Using Genetic Algorithms for Learning Clauses in First-Order Logic

Alireza Tamaddoni-Nezhad
Department of Computer Science
University of York, York, YO10 5DD, UK
alireza@cs.york.ac.uk

Abstract

A framework for combining first-order con-
cept learning with Genetic Algorithms is in-
troduced. This framework includes: 1) a
novel binary representation for clauses 2)
task-specific genetic operators 3) a fast evalu-
ation mechanism. The proposed binary rep-
resentation encodes the refinement space of
clauses in a natural and compact way. It
is shown that essential operations on clauses
such as unification and anti-unification can
be done by simple bitwise operations (e.g.
and/or) on the binary encoding of clauses.
These properties are used for designing task-
specific genetic operators. It is also shown
that by using these properties individuals
can be evaluated at genotype level without
mapping them into corresponding clauses.
This replaces the complex task of evaluating
clauses, which usually needs repeated theo-
rem proving, by simple bitwise operations.
An implementation of the proposed frame-
work is used to combine Inverse Entailment
of the learning system CProgol with a genetic
search.

1 INTRODUCTION

In concept learning problems, there is a trade-off be-
tween the expressive power of the representation and
the complexity of hypotheses search space. In the case
of first-order concept learning this search space grows
combinatorially and the search is usually intractable.
On the other hand, many real-world applications re-
quire a representation language which is at least as
expressive as first-order logic. For example, Inductive
Logic Programming (ILP) (Muggleton, 1991; Muggle-
ton and Raedt, 1994) has been a fast growing research

Stephen Muggleton
Department of Computer Science
University of York, York, YO10 5DD, UK
stephen@cs.york.ac.uk

area in the last decade and has shown many successes
in machine learning and data-mining applications, es-
pecially in some challenging domains such as bioin-
formatics (Muggleton et al., 1992; Srinivasan et al.,
1997; Muggleton, 1999). Current first-order learning
systems mostly employ deterministic search methods
to examine the refinement space of clauses and use
different kind of syntactic biases and heuristics (e.g.
greedy methods) to cope with the complexity of the
search which otherwise is intractable. Using these bi-
ases usually limits the exploration power of the search
and may lead to local optima. Hence, more power-
ful search methods are required for inducing complex
concepts and for dealing with massive data. Genetic
Algorithms (GAs) have great potential for this pur-
pose. GAs are multi-point search methods (and less
sensitive to local optima) which can search through a
large space and manipulate symbolic as well as numer-
ical data. Moreover, because of their robustness and
adaptive characteristics, GAs are suitable methods for
optimization and learning in many real world applica-
tions (Goldberg, 1989). In terms of implementation,
GAs are highly parallel and can be easily implemented
in parallel and/or distributed models. However, GAs
are syntactically restricted and cannot represent a pri-
ori knowledge that already exists about the domain.
On the other hand, first-order concept learning meth-
ods, such as ILP, are well known paradigms that bene-
fit from the expressive power inherited from logic and
logic programming. Hence, it is likely that a combina-
tion of such learning paradigms and GAs can overcome
the limitation of each individual method and can be
used to cope with some complexities of real-world ap-
plications.

Even though GAs have been used widely for optimiza-
tion and learning in many domains, a few genetic-
based systems in first-order domain already exist.
Some of these systems (Giordana and Sale, 1992; Gior-
dana and Neri, 1996; Hekanaho, 1998; Anglano et al.,



1998) follow conventional genetic algorithms and rep-
resent problem solutions by fixed length bit-strings.
Other systems (Varsek, 1993; Leung and Wong, 1995;
Wong and Leung, 1997; Kennedy and Giraud-Carrier,
1999; Reiser and Riddle, 1998) use a hierarchical rep-
resentation and evolve a population of logic programs
in a Genetic Programming (GP) (Koza, 1991) manner.
These genetic-based systems confirm that genetic algo-
rithms and evolutionary computing can be interesting
alternatives for learning first-order concepts from ex-
amples. However, these systems mostly use genetic
search as the only learning mechanism in the sys-
tem and hence they cannot benefit from the existing
first-order learning techniques for example for utilizing
background knowledge in the learning process.

This paper aims to present a framework for combin-
ing first-order concept learning with GAs by introduc-
ing a novel binary encoding for clauses, relevant ge-
netic operators and a fast evaluation mechanism. In
this framework, unlike other genetic-based systems,
representation and operators can be interpreted in
well known first-order logic terms such as subsump-
tion, unification and anti-unification (Plotkin, 1969;
Nienhuys-Cheng and de Wolf, 1997). This representa-
tion and its interpretations and properties are intro-
duced in the next section. Section 3 shows how some
properties of the binary representation can be used to
design task-specific genetic operators. In this section
we show how essential operations on clauses can be
done by simple bitwise operations (e.g. and/or) on
binary strings. As another property of the proposed
representation we show that evaluating a clause, which
is a complex task, can also be done by simple and fast
bitwise operations. This evaluation mechanism is in-
troduced in section 4. Section 5 describes an imple-
mentation of the proposed framework for combining
Inverse Entailment in CProgol (Muggleton, 1995) with
a genetic algorithm. Evaluations and related works are
discussed in section 6. Finally, section 7 summarizes
the results and concludes this paper.

2 REPRESENTATION AND
ENCODING

Every application of GAs requires formulating prob-
lem solutions in such a way that they can be pro-
cessed by genetic operators. It has been suggested
that the binary representation is a suitable coding for
representing problem solutions in GAs (Holland, 1975;
Goldberg, 1989). The lack of a proper (binary) rep-
resentation, and consequently difficulties for definition
and implementation of genetic operators, has been the
main problem for applying GAs in first-order domain.

[ 1T 1
V1iVv2 V3Vv4 V5V6
B: pCex.\Y) : = q(X,2), r(Z)Y)
L |

1
M(B): %
-4
5
6
Figure 1: Binding matrix for clause p(X,Y):-
a(X,Z),r(Z,Y).

In this section we introduce a novel binary represen-
tation for first-order clauses. We show that this repre-
sentation encodes the refinement space of clauses in a
natural and compact way. Even though all definition
and theorems in this paper hold for the general form
of firs-order clauses, for simplicity and consistency rea-
sons, in all examples we use Horn clauses ! which is the
standard representation in logic programming. Con-
sider a clause with n variable occurrences. The re-
lationships between these n variable occurrences can
be represented by a graph having n vertices in which
there exists an edge between vertices v; and v; if ith
and jth variable occurrences in the clause represent
the same variable. For example variable bindings in
clause p(X,Y):-q(X,Z),r(Z,Y) represent an undirected
graph and this clause can be represented by a binary
matrix as shown in Figure 1. In this matrix entry m;;
is 1 if ¢th and jth variable occurrences in the clause
represent the same variable and m;; is 0 otherwise.
This representation has interesting properties which
can be exploited by a genetic algorithm for searching
the refinement space of a clause. Before we formally
show these properties, we need to show the mappings
between clauses and binary matrices.

Definition 1 (Binding Set) Let B and C both be
clauses. C' is in binding set B(B) if there exists a
variable substitution ? 6 such that C6 = B.

In Definition 1, the variables in B induce a set of
equivalence classes over the variables in any clause

!In Horn clauses all clauses contain at most one positive
literal. For example {p(X,Y)V ~ ¢(X,Z)V ~ r(Z,Y)}
is a Horn clause and can be represented by p(X,Y):-
a(X,2),7(2,Y).

2Substitution § = {v;/u;} is a variable substitution if
all v; and u; are variables.



C € B(B). Thus we could write the equivalence class
of u in variable substitution 8 as [v],, the set of all
variables in C such that v/u is in §. We define a bi-
nary matrix which represents whether variables v; and
v; are in the same equivalence class or not.

Definition 2 (Binding Matrix) Suppose B and C
are both clauses and there exists a variable substitu-
tion 0 such that CO = B. Let C have n variable oc-
currences representing variables (vi,va,...,v,). The
binding matrixz of C' is an n x n matric M in which
myj s 1 if there exist variables v;, v; and u such that
vi/u and vj/u are in @ and m;; is 0 otherwise. We
write M (vi,v;) = 1 if my; = 1 and M(v;,v;) = 0 if
mi; = 0.

Definition 3 (Normalized Binding Matrix)

Let M be an n x n binary matriz. M is in the set
of normalized binding matrices M, if M is symmetric
and for each 1 <i<n,1<j<nandl <k <n,
m; =1 if mip, =1 and my; = 1.

Definition 4 (Mapping Function M(C))

The mapping function M : B(B) = M, is defined as
follows. Given clause C € B(B) with n variable occur-
rences representing variables (vi,va,...,v,), M(C) is
an n X n binary matriz in which m;; is 1 if variables
v; and v; are identical and m;; is 0 otherwise.

Definition 5 (Mapping Function C(M))

The mapping function C : M,, — B(B) is defined
as follows. Given a normalized n x n binding matriz
M, C(M) is a clause in B(B) with n variable occur-
rences (U1, V2, ..., Un), in which variables v; and vj are
identical if m;; is 1.

Definition 6 (Matrix Subset) Let P and @ be in
My 1t is said that P C @ if for each entry p;; € P
and q;; € Q , pij s 1ifqjis1. P=Q if PCQ and
QCP.PCQifPCQandP #Q.

Definition 7 (Clause Subsumption)

Clause C subsumes clause D, C = D if there ezists
a (variable) substitution 6 such that CO C D (i.e. ev-
ery literal in CO is also in D). C properly subsumes
D,C»DifC>D and D ¥ C.

Because of the subsumption order between clauses
(which is a quasi-order) the search space (or refine-
ment space) can be modeled as a subsumption lat-
tice (Nienhuys-Cheng and de Wolf, 1997). The follow-
ing theorem represents the relationship between binary
matrices and the subsumption order of clauses.

p(U,V) - qW,X) , r(Y,Z)
(Binary Encoding: 000)

{wiuy {zIv} {YIX}

p(U,v) :- qU,X), r(Y,2)
(Binary Encoding: 100)

p(U,V) - q(W.X) , r(Y,V)
(Binary Encoding: 010)

p(UV) :- q(W,X) , r(X,2)
(Binary Encoding: 001)
{wiuy Y/IX} j{Z/V}

p(U,V) - q(W.X) , r(X,V)
(Binary Encoding: 011)

{ZIv} l {W/U} Y/IX}

p(U,V) :- q(U,X), r(Y,V)
(Binary Encoding: 110)

p(U,V) :- q(U,X), r(X,2)
(Binary Encoding: 101)

{YIX} {ZIv} {wiu

OUIRhWNEF

,,,,,,,,,,,,,,,

Figure 2: A subsumption lattice bounded below by
clause p(X,Y):-q(X,Z),r(Z,Y) and binary encoding for
each clause.

Theorem 1 For each clause B and matrices My and
My in M,, such that C(M;) € B(B) and C(M>) €
B(B), C(Ml) b C(Mz) ZfMl C M.

Proof. Suppose M; C Ms,. Therefore there exist
variables v; and v;, i < j such that M;(v;,v;) = 0
and M>(v;,v;) = 1. Then according to Definition 2,
C(Ml){’l)i/’l)j} = C(MQ) Hence, C(Ml) - C(MQ) O

A binding matrix is a symmetric matrix in which di-
agonal entries are 1. In practice, we only maintain
entries in top (or down) triangle of the matrix. Fur-
thermore, in our implementation (see section 5), we
are interested in a subsumption lattice bounded below
by a particular clause. Hence, each member of B(B)
can be encoded by a binary string in which each bit
corresponds to a 1 entry of matrix M (B).

Example 1 Figure 2 shows a subsumption lattice
bounded below by the clause p(X,Y):-q(X,Z),r(Z,Y).
FEach clause in this search space can be encoded by 3
bits.

3 GENETIC OPERATORS AND
STOCHASTIC REFINEMENT

Genetic operators introduce new individuals into pop-
ulation by randomly changing or combining the geno-
type of best-fit individuals during an evolutionary pro-
cess. In conventional genetic algorithms these opera-
tors are domain-independent and usually without any
assumption about the problem on hand. However,
more efficient genetic operators can be designed by



using simple facts about the domain. For example it
has been shown that introducing generalization and
specialization crossover operators, which are used to-
gether with standard crossover and mutation opera-
tors, can be useful in concept learning problems (Gior-
dana and Sale, 1992; Janikow, 1993). In this section
we show that the proposed binary representation has
great potential for designing task-specific genetic op-
erators. In particular, we show how mgi(most general
instance) and lgg(least general generalization) which
are also known as unification and anti-unification oper-
ations on clauses (Plotkin, 1969; Nienhuys-Cheng and
de Wolf, 1997) can be achieved by simple bitwise op-
erations on the binary encoding of clauses. In the fol-
lowing, first we introduce mgi and lgg operations for
clauses.

Definition 8 (mgi and lgg) Clauses E and F are
respectively a common instance and a common gener-
alization of clauses C' and D if and only if C,D = E
and F = C,D. mgi(C,D) and lgg(C, D) are the most
general instance and the least general generalization
for clauses C' and D if and only if for every common
instance E and common generalization F it is the case
that mgi(C,D) = E and F = lgg(C, D).

Example 2 In Figure 2 clause
p(U,V):-q(U,X),r(X,Z) is the mgi of clauses p(U,V):-
q(U,X),r(Y,Z) and p(U,V):-q(W,X),r(X,Z) and clause
p(U,V):-q(W,X),r(Y,V) is the lgg of clauses p(U,V):-
q(U:X);T(Y: V) and p(U: V)"'Q(W’X)7T(X; V)

Definition 9 (Matrix AND) Let My and M, be in
M. M = (M1 A Ms) is an n X n matriz and for each
a;j € M, bz'j € My and Cij € M, aij; = 1 Zsz] =1
and c;; = 1 and a;; = 0 otherwise.

Similar to AND operator, OR operator (M; V M>) is
constructed by bitwise OR-ing of M; and M entries.

Definition 10 (Matrix OR) Let M; and M, be in
M. M = (MyV M) is an n X n matriz and for each
a;; € M, bj; € My and c;; € Ms, a;5; =1 ifbjj =1 or
¢ij =1 and a;; = 0 otherwise.

Theorem 2 For each clause B and matrices M,
Ms and M in M, such that C(M;) € B(B),
C(My) € B(B) and C(M) € B(B), C(M) =
lgg(C(My),C(Ma)) if M = (M1 A Mz).

Proof. Suppose M = My A M. Therefore M C M,
and M C M, and according to Theorem 1 C(M) =
C(M1) and C(M) = C(Ms). Therefore C(M) is a
common generalization of C(M;) and C(Mz). We

show that C(M) is the least general generalization
of C(M;) and C(M,). For each binding matrix M’
in M, it must be the case that if C(M') = C(M;)
and C(M') = C(M3) then C(M') = C(M). Suppose
C(M'") # C(M) then according to Theorem 1 there
exist 4 and v such that M'(u,v) =1 and M (u,v) = 0.
If M'(u,v) = 1 then M;(u,v) = 1 and Ma(u,v) =1
and this contradicts M (u,v) = 0 and completes the
proof. O

By a similar proof it can be shown that the result of
or-operator is equivalent to mgs.

Theorem 3 For each clouse B and matrices M,
My and M in M, such that C(My) € B(B),
C(Ms) € B(B) and C(M) € B(B), C(M) =
ng(C(Ml),C(MQ)) ZfM = M1 VMQ.

Proof. Symmetric with proof of Theorem 2. O

Example 3 In Figure 2, lgg and mgi of any two
clauses can be obtained by AND-ing and OR-ing of
their binary strings.

According to these theorems unification and anti-
unification can be done by simple bitwise operations on
the binary encoding of clauses. These properties can
be used for designing task-specific genetic operators
such as generalization and specialization crossover op-
erators. Generalization and specialization are known
as the main operations in concept learning meth-
ods (Winston, 1970; Mitchell, 1982; Mitchell, 1997).
In particular, lgg and mgi are essential in first-order
learning. For example, the ILP system Golem (Mug-
gleton and Feng, 1990) which was successfully applied
to a wide range real-world applications (Bratko et al.,
1991; Feng, 1992; Muggleton et al., 1992) only uses a
lgg operator which operates on determinacy restricted
clauses 2. In addition to the generalization and spe-
cialization crossovers mentioned earlier, we can also
introduce task-specific mutation operators. In the
standard mutation operator we use a fixed probability
(mutation-rate) for changing 0 and 1 bits 1. As shown
in the previous section, the difference between bits in
binding matrices determines the subsumption order
between clauses. Hence, the subsumption distance be-
tween clauses increases monotonically with the Ham-

3Tt has been shown that the determinacy restriction
is inappropriate in some applications (Muggleton, 1994).
There is not such a restriction for the lgg operator intro-
duced in this paper.

1A random mutation could result in a matrix which is
not consistent with Definition 3. Even though this inconsis-
tency doesn’t affect the genetic search in practice, it could
be avoided by a normalization closure using Definition 3.



ming distance between corresponding matrices. We
can use this property to set different mutation rates
for 0 and 1 bits based on a desirable degree of gener-
alization and specialization. This leads to a directed
mutation operator.

In first-order concept learning, upward and downward
refinement operators are used for generalization and
specialization of clauses (Nienhuys-Cheng and de Wolf,
1997). In our case, task-specific genetic operators can
be interpreted as stochastic refinement operators in the
context of first-order concept learning.

4 FAST EVALUATION AT
GENOTYPE LEVEL

The usual way for evaluating a hypothesis in first-order
concept learning systems is to repeatedly call a theo-
rem prover (e.g. Prolog interpreter) on training ex-
amples to find out positive and negative coverage of
the hypothesis. This step is known to be a complex
and time-consuming task in first-order concept learn-
ing. In the case of genetic-based systems this situation
is even worse, because we need to evaluate a popula-
tion of hypotheses in each generation. This problem
is another important difficulty when applying GAs in
first-order concept learning.

In this section we introduce a method which replaces
the complex task of evaluating clauses by bitwise oper-
ations on binary strings. This idea is similar to data-
compilation method used by the attribute-based learn-
ing system GIL (Janikow, 1993). This system retains
binary coverage vectors for all possible features (at-
tributes and values) which can appear in a rule. This
introduces a database which can be used for comput-
ing the coverage set of each rule by bitwise operations
on the coverage vectors of participating features. How-
ever, in our case there is no need to maintain such a
database. We show that by maintaining the cover-
age sets for a small number of clauses and by doing
bitwise operations we can compute the coverage for
other binary strings without mapping them into the
corresponding clauses. This property is based on the
implicit subsumption order which exists in the binary
representation. In the following, first we define the
cover-vector approach for representing coverage of a
clause on training examples.

Definition 11 (Cover Sets and Cover Vectors)

Let C be a clause and Et = {ef,ef,...,el} and
E- ={e1,e5,...,¢ } be the set of positive and neg-
ative training examples respectively. e;" is in the pos-
itive cover set P(C) if C = ef. Similarly, e; 1is in
the negative cover set N'(C) if C = e; . The positive

cover vector PV(C) is a k-bit binary string in which
biti is 1 if e} € P(C) and 0 otherwise. Similarly, the
negative cover vector NV(C) is a l-bit binary string in
which bit j is 1 if e; € N(C) and 0 otherwise.

Theorem 4 For each clause C; and (s,
P(mgz(Cl,Cz)) = P(Cl) n P(Cz)

Proof. Let e € P(mgi(Cy,Cs)), then according to
Definition 11, mgi(Cy,C3) = e. But according to
the definition of mgi, C; > mgi(Cy,C3) and Cy >
mgi(Cy,Cs) and therefore Cy = e and C, > e. Hence,
e € P(Cy) and e € P(Cs) and therefore e € P(C1) N
P(Cs). Hence, P(mgi(C1,Cs)) C P(C1) N P(Cs).
Now, let e € P(C1) NP(C>), then according to Def-
inition 11, C; > e and Cy > e. But according
to the definition of mgi, mgi(Ci,C2) = e. Hence,
e € P(mgi(Cy,C>)) and therefore P(Cy) N P(Cs) C
P(mgi(C1,C3)) and this completes the proof. O

Theorem 5 For each M, M; and Ms in M, ,
PY(C(M)) = PY(C(M)) N PV(C(M)) if M =
My V Ms.

Proof. Suppose M = M; V M,. Therefore according
to Theorem 3, C(M) = mgi(C(M1),C(Mz)). Then
according to Theorem 4 ,P(C(M)) = P(C(My)) N
P(C(My)). But according to Definition 11,
PY(C(M)) = PV(C(M1)) NPV(C(M)). O

This theorem, which also holds for negative coverage
vectors, can be easily extended for n clauses. Ac-
cording to these theorems, positive (or negative) cov-
erage of clauses can be computed by bitwise opera-
tions. Hence, the evaluation of each individual is done
at genotype level without mapping it into the corre-
sponding phenotype (clause).

Example 4 In Fig. 2, PV(C(111)) = PV(C(110)) A
PY(C(101)).

5 IMPLEMENTATION

In our first attempt, we employed the proposed rep-
resentation to combine Inverse Entailment in CPro-
gol4.4 with a genetic algorithm. CProgol is an Induc-
tive Logic Programming (ILP) system which develops
first-order hypotheses from examples and background
knowledge. CProgol uses Inverse Entailment (Muggle-
ton, 1995) to construct the most specific clause (or the
bottom-clause) for each example and then searches for
the best clause H which subsumes this bottom-clause
(O > H > 1). This introduces a subsumption lattice



bounded below by the bottom-clause (L). The stan-
dard CProgol starts from the empty clause (O) and
uses an A*-like algorithm for searching this bounded
subsumption lattice. The details for CProgol’s A*-like
search, refinement operator and algorithm for building
the bottom-clause can be found in (Muggleton, 1995).

As shown in section 2, B(L) represents a subsumption
lattice bounded below by the bottom-clause. We used
a genetic algorithm together with the binary encoding
for clauses (as described in section 2) to evolve a ran-
domly generated population of binary strings in which
each individual corresponds to a member of B(.L). Be-
cause of simple representation and straightforward op-
erators any standard genetic algorithm can be used
for this purpose. We used a Simple Genetic Algo-
rithm(SGA) (Goldberg, 1989) and modified it to suit
the representation introduced in this paper. This ge-
netic search evolves a population of hypotheses which
all subsume the bottom-clause and uses an evaluation
function which is similar to one used in the A*-like
search of CProgol ® but normalized between 0 and 1.
The predicates which violate the mode declaration lan-
guage are considered as inactive predicates which can
be filtered from the induced hypothesis.

In our first experiment, we applied the genetic search
to learn Michlaski’s east-bound trains (Michalski,
1980). Figure 3 compares the performance of the ge-
netic search with a random search in which each pop-
ulation is generated randomly as in the initial gener-
ation. In all experiments (10/10) a correct solution
was discovered by the genetic search before generation
20 (standard deviations for the average fitness mean
over 10 runs are shown as error bars). The following
parameter setting was used for SGA: popsize = 30,
Pm = 0.0333 and p. = 0.6. Figure 3 also compares the
convergence of the standard SGA with a SGA which
uses together with standard one-point crossover, the
task-specific operators [gg introduced in section 3. The
following parameter setting was used for SGA + lgg:
popsize = 30, pp, = 0.0333, p. = 1 —a x f and
Digg = a* f where f is the mean value of the fitness of
the parental strings (f = W) and o = 0.8 6.

Preliminary results show that the A*-like search ex-
hibits better performance in learning hypotheses with
small and medium complexities. However, the per-
formance of the genetic search is less dependent on

®The criteria used in the evaluation function of the A*-
like search of CProgol include: number of positive and neg-
ative examples covered by the clause, length of the clause
and number of further literals to complete the clause. More
details can be found in (Muggleton, 1995).

5This parameter setting is similar to one used in (Gior-
dana and Sale, 1992).

Random Search -—--+---
SGA x
0.85 ———SCAYD >
BT S e e
08+ 1+ lfj AP R E AR AR R
B ]
é 075 . F X
T o
) ¥io0
> 07 px7 1
< 171N
1 |
065 [ Y 1
0.6 Il Il Il . Il Il
0 5 10 15 20 25 30

Generations

Figure 3: Convergence of the genetic search in the
trains problem.

the complexity of hypotheses, whereas A*-like search
shows a great dependency on this factor. Moreover,
genetic search can find the correct solution for some
special cases which the solution is beyond the explo-
ration power of the A*-like search due to its incom-
pleteness (Muggleton, 1995; Badea and Stanciu, 1999).

6 DISCUSSION AND RELATED
WORKS

The actual completeness and complexity exhibited by
the standard A*-like search of CProgol depends upon
the order of literals in the bottom clause and upon the
complexity of the hypothesis. In contrast, the genetic
search is less dependent on the complexity of the hy-
pothesis and is not affected by the order of literals in
the bottom clause. Therefore it is reasonable that ge-
netic algorithm is able to find some solutions which are
beyond the exploration power of the A*-like search.

As mentioned earlier, one main difficulty in order
to apply GAs in first-order domain concerns formu-
lating first-order hypotheses into bit-strings. GA-
SMART (Giordana and Sale, 1992) was the first re-
lation learning system which tackled this problem by
restricting concept description language and introduc-
ing a language template. A template in GA-SMART is
a fixed length CNF formula which must be defined by
the user. Mapping a formula into bit-string is done by
setting the corresponding bits to represent the occur-
rences of predicates in the formula. The main prob-
lem of this method is that the number of conjuncts
in the template grows combinatorially with the num-
ber of predicates. REGAL (Giordana and Neri, 1996),



DOGMA (Hekanaho, 1998) and G-NET (Anglano
et al., 1998) mainly follow the same idea of GA-
SMART and employ a user-defined template for map-
ping first-order rules into bit strings. However, in-
stead of using a standard representation, a template in
these systems is a conjunction of internally disjunctive
predicates. This leads to some difficulties for exam-
ple for representing continuous attributes. Other sys-
tems including GILP (Varsek, 1993), GLPS (Leung
and Wong, 1995), LOGENPRO (Wong and Leung,
1997), STEPS (Kennedy and Giraud-Carrier, 1999)
and EVIL (Reiser and Riddle, 1998) use hierarchi-
cal representations rather than using fixed length bit-
strings. These systems evolve a population of logic
programs in a Genetic Programming (GP) (Koza,
1991) manner. Even though some of the above men-
tioned systems use background knowledge for generat-
ing initial population or seeding the population, most
of these systems cannot benefit from intentional back-
ground knowledge as it is used in usual first-order
learning systems. On the other hand, in our pro-
posed framework, encoding of hypotheses is based on
a most specific or bottom-clause which is constructed
according to the background knowledge and training
examples. This bottom-clause can be automatically
constructed using logic-based methods such as Inverse
Entailment. Moreover, as shown in section 2 and sec-
tion 3, the proposed encoding and operators can be
interpreted in well known first-order logic terms.

7 CONCLUSIONS AND FURTHER
WORK

In this paper we have introduced a framework for com-
bining first-order concept learning with GAs. Effi-
cient binary representation for encoding clauses and
its properties, relevant task-specific operators and the
fast evaluation mechanism are the major novelty of the
proposed framework.

A preliminary implementation of this framework is
used to combine Inverse Entailment of the ILP system
CProgol with a genetic search. Even though this im-
plementation justifies the properness of the proposed
framework, it could be improved in many ways. A
natural improvement might be using more sophisti-
cated genetic algorithms rather than using a simple
genetic algorithm. For example the greedy cover set
algorithm of CProgol, which repeatedly generalizes ex-
amples, could be replaced by a distributed genetic al-
gorithm. The task-specific genetic operators can be
used to guide the genetic search towards the interest-
ing areas of the search space by specialization and/or
generalization as it is done in usual concept learning

systems. The fast evaluation mechanism can be used
to compensate for the natural computation cost of a
genetic algorithm and could lead to a high performance
genetic search. In the current approach, the occur-
rence of atoms in a clause is not considered in the
binary encoding of the clause and inactive atoms (e.g.
unconnected predicates) are filtered from the induced
hypotheses. This could lead to an incomplete search
or inexact evaluation. Alternatively, the presence or
absence of atoms in each clause can be encoded as a
part of the binary representation of the clause. Fi-
nally, more experiments are required to evaluate the
proposed framework in complex domains and noisy do-
mains.

Undoubtedly, first-order concept learning and GAs are
on opposite sides in the classification of learning pro-
cesses (Kodratoff and Michalski, 1990). While GAs
are known as empirical or BK-poor, first-order concept
learning could be considered as BK-intensive method
in this classification. We conclude that the framework
proposed in this paper can be considered as a bridge
between these two different paradigms to utilize the
distinguishable benefits of each method in a hybrid
system.

References

Anglano, C., Giordana, A., Bello, G. L., and Saitta, L.
(1998). An experimental evaluation of coevolutive
concept learning. In Shavlik, J., editor, Proceed-
ings of the 15th International Conference on Ma-
chine Learning, pages 19-27. Morgan Kaufmann.

Badea, L. and Stanciu, M. (1999). Refinement opera-
tors can be (weakly) perfect. In Dzeroski, S. and
Flach, P., editors, Proceedings of the 9th Inter-
national Workshop on Inductive Logic Program-
ming, volume 1634 of Lecture Notes in Artificial
Intelligence, pages 21-32. Springer-Verlag.

Bratko, I., Muggleton, S., and Varsek, A. (1991).
Learning qualitative models of dynamic sys-
tems. In Proceedings of the Eighth International
Machine Learning Workshop, San Mateo, Ca.
Morgan-Kaufmann.

Feng, C. (1992). Inducing temporal fault dignostic
rules from a qualitative model. In Muggleton, S.,
editor, Inductive Logic Programming. Academic
Press, London.

Giordana, A. and Neri, F. (1996). Search-intensive
concept induction. Ewolutionary Computation
Journal, 3(4):375-416.



Giordana, A. and Sale, C. (1992). Learning structured
concepts using genetic algorithms. In Sleeman,
D. and Edwards, P., editors, Proceedings of the
9th International Workshop on Machine Learn-
ing, pages 169-178. Morgan Kaufmann.

Goldberg, D. E. (1989). Genetic Algorithms in Search,
Optimization and Machine Learning. Addison
Wesley, Reading, MA.

Hekanaho, J. (1998). Dogma: A ga-based relational
learner. In Page, D., editor, Proceedings of the
8th International Conference on Inductive Logic
Programming, pages 205—214. Springer-Verlag.

Holland, J. (1975). Adaption in Natural and Artifi-
cial Systems. University of Michigan Press, Ann
Arbor, Michigan.

Janikow, C. Z. (1993). A knowledge-intensive ge-
netic algorithm for supervised learning. Machine
Learning, 13:189-228.

Kennedy, C. J. and Giraud-Carrier, C. (1999). An evo-
lutionary approach to concept learning with struc-
tured data. In Proceedings of the fourth Interna-
tional Conference on Artificial Neural Networks
and Genetic Algorithms, pages 1-6. Springer Ver-
lag.

Kodratoff, Y. and Michalski, R. (1990). Research in
machine learning: Recent progress, classification
of methods and future directions. In Kodratoff, Y.
and Michalski, R., editors, Machine learning: an
artificial intelligence approach, volume 3, pages
3-30. Morgan Kaufman, San Mateo, CA.

Koza, J. R. (1991). Genetic Programming. MIT Press,
Cambridge, MA.

Leung, K. S. and Wong, M. L. (1995). Genetic logic
programming and applications. IEEE FEzpert,
10(5):68-76.

Michalski, R. (1980). Pattern recognition as rule-
guided inductive inference. In Proceedings of
IEEE Trans. on Pattern Analysis and Machine
Intelligence, pages 349-361.

Mitchell, T. (1982). Generalisation as search. Artificial
Intelligence, 18:203-226.

Mitchell, T. (1997). Machine Learning. McGraw-Hill,
New York.

Muggleton, S. (1991). Inductive logic programming.
New Generation Computing, 8(4):295-318.

Muggleton, S. (1994). Inductive logic programming:
derivations, successes and shortcomings. SIGART
Bulletin, 5(1):5-11.

Muggleton, S. (1995). Inverse entailment and Progol.
New Generation Computing, 13:245-286.

Muggleton, S. (1999). Scientific knowledge discovery
using Inductive Logic Programming. Communi-
cations of the ACM, 42(11):42-46.

Muggleton, S. and Feng, C. (1990). Efficient induction
of logic programs. In Proceedings of the First Con-
ference on Algorithmic Learning Theory, Tokyo.
Ohmsha.

Muggleton, S., King, R., and Sternberg, M. (1992).
Protein secondary structure prediction using
logic-based machine learning. Protein Engineer-
ing, 5(7):647-657.

Muggleton, S. and Raedt, L. D. (1994). Inductive logic
programming: Theory and methods. Journal of
Logic Programming, 19,20:629-679.

Nienhuys-Cheng, S.-H. and de Wolf, R. (1997).
Foundations of Inductive Logic Programming.
Springer-Verlag, Berlin. LNAT 1228.

Plotkin, G. (1969). A note on inductive generalisation.
In Meltzer, B. and Michie, D., editors, Machine
Intelligence 5, pages 1563-163. Edinburgh Univer-
sity Press, Edinburgh.

Reiser, P. G. K. and Riddle, P. J. (1998). Evolv-
ing logic programs to classify chess-endgame posi-
tions. In Newton, C., editor, Second Asia-Pacific
Conference on Simulated Evolution and Learning,
Canberra, Australia.

Srinivasan, A., , Muggleton, R. K. S., and Sternberg,
M. (1997). The predictive toxicology evaluation
challenge. In Proceedings of the Fifteenth Inter-
national Joint Conference Artificial Intelligence
(IJCAI-97), pages 1-6. Morgan-Kaufmann.

Varsek, A. (1993). Inductive Logic Programming with
Genetic Algorithms. PhD thesis, Faculty of Elec-
trical Engineering and Computer Science, Univer-
sity of Ljubljana, Ljubljana, Slovenia.

Winston, P. H. (1970). Learning Structural Descrip-
tions from Examples. Phd thesis, MIT, Cam-
bridge, Massachusetts.

Wong, M. L. and Leung, K. S. (1997). Evolutionary
program induction directed by logic grammars.
Evolutionary Computation, 5(2):143-180.



