
Mach Learn
DOI 10.1007/s10994-014-5471-y

Meta-interpretive learning of higher-order dyadic
datalog: predicate invention revisited

Stephen H. Muggleton · Dianhuan Lin ·
Alireza Tamaddoni-Nezhad

Received: 10 January 2014 / Accepted: 10 October 2014
© The Author(s) 2015

Abstract Since the late 1990s predicate invention has been under-explored within inductive
logic programming due to difficulties in formulating efficient search mechanisms. However,
a recent paper demonstrated that both predicate invention and the learning of recursion can
be efficiently implemented for regular and context-free grammars, by way of metalogical
substitutions with respect to a modified Prolog meta-interpreter which acts as the learn-
ing engine. New predicate symbols are introduced as constants representing existentially
quantified higher-order variables. The approach demonstrates that predicate invention can be
treated as a form of higher-order logical reasoning. In this paper we generalise the approach
of meta-interpretive learning (MIL) to that of learning higher-order dyadic datalog programs.
We show that with an infinite signature the higher-order dyadic datalog class H2

2 has uni-
versal Turing expressivity though H2

2 is decidable given a finite signature. Additionally we
show that Knuth–Bendix ordering of the hypothesis space together with logarithmic clause
bounding allows our MIL implementation MetagolD to PAC-learn minimal cardinality H2

2
definitions. This result is consistent with our experiments which indicate that MetagolD

efficiently learns compact H2
2 definitions involving predicate invention for learning robotic

strategies, the East–West train challenge and NELL. Additionally higher-order concepts were
learned in the NELL language learning domain. The Metagol code and datasets described in
this paper have been made publicly available on a website to allow reproduction of results in
this paper.

Keywords Induction · Abduction ·Meta-interpretation · Predicate invention ·
Learning recursion

Editors: Gerson Zaverucha and Vítor Santos Costa.

S. H. Muggleton (B) · D. Lin · A. Tamaddoni-Nezhad
Department of Computing, Imperial College London, London, UK
e-mail: s.muggleton@imperial.ac.uk

123

Mach Learn

1 Introduction

Suppose we machine learn a set of kinship relations such as those in Fig. 1. If examples
of the ancestor relation are provided and the background contains only father and mother
facts, then a system must not only be able to learn ancestor as a recursive definition but also
simultaneously invent parent to learn these definitions.

Although the topic of Predicate Invention was investigated in early Inductive Logic Pro-
gramming (ILP) research (Muggleton and Buntine 1988; Stahl 1992) it is still seen as hard
and under-explored (Muggleton et al. 2011). ILP systems such as ALEPH (Srinivasan 2001)
and FOIL (Quinlan 1990) have no predicate invention and limited recursion learning and
therefore cannot learn recursive grammars from example sequences. By contrast, in (Mug-
gleton et al. 2014) definite clause grammars were learned with predicate invention using
Meta-Interpretive Learning (MIL). MIL (Muggleton and Lin 2013; Muggleton et al. 2014;
Lin et al. 2014) is a technique which supports efficient predicate invention and learning of
recursive logic programs built as a set of metalogical substitutions by a modified Prolog
meta-interpreter (see Fig. 2) which acts as the central part of the ILP learning engine. The
meta-interpreter is provided by the user with meta-rules (see Fig. 3) which are higher-order
expressions describing the forms of clauses permitted in hypothesised programs. As shown
in Fig. 3 each meta-rule has an associated Order constraint, which is designed to ensure
termination of the proof (see Sect. 4.1). The meta-interpreter attempts to prove the examples
and, for any successful proof, saves the substitutions for existentially quantified variables
found in the associated meta-rules. When these substitutions are applied to the meta-rules

Family Tree

Jake

Jo

Sam

Megan

Alice

Jill

Jane

Bob

Liz

John
Mary

Susan

Bill

Matilda

Ted

Harry

Andy

Target Theory
father(ted, bob) ←
father(ted, jane) ←
parent(X, Y) ← mother(X, Y)
parent(X, Y) ← father(X, Y)
ancestor(X, Y) ← parent(X, Y)
ancestor(X, Y) ← parent(X, Z), ancestor(Z, Y)

First-order Metalogical substitutions
Examples

ancestor(jake, bob) ←
ancestor(alice, jane) ←

N/A

Background Knowledge
father(jake, alice) ←
mother(alice, ted) ←

N/A

Instantiated Hypothesis
father(ted, bob) ←
father(ted, jane) ←
p1(X, Y) ← father(X, Y)
p1(X, Y) ← mother(X, Y)
ancestor(X, Y) ← p1(X, Y)
ancestor(X, Y) ← p1(X, Z),

ancestor(Z, Y)

metasub(instance, [father, ted, bob])
metasub(instance, [father, ted, jane])
metasub(base, [p1, father])
metasub(base, [p1, mother])
metasub(base, [ancestor, p1])
metasub(tailrec, [ancestor, p1, ancestor])

Fig. 1 Kinship example. p1 invented, representing parent

123

Mach Learn

Generalised meta-interpreter
prove([], P rog, Prog).
prove([Atom|As], P rog1, P rog2) : −

metarule(Name, MetaSub, (Atom :- Body), Order),
Order,
save subst(metasub(Name, MetaSub), P rog1, P rog3),
prove(Body, Prog3, P rog4),
prove(As, Prog4, P rog2).

Fig. 2 Prolog code for the generalised meta-interpreter. The interpreter recursively proves a series of atomic
goals by matching them against the heads of meta-rules. After testing the Order constraint save_subst checks
whether the meta-substitution is already in the program and otherwise adds it to form an augmented program.
On completion the returned program, by construction, derives all the examples

Name Meta-Rule Order
Instance P (X, Y) ← True
Base P (x, y) ← Q(x, y) P Q
Chain P (x, y) ← Q(x, z), R(z, y) P Q, P R
TailRec P (x, y) ← Q(x, z), P (z, y) P Q,

x z y

Fig. 3 Examples of dyadic meta-rules with associated Herbrand ordering constraints. � is a pre-defined
ordering over symbols in the signature

they result in a first-order definite program which is an inductive generalisation of the exam-
ples. For instance, the two examples shown in the upper part of Fig. 1 could be proved by the
meta-interpreter in Fig. 2 from the Background Knowledge BK by generating the Hypothesis
H using the Prolog goal

← prove([ancestor, jake, bob], [ancestor, alice, jane], BK , H).

H is constructed by applying the metalogical substitutions in Fig. 1 to the corresponding
meta-rules found in Fig. 3. Note that p1 is an invented predicate corresponding to parent.

Completeness of SLD resolution ensures that all hypotheses consistent with the examples
can be constructed. Moreover, unlike many ILP systems, only hypotheses consistent with all
examples are considered. Owing to the efficiency of Prolog backtracking MIL implemen-
tations have been demonstrated to search the hypothesis space 100–1,000 times faster than
state-of-the-art ILP systems (Muggleton et al. 2014) in the task of learning recursive gram-
mars.1 In this paper we investigate MIL’s efficiency and completeness with respect to the
broader class of Dyadic Datalog programs. We show that a fragment of this class is Turing
equivalent, allowing the learning of complex recursive programs such as robot strategies.

1.1 Organisation of paper

The paper is organised as follows. In Sect. 2 we provide a comparison to related work.
Section 3 describes the MIL framework. The implementation of the MetagolD

2 system is
then given in Sect. 4. Experiments on predicate invention and recursion for 1) structuring
robot strategies, 2) the East–West trains competition data and 3) construction of concepts
for the NELL language learning domain are given in Sect. 5 together with a reference to the
website from which the Metagol code and datasets can be obtained. Lastly we conclude the
paper and discuss future work in Sect. 6.

1 MetagolR and MetagolC F learn Regular and Context-Free grammars respectively.
2 MetagolD learns Dyadic Datalog programs.

123

Mach Learn

2 Related work

Predicate Invention has been viewed as an important problem since the early days of ILP (e.g.
Muggleton and Buntine 1988; Rouveirol and Puget 1989; Stahl 1992) since it is essential
for automating the introduction of auxiliary predicates within top-down programming. Early
approaches were based on the use of W operators within the inverting resolution framework
(Muggleton and Buntine 1988; Rouveirol and Puget 1989). However, apart from the inherent
problems in controlling the search, the completeness of these approaches was never demon-
strated, partly because of the lack of a declarative bias to delimit the hypothesis space. This
led to particular limitations such as the approaches being limited to introducing a single new
predicate call as the tail literal of the calling clause. Failure to address these issues has led
to limited progress being made in this important topic over a protracted period (Muggleton
et al. 2011). In the MIL framework described in Muggleton et al. (2014) and in this paper,
predicate invention is conducted via construction of substitutions for meta-rules employed
by a meta-interpreter. The use of the meta-rules clarifies the declarative bias being employed.
New predicate names are introduced as higher-order skolem constants, a finite number of
which are introduced during every iterative deepening of the search.

MIL is related to other studies where abduction has been used for predicate invention
(e.g. Inoue et al. 2010). One important feature of MIL, which distinguishes it from other
existing approaches, is that it introduces new predicate symbols which represent relations
rather than new objects or propositions. This is critical for challenging applications such as
robot planning. The NELL language learning task (Sect. 5.3) separately demonstrates MIL’s
abilities for learning higher-order concepts such as symmetry.

By comparison with other forms of declarative bias in ILP, such as modes (Muggle-
ton 1995; Srinivasan 2001) or grammars (Cohen 1994), meta-rules are logical statements.
This provides the potential for reasoning about them and manipulating them alongside nor-
mal first-order background knowledge. For instance, in Cropper and Muggleton (2014) it
is demonstrated that sets of irreducible, or minimal sets of meta-rules can be found auto-
matically by applying Plotkin’s clausal theory reduction algorithm to an enumeration of all
meta-rules in a given finite hypothesis language, resulting in meta-rules which exhibit lower
runtimes and higher predictive accuracies. Moreover logical equivalence with the larger set
ensures completeness of the reduced set.

The use of proof-completion in MIL is in some ways comparable to that used in
Explanation-Based Generalisation (EBG) (De Jong 1981; Kedar-Cabelli and McCarty 1987;
Mitchell et al. 1986). In EBG the proof of an example leads to a specialisation of the given
domain theory leading to the generation of a special-purpose sub-theory described within
a user-defined operational language. By contrast, in MIL the derivation of the examples is
made from a higher-order program, and results in a first-order program based on a set of
substitutions into the higher-order variables. A key difference is that inductive generalisation
and predicate invention are not achieved in existing EBG paradigms, which assume a com-
plete first-order domain theory. By contrast, induction, abduction and predicate invention are
all achieved in MIL by way of the meta-rules. Owing to the existentially quantified variables
in the meta-rules, the resulting first-order theories are strictly logical generalisation of the
meta-rules. Viewed from the perspective of Formal Methods, the meta-rules in MIL can be
viewed as a Program Specification in the style advocated by Hoare (1992; Hoare and Jifeng
2001).

Although McCarthy (1999) long advocated the use of higher-order logic for represent-
ing common sense reasoning, most knowledge representation languages avoid higher-order
quantification owing to problems with decidability (Huet 1975) and theorem-proving effi-

123

Mach Learn

ciency. λ-Prolog (Miller 1991), is a notable exception which achieves efficient unification
through assumptions on the flexibility of terms. Various authors (Feng and Muggleton 1992;
Lloyd 2003) have advocated higher-order logic learning frameworks. However, to date these
approaches have difficulties in incorporation of background knowledge and compatibility
with more developed logic programming frameworks. Second-order logic clauses are used
by Davis and Domingo (2009) as templates for rule learning in Markov logic. Here tractabil-
ity is achieved by avoiding theorem proving. Higher-order rules have also been encoded in
first-order Markov Logic (Sorower et al. 2011) to bias learning in tasks involving knowl-
edge extraction from text. As a knowledge representation, higher-order datalog (see Sect. 3),
first introduced in Pahlavi and Muggleton (2012), has advantages in being both expressive
and decidable. The NELL language application (Sect. 5.3) demonstrates that higher-order
concepts can be readily and naturally expressed in H2

2 and learned within the MIL framework.
Relational Reinforcement (Džeroski et al. 2001) has been used in the context of learning

robot strategies (Katz et al. 2008; Driessens and Ramon 2003). However, unlike the approach
for learning recursive robot strategies described in Sect. 5.1 the Relational Reinforcement
approaches are based on the use of ground instances and do not involve predicate invention
to extend the relational vocabulary provided by the user. The approach of Pasula and Lang
(Pasula et al. 2004) for learning STRIPS-like operators in a relational language is closer to
the approach described in Sect. 5.1, but is restricted to learning non-recursive operators and
does not involve predicate invention.

3 MIL framework

3.1 Logical notation

A variable is represented by an upper case letter followed by a string of lower case letters
and digits. A function symbol is a lower case letter followed by a string of lower case letters
and digits. A predicate symbol is a lower case letter followed by a string of lower case
letters and digits. The set of all predicate symbols is referred to as the predicate signature
and denoted P . An arbitrary reference total ordering over the predicate signature is denoted
�P . The arity of a function or predicate symbol is the number of arguments it takes. A
constant is a function or predicate symbol with arity zero. The set of all constants is referred
to as the constant signature and denoted C. An arbitrary reference total ordering over the
constant signature is denoted �C . Functions and predicate symbols are said to be monadic
when they have arity one and dyadic when they have arity two. Variables and constants are
terms, and a function symbol immediately followed by a bracketed n-tuple of terms is a
term. A variable is first-order if it can be substituted for by a term. A variable is higher-
order if it can be substituted for by a predicate symbol. A predicate symbol or higher-order
variable immediately followed by a bracketed n-tuple of terms is called an atomic formula
or atom for short. The negation symbol is ¬. Both A and ¬A are literals whenever A is an
atom. In this case A is called a positive literal and ¬A is called a negative literal. A finite
set (possibly empty) of literals is called a clause. A clause represents the disjunction of its
literals. Thus the clause {A1, A2, . . .¬Ai ,¬Ai+1, . . .} can be equivalently represented as
(A1 ∨ A2 ∨ . . .¬Ai ∨ ¬Ai+1 ∨ . . .) or A1, A2, . . . ← Ai , Ai+1, A Horn clause is a
clause which contains at most one positive literal. A Horn clause is unit if and only if it
contains exactly one literal. A denial or goal is a Horn clause which contains no positive
literals. A definite clause is a Horn clause which contains exactly one positive literal. The
positive literal in a definite clause is called the head of the clause while the negative literals are

123

Mach Learn

Name Meta-Rule Quantified version
Instance P (X, Y) ← ∃PXY P (X, Y)
Base P (x, y) ← Q(x, y) ∃PQ∀xy P (x, y) ← Q(x, y)
Chain P (x, y) ← Q(x, z), R(z, y) ∃PQR∀xyz P (x, y) ← Q(x, z), R(z, y)
TailRec P (x, y) ← Q(x, z), P (z, y) ∃PQ∀xyz P (x, y) ←Q (x, z), P (z, y)

Fig. 4 Quantification of meta-rules in Fig. 3

collectively called the body of the clause. A unit clause is positive if it contains a head and no
body. A unit clause is negative if it contains one literal in the body. A set of clauses is called
a clausal theory. A clausal theory represents the conjunction of its clauses. Thus the clausal
theory {C1, C2, . . .} can be equivalently represented as (C1 ∧ C2 ∧ . . .). A clausal theory in
which all predicates have arity at most one is called monadic. A clausal theory in which all
predicates have arity at most two is called dyadic. A clausal theory in which each clause is
Horn is called a logic program. A logic program in which each clause is definite is called a
definite program. Literals, clauses and clausal theories are all well-formed-formulae (wffs) in
which the variables are assumed to be universally quantified. Let E be a wff or term and σ, τ

be sets of variables. ∃σ.E and ∀τ.E are wffs. E is said to be ground whenever it contains no
variables. E is said to be higher-order whenever it contains at least one higher-order variable
or a predicate symbol as an argument of a term. E is said to be datalog if it contains no
function symbols other than constants. A logic program which contains only datalog Horn
clauses is called a datalog program. The set of all ground atoms constructed from P, C is
called the datalog Herbrand Base. θ = {v1/t1, . . . , vv/tn} is a substitution in the case that
each vi is a variable and each ti is a term. Eθ is formed by replacing each variable vi from
θ found in E by ti . μ is called a unifying substitution for atoms A, B in the case Aμ = Bμ.
We say clause C θ -subsumes clause D or C �θ D whenever there exists a substitution θ

such that Cθ ⊆ D.

3.2 Framework

We first define the higher-order meta-rules used by the Prolog meta-interpreter.

Definition 13 (Meta-rules) A meta-rule is a higher-order wff

∃σ∀τ P(s1, . . . , sm)← . . . , Qi (t1, . . . , tn), . . .

where σ, τ are disjoint sets of variables, P, Qi ∈ σ ∪ τ ∪ P and s1, . . . , sm, t1, . . . , tn ∈
σ ∪ τ ∪ C. Meta-rules are denoted concisely without quantifiers as

P(s1, . . . , sm)← . . . , Qi (t1, . . . , tn), . . .

The quantified version of the meta-rules in Fig. 3 is shown in Fig. 4. In general, unification
is known to be semi-decidable for higher-order logic (Huet 1975). We now contrast the case
for higher-order datalog programs.

Proposition 1 (Decidable unification) Given higher-order datalog atoms A= P(s1, . . . , sm),
B = Q(t1, . . . , tn) the existence of a unifying substitution μ is decidable.
Proof. A, B has unifying substitution μ iff p(P, s1, . . . , sm)μ = p(Q, t1, . . . , tn)μ.

3 Note that in the context of meta-rules, only universally quantified variables are not substituted on application
within the meta-interpreter, and are thus effectively constants, and so represented in lower case. Existential
variables are upper case (as usual).

123

Mach Learn

Meta-Substitution Higher-order substitution
metasub(instance, [father, ted, bob]) {P/father, X/ted, Y/bob}
metasub(base, [ancestor, p1]) {P/ancestor, Q/p1}
metasub(tailrec, [ancestor, p1, ancestor]) {P/ancestor, Q/p1, R/ancestor}

Fig. 5 Relationship between meta-substitutions used by the meta-interpreter and higher-order substitutions

Figure 5 shows the meta-rules from Fig. 3 of the relationship between the meta-
substitutions constructed by the meta-interpreter (Fig. 2) and higher-order substitutions of
existential variables.

Definition 2 (MIL setting) Given meta-rules M , definite program background knowledge B
and ground positive and negative unit examples E+, E−, MIL returns a higher-order datalog
program hypothesis H if one exists such that M, B, H |� E+ and M, B, H, E− is consistent.

The following describes decidable conditions for MIL.

Theorem 1 (MIL decidable) The MIL setting is decidable in the case M, B, E+, E− are
Datalog and P, C are finite.

Proof Follows from the fact that the set of Herbrand interpretations is finite.
�
3.3 Learning from interpretations

The MIL setting is an extension of the Normal semantics setting (Muggleton and Raedt
1994) of ILP. We now consider whether a variant of MIL could be formulated within the
Learning from Interpretations setting (De Raedt 1997) in which examples are pairs 〈I, T 〉
where I is a set of ground facts (an interpretation) and T is a truth value. In this case each
interpretation I will be a subset of the datalog Herbrand Base, which is constructed from
P and C. To account for predicate invention we assume that P ′ ⊆ P and C′ ⊆ C represent
uninterpreted predicates and constants respectively, whose interpretation is assigned by the
Meta-interpreter. Since the user has no ascribed meaning for P ′ and C′, it would not be
possible to provide examples containing full interpretations, and therefore the Learning from
Interpretations setting is inappropriate. Clearly, a variant of the Learning from Interpretations
setting could be introduced in which examples are represented as incomplete interpretations.

3.4 Language classes and expressivity

We now define language classes for instantiated hypotheses.

Definition 3 (Hi
j program class) Assuming i, j are natural, the class Hi

j contains all higher-
order definite datalog programs constructed from signatures P, C with predicates of arity at
most i and at most j atoms in the body of each clause.

The class of dyadic logic programs with one function symbol has Universal Turing
Machine (UTM) expressivity (Tärnlund 1977). Note that H2

2 is sufficient for the kinship
example in Sect. 1. This fragment also has UTM expressivity, as demonstrated by the fol-
lowing H2

2 encoding of a UTM in which S, S1, T represent Turing machine tapes.

utm(S, S)← halt (S).

utm(S, T)← execute(S, S1), utm(S1, T).

execute(S, T)← instruction(S, F), F(S, T).

123

Mach Learn

We assume the UTM has a suitably designed set of machine instructions representing func-
tions of the form

f : T → T

where T is the set of all Turing machine tapes. Below assume G is a datalog goal and program
P ∈ H2

2 .

Proposition 2 (Undecidable fragment of H2
2) The satisfiability of G, P is undecidable when

C is infinite.

Proof Follows from undecidability of halting of UTM above.
�
The situation differs in the case C is finite.

Theorem 2 (Decidable fragment of H2
2) The satisfiability of G, P is decidable when P, C

is finite.

Proof The set of Herbrand interpretations is finite.
�
The universality of the H2

2 fragment is established by the existence of the UTM above.
However, there are many concepts for which this approach would lead to a cumbersome
and inefficient approach to learning. For instance, consider the following definition of an
undirected edge.

undirected(A, B) : −edge(A, B), edge(B, A).

A program for the UTM above would be required to search through each pair of edges to
find a pair of nodes A, B with associated edges in each direction. As a deterministic program
this is non-trivial and is likely to involve two iterative loops. However, the clause above is
directly and compactly representable within H2

2 given the following meta-rule.

P(x, y)← Q(x, y), R(y, x)

Thus effective use of meta-rules can lead to a more constrained and effective search. Although
the meta-interpreter in Fig. 2 can be applied to meta-rules containing more than two atoms in
the body, we limit ourselves to the H2

2 fragment throughout this paper. This restriction limits
the number of possible meta-rules and forces more prolific predicate invention, leading to
more opportunities for internal re-use of part of the hypothesised program.

4 Implementation

The MetagolD system is an implementation of the MIL setting in Yap Prolog and is based
around the general Meta-Interpreter shown in Sect. 1. The modifications are aimed at increas-
ing efficiency of a Prolog backtracking search which returns the first satisfying solution of a
goal

← . . . e+i , . . . , not (e−j), . . .

where e+i ∈ E+ and e−j ∈ E− and not represents negation by failure. In particular, the
modifications include methods for a) ordering the Herbrand Base, b) returning a minimal
cardinality hypothesis, c) logarithmic clause bounding and d) use of a series of episodes for
ordering multi-predicate incremental learning.

123

Mach Learn

Lexicographic Interval inclusion
parent(a alice,b ted) leq(0,0)
.. leq(1,1)
parent(c jake,d john) leq(2,2)
.. ..
grandparent(a alice,e jane) leq(0,1)
grandparent(c jake,f bob) leq(1,2)
.. leq(0,2)

Lex OrderTest Inclusion OrderTest
P P Q AND P P R x C z AND z C y

Fig. 6 Datalog Herbrand Base orderings with chain meta-rule OrderTests

4.1 Ordering the Herbrand Base

Within ILP, search efficiency depends on the partial order of θ -subsumption (Nienhuys-
Cheng and de Wolf 1997). Similarly in MetagolD search efficiency is achieved using a total
ordering over the Herbrand Base to constrain deductive, abductive and inductive operations
carried out by the Meta-Interpreter and to reduce redundancy in the search. In particular,
we employ (Knuth and Bendix 1970; Zhang et al. 2005) (lexicographic) as well as interval
inclusion total orderings over the Herbrand Base to guarantee termination. Termination is
guaranteed because atoms higher in the Herbrand Base are always proved by ones lower in
the ordering. Also the ordering is finite and so cannot be infinitely descending.

The user input file for Metagol contains an initial list of predicate symbols and constants.
The ordering of these lists provide the basis for the total orderings �P and �C .

Example 1 (Predicate constant symbol ordering) The initial predicate and constant symbol
orderings for the kinship example are as follows.

initial_predicates([mother/2,father/2]).
initial_constants([matilda,jake,mary,john,bill,

alice,andy,susan,harry,liz,
megan,ted,jill,jo,sam,jane,bob]).

Using the ordering provided by the user in these lists Metagol can infer, for instance, that
mother/2 �P father/2 and matilda �C bill.

During an episode (see Sect. 4.4) when a new predicate definition p/a is learned, p/a is
added to the head of the list along with a frame of invented auxiliary predicates p1, . . . , pn .
This allows an ordered scope of predicates which can be used to define p/a consisting of local
invented auxiliary predicates, followed by predicates from preceding episodes, followed by
any initial predicates.

Figure 6 illustrates alternative OrderTests which each constrain the chain meta-rule to
descend through the Herbrand Base. In the lexicographic ordering predicates which are
higher in the ordering, such as grandparent/2, are defined in terms of ones which are lower,
such as parent/2.

Example 2 (Lexicographic order) The definite clause

grandparent(X,Y)← parent(X,Z), parent(Z,Y)

123

Mach Learn

Fig. 7 Recursive definition for
even/1 learned by Metagol using
a modified interval inclusion
constraint. The invented
predicates correspond to
even_1=predecessor and
even_2=odd

even(0).
even(A) ← even 1(A,B), even 2(B).
even 1(A,B) ← succ(B,A).
even 2(A) ← even 1(A,B), even(B).

is consistent with the lexicographic ordering on the chain meta-rule since grandparent/2 �P
parent/2.

Meanwhile interval inclusion supports definitions of (mutually) recursive definitions such
as leq/2, ancestor/2, even/2 and odd/2.4

Example 3 (Interval inclusion order) The definite clause

leq(X,Y)← succ(X,Z), leq(Z,Y)

is not consistent with a lexicographic ordering on the chain meta-rule since leq ��P leq.
However, it is consistent with the interval inclusion ordering since in the case X < Z < Y
the interval [X, Y] includes both [X, Z] and [Z , Y]. To ensure interval inclusion holds for
the chain rule it is sufficient to test X �C Z and Z �C Y . Thus interval inclusion supports
the learning of (mutually) recursive predicates. Finite descent guarantees termination even
when an ordering is infinitely ascending (e.g. over the natural numbers).

Figure 7 shows a definition of even number learned by Metagol.5 The solution involves
mutual recursion with the definition of odd (invented predicate even_2). A modified interval
inclusion order constraint forces Metagol to use an inverse meta-rule P(x, y) ← Q(y, x) to
introduce predecessor (invented predicate even_1) which then guarantees termination over
natural numbers.

4.2 Minimum cardinality hypotheses

MetagolD uses iterative deepening to ensure the first hypothesis returned contains the minimal
number of clauses. The search starts at depth 1. At depth i the search returns an hypothesis
consistent with at most i clauses if one exists. Otherwise it continues to depth i + 1. During
episode p (see Sect. 4.4) at depth i Metagol augments P with up to i − 1 new predicate
symbols which are named as extensions of the episode name as p1, . . . pi−1.

Example 4 (Auxilliary predicate names) In the kinship example, great-grandparent (ggpar-
ent) can can be learned by Metagol using only the initial predicate definitions for father/2
and mother/2. The minimal logic program found at depth 4 is shown in Fig. 8. In this case
predicates are invented which correspond to both grandparent and parent.

4.3 Logarithmic bounding and PAC model

We now consider the error convergence of a PAC learning model (Valiant 1984) of the
logarithmic bounded iterative deepening approach used in MetagolD .

4 The predicates even/2 and odd/2 can be treated as intervals by treating even(X) and odd(Y) as the natural
number intervals [0, X] and [0, Y].
5 Difficulties involved in learning a mutually recursive definition of even/1 and odd/1 was used by Yamamoto
(1997) to demonstrate the incompleteness of Inverse Entailment.

123

Mach Learn

ggparent(A,B) ← ggparent 1(A,C), ggparent 2(C,B).
ggparent 1(A,B) ← ggparent 2(A,C), ggparent 2(C,B).
ggparent 2(A,B) ← father(A,B).
ggparent 2(A,B) ← mother(A,B).

Fig. 8 Minimal logic program learned by Metagol for great-grandparent (ggparent). The invented predicates
correspond to ggparent_1=grandparent and ggparent_2=parent

Lemma 1 (Bound on hypotheses of size d). Assume m training examples, d is the maximum
number of clauses in a hypothesis where d ≤ log2m and c is the number of distinct clauses
in H2

2 for a given P, C. The number of hypotheses |Hd | considered at depth d is bounded by
mlog2c.

Proof Since each hypothesis in Hd consists of d clauses chosen from a set of size c it
follows that |Hd | =

(c
d

) ≤ cd . Using the logarithmic bound cd ≤ clog2m = mlog2c. Thus
|Hd | ≤ mlog2c.
�

We now consider the size of the space containing all hypotheses up to and including size
d .

Proposition 3 (Bound on hypotheses up to size d) The hypothesis space considered in all
depths up to and including d is bounded by dmlog2c.

Proof Follows from the fact that the number of hypotheses in each depth up to d is bounded
by mlog2c.
�

We now evaluate the minimal sample convergence for MetagolD .

Theorem 3 Metagol’s logarithmic bounded iterative deepening strategy has a polynomial

sample complexity of m ≥ ln(d)+ln(5)log2c+ln 1
δ

ε
.

Proof According to the Blumer bound (Blumer et al. 1989) the error of consistent hypotheses

is bounded by ε with probability at least (1− δ) once m ≥ ln|H |+ln 1
δ

ε
, where |H | is the size

of the hypothesis space. From Proposition 3 this happens with the Metagol strategy once

m ≥ ln(dmlog2c)+ln 1
δ

ε
. Assuming ε, δ < 1

2 and c, d ≥ 1 and simplifying gives ln(m)+ln(2)
m <

1
2 . Numerically this holds once m is at least 5. Substituting into the Blumer bound gives

m ≥ ln(d)+ln(5)log2c+ln 1
δ

ε
.
�

This theorem indicates that in order to ensure polynomial time learning in the worst case
we need an example set which is much larger than the definition we aim to learn. We refer to
this as the big data assumption. In the case that only small numbers of examples are available
(see Lin et al. 2014) the big data assumption in Metagol can be over-ridden by giving a
maximum bound on the number of clauses (see Sect. 5.3.2).

4.4 Episodes for multi-predicate learning

Learning definitions from a mixture of examples of two inter-dependent predicates such as
parent and grandparent requires more examples and search than learning them sequentially
in separate episodes. In the latter case the grandparent episode is learned once it can use

123

Mach Learn

 (a) (b) (c)

Fig. 9 Examples of a stable wall, b column and c non-stable wall

the definition from the parent episode. This phenomenon can be explained by considering
that time taken for searching the hypothesis space for the joint definition is a function of the
product of the hypothesis spaces of the individual predicates. By contrast the total time taken
for sequential learning of episodes is the sum of the times taken for the individual episodes6

so long as each predicate is learned with low error.

5 Experiments

In this section we describe experiments in which Metagol is used to carry out 1) predicate
invention for structuring robot strategies and 2) predicate invention and recursion learning
for east–west trains and 3) construction of higher-order and first-order concepts for language
learning using data from the NELL project (Carlson et al. 2010). All datasets together with
the implementation of Metagol used in the experiments are available at http://ilp.doc.ic.ac.
uk/metagolD_MLJ/.

5.1 Robot strategy learning

In AI, planning traditionally involves deriving a sequence of actions which achieves a specific
goal from a specific initial situation (Russell and Norvig 2010). However, various machine
learning approaches support the construction of strategies.7 Such approaches include the
SOAR architecture (Laird 2008), reinforcement learning (Sutton and Barto 1998), and action
learning within ILP (Moyle and Muggleton 1997; Otero 2005).

In this experiment structured strategies are learned which build a stable wall from a supply
of bricks. Predicate invention is used for top-down construction of re-usable sub-strategies.
Fluents are treated as monadic predicates which apply to a situation, while Actions are dyadic
predicates which transform one situation to another.

5.1.1 Materials

Figure 9 shows a positive example (a) of a stable wall together with two negative examples
(unstable walls) consisting of a column (b) and a wall with insufficient central support (c).
Predicates are either high-level if defined in terms of other predicates or primitive otherwise.
High-level predicates are learned as datalog definitions. Primitive predicates are non-datalog
background knowledge which manipulate situations as compound terms.

6 Misordering episodes leads to additional predicate invention.
7 A strategy is a mapping from a set of initial to a set of goal situations.

123

http://ilp.doc.ic.ac.uk/metagolD_MLJ/
http://ilp.doc.ic.ac.uk/metagolD_MLJ/

Mach Learn

buildWall(X, Y) ← buildWall 1(X, Y), emptyResource(Y)
buildWall(X, Y) ← buildWall 1(X, Z), buildWall(Z, Y)
buildWall 1(X, Y) ← fetch(X, Z), putOnTopOf(Z, Y)

Fig. 10 Column/wall building strategy learned from positive examples. buildWall_1 is invented

buildWall(X, Y) ← buildWall 1(X, Y), buildWall 3(Y)
buildWall(X, Y) ← buildWall 1(X, Z), buildWall(Z, Y)
buildWall 1(X, Y) ← buildWall 2(X, Y), buildWall 3(Y)
buildWall 2(X, Y) ← fetch(X, Z), putOnTopOf(Z, Y)
buildWall 3(X) ← offset(X), continuous(X)

Fig. 11 Stable wall strategy built from positive and negative examples. buildWall_2, buildWall_1 and build-
Wall_3 are invented

A wall is a list of lists. Thus Fig. 9a can be represented as [[2, 4], [1, 3, 5]], where each
number corresponds to the position of a brick8 and each sublist corresponds to a row of
bricks. The primitive actions are fetch and putOnTopOf, while the primitive fluents are emp-
tyResource, offset and continuous (meaning no gap). This model is a simplification of a
real-world robotics application.

When presented with only positive examples, MetagolD learns the recursive strategy
shown in Fig. 10. The invented action buildWall_2 is decomposed into sub-actions fetch
and putOnTopOf. The strategy is non-deterministic and repeatedly fetches a brick and puts
it on top of others so that it could produce either Fig. 9a or b.

Given negative examples MetagolD generates the refined strategy shown in Fig. 11, where
the invented action buildWall_1 tests the invented fluent buildWall_3. buildWall_3 can
be interpreted as stable. This revised strategy will only build stable walls like Fig. 9a.

5.1.2 Method

An experiment was conducted to compare the performance of MetagolD against that of Pro-
gol. Training and test examples of walls containing at most 100 bricks were randomly selected
without replacement. Training set sizes were {2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60,

70, 80} and the test set size was 200. Both training and test datasets contain half positive and
half negative, thus the default accuracy is 50 %. Predictive accuracies and associated learning
times were averaged over five resamples for each training set size.

5.1.3 Results and discussion

Metagol’s accuracy and learning time plots shown in Fig. 12 indicate that, consistent with
the analysis in Sect. 4.3, MetagolD , given increasing number of randomly chosen examples,
produces rapid error reduction while learning time increases roughly linearly. The dramatic
time increase at training size 10 is due to the additional negative example, which requires
MetagolD switching to a different hypothesis with larger size. Figure 13 shows such an
example. Originally, MetagolD derived the hypothesis H8 for a set of eight training example,
but the additional negative example [[9],[6,8,10],[2,6,8,10]], which is explainable by H8,
forces MetagolD to backtrack and continue the search until H10 is found.

8 Bricks are width 2 and position is a horizontal index.

123

Mach Learn

(a)

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 10 20 30 40 50 60 70 80

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

No. of Training Examples

MetagolD
Progol

Default accuracy

(b)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 10 20 30 40 50 60 70 80

Ti
m

e
(m

s)

No. of Training Examples

MetagolD
Progol

Fig. 12 Graphs of a predictive accuracy and b learning time for robot strategy learning

H8

buildWall(X, Y) ← buildWall 1(X, Y), offset(Y)
buildWall(X, Y) ← buildWall 1(X, Z), buildWall(Z, Y)
buildWall 1(X, Y) ← fetch(X, Z), putOnTopOf(Z, Y)

H10

buildWall(X, Y) ← buildWall 1(X, Y), emptyResource(Y)
buildWall(X, Y) ← buildWall 1(X, Z), buildWall(Z, Y)
buildWall 1(X, Y) ← buildWall 2(X, Y), continuous(Y)
buildWall 2(X, Y) ← fetch(X, Z), putOnTopOf(Z, Y)

Fig. 13 H8: an hypothesis derived by MetagolD at training size 8; H10: an hypothesis derived by MetagolD
at training size 10

At training size 2 with only one positive and one negative example, MetagolD already
reaches a predictive accuracy in excess of 90 %. This shows the small sample complexity of
MetagolD due to the inductive bias incorporated in its meta-interpreter.

123

Mach Learn

Figure 12 compares the performance of Progol on this problem. Progol is not able to
derive the theory shown in Fig. 11 due to its limitations for learning recursive theories
and predicate invention. The only hypothesis derivable by Progol is buildWall(A, B) ←
f etch(A, C), put OnT op(C, B), which only tells how to build a wall out of one single
brick. Given that training and test examples are dominated by stable walls with more than
one brick, Progol’s hypothesis has default accuracy in Fig. 12.

5.2 East–west trains

In this section we demonstrate that the Dyadic representation considered in this paper is suf-
ficient for learning typical ILP problems and show the advantage of Metagol when predicate
invention and recursion learning is required. In particular we use Metagol to discover logic
programs for classifying Michalski-style east–west trains from a machine learning compe-
tition (Michie 1994; Michie et al. 1994). This competition was based on a classification
problem first proposed by Larson and Michalski (1977) which has been regarded as a classi-
cal machine learning problem and many real-world problems (e.g. non-determinate learning
of chemical properties from atom and bond descriptions) can be mapped to Michalski’s trains
problem.

5.2.1 Materials

Michalski’s original trains problem is shown in Fig. 14. The learning task is to discover a
general rule that distinguishes five eastbound trains from five westbound trains. An example
of such a rule is, If a train has a car which is short and closed then it is eastbound and otherwise
westbound. Learning a classifier from the original 10 trains is not difficult for most of existing
ILP systems. However, more challenging trains problems have been introduced based on this.
For example, Michie et al. (1994; Michie 1994) ran a machine learning challenge competition
which extended Michalski’s original 10 trains with 10 new trains as shown in Fig. 15. The
challenge involved using machine learning systems to discover the simplest possible theory
which can classify the combined set of 20 trains of Figs. 14 and 15 into eastbound and
westbound trains. The complexity of a theory was measured by the sum of the number
of occurrences of clauses, atoms and terms in the theory. A second competition involved
classifying 100 separate trains, using a classifier learned from the 20 trains of Figs. 14 and
15.

5.2.2 Method

In this section we use Metagol to learn a theory using the 20 trains from the first competition
and evaluate the learned theory using the 100 trains from the second competition described
above.

5.2.3 Results and discussion

When provided with standard background knowledge for this problem and the 20 trains
examples (shown in Figs. 14, 15), Metagol learns a recursive theory shown in Fig. 16. This
theory correctly classifies all 20 trains and is equivalent to the winning entry for the first
competition submitted by Bernhard Pfahringer (Turney 1995). His program used a brute-
force search to generate all possible clauses of size 3,4,…and so on in a depth-first iterative
deepening manner where every completed clause is checked for completeness and coverage.

123

Mach Learn

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Fig. 14 Michalski’s original east–west trains problem

1. TRAINS GOING EAST 2. TRAINS GOING WEST

1.

2.

3.

4.

5.

1.

2.

3.

4.

5.

Fig. 15 The new set of 10 trains by Michie et al. (1994) for the east–west competition

east(A) ← t1(A), t2(A)
t1(A) ← car(A, B), closed(B)
t1(A) ← cdr(A, B), load1 triangle(B)
t2(A) ← car(A, B), short(B)
t2(A) ← cdr(A, B), east(B)

Fig. 16 A recursive theory found by Metagol for the east–west trains competition 1. Predicates t1 and
t2 are invented. car and cdr provide the first carriage and remaining carriages respectively. closed,
short and load1_tr iangle are background knowledge predicates provided in the east–west competitions.
load1_tr iangle tests if the train has a carriage containing a triangle. This theory correctly classifies all 20
trains and is equivalent to Bernhard Pfahringer’s winning entry for the first competition

His program took about 1 day real-time on Sun Sparc 10 (40 MHz). Metagol learns the
recursive theory of Fig. 16 in about 45 s on a MacBook laptop (2.5 GHz).9

The theory found by Pfahringer splits the 100 trains of the second competition into 50
eastbound and 50 westbound trains. We use these trains as the test examples for evaluating
hypotheses learned by Metagol. The performance of Metagol was evaluated on predictive
accuracies and running time using the training and test examples described above. The size
of training set varied using random samples from the 20 trains (4, 8, 12, 16 and 20) where
half were eastbound (positive examples) and half were westbound (negative examples). The
predictive accuracies and running time were averaged over 10 randomly sampled training

9 Ignoring hardware differences other than clockspeed this represents a speed-up of around 30 times over
Pfahringer’s implementation.

123

Mach Learn

(a)

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0 2 4 6 8 10 12 14 16 18 20

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

(%
)

No. of Training Examples

Metagol
Progol

Default accuracy

(b)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 55

 60

 0 2 4 6 8 10 12 14 16 18 20

Ti
m

e
(s

ec
.)

No. of Training Examples

Metagol
Progol

Fig. 17 Predictive accuracies (a) and learning times (b) of Metagol and Progol in east–west trains competition
1

examples. For each sample size, we used a fixed test set of 100 trains from the second
competition as classified by Pfahringer’s model.

The results of the experiments described above are shown in Fig. 17. This figure also
compares the performance of Progol on this problem. When provided with all 20 trains,
Progol can quickly find a partial solution shown in Fig. 18. However, due to its limitations for
learning recursive theories and predicate invention, Progol is not able to find any complete
theory for this problem.

5.3 NELL learning

NELL Carlson et al. (2010) is a Carnegie Mellon University (CMU) online system which
has extracted more than 50 million facts since 2010 by reading text from web pages. The

123

Mach Learn

east(A) ← car(A, B), closed(B), short(B)
east(A) ← cdr(A, B), east(B)

Fig. 18 A recursive theory found by Progol for the east–west trains competition 1. This is a partial solution
and does not cover all examples

facts cover everything from tea drinking to sports personalities. In this paper, we focus on a
susbset of NELL about sports, which was suggested by the NELL developers. NELL facts
are represented in the form of dyadic ground atoms of the following kind.

playssport(eva_longoria,baseball)
playssport(pudge_rodriguez,baseball)
athletehomestadium(chris_pronger,honda_center)
athletehomestadium(peter_forsberg,wachovia_center)
athletealsoknownas(cleveland_browns,buffalo_bills)
athletealsoknownas(buffalo_bills,cleveland_browns)

5.3.1 Initial experiment: debugging NELL using abduction

A variant of the ILP system FOIL (Quinlan 1990) has previously been used (Lao et al. 2011)
to inductively infer clauses similar to the following from the NELL database.

athletehomestadium(X, Y)← athleteplays f orteam(X, Z), teamhomestadium(Z , Y)

In our initial experiment Metagol inductively inferred the clause above from NELL data and
used it to abduce the following facts, not found in the database.

1. athleteplaysforteam(john_salmons,los_angeles_lakers)
2. athleteplaysforteam(trevor_ariza,los_angeles_lakers)
3. athleteplaysforteam(shareef_abdur_rahim,los_angeles_lakers)
4. athleteplaysforteam(armando_marsans,cincinnati)
5. teamhomestadium(carolina_hurricanes,rbc_center)
6. teamhomestadium(anaheim_angels,angel_stadium_of_anaheim)

Abductive hypotheses 2,4,5 and 6 were confirmed correct using internet search queries.
However, 1 and 3 are erroneous. The problem is that NELL’s database indicates that only
Los Angeles Lakers has Staples Center as its home stadium. In fact Staples is home to four
teams.10 The Metagol abductive hypotheses thus uncovered an error in NELL’s knowledge11

which assumed uniqueness of teams associated with a home stadium. This demonstrates
MIL’s potential for helping debug large scale knowledge structures.

10 Los Angeles Lakers, Clippers, Kings and Sparks.
11 Tom Mitchell and Jayant Krishnamurthy (CMU) confirmed these errors and the correctness of the induc-
tively inferred clause.

123

Mach Learn

(a)

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

Pr
ed

ic
tiv

e
A

cc
ur

ac
y

Num of Training Examples

MetagolD+Greedy
MetagolD

(b)

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

Ti
m

e
(s

)

Num of Training Examples

MetagolD+Greedy
MetagolD

Fig. 19 Predictive accuracies (a) and learning times (b) of Metagol and Progol in NELL learning

5.3.2 Evaluation experiment: learning athletehomestadium

We conducted a tenfold cross-validation on this dataset. The training examples were for
athletehomestadium and consisted of 120 examples in total.12 They were randomly per-
muted and divided into 10 folds. During the cross-validation, each fold with 12 examples was
used as a test set, while the rest 108 examples were used for training. We considered differ-
ent training sizes of [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 18, 20, 30, 40, 50, 60, 70, 80, 90,

100, 108]. When the training size was smaller than 108, it was derived from the first two
examples of the corresponding set of 108 examples. Figure 19 plots the averaged results on
these 10 different folds.

12 We removed examples which have missing information about athleteplays f orteam, considering the spe-
cific facts about athleteplays f orteam do not have predictive power on examples of athletehomestadium.
Therefore, the total number of examples decrease from 187 to 120.

123

Mach Learn

The background knowledge contained 919 facts about athleteplays f orteam and
teamhomestadium. However, this data is incomplete. Specifically, 17 % of the examples
have incomplete information on teamhomestadium, requiring abduction of ground facts.
This leads to a large hypothesis space. Below is an example of the target hypothesis, which
contains both induced rules and abduced facts.

athletehomestadium(A,B) :- athleteplaysforteam(A,C), teamhomestadium(C,B)
teamhomestadium(anaheim_angels,angel_stadium_of_anaheim)
teamhomestadium(blackhawks,united_center)
teamhomestadium(boston_bruins,scotiabank_place)
teamhomestadium(carolina_hurricanes,rbc_center)
teamhomestadium(red_wings,scottrade_center)
teamhomestadium(seattle_mariners,great_american_ballpark)

There are seven clauses in this hypothesis. When learning up to seven clauses, not only is
the hypothesis space excessively large but learning requires more training examples than is
consistent with the logarithmic bound in Theorem 3. Thus in this experiment, we dropped the
logarithmic bound condition and instead used a time limit of 2 min. That is, if MetagolD fails to
find a hypothesis within 2 min, then it will return no hypothesis and have predictive accuracy of
0. Consequently the learning curve of MetagolD (Fig. 19a) drops significantly at training size
80. This is a limitation of the current version MetagolD . However, we investigated addressing
this using a greedy search strategy, which is a variant of the dependent learning approach
introduced in Lin et al. (2014). Specifically, a shortest hypothesis covering one example is
greedily added to the hypothesis so far and becomes part of the background knowledge for
learning later examples. The learning curve of ‘MetagolD+Greedy’ shows the feasibility of
such an approach. Considering there are only one or two clauses to be added for each example,
the search space is much smaller than the case without the greedy approach. Therefore, the
running time with the greedy search strategy is around 0.004 s, which is hundreds of times
faster than the original MetagolD without being greedy. However, this greedy search strategy
has not been applied to other experiments. The approach seems promising though there are
unresolved issues relating to potential overfitting. Further work on these issues is discussed
in Sect. 6.1.

NELL presently incorporates manual annotation on concepts being symmetric or transi-
tive. The following meta-rule allows MetagolD to abduce symmetry of a predicate.

P(X, Y)← symmetric(P), P(Y, X)

Using this MetagolD abduced the following hypothesis.

symmetric(athletealsoknownas)←
athletealsoknownas(bu f f alo_bills, broncos)←
athletealsoknownas(bu f f alo_bills, kansas_ci ty_chie f s)←
athletealsoknownas(bu f f alo_bills, cleveland_browns)←

This example demonstrates the potential for the MIL framework to use and infer higher-order
concepts.

123

Mach Learn

5.3.3 Predicate invention and recursion

The following hypothesised program was learned by MetagolD from examples drawn from
the NELL database with the facts about teamplayssport/2 being removed.13

athleteplayssport (X, Y)← p1(X, Z), athleteplayssport (Z , Y).

p1(X, Y)← athleteplays f orteam(X, Z), p2(Z , Y).

p2(X, Y)← athleteplays f orteam(Y, X).

Note p1 can be interpreted as team_mate and p2 as the inverse of athleteplays f orteam.
When inspecting this hypothesis Tom Mitchell and William Cohen commented that PROPPR
(Wang et al. 2013) had already learned the following equivalent rule.

athleteplayssport (X, Y)←athleteplays f orteam(X, Z),

athleteplays f orteam(W, Z),

athleteplayssport (W, Y).

This rule can be produced by unfolding the invented predicates in the MetagolD hypothesis.
The advantage of the MetagolD solution over the PROPPR one is that the invented predi-
cates can be reused as additional background predicates in further learning such as learn-
ing another clause for athletehomestadium/2, such as athletehomestadium(X, Y) ←
p1(X, Z), athletehomestadium(Z , Y).

5.3.4 Discussion

The NELL experiments are distinct from those on robot strategies and east–west trains in
providing an initial indication of the power of the technique to reveal new and unexpected
insights in large-scale real-world data. The experiment also indicates the potential for learning
higher-order concepts like symmetric. Clearly further in-depth work is required in this area
to clarify the opportunities for predicate invention and the learning of recursive definitions.

6 Conclusions and further work

MIL (Muggleton et al. 2014) is an approach which uses a Declarative Machine Learning
(De Raedt 2012) description in the form of a set of meta-rules, with procedural constraints
incorporated within a Meta-Interpreter. The paper extends the theory, implementation and
experimental application of MIL from grammar learning to the dyadic datalog fragment H2

2 .
This fragment is shown to be Turing expressive in the case of an infinite signature, but decid-
able otherwise. We show how meta-rules for this fragment can be incorporated into a Prolog
Meta-Interpreter. MIL supports hard tasks such as Predicate Invention and learning of recur-
sive definitions by saving successful higher-order substitutions for the meta-rules, which can

13 In the case where facts about teamplayssport/2 are available, then it is sufficient to hypothesis a single
clause athleteplayssport (X, Y)← athleteplays f orteam(X, Z), teamplayssport (Z , Y).

123

Mach Learn

be used to reconstitute the clauses in the hypothesis. The MIL framework described in this
paper has been implemented in MetagolD , which is a Yap Prolog program, and has been
made available at http://ilp.doc.ic.ac.uk/metagolD_MLJ/ as part of the experimental materi-
als associated with this paper. However, the approach can also be implemented within more
sophisticated solvers such as ASP (see Muggleton et al. 2014). In the Prolog implementation,
MetagolD , efficiency of search is achieved by constraining the backtracking search in several
ways. For instance, a Knuth–Bendix style total ordering can be imposed over the Herbrand
base which requires predicates which are higher in the ordering to be defined in terms of
lower ones. Alternatively, an interval inclusion ordering ensures finite termination of (mutual)
recursion in the case that the Herbrand Base is infinitely ascending but finitely descending.
Additionally, under the big data assumption (Sect. 4.3) iterative deepening combined with
logarithmic bounding of episodes guarantees polynomial-time searches which identify min-
imal cardinality solutions. Blumer-bound arguments are provided which indicate that search
constrained in this way achieves not only speed improvements but also reduction in out-of-
sample error.

We have applied MetagolD to the problem of inductively inferring robot plans and to NELL
language learning tasks. In the planning task the MetagolD implementation used predicate
invention to carry-out top-down construction of strategies for building both columns and
stable walls. Experimental results indicate that, as predicted by Theorem 3, when logarithmic
bounding is applied, rapid predictive accuracy increase is accompanied by polynomial (near
linear) growth in search time with increasing training set sizes.

In the NELL task abduction with respect to inductively inferred rules uncovered a sys-
tematic error in the existing NELL data, indicating that MetagolD shows promise in helping
debug large-scale knowledge bases. MetagolD was also shown to be capable of learning
higher-order concepts such as symmetry from NELL data. Additionally predicate invention
and recursion were shown to be potentially tractable useful in the NELL context. In an eval-
uation experiment it was found that learning on the NELL dataset can lead to excessive
runtimes, which are improved using a greedy version of the search Metagol mechanism.

6.1 Further work

This paper has not explored the effect of incompleteness of meta-rules on predictive accuracy
and robustness of the learning. However, in Cropper and Muggleton (2014) we address this
issue by investigating methods for logical minimisation of full enumerations of dyadic meta-
rules. This takes advantage of the fact that the MIL framework described in Sect. 3.2 allows
meta-rules to be treated as part of the background knowledge, allowing them, in principle,
to be revised as part of the learning. In future we aim to further investigate the issue of
automatically revising meta-rules. However, as with the approach described in this paper,
effective control mechanisms will be key to making the search tractable.

A related issue is that the user is expected to provide the total orderings �P and �C over
the initial predicate symbols and constants. In future we intend to investigate the degree to
which these orderings can be learned.

In the NELL experiment described in Sect. 5.3.2 we found that a greedy modification of the
MetagolD search strategy leads to considerable speed increases. This provides an interesting
topic for further work since the use of a non-greedy complete search for each episode leads
to search time increasing exponentially in the maximum number of clauses considered [see
search bound in Lin et al. (2014)]. However, the greedy approach can lead to overly specific
results. For instance, the greedy strategy leads to the following non-minimal, overly specific
program when learning grandparent

123

http://ilp.doc.ic.ac.uk/metagolD_MLJ/

Mach Learn

grandparent (A, B)← f ather(A, C), f ather(C, B). (1)

grandparent (A, B)← mother(A, C), mother(C, B). (2)

grandparent (A, B)← mother(A, C), f ather(C, B). (3)

rather than the target theory of

grandparent (A, B)← parent (A, C), parent (C, B).

This problem could conceivably be overcome using a two-stage learning approach in which
clauses (1), (2) and (3) are generalised to the target theory clause. This would require that
Metagol be extended to allow generalisation over non-ground clauses. Additionally the
process should allow for invention of a predicate equivalent to parent.

Finally it is worth noting that a Universal Turing Machine can be considered as simply a
meta-interpreter incorporated within hardware. In this sense, meta-interpretation is one of, if
not the most fundamental concept in Computer Science. Consequently we believe there are
fundamental reasons that Meta-Interpretive Learning, which integrates deductive, inductive
and abductive reasoning as higher-level operations within a meta-interpreter, will prove to
be a flexible and fruitful new paradigm for Artificial Intelligence.

Acknowledgments We thank Tom Mitchell, William Cohen and Jayant Krishnamurthy for helpful discus-
sions and data from the NELL database. We also acknowledge the support of Syngenta in its funding of the
University Innovations Centre at Imperial College. The first author would like to thank the Royal Academy
of Engineering and Syngenta for funding his present 5 year Research Chair.

References

Blumer, A., Ehrenfeucht, A., Haussler, D., & Warmuth, M. K. (1989). Learnability and the Vapnik–
Chervonenkis dimension. Journal of the ACM, 36(4), 929–965.

Carlson, A., Betteridge, J., Kisiel, B., Settles, B., Hruschka Jr., E. R., & Mitchell, T. M. (2010). Toward
an architecture for never-ending language learning. In Proceedings of the twenty-fourth conference on
artificial intelligence (AAAI 2010).

Cohen, W. (1994). Grammatically biased learning: Learning logic programs using an explicit antecedent
description language. Artificial Intelligence, 68, 303–366.

Cropper, A., & Muggleton, S. H. (2014). Logical minimisation of meta-rules within meta-interpretive learning.
In Proceedings of the 24th international conference on inductive logic programming. To appear.

Davis, J., & Domingo, P. (2009). Deep transfer via second-order markov logic. In Proceedings of the twenty-
sixth international conference on machine learning, pp. 217–224, San Mateo, CA. Morgan Kaufmann.

De Raedt, L. (1997). Logical seetings for concept learning. Artificial Intelligence, 95, 187–201.
De Raedt, L. (2012). Declarative modeling for machine learning and data mining. In Proceedings of the

international conference on algorithmic learning theory, p. 12.
De Jong, G. (1981). Generalisations based on explanations. In IJCAI-81, pp. 67–69. Kaufmann.
Driessens, K., & Ramon, J. (2003). Relational instance based regression for relational reinforcement learning.

In ICML, pp. 123–130.
Džeroski, S., De Raedt, L., & Driessens, K. (2001). Relational reinforcement learning. Machine Learning,

43(1–2), 7–52.
Feng, C., & Muggleton, S. H. (1992). Towards inductive generalisation in higher order logic. In D. Sleeman &

P. Edwards (Eds.), Proceedings of the ninth international workshop on machine learning (pp. 154–162).
San Mateo, CA: Morgan Kaufmann.

Hoare, C. A. R. (1992). Programs are predicates. In Proceedings of the final fifth generation conference, pp.
211–218, Tokyo. Ohmsha.

Hoare, C. A. R., & Jifeng, H. (2001). Unifying theories for logic programming. In C. A. R. Hoare, M. Broy, &
R. Steinbruggen (Eds.), Engineering theories of software construction (pp. 21–45). Leipzig: IOS Press.

Huet, G. (1975). A unification algorithm for typed λ-calculus. Theoretical Computer Science, 1(1), 27–57.

123

Mach Learn

Inoue, K., Furukawa, K., Kobayashiand, I., & Nabeshima, H. (2010). Discovering rules by meta-level abduc-
tion. In L. De Raedt (Ed.), Proceedings of the nineteenth international conference on inductive logic
programming (ILP09) (pp. 49–64). Berlin: Springer. LNAI 5989.

Katz, D., Pyuro, Y., & Brock, O. (2008). Learning to manipulate articulated objects in unstructured environ-
ments using a grounded relational representation. In Robotics: Science and systems. Citeseer.

Kedar-Cabelli, S. T., & McCarty, L. T. (1987). Explanation-based generalization as resolution theorem proving.
In P. Langley (Ed.), Proceedings of the fourth international workshop on machine learning (pp. 383–389).
Los Altos: Morgan Kaufmann.

Knuth, D., & Bendix, P. (1970). Simple word problems in universal algebras. In J. Leech (Ed.), Computational
problems in abstract algebra (pp. 263–297). Oxford: Pergamon.

Laird, J. E. (2008). Extending the soar cognitive architecture. Frontiers in Artificial Intelligence and Applica-
tions, 171, 224–235.

Lao, N., Mitchell, T., & Cohen, W. W. (2011). Random walk inference and learning in a large scale knowledge
base. In Proceedings of the conference on empirical methods in natural language processing (EMNLP),
pp. 529–539.

Larson, J., & Michalski, R. S. (1977). Inductive inference of VL decision rules. ACM SIGART Bulletin, 63,
38–44.

Lin, D., Dechter, E., Ellis, K., Tenenbaum, J. B., & Muggleton, S. H. (2014). Bias reformulation for one-shot
function induction. In Proceedings of the 23rd European conference on artificial intelligence (ECAI
2014) (pp. 525–530). Amsterdam: IOS Press.

Lloyd, J. W. (2003). Logic for learning. Berlin: Springer.
McCarthy, J. (1999). Making robots conscious. In K. Furukawa, D. Michie, & S. H. Muggleton (Eds.), Machine

intelligence 15: Intelligent agents. Oxford: Oxford University Press.
Michie, D. (1994). On the rails. Computing Magazine. Magzine article text available from http://www.doc.ic.

ac.uk/~shm/Papers/computing.pdf
Michie, D., Muggleton, S. H., Page, C. D., Page, D., & Srinivasan, A. (1994). To the international computing

community: A new east-west challenge. Distributed email document available from http://www.doc.ic.
ac.uk/~shm/Papers/ml-chall.pdf

Miller, D. (1991). A logic programming language with lambda-abstraction, function variables, and simple
unification. Journal of Logic and Computation, 1(4), 497–536.

Mitchell, T. M., Keller, R. M., & Kedar-Cabelli, S. T. (1986). Explanation-based generalization: A unifying
view. Machine Learning, 1(1), 47–80.

Moyle, S., & Muggleton, S. H. (1997). Learning programs in the event calculus. In N. Lavrač & S. Džeroski
(Eds.), Proceedings of the seventh inductive logic programming workshop (ILP97), LNAI 1297 (pp.
205–212). Berlin: Springer.

Muggleton, S. H. (1995). Inverse entailment and Progol. New Generation Computing, 13, 245–286.
Muggleton, S. H., & Buntine, W. (1988). Machine invention of first-order predicates by inverting resolution.

In Proceedings of the 5th international conference on machine learning, pp. 339–352. Kaufmann.
Muggleton, S. H., & Lin, D. (2013). Meta-interpretive learning of higher-order dyadic datalog: Predicate

invention revisited. In Proceedings of the 23rd international joint conference artificial intelligence (IJCAI
2013), pp. 1551–1557.

Muggleton, S. H., Lin, D., Chen, J., & Tamaddoni-Nezhad, A. (2014). Metabayes: Bayesian meta-interpretative
learning using higher-order stochastic refinement. In Proceedings of the 23rd international conference
on inductive logic programming, pp. 1–16.

Muggleton, S. H., Lin, D., Pahlavi, N., & Tamaddoni-Nezhad, A. (2014). Meta-interpretive learning: Appli-
cation to grammatical inference. Machine Learning, 94, 25–49.

Muggleton, S. H., & De Raedt, L. (1994). Inductive logic programming: Theory and methods. Journal of
Logic Programming, 19(20), 629–679.

Muggleton, S. H., De Raedt, L., Poole, D., Bratko, I., Flach, P., & Inoue, K. (2011). ILP turns 20: Biography
and future challenges. Machine Learning, 86(1), 3–23.

Nienhuys-Cheng, S-H., & de Wolf, R. (1997). Foundations of inductive logic programming, LNAI 1228.
Berlin: Springer.

Otero, R. (2005). Induction of the indirect effects of actions by monotonic methods. In Proceedings of the
fifteenth international conference on inductive logic programming (ILP05), volume 3625, pp. 279–294.
Berlin: Springer.

Pahlavi, N., & Muggleton, S. H. (2012). Towards efficient higher-order logic learning in a first-order datalog
framework. In Latest advances in inductive logic programming. London: Imperial College Press.

Pasula, H., Zettlemoyer, L. S., & Kaelbling, L. P. (2004). Learning probabilistic relational planning rules. In
ICAPS, pp. 73–82.

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5, 239–266.

123

http://www.doc.ic.ac.uk/~shm/Papers/computing.pdf
http://www.doc.ic.ac.uk/~shm/Papers/computing.pdf
http://www.doc.ic.ac.uk/~shm/Papers/ml-chall.pdf
http://www.doc.ic.ac.uk/~shm/Papers/ml-chall.pdf

Mach Learn

Rouveirol, C., & Puget, J-F. (1989). A simple and general solution for inverting resolution. In EWSL-89, pp.
201–210, London. Pitman.

Russell, S. J., & Norvig, P. (2010). Artificial intelligence: A modern approach (3rd ed.). New Jersey: Pearson.
Sorower, M. S., Doppa, J. R., Orr, W., Tadepalli, P., Dietterich, T. G., & Fern, X. Z. (2011). Inverting grice’s

maxims to learn rules from natural language extractions. In Advances in neural information processing
systems, pp. 1053–1061

Srinivasan, A. (2001). The ALEPH manual. Oxford: Machine Learning at the Computing Laboratory, Oxford
University.

Stahl, I. (1992). Constructive induction in inductive logic programming: An overview. Technical report, Fakul-
tat Informatik, Universitat Stuttgart.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction (Vol. 1). Cambridge: Cambridge
University Press.

Tärnlund, S.-A. (1977). Horn clause computability. BIT Numerical Mathematics, 17(2), 215–226.
Turney, P. (1995). Low size-complexity inductive logic programming: The east–west challenge considered as

a problem in cost-sensitive classification. NRC report cs/0212039, National Research Council of Canada.
Valiant, L. G. (1984). A theory of the learnable. Communications of the ACM, 27, 1134–1142.
Wang, W. Y., Mazaitis, K., & Cohen, W. W. (2013). Programming with personalized pagerank: A locally

groundable first-order probabilistic logic. In Proceedings of the 22Nd ACM international conference on
conference on information & #38; knowledge management, CIKM ’13 (pp. 2129–2138). New York, NY:
ACM.

Yamamoto, A. (1997). Which hypotheses can be found with inverse entailment? In N. Lavrač & S. Džeroski
(Eds.), Proceedings of the seventh international workshop on inductive logic programming, LNAI 1297
(pp. 296–308). Berlin: Springer.

Zhang, T., Sipma, H., & Manna, Z. (2005). The decidability of the first-order theory of Knuth–Bendix order.
In Automated deduction-CADE-20 (pp. 738–738). Berlin: Springer.

123

	Meta-interpretive learning of higher-order dyadic datalog: predicate invention revisited
	Abstract
	1 Introduction
	1.1 Organisation of paper

	2 Related work
	3 MIL framework
	3.1 Logical notation
	3.2 Framework
	3.3 Learning from interpretations
	3.4 Language classes and expressivity

	4 Implementation
	4.1 Ordering the Herbrand Base
	4.2 Minimum cardinality hypotheses
	4.3 Logarithmic bounding and PAC model
	4.4 Episodes for multi-predicate learning

	5 Experiments
	5.1 Robot strategy learning
	5.1.1 Materials
	5.1.2 Method
	5.1.3 Results and discussion

	5.2 East--west trains
	5.2.1 Materials
	5.2.2 Method
	5.2.3 Results and discussion

	5.3 NELL learning
	5.3.1 Initial experiment: debugging NELL using abduction
	5.3.2 Evaluation experiment: learning athletehomestadium
	5.3.3 Predicate invention and recursion
	5.3.4 Discussion

	6 Conclusions and further work
	6.1 Further work

	Acknowledgments
	References

