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Abstract. Recent papers have demonstrated that both predicate in-
vention and the learning of recursion can be efficiently implemented
by way of abduction with respect to a meta-interpreter. This paper
shows how Meta-Interpretive Learning (MIL) can be extended to im-
plement a Bayesian posterior distribution over the hypothesis space by
treating the meta-interpreter as a Stochastic Logic Program. The re-
sulting MetaBayes system uses stochastic refinement to randomly sam-
ple consistent hypotheses which are used to approximate Bayes’ Pre-
diction. Most approaches to Statistical Relational Learning involve sep-
arate phases of model estimation and parameter estimation. We show
how a variant of the MetaBayes approach can be used to carry out
simultaneous model and parameter estimation for a new representa-
tion we refer to as a Super-imposed Logic Program (SiLPs). The im-
plementation of this approach is referred to as MetaBayesSiLP . SiLPs
are a particular form of ProbLog program, and so the parameters can
also be estimated using the more traditional EM approach employed by
ProbLog. This second approach is implemented in a new system called
MilProbLog. Experiments are conducted on learning grammars, fam-
ily relations and a natural language domain. These demonstrate that
MetaBayes outperforms MetaBayesMAP in terms of predictive accu-
racy and also outperforms both MilProbLog and MetaBayesSiLP on log
likelihood measures. However, MetaBayes incurs substantially higher
running times than MetaBayesMAP . On the other hand, MetaBayes
and MetaBayesSiLP have similar running times while both have much
shorter running times than MilProbLog.

1 Introduction

In [19] grammars are learned using a special-purpose Prolog meta-interpreter.
Hypotheses are generated along various SLD derivation paths by abduction.
The approach is generalised in this paper by 1) replacing the special-purpose
meta-interpreter by a general-purpose meta-interpreter which interprets user-
provided meta-rules and 2) treating the meta-rules as a Stochastic Logic Program
(SLP) [15, 3]. In this setting we can view the hypotheses as being derived using
Stochastic Refinement [23]. Figure 1 illustrates a Stochastic Refinement tree [23]
for constructing a Finite State Acceptor (FSA). In this tree each path leading
to a hypothesis can be interpreted either a) as a series of refinements leading to
a headless Horn clause, representing the negation ¬H of the ground abductive
hypothesis H (see Figure 1a) or b) as the derivation of a finite state acceptor
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Fig. 1. Stochastic Refinement tree showing a) clause containing arcs (delta) and accep-
tors, b) corresponding Finite State Acceptors. Stochastic Refinement tree edge labels
represent selection probabilities.

by a meta-interpreter applied to an SLP (Figure 1b). Furthermore, as in [2],
we can view the SLP as a structural Bayes’ prior over the hypothesis space. In
this case, the posterior is formed by using the positive and negative examples
to prune sub-trees from the prior. Following pruning, selection probabilities for
each sub-tree are renormalised in the posterior.

1.1 Bayesian MIL versus Probabilistic ILP

According to Bayesian learning theory [7, 4], maximal predictive accuracy in
learning is achieved by using a diversity of models, with predictions weighted ac-
cording to the sum of posterior probability of the corresponding hypothesis. The
implementation of such a posterior probability as a stochastic refinement graph
thus provides a direct way of using hypothesis sampling approaches to approx-
imate maximal accuracy machine learning. The relationship between Bayesian
MIL (BMIL) and traditional Probabilistic ILP [22] is illustrated in Figure 2.
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Fig. 2. a) Finite State Acceptor hypotheses generated by BMIL from examples e+ =
101011011 and e− = 111101. b) Super-imposed Logic Program formed from hypotheses
in a).
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In BMIL the model consists of a set of logic programs, each with an associated
probability. By contrast, in Probabilistic ILP approaches such as ProbLog [8],
Bayesian Logic Programs [12] and Stochastic Logic Programs [16, 17] the model
consists of a single logic program with probabilistic parameters associated with
individual clauses. These representations use implicit independence assumptions
to support probabilistic inference. Thus, according to [22] “A ProbLog program
defines a distribution over logic programs by specifying for each clause the prob-
ability that it belongs to a randomly sampled program, and these probabilities
are mutually independent.” Figure 2a illustrates a uniform posterior distribution
over four two-state FSA hypotheses consistent with a pair 〈e+, e−〉 of positive
and negative examples. By contrast, Figure 2b shows a Super-imposed Logic
Program (SiLP) which can be viewed as a summary of the distribution in Fig-
ure 2a. The SiLP is formed by labelling each arc by the sum of the posterior
probabilities of hypotheses in Figure 2a containing that arc. Note that a SiLP
is a ProbLog program since the label for each clause (the arcs and acceptors)
represents the probability that it belongs to a randomly sampled logic program
drawn from the posterior distribution shown in Figure 2a.

In order to show how Bayes’ prediction avoids certain forms of error associ-
ated with Probabilistic ILP representations, we note that the Bayes’ prediction
for the negative example e− = 111101 based on the distribution in Figure 2a is
zero since, by construction, no one of the FSAs accepts this string. However, the
ProbLog program illustrated in Figure 2b predicts this sequence has a probabil-
ity greater than zero. The discrepancy derives from the fact that, contrary to the
ProbLog assumption, the arcs in Figure 2b are clearly not mutually independent
within the FSAs in Figure 2a.

1.2 Multiple and single models

By consideration of Figures 2a and 2b we now compare the relative advantages
of a multiple model predictor versus a single-model predictor.

Multiple models. The key advantage here is the maximal expected predictive
accuracy offered by Bayes’ prediction. It is assumed the target theory is se-
lected randomly according to the hypothesis prior over the hypothesis space
H. Prediction that instance x = True is based on the sum of posterior prob-
abilities of all consistent hypotheses in H which make this prediction. This
approach is infeasible in the case of H being a large or infinite space, though
in this case it can be approximated by making predictions based on a sample
of hypotheses.

Single model. This has the advantages of increased understandability. We can
view a SiLP as providing a summarisation of the hypothesis space. In Figure
2a we see that most (actually all) consistent hypotheses have 1-arcs from
state q0 to q1 and q1 to q0. By contrast, all the 0-arcs have probability 0.5,
meaning they are as likely to be true as false.

The paper is organised as follows. Section 2 describes the MetaBayes Refine-
ment framework. The implementation of the systems MetaBayes, MetaMAP,
MetaBayesSiLP and MilProbLog (not to be confused with MetaProbLog [14])
are then given in Section 3. Experiments on binary prediction (MetaBayes vs
MetaMap) and probabilistic prediction (MetaBayes vs MetaBayesSiLP vs Mil-
ProbLog) are conducted on various datasets, including Finite State Automata
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(FSAs), the ancestor relation for the Russian Royal Family and learning lan-
guage semantics. In Section 5 we provide a comparison to related work. Lastly
we conclude the paper and discuss future work in Section 6.

2 MetaBayes Refinement framework

2.1 Setting

The setting for Meta-Interpretive Learning (MIL) [19] assumes as input a spe-
cialised Meta-interpreter BM together with two sets of ground atoms repre-
senting background knowledge BA and examples E respectively. The result of
learning is a revised form of the background knowledge containing the original
background knowledge BA augmented with additional ground atoms represent-
ing a hypothesis H. We assume H is derived from B = BA and E. Applying
Inverse Entailment B,H |= E is equivalent to B,¬E |= ¬H. In this form we see
that B,¬E is given to the meta-interpreter where ¬E is a goal and the resulting
abduced program ¬H represents a headless Horn clause such as those shown in
Figure 1a.

2.2 Generalised meta-interpreter

A series of specific variants of special-purpose meta-interptreters are given in [19,
18] for Regular grammars (MetagolR), Context-free grammars (MetagolCF )
and a fragment of Dyadic definite clause logic (MetagolD). Figure 3a shows
a generalised Meta-Interpreter which can emulate each special-purpose meta-
interpreter using a set of domain specific meta-rules such as those shown for
finite state acceptors (Figure 3b) [19] and the fragment of dyadic definite clauses
(Figure 3c) investigated in [18]. As discussed in [18] a meta-rule is a higher-order
wff

∃S∀T P (s1, .., sm) ← .., Qi(t1, .., tn), ..

where S, T are disjoint sets of variables, P,Qi ∈ S and sj , tk ∈ T . For instance,
the second finite state acceptor meta-rule in Figure 3 indicates that with suitable
higher-order ground substitition for the existentially quantified variables S =
{P,C,Q} the higher-order atom delta(P,C,Q) can be interpreted as the first-
order clause P ([C|X], Y ) :- Q(X,Y ). In this way higher-order abduction of a set
of atoms can be interpreted as first-order induction of a definite program.

2.3 Stochastic refinement

According to [23] a downward stochastic unary refinement operator is a function
σ : G → 2G×[0,1] defined as follows: σ(C) = {〈Di, pi〉|Di ∈ ρ(C), pi ∈ [0, 1] and
∑

pi = 1 for 1 ≤ i ≤ |ρ(C)|} and σ∗(C) = {〈Di, pi〉|Di ∈ ρ∗(C), pi ∈ [0, 1] and
∑

pi = 1 for 1 ≤ i ≤ |ρ∗(C)|}. In [23] it is shown that the n-step stochastic
refinements of a clause represent a probability distribution. In the context of the
meta-interpreter of Figure 3 we can consider the refinement function ρ to consist
of the selection of a consistent meta-rule followed by the related abduction of
a higher-order atom1. Stochastic refinement with respect to a meta-interpreter
involves making selections according to a probability distribution over the meta-
rules.
1 abduce/3 only adds a higher-order atom a to a program P to give P ′ when a 6∈ P .
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a) Generalised meta-interpreter
prove([], P rog, Prog).
prove([Atom|As], P rog1, P rog2) : −

metarule(RuleName, HO Sub, (Atom :- Body), OrderTest),
OrderTest,
abduce(metasub(RuleName, HO Sub), P rog1, P rog3),
prove(Body, Prog3, P rog4),
prove(As, Prog4, P rog2).

b) Meta-rules for finite state acceptors
metarule(acceptor, [Q], ([Q, [], []] :- []), (term(Q))).
metarule(delta, [P, C, Q], ([P, [C|X], Y ] :- [[Q, X, Y ]]),

(nonterm(Q), nonterm(P ))).

c) Meta-rules for dyadic fragment
metarule(instance, [P, X, Y ], ([P, X, Y ] :- []), (pred(P ))).
metarule(base, [P, Q], ([P, X, Y ] :- [[Q, X, Y ]]),

(pred above(P, Q), obj above(X, Y ))).
metarule(tailrec, [P, Q], ([P, X, Y ] :- [[Q, X, Z], [P, Z, Y ]]),

(pred above(P, Q), obj above(X, Z), obj above(Z, Y ))).
metarule(chain, [P, Q, R], ([P, X, Y ] :- [[Q, X, Z], [R, Z, Y ]]),

(pred above(P, R), obj above(X, Z), obj above(Z, Y ))).

Fig. 3. Prolog representation of a) Generalised meta-interpreter, b) Regular Grammar
meta-rules and c) Dyadic fragment meta-rules

2.4 Prior, Likelihood and Posterior

The prior of H relative to background knowledge B can now be defined as
Pr(H|B) =

∑

〈H,p〉∈σ∗(¬B) p and Pr(H) = Pr(H|∅). The likelihood of ex-

amples E with respect to the background knowledge B and hypothesis H is

Pr(E|B,H) =

{

1 if B,H |= E
0 otherwise

. Using Bayes’ theorem the posterior is

Pr(H|B,E) =
Pr(H|B)Pr(E|B,H)

c

where c is a normalisation constant. A hypothesis H is said to be MAP in the
case that H ∈ argmaxHPr(H|B,E). A Bayes’ prediction of instance x is defined

by the function BayesP(x) =

{

1 if
∑

H Pr(H|B,E) ≥ 0.5
0 otherwise

.

3 Implementation

Below we describe the implementation of four systems: MetaBayes, MetaMAP,
MetaBayesSiLP and MilProbLog. MetaBayes and MetaBayesMAP are variants of
the generalised meta-interpreter where stochastic refinement of the meta-rules is
assumed to be conducted using a uniform distribution at each internal node of the
refinement tree. MetaBayesSiLP is based on MetaBayes. Both MetaBayesSiLP
and MilProbLog output probabilistic programs.
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3.1 MetaBayes

This algorithm carries out an approximation to Bayes’ prediction based on av-
eraging over the posterior probabilities of a set H consisting of a sample of
consistent hypotheses. The set is generated using a method we refer to as Reg-
ular Sampling, in which hypotheses are generated based on a series of fractions
from the sequence 0, 1

2 , 1
4 , 3

4 , 1
8 , 3

8 , 5
8 , 7

8 , ... This sequence has the property of be-
ing evenly distributed in the unit interval [0, 1] without repeating the same frac-
tional value twice. Considering the consistent hypotheses to be ordered H1,H2, ..
left-to-right in SLD order within the derivation tree, the fraction pi is used to

find the rightmost Hj such that
∑j

k=1 Pr(Hk|B,E) ≤ pi. This is achieved ef-
ficiently by considering that the cumulative posterior probability (the sum of
posterior probabilities of hypothesis preceding a given hypothesis in the deriva-
tion tree) associated with hypotheses found in the sub-trees under each node of
the stochastic refinement tree is partitioned into equally sized intervals. Starting
at the root of the refinement tree Hj will be found in the sub-tree whose cu-
mulative posterior probability interval [min,max] is such that min ≤ pi < max.
Within this sub-tree we repeat by selecting the sub-tree containing the probabil-
ity (pi−min)(max−min). The iteration is terminated by the hypothesis returned
by the base case of the meta-interpreter. By bounding the posterior probability
sum of the sample and ignoring duplicates the approach can be made to achieve
the effect of sampling without replacement. Although slightly more complex to
program than an alternative implementation of sampling with replacement, the
Regular Sampling approach achieves higher efficiency by minimising duplicate
sampling due to the spread of hypotheses chosen by the sequence of fractions.

3.2 MetaBayesMAP

This algorithm carries out predictions based on the leftmost consistent hypoth-
esis at minimal depth in the stochastic refinement tree. This hypothesis can be
found efficiently using iterative deepening of derivations from the generalised
meta-interpreter.

3.3 MetaBayesSiLP

This algorithm superimposes the set of hypothesises sampled by MetaBayes.
Specifically, the posterior probabilities of sampled hypotheses are renormalised.
Then the summation is carried out for each clause C present in the set of sampled
hypothesises. It follows Equation 1, where C denotes a clause, p(Hi|E) is the
posterior probability of a hypothesis Hi, p(C|Hi) means the probability of C
being true given that Hi is true, thus p(C|Hi) is either 1 or 0, depending on
whether C is part of Hi. This equation is essentially the same as that of Bayesian
prediction on atoms, except predicting the probabilistic labels on clauses instead
of atoms.

p(C|E) =
∑

p(C|Hi) ∗ p(Hi|E) (1)

3.4 MilProbLog

This algorithm is based on ProbLog but loaded with a meta-interpreter and all
possible meta-substitutions, which essentially provides all possible hypothesis
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clauses. In this way, a learning task requiring simultaneous model and parameter
estimation is reduced to only parameter estimation. If a clause is assigned with
probability zero, then it implies that this clause is hypothesised as not part of
the learned structure.

4 Experiments

In this section we describe experiments which compare MetaBayes to MetaMAP,
as well as the comparison among MetaBayes, MetaBayesSiLP and MilProbLog.

4.1 Binary prediction - MetaBayes vs. MetaMap

We first consider the following two Null hypothesis which compares MetaBayes
to MetaMAP in terms of predictive accuracy and running time. We use datasets
of learning FSAs and learning the concept of ancestor.

Null Hypothesis 1.1 MetaBayes does not have higher expected predictive ac-
curacy than MetaMAP.

Null Hypothesis 1.2 MetaBayes does not have longer expected running time
than MetaMAP.

Learning FSAs

Materials and Methods 200 randomly chosen FSA were generated using MetagolR
[19]. Specifically, a set of sequences were randomly chosen from Σ∗ for Σ =
{0, 1}, then they are used as training examples for MetagolR to learn FSAs. The
target FSAs derived in this way are guaranteed to be minimal, since MetagolR
finds a minimal hypothesis. For each target grammar, 20 training examples were
randomly chosen from Σ∗ for Σ = {0, 1}. Another 1000 test examples were also
randomly sampled without replacement. The examples are half positive and half
negative, therefore the default accuracy is 50%. Predictive accuracies and asso-
ciated learning times were averaged over the 200 FSAs. We plot the learning
curves at training sizes {2, 4, 6, 8, 10, 12, 14, 16, 18, 20}.

The learning systems being compared are MetaBayes and MetaMAP. The
MetaMAP system makes binary prediction, while MetaBayes makes probabilis-
tic prediction. To make them comparable, we use 0.5 as threshold to discretise
the prediction by MetaBayes. Specifically, if a prediction made by MetaBayes is
larger than 0.5, it is regarded as the positive, otherwise equal to 0.5 or smaller
than 0.5 are considered as the negative. MetaBayes’ performance varies with the
size of sampled hypotheses and the given prior. Therefore we run the experiment
with sample sizes as 10, 100, 500, 750 and 1000. For the prior, we considered
priors which are exponential, polynomial and uniform with respect to the de-
scription length of a hypothesis. We also considered an informative prior, which
is similar to the exponential prior except being given additional information
about the size of a target hypothesis. The informative prior Pinf is defined as
below, where dl/1 is a function which returns the description length of a hy-
pothesis. In the case there is no sampled hypotheses having the same size as a
target hypothesis, the informative prior reduces to the exponential prior.

Pinf (H) =

{

1 dl(H) = dl(TargetH)
(1/2)dl(H) dl(H) 6= dl(TargetH)
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Fig. 4. Average results for learning FSAs showing a) Predictive accuracies (informative
prior) and b) Running times

Results and Discussion Figure 4(a) shows that MetaBayes given an informa-
tive prior has significantly higher predictive accuracies than that of MetaMAP.
MetaBayes with higher sample rate 1000 also has slightly higher accuracies that
of 750. However, the improvement on accuracy comes at cost of running time.
As shown in Figure 4(b), the total running time of MetaBayes with sample size
1000 is about 30 times longer than that of MetaMAP. The increase of sample
rate in MetaBayes also significantly increase the running time. Therefore both
Null hypothesis 1.1 and 1.2 are refuted by the experiment of learning 200 ran-
domly chosen FSAs. Other results of MetaBayes with different sample sizes and
priors which does not significantly outperform MetaMAP are not plotted due to
limited space.

Learning the concept of ancestor

Materials and Methods We used the family tree of Russian royal family (Ro-
manov dynasty 1613-1917), which involves 12 generations and 119 persons. Part
of the family tree is shown in Figure 5a. This dataset has previously been
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used in [21]. The background knowledge contains only facts of father/2 and
mother/2. The examples consist of only ancestor/2. No example of parent/2
is given, therefore to learn the target hypothesis in Figure 5b would require
not just recursion, but also predicate invention. 60 training examples with half
positive and half negative are randomly chosen. They were divided into 5 folds
with size 12. Results from the 5 folds were averaged. There are 1000 test exam-
ples. The default accuracy is 50%. We plot the learning curves at training sizes
{2, 4, 6, 8, 10, 12, 14, 16, 18, 20}. The rest are the same as that in learning FSAs.

ancestor(X,Y) :- parent(X,Y).
ancestor(X,Y) :- parent(X,Z),

ancestor(Z,Y).
parent(X,Y) :- father(X,Y).
parent(X,Y) :- mother(X,Y).

(a) Russian royal family tree (partial) (b) Target hypothesis of ancestor

Fig. 5. Learning the concept of ancestor

Results and Discussion Similar to the accuracy graph in Figure 4a, Figure 6a also
shows that MetaBayes given an informative prior has significantly higher pre-
dictive accuracies than that of MetaMAP. The running time difference between
MetaBayes and MetaMAP is even larger than that of learning FSAs, as shown in
Figure 6b. This is due to the dramatic increase in hypothesis space. In contrast,
the concept of ancestor requires H2

2 representation (Dyadic Datalog programs),
which has Universal Turing Machine expressivity [18]. Considering MetaBayes
samples from the entire hypothesis space while MetaMAP only searches through
part of the hypothesis space to find the shortest hypothesis, the increase of hy-
pothesis space has larger impact on MetaBayes than MetaMAP. Therefore both
Null hypothesis 1.1 and 1.2 are also refuted by the above results. The running
time graph in Figure 6b has very large deviations. Since one of the folds contains
examples of ancestor involving 10 generations, which leads to significantly longer
running time than the other four folds.

4.2 Probabilistic prediction - MetaBayes vs. MetaBayesSiLP vs.
MilProbLog

In this subsection, we investigate Null hypothesis 2.1, 2.2 and 2.3 about the
comparison among MetaBayes, MetaBayesSiLP and MilProbLog. Considering
all the three systems make probabilistic predictions, we use likelihood instead of
accuracy as the criterion for comparison.

Null Hypothesis 2.1 MetaBayes does not have higher expected likelihood than
MetaBayesSiLP.
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Null Hypothesis 2.2 MetaBayes does not have higher expected likelihood than
MilProbLog.

Null Hypothesis 2.3 MetaBayesSiLP does not have higher likelihood than
MilProbLog.

Learning FSAs

Materials and Methods Considering MilProbLog requires the input of all possible
hypothesis clauses, we have to constrain the hypothesis space to be enumerable.
Therefore we considered learning FSAs with the number of maximum states Ns

as 2, 3 and 4, respectively. We used regular sampling to randomly sample 100
different pairs of sequences from Σ∗ for Σ = {0, 1} with maximum length 10.
For each pair of sequences, one is used as the positive while the other is used
as the negative training examples. All possible FSAs with maximum Ns states
that can be derived from the pairs are included in the set of target FSAs. For
example, if e+ = 101011011 and e− = 111101 is one of the pairs of sampled
sequences and Ns = 2 (only two states q0 and q1 are allowed), then there are
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four FSAs generable, as depicted in Fig. 2 (a). Then all the four FSAs are part
of the target FSAs. We used all the sequences with maximum length 10 as test
examples, thus the size of test examples is 2047. MilProbLog was run with 10
iterations.

Results and Discussion Figure 7 shows an example of the probabilistic programs
output by MetaBayesSiLP and MilProbLog. Since MetaBayesSiLP carries out
simultaneous model and parameter estimation, it does not require the provi-
sion of candidate hypothesis clauses, but only generates those candidates from
examples in a data-driven fashion. That is why there are two clauses marked
as not generated in Figure 7a. In contrast, MilProbLog only works when given
structures. Therefore it requires all candidate clauses being provided as input,
even though some of the clauses will not be used for explaining the positive
examples or inconsistent with negative examples. That is why there are parame-
ters assigned as 0 in Figure 7b. Therefore MetaBayesSiLP is more efficient than
MilProbLog, especially when the hypothesis space is large.

0.5 :: q0 →
0.5 :: q0 → 0 q0
1. 0 :: q0 → 1 q1
1.0 :: q1 → 1 q0
0.5 :: q1 → 0 q1
0.5 :: q1 →

not generated
not generated

0.5 :: q1 → 0 q0
0.5 :: q0 → 0 q1

0 :: q0 →
0 :: q0 → 0 q0

1. 0 :: q0 → 1 q1
1.0 :: q1 → 1 q0
0.95 :: q1 → 0 q1
1.0 :: q1 →
0 :: q0 → 1 q0
0 :: q1 → 1 q1

0.99 :: q1 → 0 q0
0.99 :: q0 → 0 q1

(a) MetaBayesSiLP (b) MilProbLog

Fig. 7. Probabilistic programs of learning FSA from e+ = 101011011 and e− = 111101.

Table 1 shows the negloglikelihoods of three systems. The closer to zero the
better, since likelihood being 1 corresponds to loglikelihood being 0. Therefore
MetaBayes has significantly better prediction (smaller negloglikelihood) than
both MetaBayesSiLP and MilProbLog no matter what the value Ns is. Therefore
Null hypothesis 2.1 and 2.2 are refuted. This is consistent with Bayesian learning
theory that Bayesian prediction being optimal.

MetaBayesSiLP and MilProbLog both have significantly worse prediction
than MetaBayes, but MetaBayesSiLP has increasing better prediction than Mil-
ProbLog with the increasing of Ns. This is consistent with the fact that the in-
creasing of Ns leads to the exponential increase of hypothesis space and enlarges
the difference between the search spaces of MetaBayesSiLP and MilProbLog.
Since MetaBayesSiLP is able to constrain its search space to version space, while
MilProbLog has to estimate the probabilities on all candidate clauses. Accord-
ing to Blumer bound, the larger search space leads to higher predictive error.
Therefore Null hypothesis 2.3 is refuted. In terms of running time, MilProbLog
took at least 10 times longer running time than that of MetaBayesSiLP. Such
results shows that MetaBayesSiLP has at least competitive likelihood to that of
MilProbLog while having much shorter running time.
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Ns MetaBayes MetaBayesSiLP MilProbLog
2 856.70±19.03 1361.43±25.84 1317.14±7.66
3 976.64±5.76 1249.72±9.65 1323.38±1.66
4 820.60±10.20 1034.30±16.70 1306.40±2.58
Table 1. NegLogLikelihoods of learning FSAs

Learning language semantics Consider a task of validating a hypothesised
food web using domain literature. For example, we might want to know whether
the statement ‘foxes eat rabbits’ is supported by a piece of text from the litera-
ture. The challenge of this task lies in the richness of natural language. Specifi-
cally, there are many different ways to convey the same meaning. For instance,
the sentences ‘foxes are the predator of rabbits’ express the same meaning as
that of ‘foxes eat rabbits’. In [5] such validation task was done manually by hu-
man beings. Human beings are capable of understanding the meaning of a text
and extract relevant information from the text, but it is too time consuming
to read through all literature. More importantly, human beings are capable of
learning the meaning of text if encounter new words or phrases.

Materials and Methods In this experiment we consider learning semantics from
texts, in particular, learning alternative phrases for expressing the same meaning.
We use the representation of Definite Clause Translation Grammars (DCTG) [1]
to allow both syntactic and semantic paring. Definite Clause Translation Gram-
mars are triadic. It is similar to Definite Clause Grammars, but different in terms
of a third argument for carrying the corresponding semantic. Figure 8 gives an
example of DCTG which can parse the Text-Semantic pairs given in Figure 9.
The target hypothesis of this experiment is a DCTG like the one in Figure 8.
To learn such a grammar would require learning recursion and predicate inven-
tion. An invented predicates like s2 can be interpreted as the set of phrases for
express the meaning of ‘eat’, while s1 and s3 correspond to predator and prey,
respectively.

s0(Text1,Text3,[M|Meaning]):- s1(Text1,Text2,M),s0(Text2,Text3,Meaning).
s0(Text1,Text3,[M|Meaning]):- s2(Text1,Text2,M),s0(Text2,Text3,Meaning).
s0(Text1,Text3,[M|Meaning]):- s3(Text1,Text2,M),s0(Text2,Text3,Meaning).
s0([Word|Text1],Text2,Meaning):- s0(Text1,Text2,Meaning).

s1([foxes|Text],Text,fox).
s1([fox|Text],Text,fox).
s2([predator,of|Text],Text,eats).
s2([eat|Text],Text,eats).
s3([rabbit|Text],Text,rabbit).
s3([rabbits|Text],Text,rabbit).

Fig. 8. Definite Clause Translation Grammars for parsing Text-Semantic pairs in Fig-
ure 9

Six positive examples were gathered from real texts. Another ten negative
examples were derived from positive examples by removing words like ’eat’ and
’fed’. Figure 10 shows part of the examples. There are only 16 examples in total,
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s0([foxes, are, the, predator, of, rabbits],[],[fox,eats,rabbits]).
s0([foxes, eat, rabbits],[],[fox,eats,rabbits]).

Fig. 9. Artificial examples of Text-Semantic pairs

therefore we used leave-one-out cross-validation. We constrain the candidate
clauses to the phrases with maximum length 2. MilProbLog was run with 10
iterations.

s0([in,the,laboratory,’Pollard(1968)’,found,that,agonum,dorsale,would,climb,freely,
and,fed,on,aphids,on,the,leaves,of,brussels,sprout,plants], [], [agonum,
dorsale,eats,aphids]).

¬s0([in,the,laboratory,’Pollard(1968)’,found,that,agonum,dorsale,would,climb,freely,
and,fed,aphids,on,the,leaves,of,brussels,sprout,plants], [], [agonum,dorsale,eats,
aphids]).

s0([’Dicker(1951)’,noted,that,the,larvae,fed,on,the,strawberry,aphid,pentatrichopus,
fragaefolii,cocker], [], [larvae,eats,aphid]).

s0([it,therefore,seems,likely,that,although,agonum,dorsale,will,eat,a,wide,range,of,
food,’,’,aphids,are,preferred], [],
[agonum,dorsale,eats,aphids]).

Fig. 10. Real-world examples of Text-Semantic pairs (subset of all sixteen examples)

Results and Discussion Figure 11 shows part of the probabilistic programs gen-
erated by MetaBayesSiLP and MilProbLog. It compares the probabilistic labels
on the same clauses. Similar to that in Figure 7, there are clauses not consid-
ered by MetaBayesSiLP, because they are either unnecessary for explaining the
positive or inconsistent with the negative. For example, the hypothesised clause
‘s2([fed|Text],Text,eats)’ would cover the negative example in Figure 10.

Table 2 compares the negloglikelihood of the three systems. Similar to the
previous experiment, MetaBayes has the smallest negloglikelihood among the
three systems, thus MetaBayes’ predictor performs best. MetaBayesSiLP also
performs significantly better than MilProbLog, as shown in Table 2. It is worth
noting that the MetaBayesSiLP’s negloglikelihood is significantly smaller than
that of MilProbLog while taking much shorter running time. Therefore all Null
hypotheses 2.1, 2.2 and 2.3 are refuted.

The reason that MetaBayesSiLP significantly outperform MilProbLog is the
same as that in the previous experiment, that is, MetaBayesSiLP has much
smaller search space than that of MilProbLog. For example, when given example-
fold1 with 15 training examples, MilProbLog has 2179 clauses to be estimated,
while there are only 46 for MetaBayesSiLP.

5 Related work

According to Bayesian learning theory [7, 4], maximal predictive accuracy in
learning is achieved by using a diversity of models, with predictions weighted
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0.31 :: s2([fed,on|Text],Text,eats).
not generated
not generated

0.31 :: s2([will,eat|Text],Text,eats).

0.29 :: s2([fed,on|Text],Text,eats).
0.79 :: s2([fed|Text],Text,eats).
0.35 :: s2([on|Text],Text,eats).
0.47 :: s2([will,eat|Text],Text,eats).

(a) MetaBayesSiLP (b) MilProbLog

Fig. 11. Probabilistic programs of learning language semantic (partial)

MetaBayes MetaBayesSiLP MilProbLog
NegLogLikelihood 0 1.58 11.71

Table 2. NegLogLikelihoods of learning language semantic

according to the posterior probability of the corresponding hypothesis. In [11]
error bounds for various Bayesian algorithms were analysed. The paper notes
that while MAP maximises probability of exact identification of the target, it
may have relatively high expected error. The paper goes on to show that the
Gibbs algorithm, which randomly chooses a consistent hypothesis from the pos-
terior distribution, has an error bound which is at most twice that of a Bayes’s
predictor (which is known to be optimal). These theoretical results are consistent
with the experiments described in Section 4, and are also pertinent to a number
of more ad hoc approaches to “model averaging” which have demonstrated signif-
icant predictive accuracy increases. These approaches are usually grouped under
the title of ensemble methods and include boosting [9, 13] and bagging [6, 25]. Un-
like the approach described in the present paper ensemble approaches use a more
ad hoc approach to model-averaging, not based on an explicit Bayesian prior over
the hypothesis space. However, the use of such a prior is directly comparable to
the use of SLPs for sampling Bayes’ nets investigated in [2]. The present paper
extends this general approach to an ILP context, and demonstrates its predic-
tive accuracy advantages in a context which supports the invention of relations
and recursive programs. Within the ILP literature randomised search [24, 20]
has been widely investigated. However, unlike the approaches described in this
paper, these searches involve heuristic step-wise optimisation, rather than sam-
pling and averaging predictions over a posterior distribution. The related areas
of Probabilistic ILP (PILP) [22] and Statistical Relation Learning (SRL) [10]
involve combining Bayesian inference and ILP, though this is in the context
of Probabilistic Logic representations. The treatment of a set of meta-rules as
an SLP is akin to this, though the logical reasoning is necessarily in terms of
higher-order clauses rather than the probabilistic first-order representations used
in PILP and SRL.

6 Conclusion and further work

This paper extends previous work on Meta-Interpretive Learning [19, 18] by
demonstrating that a Bayesian prior can be implemented as a meta-interpreter
over a stochastic logic program consisting of higher-order meta-rules. We use
this approach to suggest a method for carrying out simultaneous structure and
parameter estimation for a form of ProbLog program which we refer to as SiLPs.
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The approach supports sampling of hypotheses consistent with a given set of
examples and background knowledge, and has been used to implement approxi-
mated Bayes’ prediction in a system called MetaBayes. Similarly we implement a
Bayes’ MAP algorithm together with one caled MetaBayesSiLP which estimates
structure and parameters of SiLPs. Our experiments indicate that approximated
Bayes’ prediction significantly outperform MAP on binary prediction tasks in-
volving FSAs and prediction of ancestor relationships in the Russian Royal fam-
ily dataset. The results are in line with theoretical predictions. Furthermore on
probabilistic prediction our MetaBayes outperforms MetaBayesSiLP which in
turn outperforms Problog on negative log likelihood prediction on both the FSA
dataset and a natural language task involving ranking of probabilistic predic-
tions.

Further work will address efficiency improvements in the algorithms as well
as extensions to handle classification noise in the data and the use of Bayesian
inference in active learning.
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