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Abstract Despite early interest Predicate Invention has lately been under-explored within
ILP. We develop a framework in which predicate invention and recursive generalisations are
implemented using abduction with respect to a meta-interpreter. The approach is based on
a previously unexplored case of Inverse Entailment for Grammatical Inference of Regular
languages. Every abduced grammar H is represented by a conjunction of existentially quan-
tified atomic formulae. Thus ¬H is a universally quantified clause representing a denial. The
hypothesis space of solutions for ¬H can be ordered by θ -subsumption. We show that the
representation can be mapped to a fragment of Higher-Order Datalog in which atomic for-
mulae in H are projections of first-order definite clause grammar rules and the existentially
quantified variables are projections of first-order predicate symbols. This allows predicate
invention to be effected by the introduction of first-order variables. Previous work by Inoue
and Furukawa used abduction and meta-level reasoning to invent predicates representing
propositions. By contrast, the present paper uses abduction with a meta-interpretive frame-
work to invent relations. We describe the implementations of Meta-interpretive Learning
(MIL) using two different declarative representations: Prolog and Answer Set Program-
ming (ASP). We compare these implementations against a state-of-the-art ILP system MC-
TopLog using the dataset of learning Regular and Context-Free grammars as well learning
a simplified natural language grammar and a grammatical description of a staircase. Exper-
iments indicate that on randomly chosen grammars, the two implementations have signif-
icantly higher accuracies than MC-TopLog. In terms of running time, Metagol is overall
fastest in these tasks. Experiments indicate that the Prolog implementation is competitive
with the ASP one due to its ability to encode a strong procedural bias. We demonstrate
that MIL can be applied to learning natural grammars. In this case experiments indicate
that increasing the available background knowledge, reduces the running time. Additionally
ASPM (ASP using a meta-interpreter) is shown to have a speed advantage over Metagol
when background knowledge is sparse. We also demonstrate that by combining MetagolR
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(Metagol with a Regular grammar meta-interpreter) and MetagolCF (Context-Free meta-
interpreter) we can formulate a system, MetagolRCF , which can change representation by
firstly assuming the target to be Regular, and then failing this, switch to assuming it to be
Context-Free. MetagolRCF runs up to 100 times faster than MetagolCF on grammars chosen
randomly from Regular and non-Regular Context-Free grammars.

Keywords Inductive logic programming · Meta-interpretative learning · Predicate
invention · Recursion · Grammatical inference

1 Introduction

Consider the problem of using an ILP system to learn a Regular grammar which accepts all
and only those binary sequences containing an even number of 1s (see Fig. 1). Since the
1950s automaton-based learning algorithms have existed (Moore 1956) which inductively
infer Regular languages, such as Parity, from positive and negative examples. If we try
to learn Parity using an ILP system the obvious representation of the target would be a
Definite Clause Grammar (DCG) (see Fig. 1a). However, if the ILP system were provided
with examples for the predicate q0 then the predicate q1 would need to be invented since
the only single state finite acceptor consistent with the examples would accept all finite
strings consisting of 0s and 1s. It is widely accepted that Predicate Invention is a hard
and under-explored topic within ILP (Muggleton et al. 2011), and indeed state-of-the-art
ILP systems, including MC-TopLog (Muggleton et al. 2012) and Progol (Muggleton 1995;
Muggleton and Bryant 2000), are unable to learn grammars such as Parity in the form of
a DCG using only first-order (non-metalogical) background knowledge since these systems
do not support Predicate Invention. However, note that in Fig. 1a each clause of the DCG
has one of the following two forms.

Q
([], []) ←

Q
([C|x], y) ← P (x, y)

where Q, C, P are the only symbols which vary between the clauses. Figure 1b shows
how these two forms of clauses above can be captured within the two clauses of a recur-
sive meta-interpreter parse/3 which uses the auxiliary predicates acceptor/1 and delta1/312

to instantiate the predicate symbols and constants from the original DCG. The predicates
acceptor/1 and delta1/3 can each be interpreted as Higher-Order Datalog (Muggleton and
Pahlavi 2012) predicates since they take arguments which are predicate symbols q0, q1 from
the DCG. By making acceptor/1 and delta1/3 abducible, Parity, and indeed any other Regu-
lar grammar, could in principle be learned from ground instances of parse/1 using abduction.
The paper explores this form of learning with respect to a meta-interpreter.

We show that such abductively inferred grammars are a special case of Inverse Entail-
ment. We also show that the hypothesis space forms a lattice ordered by subsumption. The
extensions of this use of abduction with respect to a meta-interpreter lead to a new class
of inductive algorithm for learning Regular and Context-Free languages. The new approach

1Note that in the theory of automata (Hopcroft and Ullman 1979) delta1/3 corresponds to the transition
function of the finite acceptor shown in Fig. 1a.
2Considering delta1/3 as an arity 3 ground relation, if c, k are bounds on the number of terminals and non-

terminals respectively then the number of possible definitions for delta1/3 is 2ck2
.
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(a)

Finite Production Definite Clause
acceptor rules Grammar (DCG)

q0 →
q0 → 0 q0

q0 → 1 q1

q1 → 0 q1

q1 → 1 q0

q0([], []) ←
q0([0|A],B) ← q0(A,B)

q0([1|A],B) ← q1(A,B)

q1([0|A],B) ← q1(A,B)

q1([1|A],B) ← q0(A,B)

(b)

E+ E− Meta-interpreter Ground facts
λ

0
00
11
000
011
101

1
01
10
001
010
100
111

parse(S) ← parse(q0, S, []).

parse(Q, [], []) ← acceptor(Q).
parse(Q, [C|X], Y ) ←

delta1(Q,C,P ),
parse(P,X,Y ).

acceptor(q0) ←
delta1(q0,0, q0) ←
delta1(q0,1, q1) ←
delta1(q1,0, q1) ←
delta1(q1,1, q0) ←

Fig. 1 (a) Parity acceptor with associated production rules, DCG; (b) positive examples (E+) and negative
examples (E−), Meta-interpreter and ground facts representing the Parity grammar

blurs the normal distinctions between abductive and inductive techniques (see Flach and
Kakas 2000). Usually abduction is thought of as providing an explanation in the form of a
set of ground facts while induction provides an explanation in the form of a set of universally
quantified rules. However, the meta-interpreter in Fig. 1b can be viewed as projecting the
universally quantified rules in Fig. 1a onto the ground facts associated with acceptor/1 and
delta1/3 in Fig. 1b. In this way abducing these ground facts with respect to a meta-interpreter
is equivalent to induction, since it is trivial to map the ground acceptor/1 and delta1/3 facts
back to the original universally quantified DCG rules.

In this paper, we show that the MIL framework can be directly implemented using declar-
ative techniques such as Prolog and Answer Set Programming (ASP). In this way, the search
for an hypothesis in a learning task is delegated to the search engine in Prolog or ASP. Al-
though existing abductive systems can achieve predicate invention if loaded with the meta-
interpreter introduced in this paper, a direct implementation of MIL has the following ad-
vantages.

1. As a declarative machine learning (De Raedt 2012) approach, it can make use of the
advances in solvers. For example, techniques ASP solvers such as Clasp (Gebser et al.
2007) compete favourably in international competitions. Recently Clasp has been ex-
tended to Unclasp (Andres et al. 2012) which is highly efficiency for optimisation tasks.
This advance is exploited in the experiments of this paper, as we use Unclasp for our
experiments.

2. As demonstrated by the experiments in this paper, direct implementation of the approach
using a meta-interpreter has increased efficiency due to an ordered search in the case of
Prolog and effective pruning in the case of ASP. While existing abductive systems like
SOLAR (Nabeshima et al. 2010), A-System (Kakas et al. 2001) and MC-TopLog do not
have an ordered search, but instead enumerate all hypotheses that are consistent with the
data.

3. The resulting hypotheses achieve higher predictive due to global optimisation, as opposed
to the greedy covering algorithm used in many systems including MC-TopLog.
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The paper is structured as follows. Section 2 introduces the theoretical framework for
MIL and its application to grammatical inference. We then describe implementations for a
variant of Metagol, ASPM (ASP using a meta-interpreter). In Sect. 4 the performance of
these systems is compared experimentally against MC-Toplog on Regular and Context-Free
grammar learning problems. In Sect. 5 we describe related work. Lastly we conclude and
describe directions for further work in Sect. 6.

2 MIL framework

2.1 Logical notation

A variable is represented by an upper case letter followed by a string of lower case letters and
digits. A function symbol or predicate symbol is a lower case letter followed by a string of
lower case letters and digits. The arity of a function or predicate symbol is the number of ar-
guments it takes. A constant is a function or predicate symbol which has arity zero. Variables
and constants are terms, and a function symbol immediately followed by a bracketed n-tuple
of terms is a term. Thus f (g(X),h) is a term when f , g and h are function symbols and X

is a variable. A predicate symbol immediately followed by a bracketed n-tuple of terms is
called an atomic formula. The negation symbol is ¬. Both A and ¬A are literals whenever
A is an atomic formula. In this case A is called a positive literal and ¬A is called a negative
literal. A finite set (possibly empty) of literals is called a clause. A clause represents the
disjunction of its literals. Thus the clause {A1,A2, . . .¬Ai,¬Ai+1, . . .} can be equivalently
represented as (A1 ∨ A2 ∨ . . .¬Ai ∨ ¬Ai+1 ∨ . . .) or A1,A2, . . . ← Ai,Ai+1, . . . . A Horn
clause is a clause which contains at most one positive literal. A Horn clause is unit if and
only if it contains exactly one literal. A denial or goal is a Horn clause which contains no
positive literals. A definite clause is a Horn clause which contains exactly one positive lit-
eral. The positive literal in a definite clause is called the head of the clause while the negative
literals are collectively called the body of the clause. A unit clause is positive if it contains
a head and no body. A unit clause is negative if it contains one literal in the body. A set of
clauses is called a clausal theory. A clausal theory represents the conjunction of its clauses.
Thus the clausal theory {C1,C2, . . .} can be equivalently represented as (C1 ∧ C2 ∧ · · ·).
A clausal theory in which all predicates have arity at most one is called monadic. A clausal
theory in which all predicates have arity at most two is called dyadic. A clausal theory in
which each clause is Horn is called a Horn logic program. A logic program is said to be
definite in the case it contains only definite clauses. A logic program is said to be a Datalog
program if it contains no function symbols other than constants. A Datalog program is said
to be higher-order in the case that it contains at least one constant predicate symbol which is
the argument of a term. Literals, clauses and clausal theories are all well-formed-formulae
(wffs) in which the variables are assumed to be universally quantified. Let E be a wff or
term. E is said to be ground if and only if it contains no variables. The process of replacing
(existential) variables by constants is called Skolemisation. The unique constants are called
Skolem constants. Let C and D be clauses. We say that C �θ D or C θ -subsumes D if and
only if there exists a substitution θ such that Cθ ⊆ D.

2.2 Formal language notation

Let Σ be a finite alphabet. Σ∗ is the infinite set of strings made up of zero or more letters
from Σ . λ is the empty string. uv is the concatenation of strings u and v. |u| is the length of
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string u. A language L is any subset of Σ∗. Let ν be a set of non-terminal symbols disjoint
from Σ . A production rule r = LHS → RHS is well-formed in the case that LHS ∈ (ν ∪Σ)∗,
RHS ∈ (ν ∪ Σ ∪ λ)∗ and when applied replaces LHS by RHS in a given string. A grammar
G is a pair 〈s,R〉 consisting of a start symbol s ∈ ν and a finite set of production rules R.
A grammar is Regular Chomsky-normal in the case that it contains only production rules
of the form S → λ or S → aB where S,B ∈ ν and a ∈ Σ . A grammar is Linear Context-
Free in the case that it contains only Regular Chomsky-normal production rules or rules
of the form S → Ab where S,A ∈ ν and b ∈ Σ . A grammar is Context-Free in the case
that it contains only Linear Context-Free Chomsky-normal production rules or rules of the
form S → AB where S,A,B ∈ ν.3 A Context-Free grammar is said to be deterministic in
the case that it does not contain two Regular Chomsky-normal production rules S → aB

and S → aC where B = C. A sentence σ ∈ Σ∗ is in L(G) iff given a start symbol S ∈ ν

there exists a sequence of production rule applications S →R1 · · · →Rn σ where Ri ∈ G.
A language L is Regular, Linear Context-free or Context-Free in the case there exists a
grammar G for which L = L(G) where G is Regular, Linear Context-Free or Context-Free
respectively. According to the Context-Free Pumping Lemma (Hopcroft and Ullman 1979),
if a language L is Context-Free, then there exists some integer p ≥ 1 such that any string s

in L with |s| ≥ p (where p is a constant) can be written as s = uvxyz with substrings u, v,
x, y and z, such that |vxy| ≤ p, |vy| ≥ 1 and uvnxynz is in L for every integer n ≥ 0.

2.3 Framework

The Meta-Interpretive Learning (MIL) setting is a variant of the normal setting for ILP.

Definition 1 (Meta-Interpretive Learning setting) A Meta-Interpretive Learning (MIL)
problem consists of Input = 〈B,E〉 and Output = H where the background knowledge
B = BM ∪ BA. BM is a definite logic program4 representing a meta-interpreter and BA and
H are ground definite Higher-Order Datalog programs consisting of positive unit clauses.
The predicate symbol constants in BA and H are represented by Skolem constants. The ex-
amples are E = 〈E+,E−〉 where E+ is a ground logic program consisting of positive unit
clauses and E− is a ground logic program consisting of negative unit clauses. The Input and
Output are such that B,H |� E+ and for all e− in E−, B,H |� e−.

Inverse Entailment can be applied to allow H to be derived from B and E+ as follows.

B,H |� E+

B,¬E+ |� ¬H
(1)

Since both H and E+ can each be treated as conjunctions of ground atoms containing
Skolem constants in place of existential variables, it follows that ¬H and ¬E+ are uni-
versally quantified denials where the variables come from replacing Skolem constants by
unique variables. We now define the concept of a Meta-interpretive learner.

3This is an adaptation of Chomsky-normal form Context-free, which only permits productions of the form
S → λ, S → a and S → AB .
4Note that the meta-interpreter shown in Fig. 1b is a definite logic program. Such a meta-interpreter is only a
part of implementations such as those described later in Sect. 3. Within such an implementation negation-by-
failure is used to implement operations such as abduction, so the implementation as a whole is not a definite
logic program. However, this does not affect this definition or the later propositions which use it.
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E+ ¬E+ E−
parse([]) ←
parse([1,1]) ←
parse([0,1,1]) ←
parse([1,0,1]) ←
parse([1,1,0]) ←

← parse([]),
parse([1,1]),
parse([0,1,1]),
parse([1,0,1]),
parse([1,1,0]).

← parse([1])
← parse([0,1])
← parse([1,0])
← parse([0,0,1])
← parse([1,1,1])

H ¬H

acceptor($0) ←
delta1($0,0,$0) ←
delta1($0,1,$1) ←
delta1($1,0,$1) ←
delta1($1,1,$0) ←

← acceptor(Q0),
delta1(Q0,0,Q0),
delta1(Q0,1,Q1),
delta1(Q1,0,Q1),
delta1(Q1,1,Q0).

Fig. 2 Parity example where BM is the Meta-interpreter shown in Fig. 1b, BA = ∅ and E+ , ¬E+ , E− , H ,
¬H , are as shown above. ‘$0’ and ‘$1’ in H are Skolem constants replacing existentially quantified variables

Definition 2 (Meta-interpretive learner) Let HB,E represent the complete set of abductive
hypotheses H for the MIL setting of Definition 1. Algorithm A is said to be a Meta-
interpretive learner iff for all B,E such that H is the output of Algorithm A given B and E

as inputs, it is the case that H ∈ HB,E .

Example 1 (Parity example) Let B = 〈BM,BA〉, E = 〈E+,E−〉 and H ∈ HB,E represents
the parity grammar. Figure 2 shows H as a possible output of a Meta-interpretive learner.

Note that this example of abduction produces Predicate Invention by introducing Skolem
constants representing new predicate symbols. By contrast an ILP system such as Progol
uses Inverse Entailment (Muggleton 1995) to construct a single clause from a single ex-
ample, while a Meta-interpretive learner uses Inverse Entailment to construct the set of
all clauses H as the abductive solution to a single goal ¬E+ using E− as integrity con-
straints. In the example the hypothesised grammar H corresponds to the first-order DCG
from Fig. 1a, which contains both invented predicates and mutual recursion. Neither pred-
icate invention nor mutual recursion can be achieved with DCGs in this way using ILP
systems such as Progol or MC-TopLog.

2.4 Lattice properties of hypothesis space

In this section we investigate orderings over MIL hypotheses.

Definition 3 (�B,E relation in MIL) Within the MIL setting we say that H �B,E H ′ in the
case that H,H ′ ∈ HB,E and ¬H ′ �θ ¬H .

We now show that �B,E forms a quasi-ordering and a lattice.

Proposition 1 (Quasi-ordering) Within the MIL setting 〈HB,E,�B,E〉 forms a quasi-
ordering.

Proof Follows from the fact that 〈{¬H : H ∈ HB,E},�θ 〉 forms a quasi-ordering since each
¬H is a clause (Nienhuys-Cheng and de Wolf 1997). �
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Proposition 2 (Lattice) Within the MIL setting 〈HB,E,�B,E〉 forms a lattice.

Proof Follows from the fact that 〈{¬H : H ∈ HB,E},�θ 〉 forms a lattice since each ¬H is
a clause (Nienhuys-Cheng and de Wolf 1997). �

We now show that this ordering has a unique top element.

Proposition 3 (Unique � element) Within the MIL setting there exists � ∈ HB,E such that
for all H ∈ HB,E we have � �B,E H and � is unique up to renaming of Skolem constants.

Proof Let ¬H ′ = ∨
H∈HB,E

¬H and ¬� = ¬H ′θv where v is a variable and θv = {u/v :
u variable in ¬H ′}. By construction for each H ∈ HB,E it follows that ¬� �θ ¬H with
substitution θv . Therefore for all H ∈ HB,E we have � �B,E H and � is unique up to
renaming of Skolem constants. �

This proposition can be illustrated with a grammar example.

Example 2 (Subsumption example) In terms of the Meta-interpreter of Fig. 1a the uni-
versal grammar {0,1}∗ can be expressed using � = {(acceptor($0) ←), (delta1($0,0,$0)

←), (delta1($0,1,$0) ←)}. Letting H represent the Parity grammar from Example 1 it is
clear that ¬H �θ ¬� and so � �B,E H . So unlike the subsumption relation between uni-
versally quantified clauses, binding all the (existentially quantified) variables in H to each
other produces a maximally general grammar �.

We now show the circumstances under which a unique bottom element of the lattice can
be constructed using Plotkin’s lgg algorithm.

Proposition 4 (Unique ⊥ element) In the case that HB,E is finite up to renaming of Skolem
constants there exists ⊥ ∈ HB,E such that for all H ∈ HB,E we have H �B,E ⊥ and ⊥ is
unique up to renaming of Skolem constants.

Proof Since HB,E is finite ¬⊥ = lgg({¬H : H ∈ HB,E}) where lgg is Plotkin’s algorithm
for computing the least general generalisation of a set of clauses under subsumption (Plotkin
1969). �

For most purposes the construction of the unique bottom clause is intractable since the
cardinality of the lgg clause increases exponentially in the cardinality of HB,E . We now
show a method for reducing hypotheses.

2.5 Reduction of hypotheses

Proposition 5 (Logical reduction of hypotheses) Suppose H ′ is an hypothesis in the MIL
setting and ¬H is the result of applying Plotkin’s clause reduction algorithm5 (Plotkin 1969)
to ¬H ′. Then H is a reduced hypothesis equivalent to H ′.

5This algorithm iteratively remove logically redundant literals from a clause until no redundant clauses re-
main.
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Language Meta-interpreter Example L
type Grammar

(a) R

parse(S) ← parse(Q,S, []).
parse(Q,X,X) ← acceptor(Q).
parse(Q, [C|X], Y ) ← delta1(Q,C,P ),

parse(P,X,Y ).

S → 0 S

S → 1 T

T → λ

T → 1 T

0+1+

(b) CF

parse(S) ← parse(Q,S, []).
parse(Q,X,X) ← acceptor(Q).
parse(Q, [C|X], Y ) ← delta1(Q,C,P ),

parse(P,X,Y ).

parse(Q,X,Y ) ← delta2(Q,P,C),
parse(P,X, [C|Y ]).

parse(Q,X,Y ) ← delta3(Q,P,R),
parse(P,X,Z),
parse(R,Z,Y ).

S → λ

S → T S

T → 0 U

U → T 1

(0n1n)∗

Fig. 3 Meta-interpreters, Chomsky-normal form grammars and languages for (a) Regular (R) and (b) Con-
text-Free (CF) languages

Proof Follows from the fact that ¬H ′ is θ -subsumption equivalent to ¬H by construc-
tion. �

Example 3 (Reduction example) Let H ′ = H ∪ {r} where H is the Parity grammar from
Fig. 2 and r = (delta1($0,0,$2) ←) represents an additional redundant grammar rule. Now
Plotkin’s reduction algorithm would reduce ¬H ′ to the equivalent clause ¬H and conse-
quently grammar H is a reduced equivalent form of H .

In the following section we show the existence of a compact bottom hypothesis in the
case of MIL for Regular languages.

2.6 Framework applied to grammar learning

Figure 3 shows how the Meta-interpreter for Regular Grammars can be extended to Context-
Free Grammars.

The Chomsky language types form an inclusion hierarchy in which Regular ⊆ Context-
Free. Algorithms for learning the Regular languages have been widely studied since the
1970s within the topic of Grammatical Inference (de la Higuera 2005). Many of these start
with a prefix tree acceptor, and then progressively merge the states.

Proposition 6 (Unique ⊥ for Regular languages) Prefix trees act as a compact bottom the-
ory in the MIL setting for Regular languages.

Proof Follows from the fact that all deterministic Regular grammars which include the posi-
tive examples can be formed by merging the arcs of a prefix tree acceptor (Muggleton 1990).
Merging the arcs of the prefix tree is achieved by unifying the delta1 atoms in ¬H within
the MIL setting. �

Example 4 (Prefix tree) Assume the MIL setting with BM being the meta-interpreter for
Regular languages. Let E+ = {parse([1,1]),parse([1,1,0])} then ⊥ = {delta1($0,1,$1),

delta1($1,1,$2),acceptor($2),delta1($2,0,$3),acceptor($3)} represents the prefix tree
automaton.
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parse(S,G1,G2) :- parse(s(0),S,[],G1,G2).

parse(Q,X,X,G1,G2) :- abduce(acceptor(Q),G1,G2).
parse(Q,[C|X],Y,G1,G2) :- Skolem(P), abduce(delta1(Q,C,P),G1,G3), parse(P,X,Y,G3,G2).

abduce(X,G,G) :- member(X,G).
abduce(X,G,[X|G]) :- not(member(X,G)).

Skolem(s(0)). Skolem(s(1)). . . .

Fig. 4 noMetagolR

Proposition 7 (⊥ for Context-Free languages) Any bottom theory ⊥ for a Context-Free
language contains a set of delta1 atoms representing a Regular prefix tree.

Proof Follows from the fact that the Regular subset of MIL hypotheses are all subsumed by
¬⊥R where ⊥R represents the Regular prefix tree. �

3 Implementations

In this section, we describe the implementations of Meta-interpretive Learning (MIL) us-
ing two different declarative languages: Prolog and Answer Set Programming (ASP). The
resulting systems are called Metagol6 and ASPM,7 respectively.

3.1 Implementation in Prolog

The systems MetagolR , MetagolCF , and MetagolRCF are three simple Prolog implementa-
tions of MIL.

3.1.1 MetagolR

Before introducing MetagolR , we first explain its simplified version noMetagolR (non-
optimising MetagolR) as shown in Fig. 4. The system noMetagolR is based on the following
abductive variant of the Regular Meta-interpreter from Fig. 3 (the standard definition of
member/2 is omitted for brevity).

The abduced atoms are simply accumulated in the extra variables G1,G2,G3. The term
s(0) represents the start symbol and a finite set of Skolem constants is provided by the
monadic predicate Skolem. Hypotheses are now the answer substitutions of a goal such as
the following.

:- parse([],[],G1), parse([0],G1,G2), parse([0,0],G2,G3), parse([1,1],G3,G4), % Pos
parse([0,0,0],G4,G5), parse([0,1,1],G5,G6), parse([1,0,1],G6,G),
not(parse([1],G,G)), not(parse([0,1],G,G)). % Neg

6Metagol is MIL encoded within YAP Prolog. The name comes from the combination of Meta- and gol,
where Meta- corresponds to the Meta-Interpreter, and gol is the reverse of log which is short for logic.
7The name ASPM is MIL encoded within an ASP solver.
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parse(S,G1,G2,S1,S2,K1,K2) :- parse(s(0),S,[],G1,G2,S1,S2,K1,K2).

parse(Q,X,X,G1,G2,S,S,K1,K2) :- abduce(acceptor(Q),G1,G2,K1,K2).
parse(Q,[C|X],Y,G1,G2,S1,S2,K1,K2) :- Skolem(P,S1,S3),

abduce(delta1(Q,C,P),G1,G3,K3,K2), parse(P,X,Y,G3,G2,S3,S2,K3,K2).

abduce(X,G,G,K,K) :- member(X,G).
abduce(X,G,[X|G],s(K),K) :- not(member(X,G)).

Skolem(s(N),[s(Pre)|SkolemConsts],[s(N),s(Pre)|SkolemConsts]):- N is Pre+1.
Skolem(S,SkolemConsts,SkolemConsts):-member(S,SkolemConsts).

Fig. 5 MetagolR

Note that each of the positive examples are provided sequentially within the goal and the
resulting grammar is then tested for non-coverage of each of the negative examples. The
final grammar returned in the variable G is a solution which covers all positives and none of
the negatives. In the case shown above the first hypothesis found by Prolog is as follows.

G = [delta1(s(1),0,s(1)),delta1(s(1),1,s(0)),delta1(s(0),1,s(1)),
delta1(s(0),0,s(0)),acceptor(s(0))]

This hypothesis correctly represents the Parity acceptor of Fig. 1. All other consistent hy-
potheses can be generated by making Prolog backtrack through the SLD proof space.

MetagolR We will now explain the following procedural biases, which extends
noMetagolR to MetagolR .

Minimal hypothesis Occam’s razor suggests to select the shortest hypothesis that fits the
data. Therefore we introduce the clause bound into MetagolR so that the search starts from
shorter hypotheses. In MetagolR (Fig. 5) the variables K , K1, K2 and K3 are related to
the clause bound. They are instantiated with Peano numbers (s(0), s(1), . . .) representing a
bound on the maximum number of abduced clauses. Thus the second clause of abduce/5
fails once K1 has a value of 0. K1 is iteratively increased until an hypothesis is found
within that bound. The search thus guarantees finding an hypothesis with minimal descrip-
tion length.

Specific-to-General Within the MIL setting an hypothesis Hs is said to be more specific
than Hg in the case that ¬Hs �θ ¬Hg , as explained in Sect. 2.4. Therefore Hs is a refine-
ment of Hg by renaming with new Skolem constants. In MetagolR the Skolem constants
are enumerated by the program of Skolem/3. The first clause of Skolem/3 introduces a new
Skolem constant, while the second clause of Skolem/3 provides a Skolem constant that has
already been used in the deriving hypothesis. Due to Prolog’s procedural semantics, the first
clause of Skolem/3 will be tried before the second one, thus Hs , that is, the one with more
Skolem constants, will be considered before Hg .8 Switching the order of the two clauses in
Skolem/3 will result in a general-to-specific search. In that case, the universal grammar will
be considered first, since it is maximally general and can be expressed with only one Skolem
constant (see Example 2).

8Provided Hg and Hs are within the same clause bound.
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Fig. 6 MetagolRCF metagolRCF(G):- metagolR(G).
metagolRCF(G):- metagolCF(G).

MetagolCF The MetagolCF system is based on an abductive variant of the Context-Free
Meta-interpreter from Fig. 3, though we omit the full Prolog description due to space re-
strictions. Once more, abduction is carried out with respect to a single goal as in MetagolR .

MetagolRCF The MetagolRCF system simply combines MetagolR and MetagolCF sequen-
tially, as shown below in Fig. 6. Due to Prolog’s procedural semantics, the hypothesis re-
turned will be Regular in the case MetagolR finds a consistent grammar and otherwise will
be the result of MetagolCF .

3.2 Implementation in Answer Set Programming (ASP)

Compared to Prolog, ASP not only has advantages in handling non-monotonic reason-
ing, but also has higher efficiency in tackling search problems (Gebser et al. 2012). The
systems ASPMR and ASPMCF are two simple ASP implementations of Meta-interpretive
learning. Each sequence is encoded as a set of facts. For example, the positive example
posEx(Seq2, [1,1]) is encoded in the second line in Fig. 7, where seq2 is the ID of the
sequence and the predicate seqT (SeqID,P,T ) means the sequence has a terminal T at po-
sition P . The meta-interpretive parser uses position to mark a substring, rather than storing
the substring in a list. The goal of finding an hypothesis that covers all positive examples
and none of the negatives is encoded as an integrity constraint.

ASPMR The program in Fig. 8 is an ASP implementation of the Regular Meta-interpreter
in Fig. 3. It is sectioned into parts describing generating, defining, testing, optimising, and
displaying. The generating part specifies the hypothesis space as a set of facts about delta1/3
and acceptor/1. ASP choice rules are used to indicate that any subset of this set is allowed
in the answer sets of this program. The defining part corresponds to the Regular Meta-
interpreter. The testing part contains an integrity constraint saying that an answer set of this
program should contain production rules which parse all positive examples and no negative
examples. The display part restricts the output to containing only predicates delta1/3 and
acceptor/1, which corresponds to the hypothesis.

In order to find a minimal hypothesis like that in MetagolR , the optimisation component
in ASP is used. Although the use of optimisation increases the computational complexity
(Gebser et al. 2012), it improves9 the predictive accuracy of the hypothesis. An optimisation
statement like the one in Fig. 8 specifies the objective function to be optimised. The weight
following each atom is part of the objective function. In our case, the objective function

List Facts
posEx(e1,[0,0]).
posEx(e2,[1,0,1]).
negEx(e3,[1]).
negEx(e4,[0,1]).

posEx(e1). length(e1,2). seqT(e1,0,0). seqT(e1,1,0).
posEx(e2). length(e2,3). seqT(e2,0,1). seqT(e2,1,0). seqT(e2,2,1).
negEx(e3). length(e3,1). seqT(e3,0,1).
negEx(e4). length(e4,2). seqT(e4,0,0). seqT(e4,1,1).

Fig. 7 ASP representation of examples

9Occam’s razor suggests that simpler hypotheses have higher predictive power. This is further supported by
Sect. 4 about experiments, where the non-minimal hypotheses suggested by MC-TopLog have lower predic-
tive accuracies than the minimal ones hypothesised by ASPM and Metagol.
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% Instances
#const maxNumSkolemConstants=1.
Skolem(0..maxNumSkolemConstants).
terminal(0;1).

% Generate: specify the hypothesis space
{acceptor(NT):Skolem(NT)}.
{delta1(NT1,T,NT2):Skolem(NT1):terminal(T):Skolem(NT2)}.

% Defining Part
parse(ExID,MaxLengh,MaxLengh,NT):- length(ExID,MaxLengh),acceptor(NT).
parse(ExID,Position1,Position2,NT1):- seqT(ExID,Position1,T),
delta1(NT1,T,NT2), parse(ExID,Position1+1,Position2,NT2).

% Integrity constraint
:- negEx(ExID),length(ExID,MaxLengh),parse(ExID,0,MaxLengh,0)).
:- posEx(ExID),length(ExID,MaxLengh),not parse(ExID,0,MaxLengh,0).

% Optimisation
#minimize [delta1(NT1,T,NT2):Skolem(NT1):terminal(T):Skolem(NT2)=1,
acceptor(NT):Skolem(NT)= 1].

% Displaying
#hide.
#show delta1/3.
#show acceptor/1.

Fig. 8 ASPMR

corresponds to the description length of an hypothesis. Therefore the weight is set to 1 for
each atom, meaning the description length of a unit clause is 1.

Most ASP solvers do not support variables directly, therefore a grounder is needed for
transforming the input program with first-order variables into an equivalent ground program.
Then an ASP solver can be applied to find an answer set that satisfies all the constraints. The
hypothesised grammar will be part of the returned answer set. In the case shown above the
first hypothesis returned by ASP is the same as the one found by Metagol and correctly
represents the Parity acceptor of Fig. 1.

ASP solvers use efficient constraint handling techniques to efficiently find stable mod-
els known as answer sets. This computational mechanism is very different from that of
Prolog, leading to their different implementations, in particular, in the use of iterative deep-
ening. In addition, the bound on clauses puts an implicit limit on Skolem constants, since
the number of Skolem constants in a derived hypothesis is at most the number of clauses it
contains. Therefore MetagolR is immune to the number of Skolem constants pre-specified
in the background knowledge. By contrast, ASPMR is largely affected by the number of
Skolem constants due to its bottom-up search. Therefore ASPMR has to put an explicit
bound on the number of Skolem constants. More specifically, the second line of ‘Generate’
{delta1(NT 1, T ,NT 2) : Skolem(NT 1) : terminal(T ) : Skolem(NT 2)} has a default size of
T ∗ NT 2, where T corresponds to the number of terminals and NT denote the number
of Skolem constants. While a cardinality constraint on this set does not always reduce the
search space, because it can lead to a quadratic blow-up in search space (Gebser et al. 2012)
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when the cardinality constraint is translated into normal logic program during the ground-
ing stage. Additionally, ASP solvers’ build-in optimisation component is handy for finding
a global minimal hypothesis. Thus ASPMR does not use iterative deepening on the clause
bound like that in MetagolR for finding a global minimal hypothesis.

ASPMCF Similar to MetagolCF , the ASPMCF system is based on a variant of the Context-
Free Meta-interpreter from Fig. 3. However, there is no equivalent ASP implementation to
MetagolRCF . Since MetagolRCF exploits the procedural semantics of Prolog programs, while
there is no similar procedural semantics for ASP programs.

4 Experiments

In this section we describe experiments on learning Regular, Context-Free and a simplified
natural language grammar. It was shown in Sect. 1 that ILP systems cannot learn grammars
in a DCG representation with predicate invention. However, an ILP system given a meta-
interpreter as part of background knowledge becomes capable of doing predicate invention.
In the experiments described below, the performance of a state-of-the-art ILP system MC-
TopLog, loaded with suitable meta-interpretive background, is compared against variants
of Metagol and ASPM as described in Sect. 3. MC-TopLog is chosen for this comparison
since it can learn multiple dependent clauses from examples (unlike say Progol). This is a
necessary ability for grammar learning tasks. In the final experiment we show how MIL can
be used to learn a definition of a staircase. This indicates the applicability of MIL in more
general learning applications beyond grammar learning. All datasets and learning systems
used in these experiments are available at http://ilp.doc.ic.ac.uk/metagol.

4.1 Learning regular languages

We investigate the following Null hypotheses.

Null Hypothesis 1.1 MetagolR , ASPMR and a state-of-the-art ILP system cannot learn ran-
domly chosen Regular languages.

Null Hypothesis 1.2 MetagolR and ASPMR cannot outperform a state-of-the-art ILP sys-
tem on learning randomly chosen Regular languages.

Null Hypothesis 1.3 MetagolR can not outperform ASPMR on learning randomly chosen
Regular languages.

4.1.1 Materials and methods

Randomly chosen deterministic Regular grammars were generated by sampling from a
Stochastic Logic Program (SLP) (Muggleton 1996) which defined the space of target gram-
mars. More specifically, the SLP used for sampling consists of a meta-interpreter and all pos-
sible grammars. Then the following steps were conducted. Firstly, an integer i (1 ≤ i ≤ 3)

was randomly sampled. This integer corresponds to the number of seed examples.10 Sec-
ondly, the query “sample(parse(Seq,Grammar))’ returned one sequence as well as the gram-
mar that parse this sequence. Thirdly, the grammars were aggregated by issuing the query

10The parsing of seed examples requires all rules in the grammar.

http://ilp.doc.ic.ac.uk/metagol
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Table 1 Average and Maximum
lengths of sampled examples for
datasets R1, R2, CFG3 and CFG4

RG1 RG2 CFG3 CFG4

Average ± STD 6.15 ± 4.06 11.43 ± 10.47 5.89 ± 3.08 11.02 ± 9.79

Maximum 15 78 15 68

‘sample(parse(Seq,Grammar))” i times. Finally, each generated grammar was reduced us-
ing Plotkin’s reduction algorithm (see Sect. 2.5) to remove redundancy and equivalent non-
terminals. Non-deterministic and finite language grammars were discarded. Sampling of
examples was also done using an SLP. Sampling was with replacement.

In this experiment, we used two different datasets sampled from different distributions.
In dataset RG1, the examples were randomly chosen from Σ∗ for Σ = {a, b}, while in RG2
Σ = {a, b, c}. RG2 has longer sequence lengths, as shown by Table 1. Both datasets con-
tains 200 randomly chosen Regular grammars. We compared the performance of MetagolR ,
ASPMR and MC-TopLog on learning Regular grammars using RG1. Only MetagolR and
ASPMR were compared on RG2, since MC-TopLog failed to terminate due to the longer
sequence examples. The performance was evaluated on predictive accuracies and running
time.11 The results were averaged over 200 randomly sampled grammars. For each sample,
we used a fixed test set of size 1000. The size of training set varied from 2 to 50 in RG1 and
from 4 to 100 in RG2.

4.1.2 Results and discussion

As shown by Fig. 9(a), all three systems have predictive accuracies significantly higher than
default. Therefore Null hypothesis 1.1 is refuted. MC-TopLog is not usually able to carry
out predicate invention, but is enabled to do so by the inclusion of a meta-interpreter as
background knowledge.

As shown in Fig. 9(b), MC-TopLog’s running time is considerably longer than MetagolR
and ASPMR . MC-TopLog has slightly lower predictive accuracies than both MetagolR and
ASPMR . The difference is statistically significant according to a t -test (p < 0.01). There-
fore, Null hypothesis 1.2 is refuted with respect to both predictive accuracy and running
time. MC-TopLog’s longer running time is due to the fact that it enumerates all candidate
hypotheses within the version space. By contrast, both MetagolR and ASPMR do not traverse
the entire space. In particular, ASP solver like Clasp incorporate effective optimisation tech-
niques based on branch-and-bound algorithms (Gebser et al. 2007). The larger hypothesis
space leads to lower accuracy in MC-TopLog. This is consistent with the Blumer Bound
(Blumer et al. 1989), according to which the error bound decreases with the size of the hy-
pothesis space. Moreover, MC-TopLog’s accuracy is also affected by its covering algorithm
which is greedy and does not guarantee finding a global optimal. By contrast, both MetagolR
and ASPMR find an hypothesis which is minimal in terms of description length. Figure 11
compares the different hypothesis suggested by the three systems. MC-TopLog’s hypoth-
esis HmcT opLog is longer than both of MetagolR and ASPMR . By contrast, both MetagolR
and ASPMR derive the one with minimal description length, although they are not exactly
the same. HmetagolR is more specific than HaspMR due to the specific-to-general search in
MetagolR . In this example, HmetagolR is the same as the target hypothesis.

11The running times of MetagolR and ASPMR are measured in terms of getting the first minimal hypothesis,
rather than all minimal hypotheses.
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Fig. 9 Average (a) predictive
accuracies and (b) running times
for Null hypothesis 1 (Regular)
on short sequence examples
(RG1)

Figure 9(b) indicates that MetagolR has considerably lower running time than ASPMR ,
and the difference increases when examples are long, as shown in Fig. 10(b). MetagolR also
has slightly higher accuracy than ASPMR . A t -test suggests that their difference in accuracy
is statistically significant (p < 0.01) as one is consistently higher than the other. There-
fore, Null hypothesis 1.3 is refuted with respect to both predictive accuracy and running
time. The reasons that MetagolR is faster than ASPMR on learning regular languages are:
(1) MetagolR , as a Prolog implementation, can use forms of procedural bias which can-
not be defined declaratively in ASP since the search in ASP is not affected by the order of
clauses in the logic program; (2) there are few constraints in the learning task so that efficient
constraint handling techniques in ASP do not increase efficiency.

Both MetagolR and ASPMR’s running times appear to increase linearly with the number
of examples. By contrast, MC-TopLog’s running time appears to be unaffected by the num-
ber of examples. MC-TopLog’s running time is determined by the size of the hypothesis
space it enumerates, which depends on the lengths of examples. It therefore fails to learn
from RG2 which has longer sequences (see Table 1).

4.2 Learning context-free languages

We investigate the following Null hypotheses.

Null Hypothesis 2.1 MetagolCF , ASPMCF and a state-of-the-art ILP system cannot learn
randomly chosen Context-Free languages.

Null Hypothesis 2.2 MetagolCF and ASPMCF cannot outperform a state-of-the-art ILP sys-
tem on learning randomly chosen Context-Free languages.
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Fig. 10 Average (a) predictive
accuracies and (b) running times
for Null hypothesis 1 (Regular)
on long sequence examples
(RG2)

Null Hypothesis 2.3 MetagolCF cannot outperform ASPMCF on learning randomly chosen
Context-Free languages.

4.2.1 Materials and methods

Randomly chosen Context-Free grammars were generated using an SLP and reduced using
Plotkin’s reduction algorithm (see Sect. 2.5). Grammars were removed if they corresponded
to finite languages or could be recognised using the pumping lemma for Context-Free gram-
mars. However, not all Regular grammars can be filtered in this way, since it is undecid-
able whether a Context-Free grammar is Regular. More specifically, if a grammar is not
pumpable, then it is definitely Regular, while a pumpable grammar is not necessarily non-
Regular.

E+ E− HmetagolR HaspMR HmcT opLog

aa

aba

abbba

abab

aabaa

baaababaa

s → a s1

s1 → b s1

s1 → a s2

s2 →

s → a s1

s1 → b s1

s1 → a s
s →

s → a s

s →
s → b s1

s1 → a s2

s2 →
s1 → b s

Fig. 11 Hypothesis comparison
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Fig. 12 Average (a) predictive
accuracies and (b) running times
for Null hypothesis 2
(Context-free) on short sequence
examples (CFG3)

The examples were generated in the same way as that in the Regular-language experi-
ment. There were two datasets, each containing 200 samples. Details are shown in Table 1.
The comparisons of MetagolCF , ASPMCF and MC-TopLog on learning Context-Free gram-
mars was done using only dataset CFG3 since MC-TopLog failed to terminate on CFG4 with
long-sequence examples. The evaluation method was the same as that for learning regular
languages.

4.2.2 Results and discussion

As shown in Fig. 12(a), all three systems derive hypotheses with predictive accuracies con-
siderably higher than default. Therefore Null hypotheses 2.1 is refuted. Compared to MC-
TopLog, both MetagolCF and ASPMCF have consistently higher averaged predictive accu-
racies. This is again explained by the Blumer Bound since MC-TopLog considers a larger
hypothesis space. MetagolCF conducts a bounded search using a bottom clause so that it is
feasible even though the version space is potentially infinite. ASP solvers can also deal with
infinite spaces.

Null hypothesis 2.2 is refuted with respect to both running time and predictive accuracy.
The predictive accuracies of MetagolCF and ASPMCF , have no significant difference on ei-
ther dataset, as shown by the graphs in Figs. 12(a) and 13(a), since both derive globally
optimal solutions. However, MetagolCF has shorter running time due to its procedural bias.
Therefore Null hypothesis 2.3 is refuted.
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Fig. 13 Average (a) predictive
accuracies and (b) running times
for Null hypothesis 2
(Context-free) on long sequence
examples (CFG4)

4.3 Representation change

Null Hypothesis 3 MetagolRCF cannot improve performance by changing representation
from Regular to Context-Free languages.

4.3.1 Materials and methods

The experiment used RG1 and CFG3 from the previous two experiments. Therefore, there
were 400 sampled grammars in total, half being Regular and the other half mostly Context-
Free and non-Regular.

We compared MetagolRCF (variable hypothesis space) against MetagolCF (fixed hypothe-
sis space). The predictive accuracies and running time were measured as before. The results
were averaged over the 400 grammars.

4.3.2 Results and discussion

As shown in Fig. 14(a), MetagolRCF has slightly higher predictive accuracies than
MetagolCF . This refutes Null hypothesis 3. The accuracy difference is once more consistent
with the Blumer Bound (Blumer et al. 1989), according to which the error bound decreases
with the size of the hypothesis space.

Note also in Fig. 14(b), that the running times of MetagolCF are significantly higher than
MetagolRCF . This can be explained by the fact that when the target grammar is Regular,
Context-Free grammars were still considered.
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Fig. 14 Average (a) predictive
accuracies and (b) running times
for Null hypothesis 3
(Representation change) on
combination of RG dataset1 and
CFG dataset3

4.4 Learning a simplified natural language grammar

MetagolN and ASPMN are two systems resulting from the application of Metagol and ASPM

in learning a simplified natural language grammar. We investigate the following Null hy-
potheses. MC-TopLog was not included for comparison since its search time was excessive
in these learning tasks.

Null Hypothesis 4.1 MetagolN and ASPMN cannot learn a simplified natural language
grammar.

Null Hypothesis 4.2 MetagolN cannot outperform ASPMN on learning a simplified natural
language grammar.

Null Hypothesis 4.3 The provision of background knowledge does not improve learning
accuracies and efficiency.

4.4.1 Materials and methods

The training examples come from the same domain considered in Muggleton et al. (2012)
and consist of 50 sentences such as “a ball hits the small dog”. Half the examples are posi-
tive and half negative, resulting in a default accuracy of 50 %. The complete target grammar
rules for parsing the training examples are given in Fig. 15. Each learning task is generated
by randomly removing a set of clauses. The left-out clauses become the target to be recon-
structed. For each size of leave-out, we sampled ten times. For each sample, the predictive
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Definite Clause Grammar Production rules
s(S1, S2) ← np(S1, S3), vp(S3, S4), np(S4, S2).
s(S1, S2) ← np(S1, S3), vp(S3, S4), np(S4, S5),

prep(S5, S6), np(S6, S2).

np(S1, S2) ← det(S1, S3), noun(S3, S2).
np(S1, S2) ← det(S1, S3), adj(S3, S4), noun(S4, S2).

vp(S1, S2) ← verb(S1, S2).
vp(S1, S2) ← verb(S1, S3), prep(S3, S2).

s → s4 s1

s1 → s5 s4
s1 → s5 s2
s2 → s4 s3
s3 → prep s4
s4 → det noun
s4 → det s6
s6 → adj noun
s5 → verb
s5 → verb prep

Fig. 15 Target theory for simplified natural language grammar

Fig. 16 Average predictive
accuracies for Null hypothesis 4
on simplified natural language
grammars

accuracies were computed by 10-fold cross validation.12 The results plotted on the figure
are averaged over all leave-out samples.

4.4.2 Results and discussion

The predictive accuracies and running times are plotted in Figs. 16 and 17 respectively.
The x-axis corresponds to the percentage of remaining production rules. More specifically,
0 % corresponds to the case when BA = ∅, while 90 % means 9 out of 10 production rules
remain. Figure 16 shows that the predictive accuracies of both MetagolN and ASPMN are
significantly higher than default, therefore Null hypothesis 4.1 is refuted.

Although there is no significant difference between MetagolN and ASPMN in terms of
predictive accuracy, ASPMN takes much shorter running time than MetagolN when more
than half of the production rules are missing (x < 50 %). However, the expanded version
for 50 % ≤ x ≤ 90 % in Fig. 17(b) shows that ASPMN becomes slower than MetagolN when
background knowledge is less sparse. Therefore, Null hypothesis 4.2 is refuted since when
more than 70 % of the production rules remain MetagolN has significantly shorter running
time than ASPMN without sacrificing its predictive accuracy. This is due to the procedural
bias encoded in MetagolN .

The running times of both MetagolN and ASPMN decrease dramatically with the increase
of background knowledge. The predictive accuracies increase with increasing background

12The size of available examples is 50, therefore not large enough for reserving a subset as test set.
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Fig. 17 Averaged running time
for Null hypothesis 4 on
simplified natural language
grammars. (a) Full range [0,90].
(b) Partial range [50,90] but
expanded

Fig. 18 Metagol and ASPM
hypotheses for learning a
simplified natural language
grammar

HM (Metagol) HA (ASPM)
s → s2 s1
s1 → prep s4
s1 → det s5
s2 → s4 s3
s3 → verb
s3 → verb s4
s4 → det s5
s5 → adj noun
s5 → noun

s → s4 s3
s3 → verb s5
s3 → verb s4
s4 → s6 s5
s4 → det s5
s5 → prep s6
s5 → noun
s6 → det noun

s6 → det adj

knowledge, reaching 100 % when the degree of remaining background clauses increases to
70 %. Therefore, Null hypothesis 4.3 is refuted.

Figure 18 compares the different hypotheses derived by MetagolN and ASPMN . These
are derived when BA = ∅. Since both MetagolN and ASPMN find an hypothesis which is
globally optimal in terms of description length, these hypotheses have identical description
length although they are not identical hypotheses. Among all the invented predicates in HM ,
s4 corresponds to np in natural grammars and s3 is closed to vp. Similarly in HA, s3 and s6
corresponds to vp and np respectively.



46 Mach Learn (2014) 94:25–49

staircase(Planes) ← n_of _parts(Planes,4), % there are 4 parts in Planes
member(C,Planes), distributed_along(C,axisX).

Fig. 19 Non-recursive definition of staircase hypothesised by ALEPH (Partial)

First-order logic Production rules
staircase(Planes) ← s1(Planes).
staircase([X,Y,Z|Planes]) ← s1([X,Y,Z]),

staircase([Z|Planes]).
s1([X,Y,Z]) ← vertical(X,Z), horizontal(Z,Y )

staircase → s1
staircase → s1 staircase

s1 → vertical horizontal

Fig. 20 Recursive definition of staircase hypothesised by MIL. s1 is an invented predicate corresponding to
the concept of step

4.5 Learning a definition of a staircase

The authors of Farid and Sammut (2012) have shown that ALEPH can learn a definition of
a staircase for a rescue robot from visually-derived data. Part of such definition is shown in
Fig. 19. This kind of definition is not entirely general since it does not involve recursion. We
now demonstrate that MIL can be used to learn a general recursive definition of a staircase
using predicate invention. A staircase can be represented by a set of ordered planes. For
example, staircase([p1,p2,p3]) represents a staircase composed of three planes. Relational
information from the camera indicates that plane1 is vertical relative to plane2. This can
be encoded as a delta rule delta4(vertical,p1,p2), where vertical is a non-terminal of a
grammar and p1 and p2 are terminals. The meta-interpreter used in this experiment is a
variant of the Context-Free Meta-interpreter from Fig. 3.

Training examples of staircases and their planar description were provided as input to
both Metagol and ASPM. The resulting hypothesis produced by both systems is shown in
Fig. 20, where s1 is an invented predicate corresponding to step. Due to its recursive form,
this definition has shorter description length than those found by ALEPH. It is also general
in its applicability and easily understood.

5 Related work

Grammatical inference (or grammatical induction) is the process of learning a grammar from
a set of examples. It is closely related to the fields of machine learning as well as the theory of
formal languages. It has numerous real-world applications including speech recognition (e.g.
Stolcke 1995), computational linguistics (e.g. Florêncio 2002) and computational biology
(e.g. Salvador and Benedi 2002).

The problem of learning or inferring Regular languages, which can be represented by de-
terministic finite state automata, has been well studied and efficient automaton-based learn-
ing algorithms have existed since the 1950s (Moore 1956). Some heuristic approaches to
machine learning context-free grammars (Vanlehn and Ball 1987; Langley and Stromsten
2000) have been investigated, though the completeness of these approaches is unclear. Al-
though an efficient and complete approach exists for learning context-free grammars from
parse trees (Sakakibara 1992), no comparable complete approach exists in the literature for
learning context-free grammars from positive and negative samples of the language. Ac-
cording to a recent survey article learning context-free languages is widely believed to be
intractable and the state of the art mainly consists of negative results (de la Higuera 2005).
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There are some positive PAC (probably approximately correct) learning results concerning
Regular languages (e.g. Denis 2001), but to the best of our knowledge, these have not been
extended to the context-free case. The difficulty of learning context-free languages arises
from a very large search space compared to regular languages.

ILP, among other learning methods, has previously been applied to grammatical infer-
ence (e.g. Boström 1998). However, as discussed in Sect. 1, ILP systems normally re-
quire predicate invention even for learning Regular languages. Predicate invention has been
viewed as an important problem since the early days of ILP (e.g. Muggleton and Buntine
1988), but it is widely accepted to be a hard and under-explored topic within ILP (Mug-
gleton et al. 2011). Although Cussens and Pulman (2000) has applied ALEPH for learning
natural language grammar, its learning setting avoids predicate invention by assuming all
predicates like np (noun phrase) are known in the background knowledge. Additionally, the
entailment-incompleteness of ALEPH restricts the applicability of the approach.

In the Meta-interpretive Learning (MIL) framework introduced in this paper, predicate
invention is done via abduction with respect to a meta-interpreter and by the introduction
of first-order variables. This method is therefore related to other studies where abduction
has been used for predicate invention. For instance, (Inoue et al. 2010) assumes background
knowledge such as the following.

caused(X,Y ) ← connected(X,Y ).

caused(X,Y ) ← connected(X,Z), caused(Z,Y ).

Here the predicates connected and caused are both meta-predicates for object-level proposi-
tions g and s. Given multiple observations such as caused(g, s) and caused(h, s) abduction
can be used to generate an explanation

∃X
(
connected(g,X), connected(h,X), connected(X, s)

)

in which X can be thought of as a new propositional predicate. One important feature of
MIL, which makes it distinct from this approach, is that it introduces new predicate symbols
which represent relations rather than new objects or propositions. In comparison to previ-
ous approaches to predicate invention one might question what is meant by the predicate
symbols being new. In our case, we assume a source containing either a finite or an infinite
source (e.g. the natural numbers) of uninterpreted predicate symbols. Rather than providing
these implicitly in hidden code (as was the case in CIGOL (Muggleton and Buntine 1988)),
we prefer to have these symbols explicitly defined as part of the Herbrand universe of the
meta-interpreter. Abductive hypothesis formation then provides the interpretation for these
otherwise uninterpreted symbols.

6 Conclusions and further work

This paper explores the theory, implementation and experimental application of a new
framework (MIL) for machine learning by abduction with respect to a given Meta-
interpreter. We have demonstrated that the MIL framework can be implemented using a
simple Prolog program or within a more sophisticated solver such as ASP. We have applied
these implementations to the problem of inductive inference of grammars, where our ex-
periments indicate that they compete favourably in speed and accuracy with the state of the
art ILP system MC-TopLog. The MIL framework has a number of advantages with respect
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to the standard ILP framework. In particular, predicate invention and mutual recursion can
be incorporated with ease by way of Skolem constants. The Meta-interpreter provides an
efficient declarative bias mechanism for controlling the search for hypotheses, which takes
advantage of the completeness of SLD resolution in Prolog. This mechanism is distinct from
the use of first-order declarative bias in the form of a � theory (Muggleton et al. 2010, 2012)
since it is not assumed that the meta-interpreter entails each hypothesis.

The approach presented here is limited to learning grammars in the form of DCGs. Such
grammars can be learned with predicates of arity at most 2. In future work we hope to deal
with a number of extensions of this study. In particular, we would like to extend the applica-
tions of the MIL framework to non-grammar fragments of first-order logic. We have shown
an example of non-grammar learning, but more general learning problem requires Monadic
and Dyadic and higher arity fragments of first-order logic. We would like to incorporate a
number of other features of ILP and SRL learning systems such as probabilistic parameters
(similar to SRL) and noise handling.

Clearly devising an appropriate meta-interpreter for a fragment of logic other than those
studied in this paper will require careful mathematical analysis. The situation may be com-
pared to that within Support Vector Machines, in which certain mathematical properties have
to be established for each new form of kernel function. Hopefully, over time, such a process
will become more routine and it may be possible to provide end users with general tools
which support this activity. In the ideal case, we would like in future work, to develop a meta-
interpreter which is capable of implementing highly expressive, ideally Turing-complete,
languages. Such a meta-interpreter might then be reasonably expected to learn effectively
on arbitrary new problems without further manual revision of its meta-interpreter.

In closing we believe the MIL framework provides a promising and novel form of Induc-
tive Logic Programming which avoids a number of the bottlenecks of existing approaches.
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