” in Sect. 3.
QG/GA—A GA-based search in which QG has been used for seeding the GA population
as described in Sect. 3.

In this experiment N , the maximum number of clauses evaluated for learning a single
clause, is varied for each algorithm. For A∗, N corresponds to Progol’s parameter nodes.
In QG, N is the sample size. In GA and QG/GA, N = popsize × (maxgen + 1). Other GA
parameters used in this experiment are as follows: pm = 0.01, pc = 0.6 and popsize = 30.
For A∗, the maximum number of literals in each clause is set to 4.
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Table 4 Predictive accuracies and average learning times from leave-one-out experiments on mut42 dataset.
N is the maximum number of clauses evaluated for learning a single clause

N A∗ QG GA QG/GA

A(%) T (s) A(%) T (s) A(%) T (s) A(%) T (s)

2 69 ± 7 0.12 76 ± 7 2.36

5 69 ± 7 0.13 81 ± 6 4.90

10 69 ± 7 0.13 86 ± 5 9.30

20 76 ± 7 0.11 86 ± 5 20.79

30 81 ± 6 0.11 86 ± 5 27.60 83 ± 6 2.82 83 ± 6 27.68

60 81 ± 6 0.18 86 ± 5 54.70 83 ± 6 2.83 83 ± 6 27.68

120 81 ± 6 0.41 83 ± 6 116.51 81 ± 6 5.50 81 ± 6 31.12

240 81 ± 6 1.09 86 ± 5 228.78 81 ± 6 8.94 81 ± 6 35.89

480 81 ± 6 1.84 86 ± 5 469.08 83 ± 6 13.40 85 ± 5 39.61

960 81 ± 6 4.27 83 ± 6 930.82 83 ± 6 25.85 83 ± 6 47.54

1920 81 ± 6 9.87 83 ± 6 1861.35 83 ± 6 43.46 86 ± 5 64.07

3840 81 ± 6 25.10 83 ± 6 3773.29 83 ± 6 58.49 88 ± 5 85.95

7680 83 ± 6 50.76 83 ± 6 7686.96 86 ± 5 99.98 88 ± 5 106.79

15360 86 ± 5 141.06 83 ± 6 13916.10 86 ± 5 226.78 88 ± 5 165.00

4.2.2 Results

Table 4 summarizes the results of the leave-one-out experiments. This table shows predictive
accuracies and average learning and testing times for each example. According to the table,
QG finds relatively good solutions right at the beginning when the sample size is small.
However, the predictive accuracies have not been improved with increased sample size. The
figures even suggest that the accuracies have been decreased possibly due to overfitting the
training data. Unlike for QG, predictive accuracies for GA and QG/GA increase with N . In
general, QG/GA reaches the highest level of accuracy with fewer evaluated clauses. How-
ever, as the computational costs for each clause is relatively low in this problem (e.g. clauses
considered by A∗ are maximum 4 literals long), the efficiency advantage of QG/GA is not
significant in this problem. Given the relatively high accuracy errors in the leave-one-out
experiments, the accuracy advantage of QG/GA is also not significant. Null hypothesis 2 is
therefore not rejected by this experiment. Nevertheless, the lessons learned in this experi-
ment lead to an experimental setting which will be used in the next experiment.

4.3 Experiment 3

The results of the previous experiment show that QG/GA needs to evaluate fewer clauses in
order to reach the same level of accuracy. This observation suggest that QG/GA could lead
to a significant speed up in cases where the average computational costs for each clause is
relatively high or the clauses which need to be considered during the search are relatively
long. In this experiment we evaluate QG and QG/GA on a set of problems with different
concept sizes. Both Null hypothesis 1 and Null hypothesis 2 are examined in this experiment.

4.3.1 Material and methods

In this experiment we use a set of seven artificially generated learning problems with vary-
ing concept sizes from 6 to 16. These problems are selected from the phase transition
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Table 5 Predictive accuracies and learning times for different search algorithms on a set of learning problems
with varying concept sizes from 6 to 16. Density of consistent clauses is taken as being the proportion of
consistent clauses in the A∗ search (Cs(%))

m A∗ QG GA QG/GA

Cs(%) A(%) T (s) A(%) T (s) A(%) T (s) A(%) T (s)

6 31.71 98 3.22 99.5 3.89 99.5 5.83 99.5 10.32

7 3.36 99.5 633.16 99.5 45.11 99.5 12.99 99.5 86.51

8 1.05 100 1416.55 100 175.03 100 13.92 100 169.55

10 0.0015 97.5 25852.80 99 242.22 95.5 74.68 99 1064.22

11 0.36 80 37593.20 91 774.02 99 30.37 99.5 110.15

14 0 50 128314.00 69 4583.25 79.5 529.67 88.5 1184.76

16 4 × 10−6 59 55687.44 77.5 4793.01 74 297.93 89.5 4945.20

study (Botta et al. 2003) and correspond to problems m6.l12 to m16.l12.3 Each problem
includes 100 training and 100 test examples. We use a hold-out test strategy and compare
the performance of the same algorithms as in the previous experiment (i.e. A∗, QG, GA and
QG/GA). The GA parameters used in this experiment are the same as the ones used in the
previous experiment except that maxgen is not varied and it is set to 20 for all experiments.
The A∗ parameter nodes is also fixed and set to 10000.

4.3.2 Results

Table 5 shows predictive accuracies and average learning and testing times for different
algorithms. According to this table, QG has found a solution with a similar or better accuracy
than the A∗ search in significantly less time. Null hypothesis 1 is therefore rejected. These
results also suggest that we can get a better predictive accuracy by combining QG and GA
(e.g. unlike A∗ and QG, QG/GA passes the 80% accuracy criteria of (Botta et al. 2003) for
m = 14 and m = 16). This refutes Null hypothesis 2. According to the table, the efficiency
and accuracy advantages of QG and QG/GA are more evident when the density of consistent
clauses (Cs%) is low. It is expected that A∗ will be more efficient than other algorithms for
small values of m. However, this cannot be tested on the present dataset as it does not include
problems with small values for m.

5 Conclusions

In this paper we presented a search approach based on a novel algorithm called QG (Quick
Generalization). QG efficiently samples consistent clauses on the fringe of the refinement
graph search without needing to explore the graph in detail. We proved that the QG al-
gorithm is correct (i.e. only fringe clauses are returned by QG), complete (i.e. all fringe
clauses can be returned by QG) and efficient (i.e. QG returns a solution in time linear
to the size of the solution). A sampling mechanism based on QG has been implemented
in Progol4.6 and has been tested on a range of learning problems. The results of com-
parison between QG and Progol’s standard refinement-graph search (A∗) suggest that in

3These problems are selected from the first row of the (m,L) plane so that they only approach the phase
transition region.



132 Mach Learn (2008) 70: 121–133

some cases QG returns solutions with similar accuracies to A∗ in less time. Time reduc-
tion by QG is substantial when the density of consistent clauses is low. In this paper
we also examined a combination of QG with a Genetic Algorithm (GA). In this QG/GA
setting, QG is used to seed a population of clauses processed by the GA. Experimen-
tal results suggest that QG/GA needs to evaluate fewer clauses than A∗ and GA in or-
der to reach the same level of accuracy. QG and QG/GA have been also tested on a set
of problems from the phase transition dataset (Botta et al. 2003) which includes learn-
ing problems with varying concept sizes. In this experiment, QG/GA significantly out-
performs other searches. The QG algorithm can be easily adopted for any ILP system
which uses a bottom clause or a template for generating the hypotheses. These include
ILP systems which use some form of Inverse Entailment (e.g. Ito and Yamamoto 1998;
Inoue 2001 and Ray et al. 2003). As future work, we intend to explore methods for dealing
with classification noise by relaxing the requirements of consistency in clauses generated by
the QG algorithm. This can be realized by allowing a threshold (more than zero) for negative
examples that can be covered by each clause.
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