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A
bduction and induction are two forms of reasoning
that have been widely used in machine learning.
The combination of abduction and induction has
recently been explored from a number of angles [1].

Moreover, theoretical issues related to the completeness of this
form of reasoning have also been discussed by various authors
[2]–[4]. Some implemented systems have been developed for
combining abduction and induction [5] and others have recently
been proposed [6], [7]. There have also recently been demon-
strations of the application of abduction/induction systems in
the area of systems biology [8], [9]. 

The research reported in this article is being conducted as
part of the MetaLog project [10], which aims to build causal
models of the actions of toxins from empirical data in the form
of nuclear magnetic resonance (NMR) data, together with
information on networks of known metabolic reactions from
the Kyoto Encyclopedia of Genes and Genomes (KEGG) [11].
The NMR spectra provide information concerning the flux of
metabolite concentrations before, during, and after administra-
tion of a toxin. 

In an article [12] describing our initial investigation in this
topic, we modeled the initial effects of a single toxin
(hydrazine). The initial model ignored the temporal variance
of metabolite concentrations. By contrast, in [13] we describe
an extended study in which temporal variation is captured and
the resulting model for hydrazine is contrasted with that of a
second liver toxin (anit). The NMR data for hydrazine and anit
were the first datasets which haves been made available to the
project by our collaborators who studied these toxins as part of
the COMET project [14]. The present article summarizes
these studies and focuses on the main results, with less techni-
cal detail. In addition, this article contains more analysis of the
significance of the results from a biological perspective.
Interested readers are referred to [13] for more information on
the use of abduction and induction in these studies. 

In our study, examples extracted from the NMR data consist
of metabolite concentrations (up-down regulation patterns
extracted from NMR spectra of urine from rats dosed with the
toxin) at 8 hours, 24 hours, 48 hours, 72 hours, and 96 hours
after the injection of the toxin. Background knowledge con-
sists of known metabolic networks and enzymes known to be
inhibited by the toxin. This background knowledge, which

represents the present state of understanding, is incomplete.
For example, for many inhibitors the available data is not
enough to generate any general rule. In order to overcome this
incompleteness, hypotheses are considered that consist of a
mixture of specific inhibitions of enzymes (ground facts)
together with general rules that predict classes of enzymes
likely to be inhibited by the toxin (nonground). Hypotheses
about inhibition are built using Progol5.0 [5] and predictive
accuracy is assessed for both the ground and the nonground
cases. It is shown that even with the restriction to ground
hypotheses, predictive accuracy increases with the number of
training examples and in all cases exceeds the default (majori-
ty class). Experimental results also suggest that when suffi-
cient training data are provided, nonground hypotheses show a
better predictive accuracy than ground hypotheses. These
results are also evaluated in terms of new biological insight
provided by the ground hypotheses.

Inhibition in Metabolic Networks
The processes that sustain living systems are based on chemi-
cal (biochemical) reactions. These reactions provide the
requirements of mass and energy for the cellular processes to
take place. The complex set of interconnected reactions taking
place in a given organism constitute its metabolic network
[15], [16]. Not all reactions take place at the same time in this
network, and they need to be finely coordinated. Biochemical
reactions are sped up by highly specialized proteins, the
enzymes. Enzymes are the most efficient catalyzers known,
and most of the reactions taking place in living organisms
would be too slow without them to sustain life. Enzymes con-
trol the activation of different parts of the network and are
therefore the main element for coordination of the different
parts of the metabolic network [17].

The assembly of full metabolic networks, made possible by
data accumulated through years of research, is now stored and
organized on metabolic databases and allows their study from
a network perspective [18], [19]. Even with the help of this
new systems biology approach to metabolism, we are still far
apart from understanding many of its properties. One of the
less understood phenomena, especially from a network per-
spective, is inhibition. Some chemical compounds can affect
enzymes, impeding them to carry out their functions, and
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hence affecting the normal flux in the metabolic network,
which is in turn reflected in the accumulation or depletion of
certain metabolites. 

Inhibition is important from the therapeutic point of view
since many substances designed to be used as drugs against
some diseases can eventually have an inhibitory side effect on
other enzymes. For example, Paracetamol is an inhibitor
COX-3 cyclo-oxygenase [20], preventing the formation of
arachidonic acid into prostaglandins, which are involved in
pain and fever process. Paracetamol is transformed by the
cytochrome P450 dependent enzymes producing 
N-acetyl-p-benzo-quinone imine (NAPQI), which is normally
conjugated with glutathione for renal elimination. In case of
overdose the glutathione production pathways are not able to
produce enough glutathione and NAPQI, which is very reac-
tive, accumulates in the liver leading to its failure [21]. Hence,
any system able to predict the inhibitory effect of substances
on the metabolic network would be useful in assessing the
potential harmful side effects of drugs.

Preparation of Data and Background Knowledge
In this work we use experimental data on the accumulation
and depletion of metabolites to model the inhibitory effect of a
toxin such as hydrazine (NH2 − NH2)in the metabolic net-
work of rats. Figure 1 shows the metabolic pathways subnet-

work of interest also indicating with “up” and “down” arrows
the observed effects of the hydrazine on the concentration of
some of the metabolites involved. This subnetwork was manu-
ally built from the information contained in the KEGG meta-
bolic database [11]. Starting from the set of chemical
compounds for which there is information on up/down regula-
tion after toxin treatment coming from the NMR experiments,
we tried to construct the minimal network representing the
biochemical links among them by taking the minimum path-
way between each pair of compounds and collapsing all those
pathways together through the shared chemical compounds.
When there is more than one pathway of similar length (alter-
native pathways), all of them are included. Pathways involv-
ing “promiscuous” compounds (compounds involved in many
chemical reactions) are excluded. KEGG contains a static rep-
resentation of the metabolic network (reactions connecting
metabolites); where the existence of a reaction is only condi-
tioned by the existence of at least one gene coding for an
enzyme catalyzing the reaction. NMR data provide informa-
tion on the concentrations of metabolites and their changes
with time. The NMR data used in this study represent varia-
tions of concentration of the metabolites (relative to their con-
centration before injection of hydrazine) that are measured at 8
hours, 24 hours, 48 hours, 72 hours, and 96 hours. The effect
of toxin on the concentrations of chemical compounds is

Fig. 1. A metabolic subnetwork involving metabolites affected by hydrazine. Information on up/down changes in metabolite
concentrations from NMR spectra is combined with KEGG metabolic diagrams. The enzymes associated with a single reaction
(solid line) or a linear pathway (dotted line) are shown as a single enzyme or a list of enzymes.
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coded in a binary way; i.e., only up/down changes (increas-
ing/decreasing) in compound concentrations are incorporated
in the model. In this subnetwork the relation between two
compounds (edges in the network) can comprise a single
chemical reaction (solid lines) or a linear pathway (dotted
lines) of chemical reactions in the cases where the pathway
between those compounds is composed by more than one
reaction but not involving other compounds in the network
(branching points). The directionality of the chemical reac-
tions is not considered in this representation, and in fact it is
left deliberately open. Although metabolic reactions flow in a
certain direction under normal conditions, this may not be the
case in “unusual” conditions like the one we are modeling
here (inhibition). Inhibition of a given reaction causes the sub-
strates to accumulate what may cause an upstream enzyme to
start working backward in order to maintain its own sub-
strate/product equilibrium.

The “one-to-many” relations (chemical reactions with more
than one substrate or product) are indicated with a filled circle
in Figure 1. The enzymes associated with the relations (single
chemical reactions or linear pathways) are shown as a single
enzyme or a list of enzymes.

Logical Modeling of Inhibition
Modelling a scientific domain is a continuous process of
observing the phenomena, understanding these phenomena
according to a currently chosen model, and using this under-
standing of an otherwise disperse collection of observations to
improve the current general model of the domain. In this
process of development of a scientific model one starts with a
relatively simple model that becomes further improved and
expanded as the process is iterated over. Any model of the
phenomena at any stage of its development can be incomplete
in its description. The task then is to use information given to
us by experimental observations to improve and possibly
complete this description. The development of our theories is
then driven by the observations and the need for these theories
to conform to the observations. Our approach will fall much in
the same spirit of theories of scientific discovery [22], [23] in
the sense that the development of a scientific theory is consid-
ered to be an incremental process of refinement guided strongly
by the empirical observations.

Considering a logical approach to this problem of incre-
mental development of a scientific model, philosophers of sci-
ence have recognized the need to introduce new synthetic
forms of reasoning, alongside with the analytical reasoning
form of deduction. As early back as Aristotle we see two
forms of synthetic logical reasoning: abduction and induction.
In the 19th century, Charles Sanders Peirce [24] sets out clear-
ly these three forms of syllogistic reasoning (deduction,
abduction, and induction) and studies their respective role in

the development of scientific theories. More recently, several
authors (see, for example, [25], [26], and [1]) have studied
abduction and induction from the perspective of artificial
intelligence and cognitive science. In particular, the work in
[1] is devoted to the problem of comparing these two forms of
reasoning and investigating their possible unification or inte-
gration for the purposes of artificial intelligence.

Given a theory T that describes our current (incomplete)
model of the scientific domain under investigation, and a set
of (experimental) observations O, abduction and induction are
employed in the process of assimilating in the current theory
the new information contained in the observations. They both
synthesize new knowledge H, thus extending the model T to
T ∪ H, according to the same formal specification of:
➤ T ∪ H| = O, and
➤ T ∪ H is consistent
where | = denotes the entailment relation of the formal logic
used in the representation of our theory and consistency refers
also to the corresponding notion in this logic. The particular
choice of this underlying formal framework of logic is in gen-
eral a matter that depends on the problem or phenomena that
we are trying to model. In many cases this is taken to be first-
order predicate calculus, as for example in the approach of
theory completion in [5]. But other logics can be used; e.g.,
the nonmonotonic logics of logic programming with negation
as failure or default logic when the modeling of our problem
requires this level of expressibility. In many approaches of
machine learning in artificial intelligence where we want to
use automated forms of our logic, the choice of logic can also
be driven by practical considerations of availability of effec-
tive computational models.

One way to distinguish the two forms of reasoning is to con-
sider the extent to which we (a priori) allow the new knowl-
edge H to complement the current theory T. Abduction is
typically applied on a model in which we can separate two dis-
joint sets of predicates: the observable predicates and the
abducible predicates. The basic assumption then is that our
model has reached a sufficient level of comprehension of the
domain such that all the incompleteness of the model can be
isolated (under some working hypotheses) in its abducible
predicates. The observable predicates are assumed to be com-
pletely defined in T; any incompleteness in their representation
comes from the incompleteness in the abducible predicates. 

In practice, observable predicates describe the empirical
observations of the domain that we are trying to model. The
observations are represented by formulae that refer only to
observable predicates [and possibly some background auxil-
iary predicates (see below)] typically by ground atomic facts
on the observable predicates. The abducible predicates
describe underlying (theoretical) relations in our model that
are not observable directly but can, through the model T bring

Inhibition is important from the therapeutic point of
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about observable information. We also have background pred-
icates that are auxiliary relations that help us link observable
and abducible information (e.g., they describe experimental
conditions or known subprocesses of the problem domain that
we are modeling).

A cycle of integration of abduction and induction [27]
emerges that is suitable for our task of incremental scientific
modeling. Abduction is first used to transform (and in some
sense normalize) the observations to an extensional hypothesis
on the abducible predicates. Then induction takes this as input
and tries to generalize this extentional information to general
rules for the abducible predicates, now treating these as
observable predicates for its own purposes. The cycle can then
be repeated by adding the learned information on the
abducibles back in the model as new partial information on the
incomplete abducible predicates. This will affect the abductive
explanations of new observations to be used again in a subse-
quent phase of induction. Hence, through this cycle of integra-
tion the abductive explanations of the observations are added
to the theory not in the (simple) form that they have been gen-
erated but in a generalized form given by a process of induc-
tion on these.

The combination of abduction and induction has recently
been studied and deployed in several ways within the context
of inductive logic programming (ILP). In particular, a new
form of ILP, called theory completion introduced in [28], [5],
aims, as we have described above, to complete the current the-
ory where the newly generated parts of the theory need not be
in the form of clauses that refer directly to the predicates of the
given training examples (observations). The realization of the-
ory completion through inverse entailment [5] can be seen as a
particular case of integration of abductive inference for con-
structing a “minimal” clause (called the bottom clause) and
inductive inference to generalize this clause giving the new
clause to be added to the theory. This is implemented in
Progol 5.0 and applied to several problems including that of
the discovery of the function of genes in a network of meta-
bolic pathways [9].

For our specific problem domain of modeling the phenome-
non of inhibition, the cycle of integration of abduction and
induction is shown in Figure 2. The purpose of the abduction
process is to generate hypotheses about inhibited enzymes
from the NMR observations of metabolite concentration. For
this we need to start with a theory that models how the con-
centration of metabolites (e.g., up-down regulations) is related

to inhibition of enzymes. The purpose of the induction process
is to learn from the abduced hypotheses, which are ground
facts of inhibition, general rules about the inhibition of
enzymes in terms of chemical properties of the inhibitor, func-
tional class of enzymes, etc. Part of the information about inhi-
bition required by the induction process can be obtained from
databases such as BRENDA [29]. However, for many
inhibitors the available data may not be enough to generate
any general rule. The results of abduction, from the previous
stage, then act as invaluable data for the induction process. 

Abductive logic programming (ALP) [30], [31] is a frame-
work that allows declarative representations of incomplete the-
ories. In this framework a model or a theory T is described in
terms of a triple (P, A, IC) consisting of a logic program P, a
set of abducible predicates A, and a set of classical logic for-
mulas IC, called the integrity constraints of the theory. The
program P contains definitional knowledge representing the
general laws about our problem domain through a complete
definition of a set of observable predicates in terms of each
other, background predicates (which are again assumed to be
completely specified in P), and a set of abducible predicates
that are open. Using this framework, we will develop a model
for analyzing (understanding and subsequently predicting) the
effect of toxin substances on the concentration of metabolites.
We use as the set of observables the single predicate: 

concentration (Metabolite, Level, Time)

expressing the fact that at some time, Time, a metabolite,
Metabolite, a certain level of relative variation in concentra-
tion, Level, has been observed that in the simplest case can
take the two values: down or up. In general, the concentration
predication would contain a fourth argument, namely, the
name of the toxin that we are examining, but we will assume
here for simplicity that we are studying only one toxin at a
time and hence we can factor this out. Background predicates
such as:

reactionnode (Metabolites1,Enzymes,Metabolites2)

describe the topology of the network of the metabolic path-
ways as depicted in Figure 1. For example, the statement

r e a c t i o n n o d e ( ’ l 2 a m i n o a d i p a t e ’ , ’ 2 . 6 . 1 . 3 9 ’ , ’ 2
oxoglutarate’)

Fig. 2. An abductive/inductive framework for modeling inhibition.
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expresses the fact that there is a direct path (reaction) between
the metabolites l2aminoadipate and 2oxoglutarate catalyzed
by the enzyme 2.6.1.39. More generally, we can have a set of
metabolites on each side of the reaction and a set of different
enzymes that can catalyze the reaction.

Note also that these reactions are in general reversible; i.e.,
they can occur in either direction and indeed the presence of a
toxin could result in some reactions changing their direction in
an attempt to compensate (rebalance) the effects of the toxin.
The model also involves background biochemical data on
enzymes and metabolites that would be used in the process of
inductive generalization of the abduced hypotheses. The
incompleteness of our model resides in the lack of knowledge
of which metabolic reactions are adversely affected in the
presence of the toxin. This is captured through the declaration
of the abducible predicate:

inhibited(Enz,Metabolites1,Metabolites2, T)

capturing the hypothesis that at the time T the reaction from
Metabolites1 to Metabolites2 is inhibited by the toxin through
an adverse effect on the enzyme Enz that normally catalyzes
this reaction. For example,

inhibited(’4.1.2.32’,’methylamine’,’ tmao’, 8)

expresses the abducible hypothesis that at time 8 the reaction
from methylamine to tmao via the enzyme 4.1.2.32 is inhibit-
ed by the toxin.

Hence, the set of abducibles contains the only predicate
inhibited and completing this would complete the given
model. The experimental observations of increased or reduced
metabolite concentration will be accounted for in terms of
hypotheses on the underlying and nonobservable inhibitory
effect of the toxin represented by this abducible predicate. 

We now need to provide the program rules and the integrity
constraints of our model representation. The rules describe an
underlying mechanics of the effect of inhibition of a toxin by
defining the observable concentration predicate. This model is
simple in the sense that it only describes at an appropriate
high-level the possible inhibition effects of the toxin, abstract-
ing away from the details of the complex biochemical reac-
tions that occur. It sets out simple general laws under which
the effect of the toxin can increase or reduce their concentra-
tion. Examples of these rules are:

concentration(X,down,T):-
reactionnode(X,Enz,Y),
inhibited(Enz,Y,X,T).

concentration(X,down,T):-
reactionnode(X,Enz,Y),

not inhibited(Enz,Y,X,T),
concentration(Y,down,T).

The first rule expresses the fact that if a reaction produc-
ing metabolite X is inhibited at time T, then this will cause
down concentration of this metabolite at this time. The sec-
ond rule accounts for changes in the concentration through
indirect effects where a metabolite X can have down concen-
tration due to the fact that some other substrate metabolite Y
that produces X was caused to have low concentration (even
when the reaction is not currently inhibited). Increased con-
centration is modeled analogously with rules for “up” con-
centration. For example, we have:

concentration(X,up,T):-
reactionnode(Y,Enz,X),
inhibited(Enz,X,Y,T).

where the inhibition of the reaction from metabolite X to Y
causes the concentration of X to go up as X is not (currently)
consumed due to this inhibition. Note that for a representation
that does not involve negation as failure, as we would need
when using the Progol 5.0 system, we could use instead the
abducible predicate inhibited(Enz,Status,Y,X,T) where Status
would take the two values true and false.

The underlying and simplifying working hypotheses of this
model are as follows:
➤ the primary effect of the toxin can be localized on the indi-

vidual reactions of the metabolic pathways
➤ the underlying network of the metabolic pathways is cor-

rect and complete
➤ all the reactions of the metabolic pathways are a priori

equally likely to be affected by the toxin
➤ inhibition in one reaction is sufficient to cause change in

the concentration of the metabolites.
The above rules and working hypotheses give a relative-

ly simple model, but this is sufficient as a starting point. In
a more elaborate model we could relax the fourth underly-
ing hypothesis of the model and allow, for example, the
possibility that the down concentration effect on a metabo-
lite, due to the inhibition of one reaction leading to it, to be
compensated by some increased flow of another reaction
that also leads to it. We would then have more elaborated
rules that express this. For example, the first rule above
would be replaced by:

concentration(X,down,T):-
reactionnode(X,Enz,Y),
inhibited(Enz,Y,X,T),
not compensated(X,Enz,T).

compensated(X,Enz,T):-

Any system able to predict the inhibitory 

effect of substances on the metabolic network

would be useful in assessing the potential

harmful side effects of drugs.
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reactionnode(X,Enz1,Y),
different(Enz1,Enz),
increased(Enz1,Y,X,T).

where now the set of abducible predicates includes also the
predicate increased(Enz,M1,M2, T) that captures the assump-
tion that the flow of the reaction from M1 to M2 has increased
at time T as a secondary effect of the presence of the toxin.

The abducible information of inhibited is required to satisfy
several validity requirements captured in the integrity con-
straints of the model. These are stated modularly and separate-
ly from the program rules and can be changed without
affecting the need to reconsider the underlying model. They
typically involve general self-consistency requirements of the
model such as:

false :-
concentration(X,down,T),
concentration(X,up,T).

expressing the fact that the model should not entail that the
concentration of any metabolite is at the same time down and
up. In addition, specific partial information that we may have
on the abducible predicates inhibited (such as that a certain
reaction cannot be inhibited by the toxin that we are examin-
ing) can be captured as a validity requirement.

Let us illustrate the use of our model and its possible devel-
opment with an example. Given the pathways network in
Figure 1 and the experimental observation that:

concentration(’2oxoglutarate’, down, 8)

the following are some of its possible explanations:

E1 = {inhibited(’2.3.1.61’,’succinate’,’2oxoglutarate’, 8)}
E2 = {inhibited(’2.6.1.39’,’l2aminoadipate’,’2oxoglutarate’, 8)}
E3 = {inhibited(’1.1.1.42’,’ isocitrate’,’ 2oxoglutarate’, 8)}.

Combining this observation with the additional observation
that concentration(’isocitrate’, down, 8) makes the third
explanation E3 inconsistent, as this would imply that the con-
centration of isocitrate is up at time 8. Now if we further sup-
pose that we have observed: 

concentration(’l2aminoadipate’, up, 8)
then the above explanation E2 is able to account for all three
observations with no added hypotheses needed. The first obser-
vation (of ’2oxoglutarate’ down) and third observation (of
’l2aminoadipate’ up) are both accounted as direct effects of this
inhibition while the second observation (of ’isocitrate’ down) is
accounted for as an indirect knock on effect of the inhibition,
assumed in E2, of the upstream reaction from ’l2aminoadipate’
to ’2oxoglutarate’. An alternative explanation would be
E′

2 = {inhibited(‘2.6.1.39’,’l2aminoadipate’,’2oxoglutarate’, 8),
inhibited(‘1.2.1.31’,’l2aminoadipate’,’l – lysine’, 8)}.

Applying a principle of minimality of explanations [35] or
more generally of maximal compression we would prefer the
explanation E2 over E′

2.

Empirical Evaluation
The purpose of the experiments in this section is to empirical-
ly evaluate the inhibition model, described in the previous sec-

tion, on real metabolic pathways and real NMR data. In this
experiment we evaluate ground hypotheses that are generated
using the inhibition model given observations about the
change in the concentration of some metabolites. We also
examine if we can improve the accuracy of the model by fur-
ther generalizing the ground hypotheses.

In this experiment Progol 5.0 (available at http://www.
doc.ic.ac.uk/~shm/Software/progol5.0/) is used to generate
both ground and nonground hypotheses. As a part of back-
ground knowledge, we use the relational representation of bio-
chemical reactions involved in a metabolic pathway that is
affected by the toxin. This information is extracted from
KEGG as explained above. The observable data are up/down
regulations of metabolites obtained from NMR spectra. The
technique that has been used to transform raw time-series data
is described in [32]. The up/down regulations of metabolites at
different time periods are then encoded as Prolog ground facts.

Background knowledge required for nonground hypotheses
can be obtained from databases such as BRENDA [29], as
discussed above. This background information can include
information about enzyme classes, cofactors, etc. In our
experiments for learning nonground hypotheses, we include
the possibility that a given chemical compound can be
inhibiting a whole enzymatic class, since this situation is pos-
sible in noncompetitive inhibition. For example, a very strong
reducer or oxidant affecting many oxidoreductases (1.-.-.-). In
our case, since the mechanism of inhibition of toxin is
unknown, we leave this possibility open.

In this experiment we use up/down regulation of metabo-
lites at 8 hours to 96 hours as training/test examples and apply
a leave-one-out test strategy (randomly leave out one test
example and use the rest as training data). The performance is
then evaluated by varying the size of randomly chosen training
sets. More details about this experimental method can be
found in [13].

The model that has been used for evaluating the hypothe-
ses generated by Progol explicates the closed-world
assumption [33]. In other words, we are working under the
assumption that a reaction is not inhibited unless we have a
fact that says otherwise:

inhibited(Enz,false,X,Y):-
reactionnode(Y,Enz,X),
not(inhibited(Enz,true,_,_)).

The predictor that we have used in our experiments converts
the three-class problem that we have (“up,” “down,” and
“unknown”) to a two-class prediction with “down” as the default
class. For this purpose we use the following test predicate:

concentration1(X,up,T):-
concentration(X,up,T),
not(concentration(X,down,T)).

concentration1(X,down,T):-
not(concentration1(X,up,T)).

According to our model, there are many possible hypotheses
that can explain the up-regulation and down-regulation of the
observed metabolites. However, Progol’s search attempts to
find the most compressive hypotheses. The following are
examples of ground hypotheses returned by Progol for the
inhibitory effect of hydrazine at 8 hours:
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Fig. 3. Examples of ground hypotheses for Hydrazine at 8 hours, 24 hours, 48 hours, and 72 hours. Red arrows correspond to
‘inhibited’ and green arrows correspond to ‘not inhibited’ hypotheses. The model suggests that some reactions remain inhibit-
ed through different time periods.
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inhibited(’2.6.1.39’,true,’l2aminoadipate’,’2oxoglutarate’,8).
inhibited(’2.3.1.61’,false,’2oxoglutarate’,’succinate’,8).
inhibited(’1.13.11.16’,false,’succinate’,’hippurate’,8).
inhibited(’2.6.1.-’,true,’taurine’,’citrate’,8).
inhibited(’3.5.2.10’,false,’creatine’,’creatinine’,8).
inhibited(’4.1.2.32’,true,’methylamine’,’tmao’,8).
inhibited(’4.3.1.6’,true,’beta-alanine’,’acryloyl-coA’,8).
inhibited(’4.3.2.1’,true,’l-as’,’fumarate’,8).

Examples of ground hypotheses are illustrated in Figure 3. In
this figure, red arrows correspond to ‘inhibited’ and green arrows
correspond to ‘not inhibited’ hypotheses. As shown in this figure,
the model suggests that some reactions remain inhibited through
different time periods. According to the domain experts who eval-
uated these results, one of these enzymes (i.e., EC2.6.1.39) was
known to be inhibited by hydrazine. Another hypothesis suggest-
ed by the model agrees with the speculations about the inhibition
of enzyme EC4.3.2.1 by hydrazine [34]. Experimental evalua-
tions in vivo are required to test this hypothesis.

The overall performance of ground and nonground hypothe-
ses are shown in Figure 4. In this graph, the vertical axis shows
the predictive accuracy and the horizontal axis shows the num-
ber of training examples. According to this graph, we have a
better predictive accuracy when we use the closed-world
assumption compared to the accuracy when we do not use this
assumption. The reason for this is that the closed-world assump-
tion allows the rules of the model (as represented in Progol) to
apply in more cases than without the assumption. These graphs
also show that in all cases the overall accuracy is above the
default accuracy (a model that simply guesses the majority
class) and increases with the number of training examples.

In this experiment, Progol also attempted to generate gener-
al rules for inhibition, effectively trying to generalize from the
ground facts in the abductive explanations. An example of
such a nonground rule is:

inhibited(Enz, true, M1, M2) :-
reactionnode(M2,Enz,M1),
class(Enz,’aminotransferase’)

expressing the information that reactions that are catalyzed by
enzymes in the enzymatic class ‘aminotransferase’ are inhibit-
ed by the toxin.

According to the comparison shown in Figure 4, it is
instructive to accept these (seemingly overgeneral) rules into
our model and examine the effect of this generalization on the
predictive accuracy of the model compared with the case
where only ground explanations are allowed. This figure
shows that for a small number of training examples, ground
hypotheses (with closed-world assumption) have a better pre-
dictive accuracy than nonground hypotheses. These results
suggest that for a small number of training examples (e.g.,
less than 45%) the induced nonground hypotheses are either
too general or overfitted the training data and therefore lead
to a lower predictive accuracy than the ground hypotheses.
However, when more training examples are provided (i.e.,
more than 70%), nonground hypotheses show a better perfor-
mance than ground hypotheses.

Related Work
The abduction technique that is used in this article can be
compared with the one in the robot scientist project [9]
where Progol5.0 was used to generate ground hypotheses
about the function of genes. Abduction has been also used
within a system called GenePath [8] to find relations from
experimental genetic data in order to facilitate the analysis
of genetic networks. Similarly, in [35] abduction has been
used to generate gene interactions and genetic pathways
from microarray experimental data. Combinations of abduc-
tion and induction have been also used for learning robot
planners by completing the specific domain knowledge
required, within a general theory of planning that the robot
uses for its navigation [36], [6]. 

Bayesian networks are among the most successful tech-
niques that have been used for modeling biological networks.
In particular, gene expression data have been widely modeled
using Bayes net techniques [37], [38]. On the MetaLog pro-
ject, Bayes nets have also been used to model metabolic net-
works [39]. A key advantage of the logical modeling approach

in this article compared with the Bayes net
approach is the ability to incorporate back-
ground knowledge of existing known biochemi-
cal pathways together with information on
enzyme classes and reaction chemistry. The
logical modeling approach also produces
explicit hypotheses concerning the inhibitory
effects of toxins.

Our approach can also help address an
important chellenge in ‘top-down’ systems biol-
ogy, namely how to describe and represent
holistically the disregulation of a metabolic sys-
tem with multiple cell types where homeostatic
function is dispersed in space and time. 

Conclusions
We have studied how to use abduction and
induction in scientific modeling concentrating
on the problem of inhibition of metabolic path-
ways. Our work has demonstrated the feasibility
of a process of scientific model development
through an integrated use of abduction and
induction. This is to our knowledge the first

Fig. 4. Performance of ground and nonground hypotheses generated by
Progol using a leave-one-out test strategy.
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time that abduction and induction have been used together in
building life-science models from empirical data. We also
address the problem of extreme disparities of scale between the
temporal measurements underlying the experiment and the
model, respectively. This involves avoiding standard autore-
gressive assumptions used in other temporal modeling
approaches and demonstrates the strength and flexibility of the
abductive ILP approach for dealing with such problems.

In this study, hypotheses about inhibition were built using
the ILP system Progol5.0 and predictive accuracy was
assessed for both the ground and the nonground cases. These
hypotheses were also evaluated in terms of biological insight
provided. Experimental evaluations in vivo are required to test
some of these hypotheses. 

Maximization of drug efficacy and safety are major
issues in the pharmaceutical industry and understanding the
mechanistic interactions of drugs with their desired (phar-
macological) and undesired (toxic) targets is of great scien-
tific, medical, and indeed economic importance. Our new
approach can give new insights into the metabolic network
responses of man and animals to drugs at the system level
and therefore should prove to be a valuable tool in drug dis-
covery and development. Moreover, because there are
many network commonalities between animal models and
humans, it should be possible to create novel predictive
models of drug toxicity that cross species boundaries and
that are applicable to man which historically has been a
major challenge in pharmaceutical research. Our approach
is made more attractive still by the fact that non- or mini-
mally invasive metabolic metrics (from urine or plasma)
can be used to describe intact system function that will
assist drug safety evaluations in phase I-IV clinical trials
and potentially in the population at large in future molecu-
lar epidemiology studies. 

In the current study we used simple background knowledge
concerning the class of enzymes to allow the construction of
nonground hypotheses. Despite this limited use of background
knowledge, we achieved an increase in predictive accuracy
over the case in which hypothesis were restricted to be ground.
In future work we hope to extend the representation to include
structural descriptions of the reactions involved in a style simi-
lar to that described in [40].
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