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Abstract Searching the hypothesis space bounded below by a bottom clause is the basis
of several state-of-the-art ILP systems (e.g. Progol, Aleph). These systems use refinement
operators together with search heuristics to explore a bounded hypothesis space. It is known
that the search space of these systems is limited to a sub-graph of the general subsump-
tion lattice. However, the structure and properties of this sub-graph have not been properly
characterised. In this paper firstly, we characterise the hypothesis space considered by the
ILP systems which use a bottom clause to constrain the search. In particular, we discuss
refinement in Progol as a representative of these ILP systems. Secondly, we study the lattice
structure of this bounded hypothesis space. Thirdly, we give a new analysis of refinement
operators, least generalisation and greatest specialisation in the subsumption order relative
to a bottom clause. The results of this study are important for better understanding of the
constrained refinement space of ILP systems such as Progol and Aleph, which proved to
be successful for solving real-world problems (despite being incomplete with respect to the
general subsumption order). Moreover, characterising this refinement sub-lattice can lead
to more efficient ILP algorithms and operators for searching this particular sub-lattice. For
example, it is shown that, unlike for the general subsumption order, efficient least generali-
sation operators can be designed for the subsumption order relative to a bottom clause.

Keywords Subsumption lattice · Refinement operators · Ordered clauses · Sequential
subsumption · Subsumption relative to a bottom clause

1 Introduction

Searching the hypothesis space bounded below by a bottom clause is the basis of several
state-of-the-art ILP systems. In particular ILP systems such as Progol (Muggleton 1995)
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and Aleph (Srinivasan 2007), which use Inverse Entailment (IE), are based on clause refine-
ment through the hypothesis space bounded by a most specific clause. These systems use
refinement operators together with a search method to explore a bounded hypothesis space.
It is known that the search space of these systems is limited to a sub-graph of the general
subsumption lattice. However, the structure and properties of this sub-graph have not been
properly characterised. In a previous paper (Tamaddoni-Nezhad and Muggleton 2008) we
gave an analysis of refinement operators in a Progol-like ILP system. This analysis has been
extended in the present paper. In particular we further discuss the lattice structure and the
properties of the subsumption order relative to a bottom clause. In this paper firstly, we
characterise the hypothesis space considered by the ILP systems which use a bottom clause
to constrain the search. In particular we discuss refinement in Progol as a representative of
these ILP systems. Secondly, we study the lattice structure of this bounded hypothesis space.
Thirdly, we give a new analysis of refinement operators, least generalisation and greatest
specialisation in the subsumption order relative to a bottom clause.

The results of this study are important for better understanding of the constrained re-
finement space of ILP systems such as Progol and Aleph which proved to be successful for
solving real-world problems (despite being incomplete with respect to general subsumption
order). Moreover, characterising this refinement sub-lattice can lead to more efficient ILP
algorithms and operators for searching this particular sub-lattice. For example, it is shown
that, unlike for the general subsumption order, efficient least generalisation operators can be
designed for the subsumption order relative to a bottom clause. This idea is the basis of a
new ILP system (Muggleton et al. 2009). The theoretical results presented in this paper are
applicable to ILP systems such as Progol and Aleph which use some form of Inverse Entail-
ment (IE). Moreover, these results are also applicable to other ILP systems which use a bot-
tom clause to restrict the search space. These include ILP systems which use stochastic al-
gorithms to explore the hypothesis space bounded by a bottom clause (e.g. Srinivasan 2000;
Tamaddoni-Nezhad and Muggleton 2000; Zelezny et al. 2003; Muggleton and Tamaddoni-
Nezhad 2007; Duboc et al. 2008). The search space of these systems can be characterised
by a quasi-ordered set which is described in this paper.

This paper is organised as follows. In Sect. 2 we review some of basic concepts from
ordered sets, lattices and inductive logic programming which are used in the definitions and
theorems in this paper. In Sect. 3 we discuss clause refinement in Progol as a representative
of ILP systems which use a bottom clause to constrain the search. Ordered clauses and
sequential subsumption are discussed in Sect. 4. In order to characterise refinement in a
Progol-like ILP system, Sect. 5 defines subsumption order relative to a bottom clause and
describes the properties of this subsumption order. The lattice structure and properties of the
subsumption order relative to a bottom clause are examined in Sect. 6. In Sect. 7, refinement
operators are defined for subsumption order relative to a bottom clause and the properties of
these operators are discussed. Section 8 describes alternative subsumption orders relative to
a bottom clause. Related work is discussed in Sect. 9. Section 10 concludes the paper.

2 Preliminaries

We assume the reader to be familiar with the basic concepts from logic programming and
inductive logic programming (Nienhuys-Cheng and de Wolf 1997) and also the basic con-
cepts from ordered sets and lattices (Davey and Priestley 2002). This section is intended as
a brief reminder of some of the concepts used in definitions and theorems in this paper.
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Definition 1 (Ordered sets) Let P be a set and R be a binary relation on P . The pair 〈P,R〉
is said to be:

• a quasi-ordered set if R is reflexive and transitive.
• a partially ordered set if R is reflexive, transitive and antisymmetric.
• an equivalence relation if R is reflexive, transitive and symmetric.

Definition 2 (Mappings between ordered sets) Let 〈P,≤〉 and 〈Q,⊆〉 be quasi-ordered sets.
A mapping f : P → Q is said to be:

• order-preserving (or monotone) if for all x and y in P , x ≤ y implies f (x) ⊆ f (y).
• order-embedding if for all x and y in P , x ≤ y if and only if f (x) ⊆ f (y).
• order-isomorphism if it is an order-embedding which maps P onto Q. In this case we say

P and Q are (order) isomorphic and write P ∼= Q.

Remark 1 Let 〈P,≤〉 and 〈Q,⊆〉 be partially ordered sets and f : P → Q be an order-
isomorphism. Then we have x = y if and only if f (x) = f (y)

Remark 2 Let 〈P,≤〉 and 〈Q,⊆〉 be partially ordered sets and f : P → Q be an order-
isomorphism. Then the inverse of f , f −1 : Q → P , is also an order-isomorphism.

Definition 3 (lub and glb) Let 〈P,≤〉 be a quasi-ordered set and S ⊆ P . An element x ∈ P

is an upper bound of S if s ≤ x for all s ∈ S. An upper bound x of S is a least upper bound
(lub) of S if x ≤ z for all upper bounds z of S. Dually, an element x ∈ P is a lower bound of
S if x ≤ s for all s ∈ S. A lower bound x of S is a greatest lower bound (glb) of S if z ≤ x

for all lower bounds z of S.

Definition 4 (Lattice) A quasi-ordered set 〈L,≤〉 is called a lattice if for every x and y in
L a lub of {x, y}, also denoted by x ∧ y (read ‘x meet y’) and a glb of {x, y}, also denoted
by x ∨ y (read ‘x join y’) exist. A lattice 〈L,≤〉 is also denoted using the meet and join
operators: 〈L,∧,∨〉.

Definition 5 (Lattice homomorphism) Let 〈L,∧,∨〉 and 〈K,∩,∪〉 be lattices. A mapping
f : L → K is a lattice homomorphism if f is join-preserving and meet-preserving that is
for all x and y in L:

1. f (x ∨ y) = f (x) ∪ f (y) and
2. f (x ∧ y) = f (x) ∩ f (y)

Definition 6 (Lattice isomorphism) Let 〈L,∧,∨〉 and 〈K,∩,∪〉 be lattices. A mapping
f : L → K is a lattice isomorphism if f is a bijective lattice homomorphism.

Remark 3 If f : L → K is a one-to-one homomorphism, then the sub-lattice f (L) of K is
isomorphic to L and we refer to f as an embedding of L into K .

Remark 4 Let 〈L,∧,∨〉 and 〈K,∩,∪〉 be lattices.

• a mapping f : L → K is order-preserving if it is a lattice homomorphism.
• a mapping f : L → K is order-isomorphism if and only if it is a lattice isomorphism.
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Note that if two lattices are isomorphic then for all practical purposes they are identical
and differ only in the notation of their elements. In other words, an isomorphism faithfully
mirrors the order structure.

The general subsumption order on clauses, also known as θ -subsumption, is defined in
the following. First we define substitutions.

Definition 7 (Substitution) A substitution θ is a set {v1/t1, . . . , vn/tn} where each vi is
a distinct variable and each ti is a term. We say ti is substituted for vi and vi/ti is called a
binding for vi . The set {v1, . . . , vn} is called the domain of θ , or dom(θ), and {t1, . . . , tn} the
range of θ , or rng(θ). A substitution θ = {v1/t1, . . . , vn/tn} is called a variable substitution if
every ti is a variable. A variable substitution θ = {u1/v1, . . . , un/vn} is said to be a variable
renaming if and only if dom(θ) is disjoint from rng(θ) and each vi is distinct.

Definition 8 (Subsumption on clauses) Let C and D be clauses. We say C subsumes D,
denoted by C 
 D, if there exists a substitution θ such that Cθ is a subset of D. C properly
subsumes D, denoted by C � D, if C 
 D and D �
 C. C and D are subsume-equivalent,
denoted by C ∼ D, if C 
 D and D 
 C.

The subsumption order on atoms, which is a special case of Definition 8, is defined as
follows.

Definition 9 (Subsumption on atoms) Let A and B be atoms. We say A subsumes B ,
denoted by A 
 B , if there exists a substitution θ such that Aθ = B . A properly subsumes
B , denoted by A � B , if A 
 B and B �
 A. A and B are subsume-equivalent, denoted by
A ∼ B , if A 
 B and B 
 A.

Remark 5 Let A be the set of atoms in a language and 
 be the subsumption order as defined
in Definition 9. Every finite subset of A has a most general specialisation (mgs), obtained
from the unification algorithm, and a least general generalisation (lgg), obtained from the
anti-unification algorithm. Thus 〈A,
〉 is a lattice.

Remark 6 Let C be a clausal language and 
 be the subsumption order as defined in Defin-
ition 8. Every finite subset of C has a most general specialisation (mgs) and a least general
generalisation (lgg). Thus 〈C,
〉 is a lattice.

The following definition is a reminder of the concept of refinement operators and several
properties of these operators.

Definition 10 (Refinement operator) Let C be a clausal language and 
 be the subsumption
order as defined in Definition 8. A (downward) refinement operator for 〈C,
〉 is a function
ρ, such that ρ(C) ⊆ {D|C 
 D}, for every C ∈ C .

– The sets of one-step refinements, n-step refinements and refinements of some C ∈ C
are respectively: ρ1(C) = ρ(C), ρn(C) = {D| there is an E ∈ ρn−1(C) such that D ∈
ρ(E)}, n ≥ 2 and ρ∗(C) = ρ1(C) ∪ ρ2(C) ∪ · · ·.

– A ρ-chain from C to D is a sequence C = C0,C1, . . . ,Cn = D, such that Ci ∈ ρ(Ci−1)

for every 1 ≤ i ≤ n.
– ρ is locally finite if for every C ∈ C , ρ(C) is finite and computable.
– ρ is proper if for every C ∈ C , ρ(C) ⊆ {D|C � D}.
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Fig. 1 Part of a refinement graph representing (downward) refinements of a clause

– ρ is complete if for every C,D ∈ C such that C � D, there is an E ∈ ρ∗(C) such that
D ∼ E (i.e. D and E are equivalent in the 
-order).

– ρ is weakly complete for 〈C,
〉 if ρ∗(�) = C , where � is the top element of C .
– ρ is non-redundant if for every C,D,E ∈ C , E ∈ ρ∗(C) and E ∈ ρ∗(D) implies

C ∈ ρ∗(D) or D ∈ ρ∗(C).
– ρ is ideal if it is locally finite, proper and complete.
– ρ is optimal if it is locally finite, non-redundant and weakly complete.

We can define analogous concepts for the dual case of an upward refinement operator.

Example 1 Figure 1 shows part of a (downward) refinement graph for the subsumption
order. In this graph clause p(x, y) is refined either by unifying variables or by adding literals.
The refinement operator presented by this graph is not complete as it does not include all
possible refinements. It is proper as the graph does not contain cycles. It is redundant because
it does not have a tree structure and there is more than one path from p(x, y) to p(x, x) ←
q(x, z).

3 Clause refinement in a Progol-like ILP system

In this section we study clause refinement in ILP systems which consider the hypothesis
space bounded by a bottom clause. In particular we discuss refinement in Progol as a repre-
sentative of these ILP systems. The Progol algorithm (Muggleton 1995) is based on succes-
sive construction of definite clause hypotheses H from a language L. H must explain the
examples E in terms of background knowledge B . Each clause in H is found by choosing
an uncovered positive example e and searching through the graph defined by the refinement
ordering 
 bounded below by a bottom clause ⊥ associated with e. In general ⊥ can have
infinite cardinality. Progol uses mode declarations to constrain the search for clauses which
subsume ⊥. Progol’s mode declaration (M), definite mode language (L(M)) and depth-
bounded mode language (Li (M)) are defined in Appendix A.
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Progol searches a bounded sub-lattice for each example e relative to background knowl-
edge B and mode declarations M . The sub-lattice has a most general element which is the
empty clause, �, and a least general element ⊥i which is the most specific element in Li (M)

such that

B ∧ ⊥i ∧ e �h �

where �h � denotes derivation of the empty clause in at most h resolutions. The following
definition describes a bottom clause ⊥i for a depth-bounded mode language Li (M).

Definition 11 (Most-specific clause or bottom clause) Let h, i be natural numbers, B be a
set of Horn clauses, e = a ← b1, . . . , bn be a definite clause, M be a set of mode declarations
containing exactly one modeh m such that a(m) 
 a and ⊥̂ be the most-specific (potentially
infinite) definite clause such that B ∧ ⊥̂ ∧ e �h �. ⊥i is the most-specific clause in Li (M)

such that ⊥i 
 ⊥̂. C is the most-specific clause in L if for all C ′ in L we have C ′ 
 C.
−→⊥ is

⊥i with a defined ordering over the literals.

In this paper, we refer to ⊥i as
−→⊥ or ⊥ depending on whether we use the ordering of

the literals or not. Progol’s algorithm for constructing the bottom clause (⊥i ) is given in
Appendix A.

The refinement operator in Progol is designed to avoid redundancy and to maintain the
relationship � 
 H 
 ⊥ for each clause H . Since H 
 ⊥, it is the case that there exists a
substitution θ such that Hθ ⊆ ⊥. Thus for each literal l in H there exists a literal l′ in ⊥
such that lθ = l′. Clearly there is a uniquely defined subset ⊥(H) consisting of all l′ in ⊥ for
which there exists l in H and lθ = l′. A non-deterministic approach to choosing an arbitrary
subset S ′ of a set S involves maintaining an index k. For each value of k between 1 and n,
the cardinality of S, we decide whether to include the kth element of S in S ′. Clearly, the set
of all series of n choices corresponds to the set of all subsets of S. Also for each subset of S

there is exactly one series of n choices. To avoid redundancy and maintain θ -subsumption
of ⊥ Progol’s refinement operator maintains both k and θ .

The refinement operator ρ defined in (Muggleton 1995) allows more than one literal in
H to be mapped to the same literal l′ in ⊥. However, in Progol’s implementation1 of the
refinement operator, index k is incremented after each step for the sake of efficiency. This
means each literal of ⊥ can be considered only once. In the following, we give a revised
definition (ρ0) which describes the refinement operator as implemented in Progol. This also
includes a revised definition for function δ.

Definition 12 (Progol refinement operator ρ0) Let h, i,B, e,M and ⊥i be defined as in
Definition 11 and let n be the cardinality of ⊥i . Let k be a natural number, 1 ≤ k ≤ n.
Let C be a clause in Li (M) and θ be a substitution such that Cθ ⊆ ⊥i . Below a literal l

corresponding to a mode ml in M is denoted simply as p(v1, . . . , vm) despite the sign of ml

and function symbols in a(ml). A variable is splittable if it corresponds to a +type or −type
in a modeh or if it corresponds to a −type in a modeb. 〈p(v1, . . . , vm), θ ′

m〉 is in δ(θ, k) if
and only if lk = p(u1, . . . , um) is the kth literal of ⊥i , θ ′

0 = θ and θ ′
j for each j , 1 ≤ j ≤ m

is defined as follows:

1. if vj/uj ∈ θ ′
j−1 then θ ′

j = θ ′
j−1 or

2. if uj is splittable then θ ′
j = θ ′

j−1 ∪ {vj/uj } where vj is a new variable not in dom(θ ′
j−1).

1Available from: http://www.doc.ic.ac.uk/~shm/Software/progol4.1/.

http://www.doc.ic.ac.uk/~shm/Software/progol4.1/
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〈C ′, θ ′, k′〉 is in ρ0(〈C,θ, k〉) if and only if either

1. C ′ = C ∨ l, k′ = k + 1, k < n and 〈l, θ ′〉 is in δ(θ, k) and C ′ ∈ Li (M) or
2. C ′ = C, k′ = k + 1, θ ′ = θ and k < n.

In Definition 12 the variables in ⊥i form a set of equivalences classes over the variables
in any clause C which θ -subsumes ⊥i . Thus we could write the equivalence class of u in θ as
[v]u, the set of all variables in C such that v/u is in θ . The second choice in the definition of
δ adds a new variable to an equivalence class [vj ]uj

. This will be referred to as splitting the
variable uj . Note that in Definition 12 a variable is not splittable if it corresponds to a +type
in a modeb since the resulting clause would violate the mode declaration language L(M)

(see Definition 38). In some problems, given enough training examples, the target hypothesis
can be learned without variable splitting (using only the variable bindings from the bottom
clause). For this reason, the default refinement operators in some Progol-like ILP systems,
including Aleph (Srinivasan 2007), do not split variables and only consider adding literals
from the bottom clause (i.e. the second choice of δ in Definition 12 is not implemented).
However, it can be shown that there are problems where the target hypothesis cannot be
found by a Progol-like ILP system without variable splitting. The following is an example
where variable splitting is needed.

Example 2 (Variable splitting) Consider learning a half adder logical circuit that performs
an addition operation on two binary digits and produces a sum and a carry value which are
both binary digits. Suppose M consists of the following mode declarations:

modeh(1, add(+bin, +bin, −bin, −bin))
modeb(1, xor(+bin, +bin, −bin))
modeb(1, and(+bin, +bin, −bin))

The type and other background knowledge are defined as follows:

B =

⎧
⎪⎪⎨

⎪⎪⎩

bin(0) ←, bin(1) ←, and(0,0,0) ←,

and(0,1,0) ←, and(1,0,0) ←, and(1,1,1) ←,

xor(0,0,0) ←, xor(0,1,1) ←, xor(1,0,1) ←,

xor(1,1,0) ←
The positive and negative examples are as follows:

E =
⎧
⎨

⎩

add(1,0,1,0) ←, add(0,0,0,0) ←, add(0,1,1,0) ←,

add(1,1,0,1) ←, ← add(0,1,0,1), ← add(1,0,0,1),

← add(1,1,1,0), ← add(1,1,1,1), ← add(0,1,1,1)

Let h = 30 and i = 3 and let the first positive example be e = add(1,0,1,0) ←. In this case
⊥i is as follows:

⊥i = add(A,B,A,B) ← xor(A,A,B),xor(A,B,A),xor(B,A,A),

xor(B,B,B), and(A,A,A), and(A,B,B), and(B,A,B),

and(B,B,B).

Using the refinement operator in Definition 12, Progol can learn the following target hy-
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pothesis:

add(A,B,C,D) ← xor(A,B,C), and(A,B,D).

However, this clause cannot be generated from ⊥i without variable splitting, because the
bottom clause contains only two distinct variables and yet the target clause contains four
variables.

This example represents a group of problems which cannot be learned by a Progol-like
ILP system without variable splitting. In general, if the target clause includes a predicate
with more than two variables which are defined over a binary domain, then in the bottom
clause at least two arguments of this predicate always represent the same variable. This
then requires variable splitting in order to generate the target clause from the bottom clause.
Progol’s refinement operator uses variable splitting by default, however it can be turned
off by the user. Aleph’s default refinement operator does not implement variable splitting
and only considers adding literals from the bottom clause. Variable splitting in Aleph is
implemented in an optional setting where equality literals between variables are inserted
into the bottom clause to maintain equivalence. However, introducing equality literals in
the bottom clause increases the search space considerably and can make the search explore
redundant clauses. According to Aleph’s manual (Srinivasan 2007), if variable splitting is
turned on (splitvars is set to true) the bottom clause can be extremely large and probably not
practical for large numbers of variable co-references. For the problem mentioned in Example
2, Aleph can find the correct target hypothesis if splitvars is set to true. However, in this case
Aleph considers a bottom clause with 101 literals compared with the bottom clause with 9
literals considered by Progol.

In this section we show that Progol’s refinement cannot be described by the general sub-
sumption order and that we need the notion of “sequential subsumption” in order to charac-
terise Progol’s refinement space. It can be shown that a refinement operator cannot be both
complete and non-redundant (Nienhuys-Cheng and de Wolf 1997). However, a refinement
operator can be weakly complete and non-redundant (optimal). As mentioned in the previ-
ous section, Progol’s ρ is designed to be non-redundant and therefore it cannot be complete.
However, it is known that Progol’s refinement operator is also not weakly complete with
respect to the general subsumption order (Muggleton 1995). This is demonstrated in the
following example.2

Example 3 Let B contain definitions for decrementation (dec), addition (plus) and the clause
mult(0,X,0) ← with appropriate mode declarations M and let the example e be the clause
mult(1,1,1) ←. Then ⊥ is the clause

mult(A,A,A) ← dec(A,B),plus(B,A,A),plus(B,B,B),

mult(B,A,B),mult(B,B,B).

Now consider clause C:

C = mult(U,V,W) ← dec(U,X),mult(X,V,Y ),plus(Y,V,W).

Clause C is in L, but given the ordering over ⊥ there will be no element of Progol’s ρ∗(�)

containing this clause or a subsume-equivalent of this clause.

2This example is a corrected version of Example 30 in (Muggleton 1995).



Mach Learn (2009) 76: 37–72 45

Badea and Stanciu (1999) describe two types of Progol’s incompleteness. This example
is related to the first type of incompleteness which is due to the choice of ordering in the
bottom clause and the variable dependencies in the literals. As mentioned in the previous
section, Progol’s refinement uses an indexing over the literals and the literals in ⊥ can only
be considered from left to right. Moreover, each literal from ⊥ can be selected only once.
This leads to the second type of incompleteness. The example below shows that Progol’s
refinement space is not a lattice with respect to the general subsumption, as the least general
generalisation of clauses is not always in the refinement space.

Example 4 Let C, D and ⊥ be clauses as defined below

C = p(X,Y ) ← q(X,X),q(Y,W),

D = p(X,Y ) ← q(Z,X),q(Y,Y ),

⊥ = p(X,Y ) ← q(X,X),q(Y,Y ).

C and D can be generated by Progol’s refinement (i.e. C,D ∈ ρ∗(�)), however, clause E

below which is the least general generalisation (lgg) of C and D cannot be generated (i.e.
E �∈ ρ∗(�)).

E = p(X,Y ) ← q(Z,X),q(U,U),q(Y,W).

Example 4 is related to the second type of incompleteness which is due to the fact that
each literal from ⊥ can be selected only once. Clause E, therefore, cannot be in ρ∗(�) as
this will require more than one literal of E to be mapped to the same literal of ⊥. As another
example of the second type of incompleteness, consider the following example adopted
from Badea and Stanciu (1999).

Example 5 Let ⊥ = p(X) ← q(X,X), then Progol’s refinement only considers the follow-
ing hypotheses.

C = p(X),

D = p(X) ← q(X,Y ),

E = p(X) ← q(X,X).

However, the following clauses which subsume ⊥ are not considered by Progol’s refine-
ment:

C ′
1 = p(X) ← q(X,Y ),q(Y,X),

C ′
2 = p(X) ← q(X,Y ),q(Y,Z),q(Z,X),

C ′
3 = p(X) ← q(X,Y ),q(Y,Z),q(Z,W),q(W,X),

. . . .

In this example clause C ′
n can be constructed only if more than one literal (i.e. n+ 1 literals)

from C ′
n could be mapped to the same literal q(X,X) from ⊥ (which is not allowed in

Progol’s refinement).
Figure 2 summarises the two types of incompleteness discussed in this section. This fig-

ure shows part of a refinement graph bounded by a bottom clause as in Progol. Suppose
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Fig. 2 Part of a refinement graph bounded by a bottom clause as in Progol. Dashed lines represent refinement
steps which are not considered by Progol’s refinement. Red dashed lines represent missing refinement steps
which could lead to incompleteness with respect to general subsumption

that the bottom clause ⊥ is given by p(x, y) ← q(x, x), r(y, y). Dashed lines represent re-
finement steps which are not considered by Progol’s refinement. For example, refinement
step from p(x, y) to p(x, x) is not considered because according to Progol’s refinement
operator, a literal is not allowed to be more specific than the corresponding literal from the
bottom clause (i.e. p(x, y) in this case). Red dashed lines represent missing refinement steps
which could lead to incompleteness with respect to general subsumption. For example, re-
finement step from p(x, y) ← r(w,y) to p(x, y) ← r(w,y), q(x, z) is not considered by
Progol’s refinement due to the choice of ordering in the bottom clause. In this example a
subsume-equivalent of clause p(x, y) ← r(w,y), q(x, z) (i.e. p(x, y) ← q(x, z), r(w,y))
appears in the refinement graph. However, as shown in example 3, the choice of ordering
in the bottom clause and the variable dependencies in the literals could lead to incomplete-
ness (first type of incompleteness). Moreover, refinement step from p(x, y) ← q(x, z) to
p(x, y) ← q(x, z), q(z, x) is missing because each literal from the bottom clause can be
selected only once (second type of incompleteness).

It has been suggested (Badea and Stanciu 1999) that the second type of incompleteness
is not a drawback as it can be justified by the examples and the MDL heuristic. In order
to characterise Progol’s refinement, Badea and Stanciu (1999) suggested a special case of
subsumption, called weak subsumption, which does not allow substitutions that identify
literals (i.e. for Cθ there are no literals L1 and L2 in C such that L1θ = L2θ ). For example,
the clause p(X′) ← q(X′, Y ′),q(Y ′,X′) subsumes ⊥ = p(X) ← q(X,X) with respect to
the general subsumption, but it does not weakly subsume it. This is because substitution
{X′/X,Y ′/X} identifies literals q(X′, Y ′) and q(Y ′,X′). The weak subsumption ordering,
therefore, characterises the second type of incompleteness. However, it does not capture the
incompleteness due to the ordering of the literals. For example, consider clauses C and ⊥ in
Example 3. C weakly subsumes ⊥ but clause C is not considered by Progol’s refinement.

As mentioned before, Progol’s refinement operator scans ⊥ from left to right and for each
literal l′ of ⊥ decides whether to include a generalisation of it (i.e. l, where lθ = l′) in H
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or not. Hθ can be, therefore, characterised as a “subsequence” of ⊥ rather than a “subset”
of ⊥. In the following sections we first define a special case of subsumption based on the
idea of subsequences, and then we show how Progol’s refinement can be characterised using
sequential subsumption.

4 Ordered clauses and sequential subsumption

In this section we define the concepts of ordered clauses and sequential subsumption which
will be used for characterising clause refinement in a Progol-like ILP system. According to
Definition 38, clauses which are considered by Progol’s refinement (i.e. clauses in L(M))
are defined with a total ordering over the literals. In order to characterise Progol’s refinement
we adopt an explicit representation for ordered clauses. The concept of ordered clauses has
been used before in ILP. For example, when defining upward refinement operators it is some-
time necessary to duplicate literals in order to correctly invert an elementary substitution.
Duplication of literals is not allowed in the standard representation of clauses (which use a
set notation) and therefore ordered clauses are used instead (Nienhuys-Cheng and de Wolf
1997). A subsumption relation for ordered clauses is studied in Kuwabara et al. (2006). The
difference between this subsumption order and the subsumption order considered in this
paper is discussed in Sect. 9. There are also other applications of ordered clauses and se-
quential subsumption, for example in the context of data mining from sequential data (e.g.
Lee and De Raedt 2003). In this paper we use the same notion used in Nienhuys-Cheng
and de Wolf (1997) and an ordered clause is represented as a disjunction of literals (i.e.
L1 ∨ L2 ∨ · · · ∨ Ln). The set notation (i.e. {L1,L2, . . . ,Ln}) is used to represent conven-
tional clauses.

Definition 13 (Ordered clause) An ordered clause
−→
C is a sequence of literals L1,L2, . . . ,Ln

and denoted by
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln. The set of literals in

−→
C is denoted by C.

Unlike conventional clauses, the order and duplication of literals matter for ordered
clauses. For example,

−→
C = p(X)∨¬q(X),

−→
D = ¬q(X)∨p(X) and

−→
E = p(X)∨¬q(X)∨

p(X) are different ordered clauses while they all correspond to the same conventional
clause, i.e. C = D = E = {p(X),¬q(X)}.

Selection of two clauses is defined as a pair of compatible literals and this concept was
used by Plotkin to define least generalisation for clauses (Plotkin 1971). However, in this
paper we use selections to define mappings of literals between two ordered clauses.

Definition 14 (Compatible literals) Literals L and M are compatible if they have the same
sign and predicate symbol.

Definition 15 (Selection of clauses) Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln and

−→
D = M1 ∨ M2 ∨

· · · ∨ Mm be ordered clauses. A selection of
−→
C and

−→
D is a pair (i, j) where Li and Mj are

compatible literals.

Definition 16 (Selection function) Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln and

−→
D = M1 ∨ M2 ∨ · · · ∨

Mm be ordered clauses. A set s of selections of
−→
C and

−→
D is called a selection function if it

is a total function of {1,2, . . . , n} into {1,2, . . . ,m}.
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Fig. 3 (a) −→
C is a subsequence

of −→
B because there exists strictly

increasing selection function
s1 = {(1,1), (2,3), (3,4)} which
maps each literal from −→

C to an
equivalent literal from −→

B (b) −→
D

is not a subsequence of −→
B

Example 6 Let
−→
C = L1 ∨ L2 ∨ L3 and

−→
D = M1 ∨ M2 ∨ M3 ∨ M4 be two ordered clauses

and the set of all selections of
−→
C and

−→
D be S = {(1,1), (1,2), (2,1), (2,2), (3,4)}. Then,

s1 = {(1,1), (2,2), (3,4)}, s2 = {(1,1), (2,1), (3,4)} and s3 = {(1,2), (2,1), (3,4)} are examples
of selection functions of

−→
C and

−→
D .

Definition 17 (Subsequence) Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ll and

−→
D = M1 ∨ M2 ∨ · · · ∨

Mm be ordered clauses.
−→
C is a subsequence of

−→
D , denoted by

−→
C � −→

D , if there exists a
strictly increasing selection function s ⊆ {1, . . . , l}×{1, . . . ,m} such that for each (i, j) ∈ s,
Li = Mj .

Example 7 In Fig. 3,
−→
C is a subsequence of

−→
B because there exists increasing selection

function s1 = {(1,1), (2,3), (3,4)} which maps literals from
−→
C to equivalent literals from−→

D . However,
−→
D is not a subsequence of

−→
B because an increasing selection function does

not exist for
−→
D and

−→
B .

Definition 18 (Ordered substitution) Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ll be an ordered clause and

θ be a substitution.
−→
C θ is defined as follows,

−→
C θ = L1θ ∨ L2θ ∨ · · · ∨ Llθ

Definition 19 (Sequential subsumption) Let
−→
C and

−→
D be ordered clauses. We say

−→
C se-

quentially subsumes
−→
D , denoted by

−→
C 
s

−→
D , if there exists a substitution θ such that

−→
C θ

is a subsequence of
−→
D .

−→
C is a proper sequential generalisation of

−→
D , denoted by

−→
C �s

−→
D ,

if
−→
C 
s

−→
D and

−→
D �
s

−→
C .

−→
C and

−→
D are equivalent with respect to sequential subsumption,

denoted by
−→
C ∼s

−→
D , if

−→
C 
s

−→
D and

−→
D 
s

−→
C .

Example 8 Let
−→
B = p(X1, Y1) ∨ q(X1, Y1) ∨ r(X1, Y1) ∨ r(Y1,X1),

−→
C = p(X2, Y2) ∨

r(U2, Y2) ∨ r(Y2,V2) and
−→
D = p(X3, Y3) ∨ r(Y3,V3) ∨ r(U3, Y3) be ordered clauses. Let

θ1 = {X2/X1, Y2/Y1, U2/X1,V2/X1}, then
−→
C θ1 is a subsequence of

−→
B and therefore−→

C 
s
−→
B . However, there is no substitution θ2 such that

−→
D θ2 is a subsequence of

−→
B and

therefore
−→
D �
s

−→
B . Note that for conventional clauses B , C and D we have Cθ1 ⊆ B and

similarly for θ2 = {X3/X1, Y3/Y1,V3/X1,U3/X1} we have Dθ2 ⊆ B and therefore C 
 B

and D 
 B .

The following theorem shows the relationship between sequential subsumption and the
general subsumption order.

Theorem 1 Let
−→
C and

−→
D be ordered clauses. If

−→
C 
s

−→
D , then C 
 D.
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Table 1 A comparison between
ordered clauses and conventional
clauses

Ordered clauses Conventional clauses

−→
C = L1 ∨ L2 ∨ · · · ∨ Ln C = {L1,L2, . . . ,Ln}
Mapping of literals (s) Undefined

Subsequence (�) Subset (⊆)

Sequential subsumption (
s ) Subsumption (
)

Proof Suppose
−→
C 
s

−→
D , then according to Definition 19 there exists a substitution

θ such that
−→
C θ is a subsequence of

−→
D . Let

−→
C θ = L1θ ∨ L2θ ∨ · · · ∨ Llθ and−→

D = M1 ∨ M2 ∨ · · · ∨ Mm. Then for every literal Liθ in
−→
C θ there exists a literal Mj in−→

D such that Liθ = Mj , and therefore Cθ ⊆ D. Hence, C 
 D. �

Note that as shown in Example 8, the converse of Theorem 1 does not hold in general.
Table 1 shows a comparison between corresponding concepts for ordered clauses and con-
ventional clauses.

5 Subsumption order relative to a bottom clause

As shown in Sect. 3, clause refinement in Progol-like ILP systems cannot be described by
the general subsumption order. In this section we define a subsumption order relative to ⊥
(i.e. 
⊥) which can capture clause refinement in these systems. First we define −→L ⊥ as the
set of definite ordered clauses which are sequential generalisation of

−→⊥ . In this section we
show that the refinement space of a Progol-like ILP system can be characterised using −→L ⊥.

Definition 20 (−→L ⊥) Let
−→⊥ be the bottom clause as defined in Definition 11 and

−→
C a

definite ordered clause.
−→
C is in −→L ⊥ if and only if there exists a substitution θ such that

−→
C θ

is a subsequence of
−→⊥ .

Let us consider the examples in Sect. 3 with respect to Definition 20. In Example 3, if we
now consider

−→
C and

−→⊥ as ordered clauses then
−→
C �∈ −→L ⊥, because there is no substitution

θ such that
−→
C θ can be a subsequence of

−→⊥ . Similarly in Example 5,
−→
C ′

1 �∈ −→L ⊥, etc.
As in Muggleton (1995), the languages which we consider in this paper (e.g. −→L ⊥) cor-

respond to a set of clauses which have the characteristics of generalisations of a flattened
bottom clause. Therefore, all clauses in −→L ⊥ can be treated as if they were function-free and
all substitutions we consider are variable substitutions. The following example demonstrates
how clauses with function symbols can be dealt with as though they were function-free by
using flattening (Rouveirol 1992).

Example 9 The clause D = nat(s(s(X))) ← nat(X) can be flattened to the function-free
clause D′ = nat(V ) ← s(V ,W), s(W,X), nat(X) where s is defined as s(X, s(X)).

In Definition 20, the sequential subsumption is used to define the hypotheses language−→L ⊥. In this section we prove that Progol’s refinement space can be characterised by −→L ⊥.
However, Progol’s refinement operator cannot be characterised by sequential subsumption
and we need to define a subsumption order relative to a bottom clause. This is because only
literals are comparable with respect to Progol’s refinement which correspond to the same
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Fig. 4 Comparable literals with
respect to a bottom clause (a)
literals from −→

C are comparable
with the literals from −→

D

respectively as they are mapped
to the same literals from −→⊥ (b)
the third literal from −→

C and the
third literal from −→

E are not
comparable as they are mapped
to different literals from −→⊥

literals of
−→⊥ . According to the definition of Progol’s refinement operator (Definition 12),

refinements of a clause are constructed by adding literals which are generalisations of a
literal from

−→⊥ . These literals are generated by δ and they all correspond to the same literal
lk from

−→⊥ . This means that a literal Li from
−→
C is comparable (with respect to Progol’s

refinement) to a literal Mj from
−→
D if Li and Mj are both mapped to the same literal of

−→⊥ .
This has been demonstrated in the following example.

Example 10 Let
−→⊥ = p(X) ← q(X), r(X), s(X,Y ), s(Y,X) be an ordered clause and−→

C = p(X) ← r(X), s(Y,Z) and
−→
D = p(X) ← r(X), s(Y,X) be ordered clauses in −→L ⊥

as shown in Fig. 4. Suppose that the literals of
−→
C are mapped to the first, the third and the

fifth literals of
−→⊥ respectively, and similarly the literals of

−→
D are mapped to the first, the

second, the third and the fifth literals of
−→⊥ as in Fig. 4.a. In this case, literals from

−→
C are

comparable with the first, the third and the fourth literals from
−→
D respectively. However, in

Fig. 4.b, the third literal from
−→
C and the third literal from

−→
E are mapped to different literals

from
−→⊥ and therefore they are not comparable with respect to Progol’s refinement (though

they are comparable with respect to general subsumption or sequential subsumption).

In the following we define a subsumption order relative to ⊥ (i.e. 
⊥) which can capture
Progol’s refinement. First we define subsequence relative to ⊥.

Definition 21 (Subsequence relative to ⊥) Let
−→⊥ and −→L ⊥ be as defined in Definition 20

and
−→
C and

−→
D be ordered clauses in −→L ⊥ such that the selection function s1 maps literals

from
−→
C θ1 to equivalent literals from

−→⊥ and the selection function s2 maps literals from−→
D θ2 to equivalent literals from

−→⊥ .
−→
C is a subsequence of

−→
D relative to ⊥, denoted by−→

C �⊥
−→
D , if

−→
C is a subsequence of

−→
D and rng(s1) ⊆ rng(s2), where rng(f ) is the range of

function f .

In Definition 21 each literal Li from
−→
C is mapped to an equivalent literal Mj from

−→
D

and Li and Mj both correspond to the same literal from
−→⊥ .

Definition 22 (Subsumption relative to ⊥) Let
−→⊥ and −→L ⊥ be as defined in Definition 20

and
−→
C and

−→
D be ordered clauses in −→L ⊥. We say

−→
C subsumes

−→
D relative to ⊥, denoted
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by
−→
C 
⊥

−→
D , if there exists a substitution θ such that

−→
C θ is a subsequence of

−→
D relative

to ⊥.
−→
C is a proper generalisation of

−→
D relative to ⊥, denoted by

−→
C �⊥

−→
D , if

−→
C 
⊥

−→
D

and
−→
D �
⊥

−→
C .

−→
C and

−→
D are equivalent with respect to subsumption relative to ⊥, denoted

by
−→
C ∼⊥

−→
D , if

−→
C 
⊥

−→
D and

−→
D 
⊥

−→
C .

Example 11 Let
−→⊥ ,

−→
C ,

−→
D and

−→
E be ordered clauses in Example 10 as shown in Fig. 4.

Then
−→
C subsumes

−→
D relative to ⊥ since there is a substitution θ such that

−→
C θ is a subse-

quence of
−→
D relative to ⊥. However,

−→
C does not subsume

−→
E relative to ⊥ since there is no

substitution θ such that
−→
C θ can be a subsequence of

−→
E relative to ⊥. This is because the

third literal from
−→
C and the third literal from

−→
E are mapped to different literals from

−→⊥ .

In the following we first define −→L ⊥(M) by analogy to Progol’s Li (M) and then prove
that Progol’s refinement operator, ρ0, is weakly complete for 〈−→L ⊥(M), 
⊥〉. As shown by
the examples from Sect. 3, in particular Example 3, Progol’s refinement cannot be complete
or even weakly complete for general subsumption order. However, it can be weakly complete
for 〈−→L ⊥(M),
⊥〉.

Definition 23 (−→L ⊥(M)) Let −→L ⊥ and Li (M) be as defined in Definitions 20 and 40 respec-
tively.

−→
C is in −→L ⊥(M) if and only if

−→
C is in −→L ⊥ and C is in Li (M).

In Definition 12, the refinement operator ρ0, as ρ in Muggleton (1995), is defined for
clauses in Li (M). However, ρ0 can be also defined for clauses in −→L ⊥(M) if we let C and
C ′ to be ordered clauses in −→L ⊥(M) and

−→
C θ be a subsequence (rather than a subset) of

the bottom clause. In this case, it can be shown that ρ0 is weakly complete for 〈−→L ⊥(M),

⊥〉. This theorem also suggests that refinement space in a Progol-like ILP system can be
characterised by −→L ⊥(M).

Lemma 1 Let δ(θ, k) be as defined in Definition 12 and
−→
C and

−→
C ′ = −→

C ∨ l be ordered

clauses in −→L ⊥(M) such that
−→
C θ and

−→
C ′θ ′ be subsequences of

−→⊥ and lθ ′ = lk where lk is
the kth literal of

−→⊥ . Then, there exists 〈l′, θ ′′〉 in δ(θ, k) such that l and l′ are variants.

Proof Let literals lk , l and l′ be denoted simply by p(u1, . . . , um), p(v1, . . . , vm) and
p(v′

1, . . . , v
′
m) respectively, despite the sign and function symbols (as in Definition 12). Let

lk = p(u1, . . . , um), l = p(v1, . . . , vm) and l′ = p(v′
1, . . . , v

′
m). We have p(v1, . . . , vm)θ ′ =

p(u1, . . . , um). We show that 〈l′, θ ′′〉 can be constructed using δ(θ, k) and there exist vari-
ables v′

1, . . . , v
′
m and substitution θ ′′ such that p(v′

1, . . . , v
′
m)θ ′′ = p(u1, . . . , um) and l and

l′ are variants. Let θ ′′
0 = θ and for each vj/uj ∈ θ ′ where 1 ≤ j ≤ m if vj is a new vari-

able with respect to {v1, . . . , vj−1} and uj is splittable then, using choice 2 in the defini-
tion of δ, θ ′′

j = θ ′′
j−1 ∪ {v′

j /uj } where v′
j is a new variable not in dom(θ ′′

j−1). Otherwise,
by using choice 1 in the definition of δ, θ ′′

j = θ ′′
j−1. By construction, 〈l′, θ ′′

m〉 is in δ(θ, k)

and there is a one-to-one mapping between variables v′
j and vj for 1 ≤ j ≤ m. Variable

substitutions σ1 = {v1/v
′
1, . . . , vm/v′

m} and σ2 = {v′
1/v1, . . . , v

′
m/vm} are therefore variable

renamings. Hence, lσ1 = l′ and l′σ2 = l and therefore l and l′ are variants. �

Theorem 2 In Definition 12 let
−→
C and

−→
C ′ be ordered clauses in −→L ⊥(M) and

−→
C θ be a

subsequence (rather than a subset) of the bottom clause. Then ρ0 is weakly complete for
〈−→L ⊥(M),
⊥〉.
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Proof We need to show that ρ∗
0 (〈�,∅,1〉) = −→L ⊥(M). We show that for each

−→
C ∈ −→L ⊥(M),

there exists a ρ0-chain from � to
−→
C ′ where

−→
C ′ and

−→
C are alphabetical variants. The proof

is by induction on i, the number of literals in
−→
C . If i = 0 then

−→
C = �, and the empty

chain satisfies the theorem. Assume for some j , 0 ≤ j < i, that the lemma is true, we will
show that it is also true for j + 1. Suppose the lemma is true for j , this implies that there
is a ρ0-chain from � to an alphabetical variant of

−→
C j such that

−→
C j is an ordered clause in−→L ⊥(M) with j literals added from

−→
C . Therefore, there is a substitution θ such that

−→
C jθ is

a subsequence of
−→⊥ and we assume that the j -th literal of

−→
C j is mapped to the k-th literal

of
−→⊥ . Let

−→
C j+1 = −→

C j ∨ l, where l is the leftmost literal of
−→
C which is not in

−→
C j and l is

mapped to the k′-th literal of
−→⊥ , where k < k′ (because

−→
C j and

−→
C j+1 are sequential gener-

alisations of
−→⊥ ). Then there exists a ρ0-chain from 〈−→C j , θ, k〉 to 〈−→C j , θ, k′〉 by repeatedly

selecting choice 2 in the definition of ρ0 in order to skip k′ − k literals of
−→⊥ . According to

Lemma 1, there exists 〈l′, θ ′〉 in δ(θ, k′) such that l and l′ are variants. Therefore, by select-

ing choice 1 in the definition of ρ0,
−→
C ′

j+1 = −→
C j ∨ l′ is a variant of

−→
C j+1 = −→

C j ∨ l, where

〈−→C ′
j+1, θ

′, k′ + 1〉 ∈ ρ0(〈−→C j , θ, k′〉). Thus, there is a ρ0-chain from � to a variant of
−→
C j+1

and this completes the proof. �

6 The lattice structure of the subsumption order relative to ⊥

In the following we study the ordered set defined by −→L ⊥ and the subsumption order relative
to ⊥ and show that 〈−→L ⊥,
⊥〉 is a lattice. First we show that 
⊥ is a quasi-order and then
we prove that each pair of ordered clauses in −→L ⊥ have a most general specialisation (mgs⊥)
and a least general generalisation (lgg⊥) in −→L ⊥.

Lemma 2 Subsequence relation relative to ⊥ (�⊥) is transitive.

Proof Let
−→
C ,

−→
D and

−→
E be ordered clauses in −→L ⊥ such that

−→
C θ1 � −→⊥ ,

−→
D θ2 � −→⊥ and−→

E θ3 � −→⊥ where selection functions s1, s2 and s3 map literals from
−→
C θ1,

−→
D θ2 and

−→
E θ3

to equivalent literals from
−→⊥ respectively. Let

−→
C �⊥

−→
D and

−→
D �⊥

−→
E . Then according to

Definition 21 there exist strictly increasing selection functions s4 and s5 such that s4 maps
literals from

−→
C to equivalent literals from

−→
D and s5 maps literals from

−→
D to equivalent

literals from
−→
E and rng(s1) ⊆ rng(s2) ⊆ rng(s3). Then s = s4 ◦ s5 is also a strictly increasing

function which maps literals from
−→
C to equivalent literals from

−→
E and rng(s1) ⊆ rng(s3).

This implies
−→
C �⊥

−→
E . �

Theorem 3 Subsumption order relative to ⊥ (
⊥) is a quasi-order.

Proof For every ordered clause
−→
C , we have

−→
C 
⊥

−→
C . The relation 
⊥ is therefore

reflexive. Let
−→
C ,

−→
D and

−→
E be ordered clauses such that

−→
C 
⊥

−→
D and

−→
D 
⊥

−→
E .

Thus, there exist substitutions θ1 and θ2 such that
−→
C θ1 �⊥

−→
D and

−→
D θ2 �⊥

−→
E . We have−→

C θ1θ2 � −→
D θ2 � −→

E and then according to Lemma 2
−→
C θ1θ2 is a subsequence of

−→
E relative

to ⊥ and therefore
−→
C 
⊥

−→
E . The relation 
⊥ is reflexive and transitive and therefore it is

a quasi-order. �

In the following we prove that each pair of ordered clauses in −→L ⊥ have mgs and lgg. As
in Nienhuys-Cheng and de Wolf (1997) we use a sequence of pairs of compatible literals (i.e.
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selections) to bridge between the definitions of mgs and lgg for atoms and the definitions
of mgs and lgg for clauses. The following definition is similar to the one used in Nienhuys-
Cheng and de Wolf (1997) adopted for subsumption relative to a bottom clause.

Definition 24 Let
−→
C and

−→
D be ordered clauses and S = (L1,M1), . . . , (Ln,Mn) a sequence

of (not necessarily all) pairs of compatible literals from
−→
C and

−→
D relative to ⊥ such that

L1 ∨ L2 ∨ · · · ∨ Ln is a subsequence of
−→
C relative to ⊥ and M1 ∨ M2 ∨ · · · ∨ Mn is a

subsequence of
−→
D relative to ⊥. Then we let

−→
CS = L1 ∨L2 ∨· · ·∨Ln and

−→
DS = M1 ∨M2 ∨

· · · ∨ Mn.

Lemma 3 Let
−→
C and

−→
D be ordered clauses in −→L ⊥ and S,

−→
CS and

−→
DS be as defined in

Definition 24. Then,
−→
CS and

−→
DS are in −→L ⊥.

Proof
−→
C and

−→
D are ordered clauses in −→L ⊥ and there exist variable substitutions θ1 and θ2

such that
−→
C θ1 and

−→
D θ2 are subsequences of

−→⊥ . But according to Definition 24,
−→
CS is a

subsequence of
−→
C and

−→
DS is a subsequence of

−→
D . Then according to Lemma 2,

−→
CSθ1 and−→

DSθ2 are subsequences of
−→⊥ . Thus,

−→
CS and

−→
DS are in −→L ⊥. �

Lemma 4 Let
−→
C and

−→
D be ordered clauses in −→L ⊥ and S,

−→
CS and

−→
DS be as defined in

Definition 24. Then,
−→
CS and

−→
DS are unifiable.

Proof According to Definition 24, for each literal Li from
−→
CS = L1 ∨ L2 ∨ · · · ∨ Ln there

exists a corresponding compatible literal Mi from
−→
DS = M1 ∨ M2 ∨ · · · ∨ Mn. According to

Lemma 3, there exist variable substitutions θ1 and θ2 such that
−→
CSθ1 and

−→
DSθ2 are subse-

quences of
−→⊥ . Let

−→
E = N1 ∨N2 ∨· · ·∨Nn be a subsequence of

−→⊥ such that
−→
CSθ1 = −→

E and−→
DSθ2 = −→

E . Let θ = θ1 ∪ θ2 then we have
−→
CSθ = −→

DSθ = −→
E . Thus,

−→
CS and

−→
DS are unifiable

and θ is a unifier for {−→CS,
−→
DS}. �

Lemma 5 Let
−→
C be an ordered clauses in −→L ⊥ and

−→
D is derived from

−→
C by removing some

literals without changing the order of the remaining literals. Then,
−→
D is a subsequence of−→

C relative to ⊥.

Proof
−→
C is in −→L ⊥ and therefore there are substitution θ1 and a strictly increasing selection

function s1 which maps literals of
−→
C θ1 to equivalent literals from

−→⊥ .
−→
D is derived from

−→
C

by removing some literals. Thus,
−→
D is a subsequence of

−→
C and there are substitution θ2 ⊆ θ1

and a selection function s2 ⊆ s1 which maps literals of
−→
D θ2 to equivalent literals from

−→⊥ .
s2 ⊆ s1 implies that θ2 is a strictly increasing selection function and that rng(s2) ⊆ rng(s1).
Then

−→
D is in −→L ⊥ and according to Definition 21,

−→
D is a subsequence of

−→
C relative to ⊥. �

Theorem 4 (Existence of mgs⊥ in −→L ⊥) For every ordered clauses
−→
C and

−→
D in −→L ⊥, there

exists an mgs⊥ of
−→
C and

−→
D in −→L ⊥.

Proof
−→
C and

−→
D are ordered clauses in −→L ⊥ and there exist variable substitutions θ1 and θ2

such that
−→
C θ1 and

−→
D θ2 are subsequences of

−→⊥ . Let S,
−→
CS and

−→
DS be as defined in Defini-

tion 24 such that S is a sequence of all pairs of compatible literals from
−→
C and

−→
D relative

to ⊥. According to Lemma 4,
−→
CS and

−→
DS are unifiable. Let σ be an mgu for {−→CS,

−→
DS},

θ = {θ1 ∪ θ2}, n be the number of literals in
−→⊥ and

−→
E be defined as follows:

−→
E =

(
n∨

i=1

li where li is in
−→
C or in

−→
D and liθ is the i-th literal of

−→⊥
)

σ.
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We assume that the disjunction notion with indexes from i = 1 to n used to define
−→
E means

that the literals li of
−→
E follow the same order as literals in

−→⊥ . We show that
−→
E is in −→L ⊥

and it is a mgs⊥ for
−→
C and

−→
D . Let h1 and h2 be the heads of

−→
C and

−→
D respectively. h1 and

h2 are among compatible pair of literals in S and they are unified by σ and therefore
−→
E is a

definite ordered clause. Moreover, by definition
−→
E θ is derived from

−→⊥ by removing some
literals without changing the order of the remaining literals. Then according to Lemma 5,−→
E θ is a subsequence of

−→⊥ and therefore
−→
E is in −→L ⊥. We have

−→
C 
⊥

−→
E and

−→
D 
⊥

−→
E ,

since by definition
−→
C σ �⊥

−→
E and

−→
D σ �⊥

−→
E . Suppose

−→
F is a clause in −→L ⊥ such that−→

C 
⊥
−→
F and

−→
D 
⊥

−→
F . In order to establish that

−→
E is an mgs⊥ of

−→
C and

−→
D , we need to

prove
−→
E 
⊥

−→
F . Let θ ′

1 and θ ′
2 be variable substitutions such that

−→
C θ ′

1 �⊥
−→
F and

−→
D θ ′

2 �⊥−→
F , h′ be the head of

−→
F and θ ′ = {θ ′

1 ∪ θ ′
2}. Then, h1θ

′ = h1θ
′
1 = h′ and h2θ

′ = h2θ
′
2 = h′, so

θ ′ is a unifier for h1 and h2. But σ is an mgu for h1 and h2 and so there is a substitution γ

such that θ ′ = σγ . According to the definition of
−→
E , for every literal liσ in

−→
E , li is either

in
−→
C or in

−→
D . But

−→
C θ1 �⊥

−→
F and

−→
D θ ′ �⊥

−→
F and therefore each literal (liσ )γ in

−→
E γ is

mapped to an equivalent literal liθ
′ in

−→
F and both

−→
E and

−→
F are subsequences of

−→⊥ . Then
according to Lemma 5,

−→
E γ is a subsequence of

−→
F relative to ⊥ and we have

−→
E 
⊥

−→
F .−→

E is therefore an mgs⊥ for
−→
C and

−→
D in −→L ⊥. �

Example 12 Let
−→
C ,

−→
D and

−→⊥ be ordered clauses as defined below:

−→
C = p(X1, Y1) ← q(X1,X1),q(Y1,W1),

−→
D = p(X2, Y2) ← q(Z2,X2),q(Y2, Y2), r(X2, Y2),

−→⊥ = p(X,Y ) ← q(X,X),q(Y,Y ), r(X,Y ), s(X,Y ).

Suppose that
−→
C and

−→
D are in −→L ⊥ and literals of

−→
C are respectively mapped to the first,

second and third literals of
−→⊥ and literals of

−→
D are respectively mapped to the first, second,

third and fourth literals of
−→⊥ . Then according to Definition 24, S,

−→
CS and

−→
DS are defined as

follows:

S = (p(X1, Y1),p(X2, Y2)), (¬q(X1,X1),¬q(Z2,X2)),

(¬q(Y1,W1),¬q(Y2, Y2)),

−→
CS = p(X1, Y1) ← q(X1,X1),q(Y1,W1),

−→
DS = p(X2, Y2) ← q(Z2,X2),q(Y2, Y2).

−→
C and

−→
D are in −→L ⊥ and there are substitutions θ1 = {X1/X, Y1/Y , W1/Y } and

θ2 = {X2/X,Y2/Y,Z2/X} such that
−→
C θ1 and

−→
D θ2 are subsequences of

−→⊥ . Let σ =
{X2/X1, Y2/Y1,Z2/X1,W1/Y1} be an mgu for {−→CS,

−→
DS}, then according to Theorem 4,

mgs⊥ for
−→
C and

−→
D is defined as follows:

−→
E = (p(X1, Y1) ← q(X1,X1),q(Y1,W1), r(X2, Y2))σ

= p(X1, Y1) ← q(X1,X1),q(Y1, Y1), r(X1, Y1).

In the following we prove the existence of lgg⊥ in −→L ⊥. We use the lgga for atoms as
a bridge to find lgg⊥. This is similar to the proof for the existence of lgg for conventional
clauses (Nienhuys-Cheng and de Wolf 1997) adopted for ordered clauses and subsumption
relative to a bottom clause.
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Definition 25 Let
−→
C = L1 ∨L2 ∨· · ·∨Ln and

−→
D = M1 ∨M2 ∨· · ·∨Mm be ordered clauses.

If n = m and for every i = 1, . . . , n, Li and Mi have the same sign and predicate symbol,
we say C and D are compatible clauses.

−→
C is an atomic generalisation of

−→
D , denoted by−→

C 
a
−→
D , if

−→
C and

−→
D are compatible clauses and there exists a substitution θ such that

Liθ = Mi for every i = 1, . . . , n.

In this paper we use the same notion used in Nienhuys-Cheng and de Wolf (1997) for
atomic representation of ordered clauses.

Definition 26 (Atomic representation) Let
−→
C = L1 ∨ L2 ∨ · · · ∨ Ln be an ordered clause.

Atomic representation of clause
−→
C is denoted by a(

−→
C ) = ∨(L1,L2, . . . ,Ln) where ∨ acts

as a n-ary predicate symbol and L1,L2, . . . ,Ln as terms.

In this definition we assume an appropriate mapping between predicate symbols in
−→
C

and function symbols in a(
−→
C ).

Theorem 5 For every compatible ordered clauses
−→
C = L1 ∨L2 ∨ · · · ∨Ln and

−→
D = M1 ∨

M2 ∨ · · · ∨ Mn in −→L ⊥, there exists an lgga(
−→
C ,

−→
D ) in −→L ⊥.

Proof Let A = ∨(L1, . . . ,Ln) and B = ∨(M1, . . . ,Mn) be the atomic representations of−→
C and

−→
D . Let ∨(N1, . . . ,Nn) be the least general generalisation (lgg) of atoms A and B

obtained from the anti-unification algorithm (e.g. Algorithm 13.1 in Nienhuys-Cheng and
de Wolf 1997). We need to show that

−→
E = N1 ∨ N2 ∨ · · · ∨ Nn is an lgga(

−→
C ,

−→
D ) and that−→

E is in −→L ⊥.
−→
C ,

−→
D and

−→
E are compatible ordered clauses and they can be viewed as atoms

and therefore the proof that
−→
E is an lgga(

−→
C ,

−→
D ) follows from the proof of this theorem for

atoms (e.g. Proposition 13.23 in Nienhuys-Cheng and de Wolf 1997). We show that
−→
E is in−→L ⊥. According to definition of lgga we have

−→
E 
a

−→
C and

−→
E 
a

−→
D and therefore there

exist variable substitutions θ1 and θ2 such that
−→
E θ1 = −→

C and
−→
E θ2 = −→

D . But
−→
C and

−→
D are

in −→L ⊥ and therefore
−→
E is in −→L ⊥. �

Theorem 6 (Existence of lgg⊥ in −→L ⊥) For every ordered clauses
−→
C and

−→
D in −→L ⊥, there

exists an lgg⊥ of
−→
C and

−→
D in −→L ⊥.

Proof Let S,
−→
CS and

−→
DS be as defined in Definition 24 such that S is a sequence of all pairs of

compatible literals from
−→
C and

−→
D relative to ⊥.

−→
CS and

−→
DS are compatible clauses in −→L ⊥

and according to Theorem 5 there is an lgga for
−→
CS and

−→
DS in −→L ⊥. Let

−→
E = lgga(

−→
CS,

−→
DS).−→

E is in −→L ⊥ and we show that it is a lgg⊥ for
−→
C and

−→
D . According to definition of lgga

we have
−→
E 
a

−→
CS and

−→
E 
a

−→
DS , but according to Definition 24,

−→
CS 
⊥

−→
C and

−→
DS 
⊥

−→
D .

By transitivity of 
⊥ we have
−→
E 
⊥

−→
C and

−→
E 
⊥

−→
D . Let

−→
F = N1 ∨ N2 ∨ · · · ∨ Nm be a

clause in −→L ⊥ such that
−→
F 
⊥

−→
C and

−→
F 
⊥

−→
D . In order to establish that

−→
E is an lgg⊥ of−→

C and
−→
D , we need to prove

−→
F 
⊥

−→
E . Since

−→
F 
⊥

−→
C and

−→
F 
⊥

−→
D , there are variable

substitutions θ ′
1 and θ ′

2 and literals L1 ∨ · · · ∨ Lm �⊥
−→
C and M1 ∨ · · · ∨ Mm �⊥

−→
D , such

that Niθ
′
1 = Li and Niθ

′
2 = Mi , for every 1 ≤ i ≤ m. Then S ′ = (L1,M1), . . . , (Lm,Mm) is a

sequence of pairs of compatible literals from
−→
C and

−→
D relative to ⊥. Let

−→
CS′ = L1 ∨ L2 ∨

· · · ∨ Lm and
−→
DS′ = M1 ∨ M2 ∨ · · · ∨ Mm as defined in Definition 24, let

−→
G = K1 ∨ K2 ∨

· · ·∨Km be an lgga(
−→
CS′ ,

−→
DS′), and σ1 and σ2 be such that

−→
Gσ1 = CS′ and

−→
Gσ2 = DS′ . Since

(N1 ∨ N2 ∨ · · · ∨ Nm)θ ′
1 = CS′ and (N1 ∨ N2 ∨ · · · ∨ Nm)θ ′

2 = DS′ , there must be a γ such
that (N1 ∨ N2 ∨ · · · ∨ Nm)γ = K1 ∨ K2 ∨ · · · ∨ Km. We have (N1 ∨ N2 ∨ · · · ∨ Nm)γ = −→

G ,
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so
−→
F 
⊥

−→
G . Since every pair of literals in S ′ is also in S, there is a substitution γ ′ such that

each literal in
−→
F γ ′ is also in

−→
G . Then according to Lemma 5 we have

−→
G 
⊥

−→
E . Hence,−→

F 
⊥
−→
E by transitivity of 
⊥. �

Thus the lgg⊥ of any pair of ordered clauses in −→L ⊥ exists and can be computed by the
following algorithm:

Algorithm 1 (lgg⊥(
−→
C ,

−→
D ))

1. Given two ordered clauses
−→
C and

−→
D in −→L ⊥.

2. Let S,
−→
CS and

−→
DS be as defined in Definition 24 such that S is a sequence of all pairs of

compatible literals from
−→
C and

−→
D relative to ⊥.

3. Obtain
−→
E = lgga(

−→
CS,

−→
DS).

4. Return
−→
E

Note that
−→
C and

−→
D are definite ordered clauses in −→L ⊥ with the same predicate symbol

in the head and there is at least one pair of compatible literals from
−→
C and

−→
D relative to

⊥ which is the pair of heads of
−→
C and

−→
D . Hence, lgg⊥ for

−→
C and

−→
D has at least one

literal. Moreover, each literal from
−→
C and

−→
D can only be mapped to one literal from

−→⊥
and therefore each literal in

−→
C can be mapped to at most one literal from

−→
D . Thus,

−→
C

and
−→
D can have at most min(|−→C |, |−→D |) pairs of compatible literals with respect to ⊥ and

accordingly lgg⊥(
−→
C ,

−→
D ) has at most min(|−→C |, |−→D |) literals. Note that the lgg of

−→
C and−→

D with respect to the general subsumption order has at most |−→C | × |−→D | literals as
−→
C and−→

D can have at most |−→C | × |−→D | pairs of compatible literals.

Example 13 Let
−→
C ,

−→
D ,

−→⊥ , S,
−→
CS and

−→
DS be as defined in Example 12. Then according to

Theorem 6, lgg⊥ for
−→
C and

−→
D is defined as follows:

−→
E = lgga(

−→
CS,

−→
DS)

= p(X,Y ) ← q(Z,X),q(Y,W)

Since we have proved the existence of mgs⊥ and lgg⊥ of any pair of ordered clauses in−→L ⊥, it follows that −→L ⊥ ordered by subsumption relative to a bottom clause has a lattice
structure.

Theorem 7 〈−→L ⊥,
⊥〉 is a lattice.

Proof According to Theorem 3 〈−→L ⊥,
⊥〉 is a quasi-order. According to Theorems 4 and 6
each pair of ordered clauses in −→L ⊥ have a most general specialisation (mgs⊥) and a least
general generalisation (lgg⊥) in −→L ⊥. Hence, 〈−→L ⊥,
⊥〉 is a lattice. �

In the following, we show the morphism between the lattice 〈−→L ⊥,
⊥〉 and an atomic
lattice. First we define the set of atoms which are generalisations of the atomic representation
of

−→⊥ . In this definition we use the same notion used in Nienhuys-Cheng and de Wolf (1997)
for atomic representation of ordered clauses as defined in Definition 26.

Definition 27 (A⊥) Let
−→⊥ be the bottom clause as defined in Definition 11, a(

−→⊥ ) be the
atomic representation of

−→⊥ as defined in Definition 26 and A be an atom. A is in A⊥ if and
only if there exists a substitution θ such that Aθ = a(

−→⊥ ).



Mach Learn (2009) 76: 37–72 57

Definition 28 (Mapping function f ) Let A⊥ and −→L ⊥ be as defined in Definition 27 and
Definition 20 and A be an atom. The mapping function f : A⊥ → −→L ⊥ is defined as follows:

f (A) =
(

n∨

i=1

li where li is the i-th term from A which is not a variable

)

Note that in Definition 28 a non-variable term in A represents a literal in f (A) and a
variable in A represents the absence of a literal from

−→⊥ in f (A). This variable is always a
distinct variable because, according to Definition 27, it can only be substituted by a distinct
non-variable term from a(

−→⊥ ). Hence, in Definition 28, if li is a variable then it is always dis-
tinct and cannot be unified with other variables in A. In order to simplify the representation
we replace such a variable by the symbol ‘_’.

Example 14 Let
−→⊥ be the bottom clause as in Fig. 4. Then the atomic representation of

−→⊥
(i.e. a(

−→⊥ )) and atoms A1 and A2 in A⊥ are as follows:

A1 = ∨(
p(X), _, ¬r(X), _, ¬s(Y,Z)

)
,

A2 = ∨(
p(X), _, ¬r(X), _, ¬s(Y,X)

)
,

a(
−→⊥ ) = ∨(

p(X), ¬q(X), ¬r(X), ¬s(X,Y ), ¬s(Y,X)
)
.

Atoms A1 and A2 correspond to ordered clauses
−→
C and

−→
D in Fig. 4 as

−→
C = f (A1) and−→

D = f (A2).

Theorem 8 Let A⊥ be as defined in Definition 27 and the mapping function f as defined
in Definition 28. Let A and B be atoms in A⊥, then we have f (A) 
⊥ f (B) if and only if
A 
 B .

Proof Let A = ∨(L1,L2, . . . ,Ln), B = ∨(M1,M2, . . . ,Mn) and a(
−→⊥ ) = ∨(N1,N2,

. . . ,Nn). Let
−→
C and

−→
D be ordered clauses such that

−→
C = f (A) and

−→
D = f (B).

⇒ : Suppose
−→
C 
⊥

−→
D , then there exists a substitution θ such that

−→
C θ is a subsequence

of
−→
D relative to ⊥. Then according to Definition 21 for each literal in

−→
C θ there is an

equivalent literal in
−→
D and both literals correspond to the same literal from

−→⊥ . Hence, for
each term Li in A if Li is not a variable then it corresponds to a literal in

−→
C and therefore

there exist a non-variable term Mi in B such that Liθ = Mi . If Li is a variable then there
exist a substitution θ ′ such that Liθ

′ = Mi where Li/Mi ∈ θ ′ and Mi is a variable or non-
variable term in B . Hence, for each term Li in A there is a substitution σ = θ ∪ θ ′ such that
Liσ = Mi . This implies Aσ = B and therefore A 
 B .

⇐ : Suppose A 
 B , then there exists a substitution θ such that Aθ = B . Then for each
Li in A we have term Mi in B . Moreover, both terms Li and Mi correspond to the same term
Ni from a(

−→⊥ ). Hence, for each literal in
−→
C θ there is an equivalent literal in

−→
D , both literals

correspond to the same literal from
−→⊥ and both

−→
C θ and

−→
D are subsequences of

−→⊥ . Then
according to Lemma 5,

−→
C θ is a subsequence of

−→
D relative to ⊥ and we have

−→
C 
⊥

−→
D . �

Example 15 Let
−→⊥ be the bottom clause and

−→
C ,

−→
D and

−→
E be the ordered clauses as in

Fig. 4. Atoms A1, A2 and A3 in Fig. 5 correspond to ordered clauses
−→
C ,

−→
D and

−→
E and we

have
−→
C = f (A1),

−→
D = f (A2) and

−→
E = f (A3). We have

−→
C 
⊥

−→
D and A1 
 A2 as shown

in Fig. 5.a and
−→
C �
⊥

−→
E and A1 �
 A3 as shown in Fig. 5.b.
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Fig. 5 Subsumption relative to a bottom clause can be mapped to the atomic subsumption. Atoms A1, A2
and A3 correspond to ordered clauses −→

C , −→
D and −→

E in Fig. 4 and we have −→
C = f (A1), −→

D = f (A2) and−→
E = f (A3). (a) −→

C 
⊥ −→
D and A1 
 A2 (b) −→

C �
⊥ −→
E and A1 �
 A3

Theorem 9 The mapping function f : A⊥ → −→L ⊥ as defined in Definition 28 is an order-
isomorphism.

Proof First we show that the mapping function f is onto. Let
−→
C be an ordered clause in−→L ⊥, then according to Definitions 20 and 21, there exist substitution θ such that

−→
C θ �⊥

−→⊥
and therefore

−→
C 
⊥

−→⊥ . Then, according to Theorem 8 we have A 
 a(
−→⊥ ) where

−→
C =

f (A) and therefore according to Definition 27, A is in A⊥. Hence, the mapping function f

is onto. Moreover, according to Theorem 8, the mapping function f is an order-embedding.
Then according to Definition 2, f is an order-isomorphism. �

We have shown that 〈−→L ⊥,
⊥〉 is a lattice. It is also known that the atomic subsumption
defines a lattice (Reynolds 1969). The proposition below follows directly from Theorem 9
and Remark 4.

Proposition 1 The mapping function f : A⊥ → −→L ⊥ as defined in Definition 28 is a lattice
isomorphism and lattices 〈−→L ⊥,
⊥〉 and 〈A⊥,
〉 are two isomorphic lattices.

The proposition below follows from f being a lattice isomorphism.

Proposition 2 Let A⊥ and mapping function f be defined as in Definition 28 and A and
B be atoms in A⊥. The mapping function f : A⊥ → −→L ⊥ is join-preserving and meet-
preserving that is:

1. mgs⊥(f (A),f (B)) = f (mgs(A,B)),

2. lgg⊥(f (A),f (B)) = f (lgg(A,B)).

Example 16 Let a(
−→⊥ ) and atoms A and B in A⊥ be as defined below:

A = ∨(
p(X1, Y1),¬q(X1,X1),¬q(Y1,W1),_,_

)
,
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B = ∨(
p(X2, Y2),¬q(Z2,X2),¬q(Y2, Y2),¬r(X2, Y2),_

)
,

a(
−→⊥ ) = ∨(

p(X,Y ),¬q(X,X),¬q(Y,Y ),¬r(X,Y ),¬s(X,Y )
)
.

According to Definition 28, f (A) and f (B) are defined as follows:

−→
C = f (A) = p(X1, Y1) ← q(X1,X1), q(Y1,W1),

−→
D = f (B) = p(X2, Y2) ← q(Z2,X2), q(Y2, Y2), r(X2, Y2).

mgs(A,B) and lgg(A,B) are defined as follows:

mgs(A,B) = ∨(
p(X1, Y1),¬q(X1,X1),¬q(Y1, Y1),¬r(X1, Y1),_

)
,

lgg(A,B) = ∨(
p(X1, Y1),¬q(Z1,X1),¬q(Y1,W1),_,_

)
.

Then according to Proposition 1, mgs⊥ and lgg⊥ for
−→
C and

−→
D are defined as follows:

mgs⊥(
−→
C ,

−→
D ) = p(X1, Y1) ← q(X1,X1), q(Y1, Y1), r(X1, Y1),

lgg⊥(
−→
C ,

−→
D ) = p(X1, Y1) ← q(Z1,X1), q(Y1,W1).

As previously shown in this section, for ordered clauses
−→
C and

−→
D in −→L ⊥ we have at

most min(|−→C |, |−→D |) pairs of compatible literals relative to ⊥ and accordingly lgg⊥(
−→
C ,

−→
D )

has at most min(|−→C |, |−→D |) literals. Similarly, Proposition 1 suggest that lgg⊥(
−→
C ,

−→
D ) has

at most |−→⊥ | literals as |−→C | and |−→D | are bounded by |−→⊥|.
It is known that general subsumption testing is NP-complete (Garey and Johnson

1979). A subsumption relation for ordered clauses (i.e. ordered subsumption) is studied
in Kuwabara et al. (2006). It is shown that ordered subsumption testing is NP-complete.
By a similar proof it can be shown that an instance of 3-SAT problem can be reduced to
the sequential subsumption testing and therefore sequential subsumption testing is also NP-
complete. However, as shown in this section, subsumption testing relative to a bottom clause
can be mapped to atomic subsumption testing which is polynomial time.

We have shown that the subsumption order relative to a bottom clause defines a lattice
and this lattice is isomorphic to an atomic lattice. The complexity of the hypothesis space
bounded by a bottom clause can be further analysed by mapping the lattice 〈−→L ⊥,
⊥〉 to
a partition lattice. This analysis is not given in this paper. However, the morphism between
the function free atomic lattice and the lattice of partitions is given in Appendix B.

7 Ideal refinement operators for the subsumption order relative to ⊥

It is known that when a full Horn clause language and the general subsumption order are
considered, there exist no ideal refinement operators (van der Laag and Nienhuys-Cheng
1994). However, if 〈L,≥〉 is a quasi-order, L is finite and ≥ is decidable, then there exists an
ideal refinement operator for 〈L,≥〉 (Nienhuys-Cheng and de Wolf 1997). Hence, given the
finiteness of −→L ⊥ one could expect the existence of ideal refinement operators for 〈−→L ⊥,
⊥〉.
In this section we define a refinement operator ρ1 and show that ρ1 is ideal for 〈−→L ⊥,
⊥〉.
First we define a mapping function which is used in the refinement operator. According
to Definition 20, for each ordered clause

−→
C in −→L ⊥ there exists a substitution θ such that−→

C θ is a subsequence of
−→⊥ . Thus, there exists a selection function s which maps each
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literal of
−→
C θ to a literal of

−→⊥ and this selection function is strictly increasing. This implies
that there is an injective mapping from the literals of

−→
C θ to the literals of

−→⊥ . Therefore,
clause

−→
C can be encoded by the substitution θ and a set of integers K , i.e. the range of

the selection function s. In Progol’s refinement operator, θ and K are maintained for each
clause in order to decode the clause from

−→⊥ . In this setting, substitution θ maps variables
from

−→
C to the variables of

−→⊥ . The decoding, therefore, requires inverse substitution θ−1.
This can be achieved by maintaining the position of variables when the substitution θ is
constructed (Nienhuys-Cheng and de Wolf 1997). However, in the mapping function used
in this section, substitution θ maps variables from

−→� to the variables of
−→
C , where

−→� is
−→⊥

with all variables replaced with new and distinct variables.3

Definition 29 (Mapping function c) Let
−→⊥ and −→L ⊥ be as defined in Definition 20, n be the

number of literals in ⊥.
−→� is

−→⊥ with all variables replaced with new and distinct variables.
θ� is a variable substitution such that

−→� θ� = −→⊥ . Let vi and vj be distinct variables in−→� such that i < j . Let θ be a variable substitution in �, where � = {θ |θ ⊆ θ̂� and if
{vj/u,u/vi} ⊆ θ then vj/vi ∈ θ} and θ̂� = {vj/vi |{vi/u, vj /u} ⊆ θ�}. Let K be power set
of {1, . . . , n}. The mapping function c : K × � → −→L ⊥ is defined as follows:

c(〈K,θ〉) =
(

n∨

i=1

li where i ∈ K and li is the i-th literal of
−→�

)

θ.

In this definition θ� is a substitution which maps variables in
−→� to variables in

−→⊥ , θ̂� is a
substitution containing valid bindings between the variables in

−→� with respect to
−→⊥ and �

is the set of all subsets of θ̂� containing transitive bindings. Note that the disjunction notion
with indexes from i = 1 to n used in Definition 29 means that the literals li of c(〈K,θ〉)
follow the same order as literals in

−→� .

Example 17 Let
−→⊥ be the bottom clause in Example 3.

−→� can be obtained from
−→⊥ by

replacing all variables with new and distinct variables:

−→� = mult(V1,V2,V3) ← dec(V4,V5),plus(V6,V7,V8),plus(V9,V10,V11),

mult(V12,V13,V14),mult(V15,V16,V17).

Let K = {1,2,5}, θ = {V4/V1,V12/V5} then c(〈K,θ〉) can be defined as follows:

−→
C = c(〈K,θ〉) = mult(V1,V2,V3) ← dec(V1,V5),mult(V5,V13,V14).

The mapping function c, maps a tuple 〈K,θ〉 into an ordered clause
−→
C in −→L ⊥. This

mapping function is also used to make sure that the literals in
−→
C follow the same order as

literals in
−→⊥ . This condition is required for the refinement operator ρ1 which is intended to

be complete for 〈−→L ⊥,
⊥〉.
The refinement operator ρ1 is based on Laird’s refinement operator (Laird 1987) adopted

for subsumption relative to ⊥ and a refinement space bounded below by a bottom clause.

Definition 30 (ρ1) Let
−→⊥ and −→L ⊥ be as defined in Definition 20,

−→
C be an ordered clause

in −→L ⊥, n be the number of literals in ⊥, k be a natural number, 1 ≤ k ≤ n,
−→� , � and K be

3−→� should not be confused with the top element in −→L ⊥ which is the empty clause �.
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defined as in Definition 29. Let K ∈ K, θ ∈ �,
−→
C = c(〈K,θ〉) and the mapping function c

be defined as in Definition 29. 〈−→C ′ ,K ′, θ ′〉 is in ρ1(〈−→C ,K,θ〉) if and only if
−→
C ′ = c(〈K ′, θ ′〉)

and either

1. K ′ = K ∪ {k}, k �∈ K and θ ′ = θ or
2. K ′ = K , θ ′ = θ{y ′/x ′} and {y ′/x ′} ∈ � where x ′ and y ′ are distinct variables in the k1th

and k2th literals of
−→� respectively and k1th and k2th are in K ′.

In Definition 30, ρ1 adds a most general literal from
−→� which has not been added before

(choice 1) or it applies an elementary variable substitution such that the clause subsumes
−→⊥

(choice 2).

Example 18 Let
−→� , K , θ and

−→
C be as defined in Example 17. Then 〈−→C ′ ,K ′, θ ′〉 is in

ρ1(〈−→C ,K,θ〉) and (i) K ′ = {1,2,5,6}, θ ′ = {V4/V1,V12/V5} and

−→
C ′ = c(〈K ′, θ ′〉) = mult(V1,V2,V3) ← dec(V1,V5),mult(V5,V13,V14),

mult(V15,V16,V17)

is a possible choice if choice 1 in ρ1 is selected and (ii) K ′ = {1,2,5}, θ ′ = {V4/V1, V12/V5,
V13/V2} and

−→
C ′ = c(〈K ′, θ ′〉) = mult(V1,V2,V3) ← dec(V1,V5),mult(V5,V2,V14)

is another possible choice if choice 2 in ρ1 is selected.

We show that ρ1 is ideal for 〈−→L ⊥,
⊥〉. The completeness proof below is similar to the
completeness proof for Laird’s refinement operator (Nienhuys-Cheng and de Wolf 1997;
van der Laag 1995) adopted for subsumption order relative to ⊥.

Lemma 6 Let
−→
C ,

−→
D be two ordered clauses in −→L ⊥ such that

−→
C θ = −→

D for some substitu-
tion θ . Then, there exists a ρ1-chain from

−→
C to

−→
D .

Proof Suppose
−→
C ,

−→
D are ordered clauses and

−→
C θ = −→

D . Then according to Definition 18,−→
C and

−→
D have the same predicate symbols at the same positions and therefore can be

regarded as atoms. It is known (e.g. Theorem 4 in Reynolds 1969) that for any atoms A1 and
A2 such that A1θ = A2, there exists a finite chain of downward covers (involving substitution
θ ) from A1 to A2. Thus, there exists a ρ1-chain from

−→
C to

−→
D by repeatedly selecting step 2

in Definition 30. �

Lemma 7 Let
−→
C ,

−→
D be two ordered clauses in −→L ⊥ such that

−→
C is a subsequence of

−→
D

relative to ⊥. Then, there exists a ρ1-chain from
−→
C to

−→
D .

Proof The proof is by induction on i the number of literals in
−→
D but not in

−→
C . If i = 0 then−→

C = −→
D , and the empty chain satisfies the lemma. Assume for some j , 0 ≤ j < i, the lemma

is true. This implies that there is a ρ1-chain from
−→
C to

−→
C j such that

−→
C j is

−→
C with j literals

inserted such that
−→
C j is a subsequence of

−→
D relative to ⊥. We show that there is a ρ1-chain

from
−→
C to

−→
C j+1. Let l be the leftmost literal in

−→
D which is not in

−→
C j . Given that

−→
D ∈ −→L ⊥

we can assume that l is mapped to the k-th literal of ⊥. We consider the following two
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cases: (a) if l is a most general literal with respect to
−→
C j , then l is the k-th literal of

−→� and
using choice 1 in the definition of ρ1, 〈−→C j+1,K

′, θ〉 ∈ ρ1(〈−→C j ,K, θ〉), where K ′ = K ∪{k}.
(b) otherwise there is a most general literal l′ such that l′θ ′ = l. In this case, first using choice

1 in the definition of ρ1, 〈−→C ′
j+1,K

′, θ〉 ∈ ρ1(〈−→C j ,K, θ〉) and then according to Lemma 6

(and using choice 2 in the definition of ρ1), 〈−→C j+1,K
′, θ ′′〉 ∈ ρ∗

1 (〈−→C ′
j+1,K

′, θ〉), where
K ′ = K ∪ {k} and θ ′′ = θθ ′. Thus, in both cases (a) and (b), there exists a ρ1-chain from

−→
C

to
−→
C j+1 and this completes the proof. �

Theorem 10 ρ1 is complete for 〈−→L ⊥,
⊥〉.

Proof Let
−→
C ,

−→
D be two ordered clauses in −→L ⊥ such that, for some θ ,

−→
C θ is a subsequence

of
−→
D relative to ⊥. If we define

−→
E = −→

C θ then
−→
E and

−→
C satisfy Lemma 6, hence there is a

ρ1-chain from
−→
C to

−→
E .

−→
E is a subsequence of

−→
D relative to ⊥ and according to Lemma 7,

there is a ρ1-chain from
−→
E to

−→
D . Thus, there is a ρ1-chain from

−→
C to

−→
D via

−→
E . �

According to Definition 30, the refinement operator ρ1 works on an encoding of a clause,
i.e. 〈K,θ〉 rather than the clause itself. In the following we define the order relation for the
encoding tuples 〈K,θ〉, used in the mapping function c. Then, we show that the mapping
function c is order-embedding.

Definition 31 Let � be defined as in Definition 29 and θ1, θ2 ∈ �. θ1 ⊆ θ2 if and only if
there exists a substitution θ such that θ2 = θ1θ .

Definition 32 Let K and � be defined as in Definition 29 and K1,K2 ∈ K and θ1, θ2 ∈ �.
〈K1, θ1〉 ⊆ 〈K2, θ2〉 if and only if K1 ⊆ K2 and θ1 ⊆ θ2. 〈K1, θ1〉 ∼ 〈K2, θ2〉 if and only if
〈K1, θ1〉 ⊆ 〈K2, θ2〉 and 〈K2, θ2〉 ⊆ 〈K1, θ1〉.

Theorem 11 Let K and � and mapping function c be defined as in Definition 29 and
K1,K2 ∈ K and θ1, θ2 ∈ �. c(〈K1, θ1〉) 
⊥ c(〈K2, θ2〉) if and only if 〈K1, θ1〉 ⊆ 〈K2, θ2〉.

Proof ⇒ : Let
−→
C ,

−→
D be ordered clauses such that

−→
C = c(〈K1, θ1〉) and

−→
D = c(〈K2, θ2〉).

Assume
−→
C 
⊥

−→
D , then according to Theorem 10 there is a ρ1-chain from

−→
C to

−→
D .

Let this ρ1-chain be C = C ′
0 
⊥ C ′

1 
⊥ · · · 
⊥ C ′
m = D where 〈−→C ′

i+1,K
′
i+1, θ

′
i+1〉 ∈

ρ1(〈−→C ′
i ,K

′
i , θ

′
i 〉), 0 ≤ i < m. According to the definition of ρ1, in each refinement step ei-

ther (1) K ′
i ⊆ K ′

i+1 and θ ′
i+1 = θ ′

i or (2) K ′
i+1 = K ′

i and θ ′
i ⊆ θ ′

i+1. Then it is always the case
that K ′

i ⊆ K ′
i+1 and θ ′

i ⊆ θ ′
i+1, where K ′

0 = K1,K
′
m = K2, θ

′
0 = θ1, θ

′
m = θ2. Thus, K1 ⊆ K2

and θ1 ⊆ θ2.
⇐ : Let

−→
C = c(K1, θ1) = (

∨
li |i ∈ K1)θ1 and

−→
D = c(K2, θ2) = (

∨
lj |j ∈ K2)θ2 such

that K1 ⊆ K2 and θ1 ⊆ θ2. According to Definition 32, θ2 = θ1θ for some substitution θ .
Then, given K1 ⊆ K2, for every literal liθ1 from

−→
C θ , we have a literal liθ1θ from

−→
D where

liθ1 and liθ1θ are both mapped to the same literal li from
−→� (Definition 29). Thus,

−→
C θ is a

subsequence of
−→
D relative to ⊥ and therefore

−→
C 
⊥

−→
D . �

In the following we show the properness and the idealness of ρ1 for 〈−→L ⊥,
⊥〉.

Lemma 8 Let
−→
C and

−→
D be ordered clauses.

−→
C ∼⊥

−→
D if and only if

−→
C and

−→
D are alpha-

betical variants.
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Proof ⇒ : Suppose
−→
C ∼⊥

−→
D , then we have

−→
C 
⊥

−→
D and

−→
D 
⊥

−→
C . Thus, there are

substitutions θ1 and θ2 such that
−→
C θ1 is a subsequence of

−→
D relative to ⊥ and

−→
D θ2 is a

subsequence of
−→
C relative to ⊥. Let

−→
C = L1 ∨ L2 ∨ · · · ∨ Ll and

−→
D = M1 ∨ M2 ∨ · · · ∨

Mm. Therefore, there are strictly increasing selection functions s1 and s2 such that for each
(i, j) ∈ s1, Liθ1 = Mj and for each (i, j) ∈ s2, Miθ2 = Lj . Given that s1 and s2 are strictly
increasing functions, there is a one-to-one mapping between literals of

−→
C and

−→
D such that

m = n, Liθ1 = Mi and Miθ2 = Li . Therefore it holds that
−→
C θ1 = −→

D and
−→
D θ2 = −→

C . Hence,−→
C and

−→
D are alphabetical variants.

⇐ : Suppose
−→
C and

−→
D are alphabetical variants. Therefore there are substitutions θ1

and θ2 such
−→
C θ1 = −→

D and
−→
D θ2 = −→

C . Then it follows from Definition 22 that
−→
C 
⊥

−→
D

and
−→
D 
⊥

−→
C and therefore

−→
C ∼⊥

−→
D . �

Lemma 9 Let K and � and mapping function c be defined as in Definition 29 and K ,
{k} ∈ K such that k �∈ K and θ ∈ �. Then, c(〈K ∪ {k}, θ〉) �⊥ c(K, θ).

Proof Suppose c(〈K ∪ {k}, θ〉) ��⊥ c(K, θ). We know from Theorem 11 that c(〈K ∪
{k}, θ〉) 
⊥ c(K, θ), and therefore c(〈K ∪ {k}, θ〉) ∼⊥ c(K, θ). According to Lemma 8,
c(〈K ∪ {k}, θ〉) and c(K, θ) must be alphabetical variants, contradicting k �∈ K . Thus,
c(〈K ∪ {k}, θ〉) �⊥ c(K, θ). �

Lemma 10 Let K and �, � and mapping function c be defined as in Definition 29 and
K ∈ K, {y/x}, θ ∈ � where x and y are distinct variables in the k1-th and k2-th literals of−→� respectively and k1-th and k2-th are in K . Then, c(〈K,θ{y/x}〉) �⊥ c(K, θ).

Proof Suppose c(〈K,θ{y/x}〉) ��⊥ c(K, θ). We know from Theorem 11 that
c(〈K,θ{y/x}〉) 
⊥ c(K, θ), and therefore c(〈K,θ{y/x}〉) ∼⊥ c(K, θ). According to
Lemma 8, c(〈K,θ{y/x}〉) and c(K, θ) must be alphabetical variants. Thus, {y/x} must
be a renaming subsumption, i.e. x is either equal to y or it does not occur in c(K, θ), con-
tradicting the assumption. Thus, c(〈K,θ{y/x}〉) �⊥ c(K, θ). �

Theorem 12 ρ1 is proper for 〈−→L ⊥,
⊥〉.

Proof If 〈C ′, θ ′,K ′〉 ∈ ρ1(〈C,θ,K〉) is generated by choice 1 in the definition of ρ1, then−→
C �⊥

−→
D follows from Lemma 9. If it is generated by choice 2 in the definition of ρ1, then−→

C �⊥
−→
D follows from Lemma 10. �

Theorem 13 ρ1 is ideal for 〈−→L ⊥,
⊥〉.

Proof Locally finiteness follows from the definition of ρ1 and the fact that there are finite
number of literals and variables in ⊥. Completeness and properness were proved in Theo-
rem 10 and Theorem 12 respectively. �

In the following we study the morphism between 〈−→L ⊥,
⊥〉 and 〈K × �,⊆〉. Accord-
ing to Theorem 11, the mapping function c is an order-embedding. The following theorem
shows that c is also an order-isomorphism.

Theorem 14 The mapping function c : K × � → −→L ⊥ as defined in Definition 29 is an
order-isomorphism.
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Proof First we show that the mapping function c is onto. Let
−→
C be an ordered clause in −→L ⊥,

then according to Definition 20, there exist substitution θ and selection function s which
maps literals of

−→
C θ to equivalent literals from

−→⊥ . From Definition 29 we have
−→� θ� =−→⊥ and therefore

−→
C θ � −→� θ� and this implies

−→
C � �θ�θ−1. Thus,

−→
C can be defined

as
−→
C = c(K, θ ′) = (

∨
li |i ∈ K)θ ′, where θ ′ = θ�θ−1 and K is the range of the selection

function s. Hence, the mapping function c is onto. Moreover, according to Theorem 11, the
mapping function c is an order-embedding. Then according to Definition 2, c is an order-
isomorphism. �

The proposition below follows directly from Theorem 14.

Proposition 3 Let K and � and mapping function c be defined as in Definition 29 and
K1,K2 ∈ K and θ1, θ2 ∈ �. c(K, θ) ∼⊥ c(K ′, θ ′) if and only if 〈K,θ〉 ∼ 〈K ′, θ ′〉.

According to Theorem 7 〈−→L ⊥,
⊥〉 is a lattice. The proposition below follows directly
from Theorem 14 and Remark 4.

Proposition 4 The mapping function c : K × � → −→L ⊥ as defined in Definition 29 is a lat-
tice isomorphism and lattices 〈−→L ⊥,
⊥〉 and 〈K × �,⊆〉 are two isomorphic lattices.

The proposition below follows from c being a lattice isomorphism.

Proposition 5 Let K and � and mapping function c be defined as in Definition 29 and
K1,K2 ∈ K and θ1, θ2 ∈ �. Mapping c is join-preserving and meet-preserving that is:

1. lgg⊥(c(〈K1, θ1〉, c(〈K2, θ2〉) = c(〈K1 ∩ K2, θ1 ∩ θ2〉),
2. mgs⊥(c(〈K1, θ1〉, c(〈K2, θ2〉) = c(〈K1 ∪ K2, θ1 ∪ θ2〉).

According to Proposition 5, the least general generalisation (lgg⊥) and the most general
specialisation (mgs⊥) for 〈−→L ⊥,
⊥〉 can be defined based on the join and the meet opera-
tions for 〈K × �,⊆〉. Note that if two lattices are isomorphic then for practical purposes
they are identical and differ only in the notation of their elements. The morphism between
〈−→L ⊥, lgg⊥,mgs⊥〉 and 〈K × �,∩,∪〉 is important from a practical point of view. The con-
struction of the least general generalisation (lgg) of clauses in the general subsumption order
is inefficient as the cardinality of the lgg of two clauses can grow very rapidly (see Sect. 6).
On the other hand, efficient operators can be implemented for least generalisation and great-
est specialisation in the subsumption order relative to a bottom clause. For example, with
Plotkin’s Relative Least General Generalisation (RLGG), clause length grows exponentially
in the number of examples (Plotkin 1971). Hence, an ILP system like Golem (Muggleton and
Feng 1990) which uses RLGG is constrained to ij -determinacy to guarantee polynomial-
time construction. However, the determinacy restrictions make an ILP system inapplicable
in many key application areas, including the learning of chemical properties from atom and
bond descriptions. On the other hand, a variant of Plotkin’s Relative RLGG which does not
need the determinacy restrictions can be designed based on subsumption with respect to a
bottom clause. This idea is the basis of a new ILP system which is described in Muggleton
et al. (2009).

8 Alternative subsumption orders relative to ⊥
The purpose of the previous sections was to characterise Progol’s refinement and the sub-
sumption sub-lattice which is searched by a Progol-like ILP system. We defined sequential
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subsumption order relative to ⊥ and studied the properties of this special case of subsump-
tion. In this section we show how other subsumption orders relative to ⊥ can be defined by
using different conditions on the selection functions which define subsequences. For exam-
ple we show how the first type of incompleteness in Progol’s refinement operator can be
addressed by relaxing conditions of subsumption order relative to a bottom clause. In this
section we define a refinement operator which is less restricted than ρ1. As demonstrated in
Sect. 3, the first type of Progol’s refinement incompleteness is due to the choice of ordering
of literals in ⊥ and the fact that clauses are considered as subsequences of ⊥. This condition
was embedded in the definitions of the subsumption order relative to a bottom clause and the
refinement operator ρ1. However, more relaxed conditions can be defined for subsumption
and refinement operators relative to ⊥. Note that in the previous definitions and theorems
we only needed to assume that the selection functions are injective so that we can encode
every literal of a clause by a k index from ⊥. Therefore a less restricted ordering can be
defined by using a selection function which is injective rather than strictly increasing.

Definition 33 (Ordered subset) Let
−→
C = L1 ∨L2 ∨ · · · ∨Ll and

−→
D = M1 ∨M2 ∨ · · · ∨Mm

be ordered clauses.
−→
C is an ordered subset of

−→
D , denoted by

−→
C ⊆ −→

D , if there exists an
injective selection function s such that for each (i, j) ∈ s, Li = Mj .

By choosing s to be an injective function, we make sure that clauses can still be encoded
by a set of k indexes. However, these clauses do not need to follow the same order as literals
in ⊥. In the following, we give new definitions for the mapping function and the refinement
operator for this less restricted subsumption order.

Definition 34 (L⊥) Let
−→⊥ be the bottom clause as defined in Definition 11.

−→
C is in L⊥ if

and only if there exists a substitution θ such that
−→
C θ is an ordered subset of

−→⊥ .

Definition 35 (Mapping function c′) Let
−→⊥ and L⊥ be as defined in Definition 34, n be the

number of literals in ⊥. Let
−→� , θ�, θ , �, K be as defined in Definition 29. The mapping

function c′ : K × � → L⊥ is defined as follows:

c′(〈K,θ〉) =
(∨

i∈K

li where li is the i-th literal of
−→�

)

θ.

In the definition of c′, unlike in c, literals li do not need to follow the same order as
literals in

−→� . In the following we define a refinement operator, ρ2, which is similar to ρ1

but uses the mapping function c′ instead of c.

Definition 36 (ρ2) Let
−→⊥ and L⊥ be as defined in Definition 34,

−→
C be an ordered clause

in L⊥, n be the number of literals in ⊥, k be a natural number, 1 ≤ k ≤ n,
−→� , � and

K be defined as in Definition 35. Let K ∈ K, θ ∈ �,
−→
C = c′(〈K,θ〉) and the mapping

function c′ be defined as in Definition 35. 〈−→C ′ ,K ′, θ ′〉 is in ρ2(〈−→C ,K,θ〉) if and only if−→
C ′ = c′(〈K ′, θ ′〉) and either

1. K ′ = K ∪ {k}, k �∈ K and θ ′ = θ or
2. K ′ = K , θ ′ = θ{y ′/x ′} and {y ′/x ′} ∈ � where x ′ and y ′ are distinct variables in the k1-th

and k2-th literals of
−→� respectively and k1-th and k2-th are in K ′.

The following example demonstrates how the first type of incompleteness (in Example 3)
is addressed in ρ2.



66 Mach Learn (2009) 76: 37–72

Table 2 Application of ρ2 in Example 19

C′ θ ′ K ′

� ∅ ∅
mult(V1,V2,V3) ← ∅ {1}
mult(V1,V2,V3) ← dec(V4,V5) ∅ {1,2}
mult(V1,V2,V3) ← dec(V1,V5) {V4/V1} {1,2}
mult(V1,V2,V3) ← dec(V1,V5),mult(V12,V13,V14) {V4/V1} {1,2,5}
mult(V1,V2,V3) ← dec(V1,V5),mult(V5,V13,V14) {V4/V1,V12/V5} {1,2,5}
mult(V1,V2,V3) ← dec(V1,V5),mult(V5,V2,V14) {V4/V1,V12/V5,V13/V2} {1,2,5}
mult(V1,V2,V3) ← dec(V1,V5),mult(V5,V2,V14), {V4/V1,V12/V5,V13/V2} {1,2,5,3}
plus(V6,V7,V8)

mult(V1,V2,V3) ← dec(V1,V5),mult(V5,V2,V14), {V4/V1,V12/V5,V13/V2, {1,2,5,3}
plus(V14,V7,V8) V6/V14}

mult(V1,V2,V3) ← dec(V1,V5),mult(V5,V2,V14), {V4/V1,V12/V5,V13/V2, {1,2,5,3}
plus(V14,V2,V8) V6/V14,V7/V2}

Example 19 Let
−→
C and

−→⊥ be as defined in Example 3. Progol’s refinement cannot
generate C (i.e. C �∈ ρ∗(�))) and also 〈−→C ,K,θ〉 �∈ ρ∗

1 (〈�,∅,∅〉). However, Table 2
shows that 〈−→C ,K,θ〉 ∈ ρ∗

2 (〈�,∅,∅〉), where K = {1,2,5,3} and θ = {V4/V1, V12/V5,
V13/V2,V6/V14,V7/V2} and

−→� is the clause:

mult(V1,V2,V3) ← dec(V4,V5),plus(V6,V7,V8),plus(V9,V10,V11),

mult(V12,V13,V14),mult(V15,V16,V17).

This example shows that ρ2 can address the incompleteness of ρ demonstrated in Ex-
ample 3. However, ρ2 is also more redundant than ρ (e.g. different permutations of the
same clause could be generated). On the other hand, as mentioned in Sect. 3, a refinement
operator cannot be both complete and non-redundant. Given that in the new definitions the
selection functions are injective, we can encode every literal of a clause by a k index from ⊥.
Therefore, the properties mentioned in Sect. 7, for the mapping function c, also hold for c′.
The refinement operator ρ2 is identical to the refinement operator ρ

(1)
⊥ introduced in Badea

and Stanciu (1999). However, the subsumption order used in Badea and Stanciu (1999) (i.e.
weak subsumption) is a special case of the subsumption order introduced in this section.

By different conditions on the selection functions in Definition 33, we can get different
kind of subsumption orders. For example, if the selection function is monotonically increas-
ing then we will have a subsumption order which allows each literal of ⊥ to be selected
more than once. In this case, Definition 33 will be identical to the definition of subsequences
considered in Kuwabara et al. (2006). This will address the second type of Progol’s incom-
pleteness mentioned before. However, the selection functions are not injective and therefore
the encoding and the morphism we described in this paper are not applicable. More compar-
ison with the subsumption order introduced in Kuwabara et al. (2006) is given in the next
section.

9 Related work and discussion

Progol’s refinement operator and its incompleteness with respect to the general subsump-
tion order were initially discussed in Muggleton (1995). The purpose of the present paper
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was to characterise Progol’s refinement space and to give an analysis of the lattice structure
and refinement operators for this space. In a previous attempt, Badea and Stanciu (1999)
suggested weak subsumption for characterising Progol’s refinement space. However, as we
have shown in this paper, weak subsumption cannot capture all aspects of Progol’s refine-
ment. For example, it only characterises the second type of incompleteness but it does not
capture the incompleteness due to the ordering of the literals. Note that sequential subsump-
tion implies weak subsumption. This is because if a selection function is strictly increasing
then the injectivity property holds which, in turns, entails weak subsumption. As in Badea
and Stanciu (1999), we define refinement operators which are based on Laird’s operator and
defined with respect a bottom clause. However, the approach in Badea and Stanciu (1999)
is based on weak subsumption. Moreover, no completeness proof is given in Badea and
Stanciu (1999).

In this paper we used an encoding of clauses with respect to a bottom clause. In this
encoding each clause is represented by a tuple 〈K,θ〉 and it can be constructed from

−→� as
described in Definition 29. This idea was first used in Tamaddoni-Nezhad and Muggleton
(2000) where the substitution θ is encoded as a binding matrix which maps the variables of−→� to the variables of a clause with respect to the bottom clause.

A subsumption relation for ordered clauses (i.e. ordered subsumption) is studied
in Kuwabara et al. (2006). It is shown that, in the defined subsumption, the least gener-
alisation of two ordered clauses does not exist and that the subsumption testing for ordered
clauses is NP-complete. The subsequence relation considered in Kuwabara et al. (2006),
assumes a mapping function which is monotonically increasing (rather than strictly increas-
ing). As mentioned in the previous section, this leads to a different subsumption order from
the one considered in this paper (i.e. sequential subsumption) and the results from this paper
are not applicable. In the context of data mining from sequential data, SeqLog (Lee and De
Raedt 2003) is defined as a logical language for representing and reasoning about sequential
data. Subsumption relations are defined in Lee and De Raedt (2003) for simple and complex
sequences and an optimal refinement operator is given for SeqLog. The frameworks used
in Kuwabara et al. (2006) and Lee and De Raedt (2003) can be viewed as general cases for
ordered and sequential subsumption. Whereas in this paper we introduce subsumption order
relative to a bottom clause. The refinement operators in this paper are also different as they
are defined with respect to a bottom clause. We proved the existence of operators lgg⊥ and
mgs⊥ with respect to a bottom clause. It was shown that the subsumption order relative to a
bottom clause defines a lattice and this lattice is isomorphic to an atomic lattice. Moreover,
unlike the general subsumption and the sequential subsumption which are NP-complete,
subsumption relative to a bottom clause can be decided in polynomial time.

The theoretical results presented in this paper are applicable to ILP systems such as Pro-
gol and Aleph which use some form of Inverse Entailment (IE). Moreover, these results are
also applicable to other ILP systems which use a bottom clause to restrict the search space.
These include ILP systems which use stochastic algorithms to explore the hypothesis space
bounded by a bottom clause (e.g. Srinivasan 2000; Tamaddoni-Nezhad and Muggleton 2000;
Zelezny et al. 2003; Muggleton and Tamaddoni-Nezhad 2007; Duboc et al. 2008). The
search space of these systems can be characterised by −→L ⊥ (or a subset of −→L ⊥). Note that
a refinement operator cannot be both complete and non-redundant. For ILP systems such as
Progol and Aleph (which use a top-down graph based search) we only need the refinement
operators to be weakly complete and preferably non-redundant. However, for the stochas-
tic algorithms (where the search could start from any point in the search space) we need
complete refinement operators even if this leads to redundancy. The refinement operator ρ0

which was described in this paper is weakly complete and non-redundant. This operator
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has been implemented in Progol. The refinement operator ρ1 is complete but redundant and
it has been the basis for the stochastic refinement operators in Progol (Tamaddoni-Nezhad
and Muggleton 2002; Muggleton and Tamaddoni-Nezhad 2007). Moreover, in this paper
we have shown that, unlike for the general subsumption order, efficient lgg operators can
be designed for −→L ⊥. This idea is the basis of a new ILP system which implements efficient
asymmetric relative minimal generalisations for the subsumption order relative to a bottom
clause (Muggleton et al. 2009).

10 Conclusions

In this paper we have studied the lattice structure and refinement operators for the hypothesis
space bounded by a most specific (bottom) clause. We introduced a subsumption order rela-
tive to a bottom clause and demonstrated how clause refinement in a Progol-like ILP system
can be characterised with respect to this order. We proved that least general generalisation
(lgg) and most general specialisation (mgs) exist for subsumption order relative to a bot-
tom clause and that this order defines a lattice which is isomorphic to an atomic lattice. We
also proved that ideal refinement operators exist for this order. The theoretical results pre-
sented in this paper are applicable to ILP systems which use Inverse Entailment (IE) as well
as other systems which use a bottom clause to restrict the search space. This is important
for better understanding of the constrained refinement space of these systems. Moreover,
characterising this refinement sub-lattice can lead to more efficient ILP algorithms and op-
erators for searching this particular sub-lattice. For example, it is shown that, unlike for the
general subsumption order, efficient least generalisation operators can be designed for the
subsumption order relative to a bottom clause.
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Appendix A: Progol’s definite mode language and algorithm for constructing the
bottom clause

The following definitions describe Progol’s mode declaration (M), definite mode language
(L(M)), depth-bounded mode language (Li (M)) and Progol’s algorithm for constructing
the bottom clause (⊥i ).

Definition 37 (Mode declaration M) A mode declaration has either the form modeh(n,atom)
or modeb(n,atom) where n, the recall, is either an integer, n > 1, or ‘*’ and atom is a ground
atom. Terms in the atom are either normal or place-marker. A normal term is either a con-
stant or a function symbol followed by a bracketed tuple of terms. A place-marker is either
+type, −type or #type, where type is a constant. If m is a mode declaration then a(m)

denotes the atom of m with place-markers replaced by distinct variables. The sign of m is
positive if m is a modeh and negative if m is a modeb.

Definition 38 (Definite mode language L(M)) Let C be a definite clause with a defined
total ordering over the literals and M be a set of mode declarations. C = h ← b1, . . . , bn is
in the definite mode language L(M) if and only if (1) h is the atom of a modeh declaration in
M with every place-marker +type and −type replaced by variables and every place-marker
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#type replaced by a ground term and (2) every atom bi in the body of C is the atom of a
modeb declaration in M with every place-marker +type and −type replaced by variables
and every place-marker #type replaced by a ground term and (3) every variable of +type in
any atom bi is either of +type in h or of −type in some atom bj , 1 ≤ j < i.

Definition 39 (Depth of variables) Let C be a definite clause and v be a variable in C. Depth
of v is defined as follows:

d(v) =
{

0 if v is in the head of C

(maxu∈Uv d(u)) + 1 otherwise

where Uv are the variables in atoms in the body of C containing v.

Definition 40 (Depth-bounded mode language Li (M)) Let C be a definite clause with a de-
fined total ordering over the literals and M be a set of mode declarations. C is in Li (M) if
and only if C is in L(M) and all variables in C have depth at most i according to Defini-
tion 39.

Algorithm 2 (Algorithm for constructing ⊥i )

1. Given natural numbers h, i, Horn clauses B , definite clause e and set of mode declara-
tions M .

2. Let k = 0, hash : Terms → N be a hash function which uniquely maps terms to natural
numbers, e be the clause normal form logic program a ∧ b1 ∧ · · · ∧ bn, ⊥i = 〈〉 and
InTerms= ∅.

3. If there is no modeh in M such that a(m) � a then return �. Otherwise let m be the first
modeh declaration in M such that a(m) � a with substitution θh. Let ah be a copy of
a(m) and for each v/t in θh if v corresponds to a #type in m then replace v in ah by t

otherwise replace v in ah by vk where k = hash(t) and add v to InTerms if v corresponds
to +type. Add ah to ⊥i .

4. If k = i return ⊥i else k = k + 1.
5. For each modeb m in M let {v1, . . . , vn} be the variables of +type in a(m) and T (m) =

T1 × · · · × Tn be a set of n-tuples of terms such that each Ti corresponds to the set of
all terms of the type associated with vi in m (term t is tested to be of a particular type
by calling Prolog with type(t ) as goal). For each 〈t1, . . . , tn〉 in T (m) let ab be a copy
of a(m) and θ = {v1/t1, . . . , vn/tn}. If Prolog with depth-bound h succeeds on goal abθ

with the set of answer substitutions �b then for each θb in �b and for each v/t in θb if
v corresponds to a #type in m then replace v in ab by t otherwise replace v in ab by vk

where k = hash(t) and add v to InTerms if v corresponds to −type. Add ab to ⊥i .
6. Goto step 4.

Appendix B: Morphism between the function free atomic lattice and the lattice of
variable partitions

It was shown in Sect. 6 that the subsumption order relative to a bottom clause defines a
lattice and this lattice is isomorphic to an atomic lattice. The complexity of the hypothesis
space bounded by a bottom clause can be further analysed by mapping the lattice 〈−→L ⊥,
⊥〉
to a partition lattice. In the following, we show the morphism between the function free
atomic lattice and the lattice of variable partitions.
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Definition 41 Let �n be the set of all partitions on {1,2, . . . , n} and P1 and P2 be partitions
in �n. We say P1 is finer than P2, denoted by P1 ≤ P2 if and only if for each block B1 in
P1 there is a block B2 in P2 such that B1 ⊆ B2. P1 is properly finer than P2, denoted by
P1 < P2, if P1 ≤ P2 and P2 �≤ P1.

It is known (Davey and Priestley 2002) that �n is partially ordered by ≤ and that 〈�n,≤〉
is a lattice.

Proposition 6 Let �n and ≤ be as defined in Definition 41. Then 〈�n,≤〉 is a lattice.

Definition 42 (Mapping function P ) Let An be the set of all atoms in a language with
only one n-ary predicate symbol and with no constant and function symbol. The mapping
function P : An → �n is defined to map any atom A = p(v1, v2, . . . , vn) in An to a partition
π in �n such that for each block B in π , {i, j} ⊆ B if and only if variables vi and vj are the
same.

Example 20 Let A = p(X,Y,X,Z,Y,X) be an atom in A6. Then P (A) = {{1,3,6}, {2,5},
{4}}.

Lemma 11 Let An be as defined in Definition 42 and A1 = p(u1, . . . , un) and A2 =
p(v1, . . . , vn) be atoms in An. There exists a variable substitution θ such that A1θ = A2

if and only if for any pair of variables ui and uj in A1 if ui and uj are the same then
variables vi and vj in A2 are the same.

Proof ⇒ : Suppose that there exists a variable substitution θ such that p(u1, . . . , un)θ =
p(v1, . . . , vn). Let {ui/vi, uj /vj } ⊆ θ . Then according to Definition 7, ui and uj must be
distinct variables. Hence, if variables ui and uj are the same then variables vi and vj are the
same.

⇐ : Suppose that for any pair of variables ui and uj in A1 if ui and uj are the same then
variables vi and vj in A2 are the same. Then a mapping function can be defined which maps
each variable ui from A1 to a variable vi from A2. Then according to Definition 7, there is a
variable substitution θ such that A1θ = A2. �

Example 21 Let A1 and A2 be atoms in A6 as defined below

A1 = p(X1, Y1,X1,Z1, Y1,X1),

A2 = p(X2, Y2,X2,X2, Y2,X2).

We have A1θ = A2 where θ = {X1/X2, Y1/Y2, Z1/X2}. For any pair of variables ui and uj

in A1 if ui and uj are the same then variables vi and vj in A2 are the same. For example,
u1 and u3 in A1 represent the same variable X1 and v1 and v3 in A2 represent the same
variable X2.

Theorem 15 Let An be as defined in Definition 42 and A1 and A2 be atoms in An. A1 
 A2

if and only if P (A1) ≤ P (A2).

Proof ⇒ : Let A1 = p(u1, . . . , un) and A2 = p(v1, . . . , vn) such that A1 
 A2. Then accord-
ing to Definition 9, there exists a substitution θ such that p(u1, . . . , un)θ = p(v1, . . . , vn).
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According to Lemma 11, for any pair of variables ui and uj representing the same variable
in A1, variables vi and vj represent the same variable in A2. Then according to Definition
42, if {i, j} ⊆ B1 where B1 ∈ P (A1) then there is {i, j} ⊆ B2 where B2 ∈ P (A2). Then
according to Definition 41, P (A1) ≤ P (A2).

⇐ : Let A1 = p(u1, . . . , un) and A2 = p(v1, . . . , vn) such that P (A1) ≤ P (A2). Then
according to Definition 41 for each block B1 in P (A1) there is a block B2 in P (A2) such
that B1 ⊆ B2. Hence, for each {i, j} ⊆ B1 where B1 ∈ P (A1), there is {i, j} ⊆ B2 where
B2 ∈ P (A2). Then according to Definition 42, for any pair of variables ui and uj represent-
ing the same variable in A1, variables vi and vj represent the same variable in A2. Accord-
ing to Lemma 11, there exists a substitution θ such that p(u1, . . . , un)θ = p(v1, . . . , vn) and
therefore A1 
 A2. �

Theorem 16 The mapping function P : An → �n as defined in Definition 42 is an order-
isomorphism.

Proof First we show that the mapping function P is onto. Let π be a partition in �n. We
show that there is an atom A in An such that P (A) = π . Let A = p(v1, v2, . . . , vn) be an
atom in An such that for each block B in π and for each {i, j} ⊆ B , variables vi and vj

are the same. Then according to Definition 42 we have P (A) = π and therefore P is onto.
Moreover, according to Theorem 15 and Definition 2, the mapping function P is order-
embedding. Then according to Definition 2, P is an order-isomorphism. �

According to Proposition 6, 〈�n,≤〉 is a lattice. The proposition below follows directly
from Theorem 16 and Remark 4.

Proposition 7 The mapping function P : An → �n as defined in Definition 42 is a lattice
isomorphism and lattices 〈�n,≤〉 and 〈An,
〉 are two isomorphic lattices.
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