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Abstract

In this paper we introduce a modular ap-
proach for modelling metabolic pathways us-
ing Bayesian networks. We examine different
models for a single reaction metabolism and in-
troduce a Bayesian model for this purpose and
then demonstrate this approach by developing
a Bayesian model for the aromatic amino acid
pathway of yeast. We compare the performance
of this model with the performance of a prob-
abilistic model of the same pathway which is
based on Stochastic Logic Programs (SLPs).
Preliminary results suggest that in parameter
estimation from data, the Bayesian model for
the yeast metabolic pathway outperforms the
SLP model. These results also show that un-
like the SLP model, introducing an additional
pathway within the Bayesian model does not
result in a significant quantitative difference.

1 Introduction

Genomic data is now being obtained on an industrial
scale. The complete genomes of at least a dozen micro-
organisms have been sequenced (e.g. E. coli and bakers
yeast S. cerevisiae). The genomes of about another 50
organisms are in the process of being sequenced and the
first complete drafts of the human genome were pub-
lished in 2001 [Consortium, 2001; Venter et al., 2001].
The focus of genome research is moving to the problem
of identifying the biological functions of genes. This is
known as Functional Genomics. This problem is im-
portant because nothing is known about the function of
between 30-60% of all new genes identified from sequenc-
ing [Oliver, 1996). Functional Genomics is recognised as
central to a deeper understanding of biology, and the fu-
ture exploitation of biology in medicine, agriculture, and
biotechnology in general.

The analysis of the Genomic data needs to be-
come as industrialised as the methods for obtaining
it. Within functional genomics, probabilistic approaches
such as hidden Markov models, stochastic grammars and
Bayesian networks have been proved to be useful [Durbin
et al., 1998]. Bayesian networks have been recently

used for modelling gene expression data [Friedman et
al., 2000]. The benefit of Bayesian networks in this do-
main has been justified by the comprehensive graphical
representation of gene expression data with the possi-
ble explanation of causal relations among gene variables
(levels). This could be explained with the causality mod-
elling originally proposed by Pearl and Verma, [Pearl and
Verma, 1991]. In this approach each arc can be inter-
preted as a causal connection between a prior gene vari-
able and a posterior gene variable at a given time. This
approach has been used to extract biologically plausi-
ble conclusions from real expression data [Spellman et
al., 1998)] by deploying search algorithms and statistical
confidence measurements [Friedman et al., 2000]. An
extension of this approach has been also suggested for
dealing with temporal reasoning using dynamic Bayesian
networks [Friedman et al., 1998]. In a different at-
tempt [Imoto et al., 2002] in gene expression domain,
non-parametric regression and Bayesian networks have
been used for constructing genetic networks from gene
expression data and to deal with continuous variables.

In addition to gene expression, a crucial body of ge-
nomic data is the information on functional pathways
in a given cell or tissue, representing processes such as
metabolism. This information is available via metabolic
pathways. Online databases such as KEGG!, WIT? and
BRENDA? describe relationships between tens of thou-
sands of enzymes and metabolites.

In this paper we introduce a modular approach
for modelling metabolic pathways using Bayesian net-
works. We examine different models for a single reaction
metabolism and introduce a Bayesian model for this pur-
pose and then demonstrate this approach by developing
a Bayesian model for the aromatic amino acid pathway of
yeast. We compare the performance of this model with
the performance of a probabilistic model [Angelopou-
los and Muggleton, 2002] of the same pathway which is
base(]i on Stochastic Logic Programs (SLPs) [Muggleton,
1999].

This paper is organised as follows. Section 2 de-
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scribes metabolic pathways and in particular the aro-
matic amino acid pathway of yeast. Section 3 examines
different models for a single reaction metabolite and in-
troduces a Bayesian model for this purpose. In section
4, we evaluate the models discussed in section 3 and also
we develop and examine a Bayesian model for the yeast
pathway. Finally, section 5 concludes the paper and sug-
gests directions for further research.

2 Metabolic Pathways and the yeast
metabolism

In computational genomic, a cell can be viewed as a
biochemical machine that consumes simple molecules to
generate more complex ones by chaining together bio-
chemical reactions into long sequences referred to as
metabolic pathways. Genes play an essential role in these
networks by providing the information to synthesise the
enzymes that catalyse biochemical reactions. Figure 1 il-
lustrates an abstract, highly simplified, model of a living
cell. The cell imports molecules from the growth medium
(Amino acids, Purines, etc.). These are converted via a
pathway of chemical reactions to essential molecules for
growth (Proteins, Nucleic Acids, etc.). Each chemical
reaction is catalyzed by an enzyme. Some of these en-
zymes are known and others are not.

Figure 2 shows the aromatic amino acid pathway of
yeast [Bryant et al., 2001]. The aromatic amino acids
are essential amino acids i.e. amino acids which hu-
mans must obtain from dietary sources. However micro-
organisms, such as yeast, and plants can synthesise them
using the aromatic amino acid pathway which is never
found in animals. The pathway is therefore an important
target for herbicides, antibiotics and live vaccines.

In figure 2 circles represent metabolites and the path-
way pertains to the biosynthesis of the aromatic amino
acids phenylalanine, tyrosine and tryptophan which are
shown in red. The main reaction paths are shown in
black. Molecules which are involved in the reactions but
which do not lie on the main pathway are shown in blue.
Each rectangle, together with those metabolites which
are linked to it, represents a chemical reaction. Reac-
tants are shown entering on one side of each rectangle
and products leaving on the other. Each rectangle is
labelled by the class of the enzyme which catalyses the
reaction.

The model uses unique identifiers from the litera-
ture to refer to metabolites and enzymes. Metabo-
lites are referred to using their accession numbers in
the LIGAND database in the Kyoto Encyclopedia of
Genes and Genomes (KEGG) [Goto et al., 2000] and en-
zymes by their Enzyme Commission classification num-
bers [[UBMB, 1992].

3 Models for a single reaction
metabolism

In this section we discuss different models for a single re-
action metabolism and introduce a Bayesian model for
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Figure 1: Illustration of cell with metabolic network in-
volved in converting growth media into molecules essen-
tial for life.

this purpose. A single reaction metabolism consists of
an enzyme and a set of metabolites each can be either
a substrate or a product in a biochemical reaction. In
theory, a chemical reaction can occur in both directions
and a metabolite, therefore, can act as a substrate as
well as a product in the same reaction. However, in this
paper we consider reactions which only occur in one di-
rection (i.e. irreversible reactions). Figure 3.a shows a
single reaction metabolism with two substrates and two
products. Each metabolism is regulated by an enzyme
which can be ‘active’ or ‘inactive’. An enzyme is inactive
when enzyme inhibition occurs. Inhibition is a reduction
in the rate of a catalysed reaction by substances called
inhibitors. In biochemical reactions, in which the cata-
lysts are enzymes, if the inhibitor molecules resemble the
reactants they may bind to the active site of the enzyme,
so preventing normal enzymatic activity.

A single reaction metabolism can be viewed as a logic
circuit as shown in Figure 3.b. According to this logic
view, products of the reaction are generated if all sub-
strates are present and none of inhibitors are present.
A similar assumption was used in the previous stud-
ies [Bryant et al., 2001; Reiser et al., 2001] where a
metabolic pathway was modelled as a logic program. In
this approach substrates and products are represented
by arguments in predicates which code for enzyme reac-
tions. The metabolic network is then modelled by the
calling diagram of different predicates in the logic pro-
gram. In [Bryant et al., 2001] it was demonstrated that
active learning in a logic programming setting could re-
duce the expected cost of experimentation for discover-
ing the function of genes.

The main shortcoming of this logic-based approach is
that it cannot represent the degree of uncertainty which
is involved in each reaction. It also cannot distinguish
between situations that might be different in reality. For
example, in this model there is no difference between sit-
uations where all inhibitors are present and when only
one of them is present. This model also fails to account



C00631 C03356

C00078

00065

C00661

@ C00463

C00279 C00074
C00661

4.2.1.20

00009 ® 00065
C00082 C00079

Co4691 @ connoe €00026 co3sos @

[ 2617 | [ 41148

C00025@

4613 | [ 2617 |
€00009 00025

C00944 @ C01179@ C00166@ C01302 @

C00005

42110 | [ 1313 | [42150 | [ 53124

C00006@’

02637 @ Co02548

[sas0s ]

C00014 or CO0064

C04302 @ C00013

x|

C02652 @ C002514@
C00005 C00009

Co0493 g 00074, C01269

00009
cooo0z @~_ | o
[27a7 25119 |

@ C00008

Figure 2: Aromatic amino acid pathway of yeast.

for relative rates of reactions. To overcome these short-
comings, a natural way is to use probabilistic logic rep-
resentations rather than pure logic programming. An-
gelopoulos and Muggleton showed that for modelling
metabolic networks, a probabilistic representation is re-
quired [Angelopoulos and Muggleton, 2002]. They used
Stochastic Logic Programming (SLP) [Muggleton, 1999
to model a metabolic pathway and a parameter estima-
tion algorithm [Cussens, 2001] to estimate the parame-
ters of the metabolic pathway from artificial data. Un-
like the logic-based models, a model using SLP is able
to capture the relative rate of reactions. Figure 4 shows
an SLP representation of a single reaction metabolism.
In addition to its ability for representing probabilities,
SLP is especially useful for representing relational back-
ground knowledge about biochemical reactions. How-
ever, the learning techniques for SLP are still under de-
velopment [Muggleton, 2002].

In this paper we use a graphical probabilistic repre-
sentation for modelling metabolic pathways. This prob-
abilistic representation is based on Bayesian Belief Net-
works. Bayesian belief networks (or briefly Bayesian net-
works) are Directed Acyclic Graphs (DAGs) where each
node represents a random variable. The intuitive mean-
ing of an arrow from a parent node to a child node is
that the parent node directly influences the child node.
These influences are quantified by Conditional Proba-
bility Tables (CPTs). In Bayesian networks we assume
that each node is conditionally independent of all of its
non-descendants given its parents. Bayesian networks
are compact methods for representing joint probability

Substrate 1 Substrate 2
Substrate 1 ¢ + Product 1
Substrate 2 4 a Product 2
% :
Inhibitor 1 ¢
Inhibitor 2 «
Product 1 Product2 L
(a) (b)

Figure 3: a) A single reaction metabolism b) A logic
view of a single reaction metabolism

enzyme(enzymel,reactionl,[substratel,substrate2],[productl,product2]).
0.80 :: reactionl(yes,yes,yes,yes).
0.20 :: reactionl(yes,yes,no,no).

Figure 4:
metabolism.

An SLP model for the single reaction

distributions and the marginal probabilities can be com-
puted very efficiently. Bayesian networks have been used
for causal modelling [Pearl, 2000]. For this purpose a
causal Bayesian network is defined as a Bayesian net-
work in which each arc is interpreted as a direct causal
influence between a parent and a child node, relative to
the other nodes in the network.

Bayesian networks have some properties which are of
special interest in learning metabolic pathways. Firstly,
there are well-developed methods for learning parame-
ters as well as structure of a Bayesian network [Hecker-
man, 1995], secondly there are techniques for introduc-
ing missing or unobservable nodes, and thirdly Bayesian
networks support incremental learning.

In this section we introduce a Bayesian model for a
single reaction metabolism. Table 1 shows a general
mapping between Bayesian networks and metabolic net-
works. In this mapping the existence of each metabolite
is represented by a propositional variable (i.e. a node in
the Bayesian network). If we assume that each metabo-
lite in the pathway has only two possible states, present
and absent, then each metabolite can be represented by a
binary random variable. The relationship between sub-
strates and products in a reaction can be represented
by parent-child relations. Finally, different probabilities
involved, including the probability of detectable prod-
ucts, are represented by Conditional Probability Tables
(CPTs).

Figure 5.a shows a Bayesian model for a single reaction
metabolism. This model combines the logical view in
Figure 3.b with the general mapping scheme in Table 1.
In this model a metabolic pathway is described as a di-
rected graph, where the vertices (nodes) are metabolites
(substrates and products). Each metabolite node cor-
responds to a binary random variable which determines
whether the metabolite is ‘present’ or ‘absent’. Enzymes



Table 1: A mapping between Bayesian networks and
Metabolic networks

[ Metabolic network [ Bayesian network

Existence of metabolites Propositional variables

Reaction - Substrates & Products | Parent-child relation

Probability of detectable product Conditional Probability Table

regulating reactions and their inhibitors are also repre-
sented by binary random variables. An edge between
two node represents that the parent directly influences
the child. These influences are quantified by Conditional
Probability Tables (CPTs) for each node. Figure 5.a also
shows examples of CPT for nodes ‘Enzyme’ and ‘Product
2’. In this example, ‘Product 2’ is present with proba-
bility 90% if ‘Substrate 1’ and ‘Substrate 2’ are present
and ‘Enzyme’ is active. However, this probability is dra-
matically reduced if any of substrates are absent or the
enzyme is inactive and the probability varies between
10%,15% and 20% for different configurations of sub-
strates and enzyme.

In this model each product is directly connected to the
enzyme and all substrates in the reaction. The number
of parameters in the CPT for a product node increases
exponentially with the number of substrates. For exam-
ple, if we have three substrates (instead of two), then
the number of parameters increases from 2 x 8 to 2 x 16
and 2 x 32 for four substrates and so on. This rapid
increase in the number of parameters could result in dif-
ficulties when learning parameters from data, mainly be-
cause more training examples are required when we have
more parameters to estimate.

According to the theoretical results on the sample
complexity of learning Bayesian networks [Friedman and
Yakhini, 1996], one measure of the complexity is the
number of parameters in B*, where B* denote the (min-
imal) Bayesian network which describe the underlying
distribution. As shown in [Friedman and Yakhini, 1996],
the sample complexity of learning is sub-linear in the
number of parameters of B*.

To improve Model 1 in terms of number of param-
eters, we propose Model 2 in which product nodes are
connected to enzyme and substrates through an interme-
diate node called reaction. Even though in this model
we have an additional unobservable node (i.e. reaction),
the total number of parameters in this model is less than
Model 1. This is because the product nodes in Model 2
only have one parent and a 2x2 CPT while each product
node in Model 1 has three parental nodes and a 2 x 8
CPT. The difference between total number of parame-
ters increases when we have more substrates and prod-
ucts for each reaction. For this reason it is expected that
Model 2 outperform Model 1 especially when number of
substrates and products are increased. In section 4 we
present an experiment for testing this conjecture. An-
other advantage of Model 2 is that in this model it is
easier to define and re-use reactions and enzymes in a
modular way.

{Substratel} {Substratez} {Inhibitor 1} {Inhibitorz}

CPT(Enzyme)
Inhibitor 1 Inhibitor 2 Active Inactive
v A Present  Present 01 09
hon B 0z 88
sent esent . .
Product 1 Product 2 Absent  Absnt 08 01
CPT(Product2)
Substrate 1 Substrate2 Enzyme Present  Absent
Present Present Active 09 0.1
Present Present Inactive 0.
Present Absent Active 02 08
Present Absent Inactive  0.15 0.85
Absent Present Active 02 08
Absent Present Inactive 015 0.85
Absent Absent Active 0.15 0.85
Absent Absent Inactive 0.10 09
(a) Model 1

{Substrate 1} {Substrate 2} {Inhibitor 1} {Inhibitor 2}

{ Product 1 } { Product 2 }

(b) Model 2

Figure 5: Two Bayesian models for a single reaction
metabolic pathway.



4 Experimental evaluation

In this section we examine the performance of the mod-
els discussed in section 3 and also we develop and eval-
uate a Bayesian model for the yeast pathway. For this
purpose we conduct learning experiments for estimating
parameters of each model from artificial data. In Ex-
periment 1 we compare the performance of Model 1 and
Model 2 as described in section 3. In Experiment 2 we
conduct a similar experiment as in [Angelopoulos and
Muggleton, 2002] to learn parameters of the metabolic
pathway of yeast. The purpose of the later experiment is
to compare parameter learning of a pathway modelled by
SLP with parameter learning of the same pathway mod-
elled by Bayesian network. In this experiment we also
investigate the effect of introducing an additional path-
way within the network and compare the result with the
result reported in [Angelopoulos and Muggleton, 2002].
We use the theoretical results on the sample complexity
of learning Bayesian networks [Friedman and Yakhini,
1996] to evaluate different Bayesian networks. In both
Experiment 1 and Experiment 2 we compare the num-
ber of training examples which are required by different
models (with different number of parameters) to achieve
a certain level of accuracy.

4.1 Experiment 1: Model 1 vs. Model 2

In this experiment we compare the required number of
training examples for Model 1 and Model 2 (see Figure 5)
to achieve a certain level of accuracy. As discussed be-
fore, in Model 1 products are directly influenced by the
enzyme and substrates, whereas in Model 2 an inter-
mediate node, namely reaction, influences the products.
Even though the number of nodes is increased, the total
number of parameters in this model is less than Model
1. For this reason it is expected that Model 2 require
less training examples than Model 1 to achieve the same
level of accuracy. The purpose of Experiment 1 is to
test this conjecture. In the following, we explain the
material and methods used in the experiment and then
discuss the results.

Material and methods

In this experiment we use Netica which is a commercial
Bayesian network software and can be used for inference
and learning in Bayesian belief networks 4. Figure 6
shows the experimental method used in this experiment.
This experimental method has been used to measure the
predictive accuracy of both Model 1 and Model 2. The
main scenario is as follows. First we set up each network
using Netica and assign the Conditional Probability Ta-
bles (CPTs) with some fictional values which will be used
as ‘true ’ probabilities. Then we run the network to gen-
erate a given number of random samples for all variables
in the model. These samples will be used for training
and testing purposes. The ‘true’ CPT values are then re-
placed with uniformly distributed probabilities and the

4A free version and documentation are available from:
WWW.NO0rSys.com

for i =1 to 10 do
for j in (10, 100, 1000) do
Set up Conditional Probability Tables (CPTs) with ‘true’ values
Simulate network to generate j random ‘training’ cases
Simulate network to generate 10000 random ‘test’ cases
Replace CPT values with uniformly distributed probabilities
Learn CPTs from ‘training’ cases (parameter estimation)
E;; =average error rate of the output nodes on ‘test’ cases
end
end
for j in (10, 100, 1000) do
Plot average and standard error of E;; versus j (i € [1..10])

Figure 6: Experimental method used to examine
Bayesian models.

learning facility of Netica is used to estimate the net-
work parameters from ‘training’ cases. The accuracy of
the learned network can then be tested by measuring the
error rate of particular nodes (i.e. product nodes, in this
experiment). Finally, the average and standard error of
the error rate for the mentioned nodes for 10 different
runs are plotted against the number of training exam-
ples. This procedure is repeated for both Model 1 and
Model 2.

The error rate measured in this experiment is pre-
dictive error of the model on 10000 random test cases
(generated in step 5). Equation 1 shows how predictive
error is calculated. In the contingency table shown, P
stands for predicted by the model and P not predicted,
A stands for actual positive example and A actual nega-
tive examples. In equation 1, a and d are the number of
positive and negative test examples which are correctly
predicted by the model and b and ¢ are the number of
negative and positive test examples which are not cor-
rectly predicted by the model.

b+c Al A
Error% = ———— Pla]|b (1)
at+b+c+d Pl e d

Results and discussion

The results of the experiment are shown in Figure 7.
This graph suggests that in general the error rate of
Model 2 is less than Model 1 and therefore Model 2 re-
quires less training examples than Model 1 to achieve
the same level of accuracy. The total number of pa-
rameters in Model 2 is 20 compared to 24 in Model 1.
These results are consistent with the theoretical results
on the sample complexity of learning Bayesian networks.
According to [Friedman and Yakhini, 1996], the sample
complexity of learning is sub-linear in the number of pa-
rameters of B*, where B* denote the (minimal) Bayesian
network which describe the underlying distribution.

4.2 Experiment 2: A Bayesian model for
the yeast pathway

The purpose of this experiment is to compare the perfor-
mance of the Bayesian model for the yeast pathway (see
figure 2) with the SLP model for the same pathway in
learning parameters from data. To be able to compare
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Figure 7: Predictive error for the Bayesian models
‘Model 1’ and ‘Model 2’ shown in Figure 5.

the results of this experiment with the results for the
SLP model reported in [Angelopoulos and Muggleton,
2002], we need to consider the following assumptions:
1) we use the mapping scheme used in Model 1 rather
than Model 2 to avoid intermediate nodes (i.e. reaction
nodes) so that the nodes in the network correspond to
the metabolites in the same pathway which were consid-
ered in the experiments in the SLP model 2) we assume
that all enzymes are active (i.e. none of inhibitors are
present), so we do not need to represent enzyme and in-
hibitors in the model. In addition to these assumption
we consider the following simplifying assumptions which
were also considered in the SLP model: a) reactions de-
plete their substrates b) each reaction is only considered
once.

Material and methods

Figure 8.a shows the Bayesian model for the aromatic
amino acid pathway of yeast used in this experiment. In
this experiment we also examine the effect of introduc-
ing an additional branch to the pathway (Figure 8.b).
This fictional pathway is the same pathway introduced
as ‘branching pathway’ in [Angelopoulos and Muggleton,
2002]. To examine the performance of the models shown
in Figures 8.a and 8.b, we use the same experimental
method described in Experiment 1. In this experiment
we also measure Root Mean Square (RMS) error in ad-
dition to predictive error defined before. The reason for
using this measure is that this was used to evaluate the
SLP model, and again we intend to compare the results.
Root Mean Square (RMS) error is defined in Equation 2.

RMS = (2)

In this equation p; are true parameters and p; are esti-
mated or learned parameters. In SLP these parameters
correspond to the labels of stochastic clauses (see fig-
ure 4). In a Bayesian model, however, these parameters
correspond to the probabilities in CPTs. Thus, the num-
ber of parameters in the Bayesian model is more than the
number of parameters in the SLP model, though we have
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Figure 8: a) A Bayesian model for the aromatic amino
acid pathway of yeast b) a Bayesian model for the yeast
pathway with an extra branch



the same pathway and the same number of metabolites.
In models in figures 8.a and 8.b there are 137 and 203
parameters respectively, compared to 21 and 26 in the
corresponding SLP models.

Results and discussion

The results of the experiment are shown in figure 9.
Graphs 9.a and 9.b compare the predictive error and
RMS error respectively. According to graph 9.b the
RMS error for the Bayesian model varies from around
0.25 for 10 training examples to 0.14 for 1000 training
examples. This graph suggests that the RMS error of the
Bayesian model is in general less than the RMS of the
SLP model which varies from around 0.25 for 100 train-
ing examples to 0.18 for 1000 training examples [An-
gelopoulos and Muggleton, 2002]. These graphs also
suggest that there is not a substantial decrease in effi-
ciency for the Bayesian model with an additional branch,
whereas the results from the SLP model show a sig-
nificant quantitative difference between branching and
non-branching models (for the branching model, RMS
varies between around 0.29 for 100 training examples
to 0.22 for 1000 training examples). A better perfor-
mance of the Bayesian learning algorithm, especially in
the branching model, could be related to the way these
algorithms deal with multi-branch situations. Learning
techniques for Bayesian networks which are a kind of
graphical representation are naturally suitable to cope
with multiple branches, whereas in SLP this corresponds
to non-determinism which is not perfectly addressed in
the learning algorithms for SLP. This preliminary con-
jecture, however, requires more investigation.

5 Conclusions and further work

In this paper we introduced a framework for mod-
elling metabolic pathways using Bayesian belief net-
works. This framework was used to develop a Bayesian
model of the aromatic amino acid pathway of yeast.

Preliminary results suggest that in parameter esti-
mation from data, the Bayesian model for the yeast
metabolic pathway outperforms an SLP model for the
same pathway. These results also show that unlike the
SLP model, introducing an additional pathway within
the Bayesian model does not result in a significant quan-
titative difference.

Even though Bayesian networks have shown a bet-
ter performance for capturing probabilistic informa-
tion, they are weaker than logic-based methods (e.g.
SLP) in representing structural information involved in
metabolic reactions. For example logic-based represen-
tations allow detailed encoding of physical and struc-
tural properties as well as chemical reactions associ-
ated with the metabolites together with an encoding
of the metabolic network. These models can be ma-
chine learned from online databases of metabolic net-
works (e.g. KEGG) which are now publicly available.

In future work we intend to develop a hybrid frame-
work for learning metabolic pathways which involves
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Bayesian parameter learning and a logic-based represen-
tation and inference.
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