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ABSTRACT 
 
With the steady advances in surgical technology, 
quantitative assessment of surgical skills is 
increasingly being used for surgical training. 
Traditional approaches mainly rely on the use of wired 
sensors attached to surgical instruments or the 
surgeon’s hand. This limits the free movement of the 
operator and can potentially alter the normal behaviour 
of the surgeon. The purpose of this paper is to provide 
a pervasive skills assessment tool based on the Body 
Sensor Network (BSN). By integrating a novel optical 
sensor with the BSN node, it provides an accurate 
wireless gesture sensing platform for assessing basic 
laparoscopic skills.  
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1.  INTRODUCTION / BACKGROUND 
 
Advances in surgical technique are inseparably linked 
to advances in surgical technology and the pace of this 
change is constantly accelerating. Most aspects of 
medicine have historically been learnt in an 
apprenticeship model by means of observation, 
imitation, and instruction. In such a setting, much of 
the expertise transferred from mentor to trainee is 
implicit, and cannot be transferred easily to a didactic 
setting.  Minimal Invasive Surgery (MIS) has been an 
important technical development in surgery in recent 
years. It achieves its clinical goals with reduced patient 
trauma, shortened hospitalisation and improved 
diagnostic accuracy and therapeutic outcome. 
Laparoscopic surgery is a subset of the general field of 
MIS and relates to most procedures performed in the 
abdomen in which the surgeon is required to operate by 
remote manipulation using specially designed, 
elongated instruments inserted into port sites that are 
located through small incisions at specific points in the 
abdominal wall. The operative field is viewed by 
means of a laparoscope in which a small camera relays 
a video signal to a 2D monitor. During laparoscopic 
surgery, however, the surgeon's direct view is often 
restricted, thus requiring a higher degree of manual 
dexterity. The complexity of the instrument controls, 
restricted vision and mobility, difficult hand-eye co-
ordination, and the lack of tactile perception are major 
obstacles in performing laparoscopic procedures. To 

date, a number of techniques have been developed for 
objective assessment of operative skills during 
laparoscopic surgery. Most existing techniques are 
concentrated on the assessment of manual dexterity 
and hand-eye coordination with the combined use of 
virtual and mixed reality simulators. These 
environments offer the opportunity for safe, repeated 
practice and for objective measurement of 
performance. Current methods of assessing surgical 
skills in MIS are mainly based on subjective and 
objective criteria. Subjective assessment relies on 
expert examiners to judge the skills of the trainees 
based on observation [1].  The use of objective 
methods avoids the drawback of subjectivity and can 
provide a fairer and more constructive way of skills 
assessment.  OSATS (Objective Structured Assessment 
of Technological Skill for Surgical Residents) is a 
well-known technique for evaluating operative skills 
where structured criteria are used [2]. With this 
approach, the procedures are usually video taped for 
scoring and analysis. This, however, is a time 
consuming task and a more efficient method is 
required. Surgical procedures can be viewed as a series 
of gestures performed in a sequence with an end 
objective.  By recognising these gestures, it is possible 
to determine how the task is performed and the 
intermediate steps leading to the task. Existing research 
has shown that different surgeons can have different 
approaches to performing a given task, and their 
manoeuvre is characteristic of the basic skills attained. 
For instance, an expert surgeon may require much less 
movements than a novice in performing a similar task, 
therefore identifying the intrinsic pattern of the hand 
movement can provide important information on basic 
surgical skills.  
 
Human hand is a highly articulated object with 
approximately 30 degrees of freedom (DoF) [3]. This  
presents a challenge to track its detailed movements. 
Thus far, a number of tracking methods have been 
developed, and many of them involve the use of glove 
based input devices primarily for use in Man Machine 
Interfacing (MMI) [4].  The sensors involved include 
LEDs, colour markers, fibre optics, electromagnetic 
(EM) and flex sensing devices. The models used for 
decoding basic hand-gesture include Hidden Markov 
Models (HMM) [5,6], particle filters [7] and 
specialized maps [8].  For basic surgical skills 
assessment, EM tracking devices have been widely 
used for measuring 3D hand motion. Objective 



measures such as the number of manoeuvres made, 
distance travelled, velocity, acceleration and time used 
are combined together as basic indices for elucidating 
the manual dexterity of the surgeon [9].   
 
Although EM sensors provide accurate 3D positional 
readings, the sensors are relatively large and require  a 
series of cables to connect to the data-capturing device. 
They can affect the free-movement of the surgeon and 
potentially alter the natural behaviour of the operator. 
Furthermore, the EM tracker is sensitive to interference 
from metal objects and detailed calibration procedures 
are required before each experiment. In this paper, we 
will describe the use of a novel fibre optic sensor 
combined with BSN nodes for unobtrusive skills 
assessment. The method provides a pervasive sensing 
environment that is suitable for large class teaching and 
skills assessment.  
 
 
3.  IMPLEMENTATION 
 
Fig. 1 demonstrates the basic hardware set up of the 
system, where wireless sensors are mounted onto a 
glove to measure the bending motion of the hand and 
fingers. The sensor data can be sent wirelessly to a 
PDA or PC for data storage and analysis. The system 
allows both global motion (3D accelerometers) and 
local motion analysis. We have used a fibre optic bend 
sensor to measure the gripping motion while 
performing laparoscopic procedures.  The sensor data 
is captured and digitised by a BSN node developed by 
Imperial College. The BSN node is a small (26mm2) 
device that provides a flexible platform to aid the 
research and development of wireless body sensor 
networks [10]. The BSN node runs the TinyOS 
operating system [11] that provides the software 
building blocks necessary to gather and transmit the 
data.  Once the data is collected, temporal features are 
extracted from the data for performance classification 
based on HMM or Bayesian Networks. 
 
 

       
 
 
 

Fig 1:  Hardware setup of the proposed skills 
assessment system based on BSN. 

 
 
3.1. WIRELESS SENSOR 
 
With this study, the flexion of the palm is measured by 
using a S720 Miniature Joint Angle ShapeSensor 
developed by Measurand Inc. [12].  The  sensor as 
shown in Fig. 2b, uses a specially treated optic fibre to 
measure the curvature along a given one plane of 

motion within a range of ±90º.  The fibre has been 
treated such that only one section of the fibre emits the 
light transmitted through it.  As the bend in the fibre is 
increased, more light escapes the fibre reducing the 
final intensity detected, thus allowing the extent of the 
curvature to be measured.  The ShapeSensor is thin and 
light, making it completely unobtrusive to the user. 
 
To provide a wireless link, the bend sensor is 
connected to a BSN node via its analogue channel.  To 
capture detailed hand movement pattern, the sampling 
rate of the BSN was set at 200 Hz.  Fig 2a. shows the 
glove design with the fibre optic integrated into the 
BSN node.  The small box holds the BSN node and an 
encapsulated LED and photodiode to illuminate the 
optic fibre.   
 

 
 

 
Fig 2:  (a) The glove design that encapsulated the BSN 
node and the bend sensor.  Fibre optic ShapeSensor 
positioned on (b) the index finger (c) the palm 
 
4.  RESULTS 
 
To demonstrate the value of the proposed framework, 
an experiment based on a simple laparoscopic 
procedure using a grasper with rotating tip was 
conducted. Figure 3 demonstrates the sensitivity of the 
optical fibre when attached to the index finger by 
measuring the motions of the first joint.  Figure 3a 
gives the range of the finger when straight and fully 
bent (just over 90º) where values reach 1 and 0 
respectively. 
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Fig 3: Sensor output for actions with sensor on the 
index finger. (a) Full motion range (b) Twisting 
grasping tool tip (c) grasping with laparoscopic tool 
tip. 
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For a laparoscopic tool, the grasping jaws are rotated 
by operating the dial near the handle of the tool with 
the index finger; the output is shown in Figure 3b with 
a faster motion and smaller bending range.  Figure 3c 
shows the trace recorded as the grasper jaws are closed 
demonstrating a small motion range but within a 
different angle range to the twisting motion.   
 
The second experiment aimed to use the collected data 
to differentiate between experienced and novice 
surgeons.  The sensor was relocated to the palm 
making it more sensitive to grasping motions, the most 
common action. Under laparoscopic training conditions 
three experienced and three novice surgeons perform a 
simple procedure wearing the sensor glove relying on a 
2D image from an endoscopic camera for visual 
feedback.  Each participant gave three fast gripping 
motions at the start and end of the procedure for 
synchronisation. Using the laparoscopic tool an object 
was picked up, held, and then replaced.  This was 
repeated three times.  
 
Figure. 4 show the readings of the task performed by 
an experienced surgeon.  Part (a) and (e) shows the 
synchronisation, (b) indicates the grasper opening and 
closing while picking up the object, (c) is the time the 
object is held, and (d) corresponds to the object being 
released.  Figure 5 show novice results where section 
(a) and (c) indicate the beginning and end 
synchronisation pulses and (b) shows the time taken to 
complete the task.  Unlike the experienced surgeon it is 
not possible to distinguish between the different phases 
of the procedure. 
 
The average time taken to complete the procedure and 
the variance are extracted and showed in Table 1.  By 
comparing these measurements, the difference between 
the expert and novice is apparent.  The expert surgeons 
were faster to complete the procedure while the novice 
may take up to twice as long.  Also the sensor data 
from both experts have a higher variance to the novice 
who often needs many movements to grip the object. 
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Fig 4: Laparoscopic procedure with palm sensor 
readings from an experienced surgeon 
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Fig 5: Laparoscopic procedure with palm sensor 
readings from a novice 

  
 

Participant Av. Time 
(samples) 

Variance Skill Level 

1 1975 0.081405 ���������  
2 1145 0.070029 ���������  
3 4596 0.031086 ���������  
4 9316 0.033035 ���������  
5 3836 0.0373 ���������  

 
Table 1: Extracted results from glove data. 
 
 
5.  CONCLUSION 
 
This paper introduces the use of wireless BSN nodes 
for a gesture recognition system with applications in 
surgical skills training and evaluation. The proposed 
glove is discrete, light and allows full freedom of 
movement without reducing sensor accuracy making it 
idea for use in the operating theatre or skills laboratory.  
It can be seen that differentiating between a novice and 
expert surgeon is possible.  Preliminary results 
demonstrate that movement features can be captured 
and used in an automated classification system such as 
HHM or Bayesian network.  However, the number of 
unique motion signatures is limited by using only one 
sensor.  Refinements of the glove would integrate more 
sensors to the fingers and use a more general sensor 
such as a 3D accelerometer to measure the global 
position of the hand.   
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