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Real-Time RGB-D Camera Relocalization via
Randomized Ferns for Keyframe Encoding

Ben Glocker, Jamie Shotton, Antonio Criminisi, and Shahram Izadi

Abstract—Recovery from tracking failure is essential in any simultaneous localization and tracking system. In this context,
we explore an efficient keyframe-based relocalization method based on frame encoding using randomized ferns. The method
enables automatic discovery of keyframes through online harvesting in tracking mode, and fast retrieval of pose candidates in
the case when tracking is lost. Frame encoding is achieved by applying simple binary feature tests which are stored in the nodes
of an ensemble of randomized ferns. The concatenation of small block codes generated by each fern yields a global compact
representation of camera frames. Based on those representations we define the frame dissimilarity as the block-wise hamming
distance (BlockHD). Dissimilarities between an incoming query frame and a large set of keyframes can be efficiently evaluated
by simply traversing the nodes of the ferns and counting image co-occurrences in corresponding code tables. In tracking mode,
those dissimilarities decide whether a frame/pose pair is considered as a novel keyframe. For tracking recovery, poses of the
most similar keyframes are retrieved and used for reinitialization of the tracking algorithm. The integration of our relocalization
method into a hand-held KinectFusion system allows seamless continuation of mapping even when tracking is frequently lost.

Index Terms—camera relocalization, tracking recovery, dense tracking and mapping, marker-free augmented reality
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1 INTRODUCTION

D EVELOPMENT of systems for simultaneous local-
ization and mapping (SLAM) has gained enor-

mous momentum in recent years. Seminal works on
MonoSLAM [1], [2] and PTAM [3] enabled real-time
performance for sparse feature methods using com-
modity hardware. Today, we find numerous works on
real-time dense tracking and mapping with RGB [4],
[5] and RGB-D cameras [6], [7] which allow accurate
3D reconstruction of the physical world.

Recent advances in this area include object-level
SLAM [8], [9], scalable representations [10], [11],
[12], dynamic scene reconstruction [13], [14], [15],
and SLAM on mobile devices [16], [17], [18]. Real-
time SLAM has led to exciting applications such as
environment-aware augmented reality (AR) [7], [19],
[20], [21]. Obtaining knowledge about the 3D geom-
etry of physical objects in a scene combined with
the ability to sense the depth in real-time allows,
for example, realistic occlusion handling and accurate
fusion of real and virtual objects [22].

The underlying processing pipelines of different
SLAM systems are quite similar. The camera motion
is tracked in a frame-to-frame (or frame-to-model)
fashion where the pose update is determined by com-
puting a relative transformation between a (partially)
reconstructed world (i.e. the map) and a set of features
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or 3D point clouds obtained from the live camera
frames. For RGB-D settings, the camera transforma-
tion can be for instance computed by employing a
robust version of the iterative closest point (ICP)
algorithm as it is implemented in the KinectFusion
approach [6]. Given the estimated camera pose, new
measurements are integrated into the map yielding
an updated and refined reconstruction of the scene.
Existing 3D reconstruction pipelines mainly differ in
the details how tracking [7], [23], [24] and mapping
[10], [11], [25] are implemented.

1.1 Camera Relocalization in Real-Time SLAM

In order to acquire an accurate map of the scene,
reconstruction pipelines rely on a steady stream of
successfully tracked frames. Tracking failure can have
severe consequences. Integrating measurements with
incorrect poses yields implausible, invalid geometry
and might destroy already reconstructed parts. In-
deed, if tracking failure can be detected, at least map
corruption can be prevented. However, in AR appli-
cations in which the pose of the camera is required to
correctly overlay virtual objects onto the real world,
tracking failure leads to an abrupt and unpleasant end
of the user’s experience.

The causes for tracking failure are versatile. Rapid
camera motion and sudden change of viewpoint are
probably the predominant ones where image-based
camera tracking fails. In addition, and particularly
relevant to systems where the map is spatially re-
stricted to a limited area of the world, tracking which
relies on the reconstructed map fails every time the
camera points outside this restricted domain. This can
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frequently happen in AR scenarios where the user is
in control of a hand-held or head-mounted camera.

To this end, it is of great practical importance to in-
tegrate a camera relocalization module which allows
instant recovery from tracking failure. Incorporated
into the 3D reconstruction pipeline, such a module
allows seamless continuation of mapping even when
camera tracking is frequently lost. This avoids the
frustrating task of restarting an entire scan from
scratch due to tracking failure. Also, this makes AR
applications more robust.

We have recently proposed a relocalization mod-
ule [26] which can be easily integrated into existing
reconstruction pipelines. Our approach is inspired
by different components of previous work, resulting
in an efficient and scalable algorithm that provides
a solution to the main causes of tracking failure
in systems such as KinectFusion. This article is an
extended version this earlier work. Here, we pro-
vide an extensive performance evaluation and a more
detailed description of our method including visual
examples. Comparison to more baselines including
sparse feature methods and thorough exploration of
the effects of various parameters on the relocalization
performance will hopefully provide valuable insights
to our approach.

1.1.1 Related Work
Relocalization has been widely studied in the context
of real-time SLAM. While approaches exist that re-
quire an offline training phase (e.g. [27], [28]), below
we focus on methods which are capable of online real-
time performance. One can roughly categorize exist-
ing approaches into two categories, though hybrid
[29] and more exotic variants exist [30], [31].

The first category are landmark-based approaches
(LbAs) [32], [33], [34]. During successful tracking,
fiducial landmarks or features, also called keypoints,
are extracted from the camera images, encoded by
a descriptor, and stored in a database together with
their 3D locations. When tracking is lost, landmark
candidates are detected in the incoming frame and
based on descriptor similarity putative matches are
established between those candidates and stored key-
points. In a recent work [33], the authors employ a 3D
test based on depth information to rapdily rule-out
false matches. The combination of the perspective 3-
point algorithm and RANSAC [35] is then commonly
employed to determine the pose of the camera.

We denote the second category as image-based
approaches (IbAs) [36], [37], [38]. Indeed, all methods
discussed here rely on image information, however,
the main difference to the first category is that IbAs
make use of global image matching and do not re-
quire explicit landmark detection. During successful
tracking, compact representations of whole images are
generated and stored together with the corresponding
camera poses. Those frame/pose pairs are commonly

referred to as keyframes. When tracking is lost, the
compact representation of the incoming frame is com-
pared to the ones of all keyframes. The poses of the
most similar keyframes are retrieved and then used
to directly reinitialize the tracking algorithm.

The notion of keyframes often also appears in the
context of LbAs. Here, keyframes are particular cam-
era frames from which keypoints have been extracted
and stored. In our work, however, we commonly asso-
ciate keyframes with IbAs and whole image matching.

Both categories come with advantages and draw-
backs. The main advantage of LbAs is their ability
to recover the pose from novel views. As long as
a sufficient number of keypoints can be recognized,
the camera pose can be determined. Depending on
the visual characteristics of the scene and possible
artifacts such as motion blur, it might not always be
possible to obtain sufficiently many matches. Also,
the construction of the keypoint database in real-
time settings can be challenging. Often a costly online
training phase is required which demands additional
resources such as a background thread or extra GPU
computations [34]. Another limitation of LbAs lies in
their inherent sparse representation of the scene. Some
approaches are limited to store only a few thousand
unique points, as discussed in [32], [37]. The optimal
choices for a suitable pipeline of robust detection
[39], description [40], [41], [42] and matching [43] is
certainly a challenge on its own.

Instead of map locations, in IbAs a set of keyframes
represents the reconstructed scene. This allows direct
retrieval of pose proposals for tracking initialization.
The main challenges are related to the online deter-
mination of keyframes and the definition of efficient
frame similarity measures. For the first part, often
heuristics are employed such as thresholds on dis-
tances in pose space. For instance, a tracked frame is
added to the set of keyframes only if the camera trans-
lation and orientation are sufficiently different from
the previous keyframe [36], [38]. This heuristic might
yield non optimal scene coverage. The second issue
regarding efficient similarity evaluation is commonly
tackled by using compact representations such as
heavily downsampled images and normalized inten-
sity differences [36], [37], [38]. With increasing number
of keyframes, the time needed for the search of the
most similar ones can be a limiting factor of IbAs in
real-time settings. The fact that tracking can only be
recovered from views which have been approximately
visited before has been recently approached by utiliz-
ing synthesized views [36]. However, rendering such
views can be costly and defining an optimal sampling
strategy in pose space is non trivial.

1.1.2 Contributions

In light of prior work, we developed a simple yet
powerful relocalization approach [26] which falls into
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the IbA category. Our method makes use of random-
ized ferns which have been previously used in the
context of keypoint-based relocalization [34]. The way
in which we make use of ferns is quite different and
will be described in Section 2. With our relocalization
approach we make the following contributions:

1) Efficient frame encoding scheme allows compact
representation of keyframes, and fast retrieval of
pose proposals for tracking recovery;

2) Automatic discovery and sampling of keyframes
by exploring the space of appearance during
tracking and avoiding spatial sampling heuris-
tics;

3) Scalability to large scenes through a small mem-
ory footprint, large model capacity, and minimal
computational demands;

Besides those properties which are essential for the
integration of our method into 3D reconstruction
pipelines, we demonstrate the robustness of our
method with respect to different settings of internal
method parameters. After discussing the technical de-
tails, we investigate the relocalization performance in
an experimental evaluation in Section 3. We then dis-
cuss in Section 4 a practical application of marker-free
AR realized with the KinectFusion system equipped
with our relocalization module. In Section 5, we dis-
cuss current limitations and future work.

2 KEYFRAME-BASED RELOCALIZATION VIA
RANDOMIZED FERNS FOR FRAME ENCODING

Our relocalization approach is based on the idea of
generating compact codes for camera frames. Those
codes can then be used to efficiently determine frame
dissimilarities either to judge whether a frame is novel
enough to be considered as keyframe or to retrieve the
poses of most similar keyframes when tracking is lost.

We start by explaining how randomized ferns can
be used for generating compact codes.

2.1 Frame Encoding
Given an RGB-D image frame I : Ω ⊂ R2 7→ R4,
we define the function that provides pixel values as
Ic(x) ∈ R where x ∈ Ω is the pixel location in
image channel c ∈ {R,G,B,D}. For convenience we
introduce the notation I(θ) = Ic(x) with θ = (c,x).

In order to generate compact code representations
for RGB-D image frames, we first define a fern F =
{fi}ni=1 as a set of n consecutive nodes fi where each
node represents a binary test parametrized by a pair
(θi, τi). Each test is evaluated on the image data as

f(I, θ, τ) =

{
1 if I(θ) ≥ τ
0 if I(θ) < τ

. (1)

Here, τ is a threshold on the image pixel value I(θ).
Evaluating all fi of a fern F in consecutive order
provides a binary code block bF = f1 . . . fn ∈ Bn.
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Fig. 1. Frame encoding: Fern-based frame encoding
takes an input RGB-D image and generates small code
blocks for each fern based on simple binary feature
tests evaluated at randomized, but fixed, image loca-
tions. A code block is associated with a row of a code
table which stores the ids of keyframes with equivalent
codes. In harvest mode, the id of an incoming frame
is added to the row if the minimum dissimilarity κI is
above a threshold. For tracking recovery, most similar
keyframes are retrieved from the tables and the cor-
responding poses are used for reinitialization of the
tracking algorithms.

Given a conservatory C = {Fk}mk=1 of m diverse
ferns, the concatenation of individual code blocks
yields a global single code bC = bF1 . . . bFm ∈ Bmn.
This mechanism allows us to generate (non unique)
codes for any RGB-D image frame. A particular binary
image code bIC depends on the total number of ferns
m, the number of nodes n in each fern, the binary test
parametrization (θi, τi) of each node, and of course on
the visual content of the image frame I .

The idea of using ferns for generating codes for
image patches has been already introduced in [44].
This has been applied to the task of camera relocal-
ization in [34]. In both works, the idea is to learn
compact codes for efficient keypoint recognition in-
stead of encoding whole image frames. At test time,
in those works the conservatory of ferns is utilized as
a classifier to find putative matches between incoming
frames and a learned keypoint database.

Although inspired by the promising performance
of those fern-based approaches, we use ferns in a
way which is quite different from previous works. We
employ whole frame encoding for keyframe-based re-
localization with a test procedure that allows us to si-
multaneously compute frame dissimilarities between
a new frame and all previously stored keyframes. In
the following we define the frame dissimilarity in
terms of the hamming distance.

2.2 Frame Dissimilarity via Hamming Distance
Given compact representations bIC and bJC for two
camera frames I and J , the frame dissimilarity is de-
fined as the block-wise hamming distance (BlockHD)
as

BlockHD(bIC , b
J
C) =

1

m

m∑
k=1

bIFk
≡ bJFk

, (2)

where the equivalent operator ≡ returns 0 if two
code blocks are identical and 1 if there is at least one
bit difference. The BlockHD is simply counting the
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number of differing code blocks. The normalization
with respect to the number of ferns m maps the
distance to the [0, 1] interval. This is a nice property
which eases parameter tuning of an algorithm.

2.3 Precision/Recall of BlockHD
In contrast to the well-known bit-wise hamming dis-
tance which counts the differing bits of two codes, the
block-wise version has an interesting property related
to the length of the blocks. Varying the length which
is determined by the parameter n directly impacts
the precision/recall characteristics of BlockHD. The
probability that code blocks bIF and bJF are equivalent
decreases with increasing bit length due the increasing
number of binary tests. Remember that the frames I
and J need to produce same feature test responses
for identical codes. Longer code blocks increase pre-
cision but negatively affect recall. Two frames with a
low BlockHD and long code blocks are very likely
to be very similar. However, one might also miss
some similar frames due to image noise or just by
chance because of the hard thresholding in the feature
tests (cf. Eq. (1)). For shorter codes the probability is
higher that two frames with different visual content
yield a low BlockHD. The recall, however, intuitively
increases in this case, though the precision might be
low. In case of 1-bit blocks which corresponds to ferns
with only one node, the BlockHD is equivalent to
the bit-wise HD. In the following we describe the
mechanisms that allows us to efficiently compute the
frame dissimilarity.

2.4 Harvesting Keyframes
The key difference to previous fern-based approaches
is in the way we utilize the output of the ferns.
Remember a fern with n nodes can generate 2n unique
codes. We associate each fern F with a code table
TF with 2n rows. Each row can store a set of frame
identifiers (ids)1 and all sets are initially empty. In
addition to the fern-specific code tables, we also define
one global table P taking id/pose pairs as input
elements. This set is also initially empty and will be
used to globally store the camera poses of keyframes.

Let us now assume a steady stream of tracked
camera frames with pairs (I,H)id where H ∈ SE(3)
is the camera pose composed of rotation and transla-
tion. Here, the id is assumed to be unique for each
frame/pose pair. For each incoming frame we can
generate the code bIC and add its id to the m sets
from the corresponding rows which are linked with
the individual code blocks. Additionally, we would
add the pose H with key id to the global table P .

Assuming a number of tracked frames have been
already encoded and stored using this strategy. Now,

1. This is different to classification ferns [34], [44] where empirical
distributions over keypoint classes are stored in the code tables.

Fig. 2. Harvesting keyframes: The top-left im-
age shows a reconstructed scene with 4000 tracked
frames. Each camera pose is shown as a red frustum.
When simulating harvesting from this stream of frames,
836 are accepted as keyframes for κI > 0.1 (top-
right). Increasing the threshold to κI > 0.2 yields 314
keyframes (bottom-left) and for κI > 0.3 only 105
are being accepted (bottom-right). We evaluated the
effect of the keyframe coverage on the relocalization
performance and the results are summarized in Fig. 8.

every time we are about to add a new id to a set in
a row of a code table TF , we can also immediately
read out the previously stored identifiers (cf. Fig. 1).
We know that those must correspond to frames which
have an equivalent code block bF . In fact, if we sim-
ply count those co-occurrences of previously stored
frames along the m rows in which we would add the
new id, we can simultaneously compute the dissimilar-
ities between the new frame and all previously stored
frames. Assuming the count of co-occurrences for two
frames I and J using the above procedure is denoted
as qIJ , then we can equivalently to Eq. (2) compute
their dissimilarity by

BlockHD(bIC , b
J
C) =

m− qIJ
m

. (3)

In addition, for every incoming new frame I we can
determine the minimum BlockHD with respect to all
previously stored frames as

κI = min
∀J

BlockHD(bIC , b
J
C) = min

∀J

(
m− qIJ

m

)
. (4)

The value κI provides useful information about the
novelty of new frame compared to stored keyframes.
A low value reflects that a very similar frame is
already present, while a high value indicates a novel
view from a pose which should probably be stored as
a keyframe. Based on this observation, we propose a
strategy for online harvesting of tracked frames and
automatic determination of keyframes. Based on the
value κI and a predefined threshold t, we decide
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Fig. 3. Pose retrieval: The left column shows the RGB image of the query frame for which tracking has failed.
The second to sixth column show the RGB images of the retrieved keyframes in ascending order with respect
to frame dissimilarity (BlockHDs). The plots in the most right column illustrate the corresponding camera poses.
The yellow frustum is the ‘ground truth’ pose of the incoming frame. The poses of the retrieved keyframes are
shown in red (nearest), green (2nd), blue (3rd), magenta (4th), and cyan (5th). In most cases, the retrieved poses
are sufficiently close to ‘ground truth’. An interesting case of visual ambiguity resulting in an outlier keyframe is
shown in the third row. The 5th nearest keyframe is visually very similar, however, its camera pose (shown in
cyan) is almost perpendicular to ‘ground truth’. This is a limitation of keyframe matching approaches, but not a
problem as long as at least one of the retrieved poses is sufficiently close to the real one.

whether an incoming frame is added or discarded.
It should become clear that such a threshold influ-
ences how densely the observed scene is covered by
keyframes (see Fig. 2). Intuitively, a compromise is
desired which avoids redundant information to be
added to the scene representation while the cover-
age should also be sufficiently dense. Note, that our
harvesting strategy is completely driven by the visual
content of the camera frames and spatial sampling
heuristics based on pose offsets [36] are avoided.

2.5 Tracking Recovery via Pose Retrieval
When tracking fails for an incoming frame, we make
use of the previously harvested keyframes to retrieve
pose proposals for tracking recovery. For the incoming

frame we perform the same encoding procedure as
in harvesting mode which provides dissimilarities
to all previously stored keyframes. Now, instead of
determining the value of the minimum distance, we
directly determine the ids of the k nearest keyframes,
i.e. the most similar ones. We can then read-out the
corresponding pose proposals from the global table P .
Depending on the underlying tracking and mapping
approach, we can for example use those k poses to
reinitialize the tracking algorithm. It is also possible
to employ a weighted averaging using the frame
similarities as weightings to compute a novel pose
proposal. This is similar to the idea proposed in [36]. If
reinitialization is unsuccessful for all proposed poses,
we discard the current frame and repeat the same
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procedure for the next incoming camera frame until
tracking is recovered. In the meantime, the mapping
process is paused and automatically resumed after
recovery. Remember we assume a user controlled,
hand-held camera, and it is likely that at some point
the user will move the camera to a pose which is
similar enough to a previously tracked one. One could
also imagine to employ visual guidance which could
help the user to move the camera into areas of good
keyframe coverage. In Fig. 3 we illustrate some exam-
ples of the pose retrieval process. We show incoming
test frames (only RGB is shown) on the left, and
the five nearest neighbors from the stored keyframes.
We also plot the corresponding camera poses in the
reconstructed scene for a geometric interpretation of
those results. Visually, the retrieved keyframes are
very similar to the query image and similarly are
their poses in most cases. If among the five nearest
neighbor poses there is at least one that allows the
tracking to resume, we can successfully recover the
pose of the camera and continue the mapping process.

2.6 Fern Construction

We have not discussed the details for the fern pa-
rameters introduced in Section 2.1. In particular, the
binary test parameters (θi, τi) seem crucial for obtain-
ing useful compact frame representations. However,
and maybe not too surprising, we found that ran-
domness injected into the construction of the ferns
yields overall best performance. Similar findings are
reported in related approaches [34], [44], [45]. Our
default construction strategy for the entire conserva-
tory of ferns is explained in the following. The impact
of parameters such as the number of ferns m, the
keyframe acceptance threshold t, or the number of
neighbors k are investigated in our experiments.

Per default, each fern consists of n = 4 nodes
with one node per RGB-D channel, yielding F =
{fR, fG, fB , fD}. This also defines the parameters ci
within the set {θR, θG, θB , θD}. We randomly sample
image locations xi at which the binary tests are ap-
plied from a uniform distribution over the image do-
main Ω. Note, those locations are sampled only once
at the time of the fern construction. Here, we sample
one location per fern, such that xR = xG = xB = xD.
This has the effect that a code block bF corresponds to
feature responses from all image channels obtained at
the same fixed location. The feature test thresholds τi
are uniformly sampled such that τR, τG, τB ∈ [0, 255]
for RGB and τD ∈ [800, 4000]mm for depth.

3 EXPERIMENTAL EVALUATION

It is not straightforward to assess the overall perfor-
mance of a real-time relocalization system. The best
way is probably to actually test the system when it is
running in a live, real-world environment. However,

Camera Tracking
(e.g. ICP)

Success?

Read Next Frame

No

Integrate Data

Yes

𝜅𝐼 > 𝑡

Yes

Relocalizer:
Add Keyframe

trials < k
No YesNo

Relocalizer:

∀𝐽: BlockHD(𝑏𝐶
𝐼 , 𝑏𝐶

𝐽
)

Relocalizer:
Next Pose Proposals

Fig. 5. Pipeline integration: The diagram illustrates
the integration of our relocalization module into a stan-
dard 3D reconstruction pipeline such as KinectFusion.
Every incoming frame is pushed through our encod-
ing and frame dissimilarity mechanism. Depending on
whether camera tracking is successful, we can forward
tracked frames to the map integration and keyframe
extraction procedures, or we initiate pose proposal
retrieval for tracking recovery.

quantitative evaluation of a live system becomes dif-
ficult, in particular, if one is interested in how certain
system parameters affect performance.

Keeping the limitations of simulated tests in mind,
in the following we explore the performance of our
system by relative comparisons. We employ the pub-
licly available ‘7-scenes’ dataset2 for simulation pur-
poses. All scenes in this dataset were recorded from
a handheld Kinect camera at 640× 480 resolution. We
used KinectFusion [6] (with care to avoid loss of track)
to obtain the ‘ground truth’ camera poses. For each
scene, several sequences were captured by different
users, and split into two distinct evaluation sets. One
set is then used as a steady stream of tracked frames
for simulating harvesting of keyframes, the other
set is used for performance evaluation. The frames
exhibit ambiguities (e.g. repeated steps in ‘Stairs’),
specularities (e.g. reflections in ‘RedKitchen’), motion
blur, lighting conditions, flat surfaces, and sensor
noise. It should be noted that the ‘ground truth’ poses
do contain some errors which occur from a slight
tracking drift and model distortions. An overview of
the dataset is shown in Fig. 4 and some more details
about each scene are given in Table 1. The varying
difficulties of the scenes are reflected in the errors,
consistently across different approaches.

3.1 Overall System

We integrated our relocalization module into the
KinectFusion pipeline (see Fig. 5) which relies on

2. http://research.microsoft.com/7-scenes/

http://research.microsoft.com/7-scenes/
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Fig. 4. RGB-D dataset: For each of the seven scenes, we have recorded several sequences of tracked RGB-D
camera frames. The frame trajectories used for simulating the online harvesting are shown in red. The frames
used for evaluating tracking recovery are shown green.

model-based ICP camera tracking [6]. In order to
detect ICP tracking failure (and success), we employ a
plausibility check on the magnitude of camera motion
and on the ICP residual error. If the relative motion
or residual is too large, ICP reports tracking loss and
relocalization is initiated. A short demonstration of
this system is shown in a video3 which highlights
the importance and the performance of our relocal-
ization module. In particular, the system is able to
immediately recover tracking even when the camera
frequently leaves and re-enters the limited reconstruc-
tion volume.

3.2 Performance Evaluation

Our main metric for comparing different settings and
approaches is the percentage of frames for which
the pose was successfully recovered. Here, we define
recovery to be successful if the final estimated pose
after ICP camera tracking is within 2 cm translational
error and 2 degrees angular error compared to ground
truth. In order to explore the effect of the randomness
in our method we perform three complete runs for all
experiments. In each run, the conservatory of ferns is
constructed from scratch. The reported performance
values of our method are averages over three runs.
The stability of the performance for different runs is
discussed in Sec. 3.6.4.

3.3 Frame Processing

Per default, our relocalization method operates on
downsampled, smoothed images with a resolution of
40× 30 (factor 16) and Gaussian blur of σ=2.5 pixels
(after downsampling). The same pre-processing is for
instance used in [37], [38] and we use this setting
when comparing to baselines. In order to explore
the effect of this pre-processing we performed a set
of experiments with varying downsampling factors
(1, 2, 4, 8, 16). In each case, we keep the Gaussian blur
with σ=2.5 pixels for the respective image resolutions
of 640×480, 320×240, 160×120, 80×60, and 40×30.
The results for those tests are reported in Sec. 3.6.5.

3. http://www.doc.ic.ac.uk/∼bglocker/videos/ferns.mp4

3.4 Pose Proposal Strategies
There are several strategies of using pose retrieval
for relocalization. One way is to simply initialize the
tracking algorithm with the nearest neighbor (NN)
pose, i.e. the one from the keyframe with small-
est BlockHD. It is also possible to retrieve a set
of kNN proposals and initialize the tracking with
each of those. Besides proposing directly the poses
of keyframes, we can also interpolate a proposal via
weighted averaging over the kNN poses [36].

In the following, we will compare relocalization
performance for different strategies, namely NN,
kNN, and weighted average pose (WAP). In contrast
to NN and WAP where we provide a single proposal,
kNN corresponds to a multi-proposal approach where
the poses of the k closest keyframes plus their WAP
are used for initializing ICP. If ICP reports success
for more than one pose, the one with lowest residual
error is selected for continuing normal tracking and
mapping. We also investigate the influence of k in a
separate experiment. In particular, we explore values
5, 10, 20, and 40 for the k nearest neighbor pose
proposal and pose averaging. The results for varying
values of k and the impact of including WAP are
reported in Sec. 3.6.6.

3.5 Baselines
We compare our method to another image-based ap-
proach denoted as ‘tiny image baseline’. This IbA
baseline represents whole image matching approaches
[36], [37], [38]. Keyframes are stored with their camera
poses, after downsampling to 40 × 30 pixels and ap-
plying a Gaussian blur of σ=2.5 pixels [37]. For pose
retrieval with best possible accuracy (at the expense
of speed), we use brute-force matching against all
available stored frames using the normalized distance
over RGB-D as defined in [36]. It should be noted
that this exhaustive search is impractical for real-
time systems but it should give an upper bound
on the performance. In practice, keyframe sampling
heuristics are usually employed to keep the number of
keyframes at a reasonable level [36]. Such heuristics,
however, do not guarantee sufficient coverage of a
scene. In order to eliminate this factor of insufficient
keyframe density, we opt for the brute-force search

http://www.doc.ic.ac.uk/~bglocker/videos/ferns.mp4
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TABLE 1
Main results: Summary of the relocalization performance evaluated on the RGB-D dataset ‘7-scenes’.

Percentages correspond to the number of successfully recovered frames (within 2 cm translational error and 2
degrees angular error). The best performance is obtained with our relocalization approach and the kNN pose
proposal strategy. Similarly good performance for scalability test on the ‘All-in-One’ representation indicates

promising scalability properties for our compact encoding scheme.

Scene

Spatial

Extent

#Frames Tiny Image Baseline (k=5) Our Results (m=500, t=0.2, k=5) All-in-One

Harvest Recovery NN WAP kNN NN WAP kNN Keyframes kNN

Chess 3m3 4k 2k 70.8% 72.4% 80.6% 68.4% 74.8% 85.3% 317 82.0%

Fire 4m3 2k 2k 56.6% 56.9% 60.9% 57.4% 53.5% 72.0% 141 66.0%

Heads 2m3 1k 1k 49.0% 50.2% 61.0% 47.9% 40.4% 79.8% 91 76.1%

Office 5.5m3 6k 4k 60.8% 61.3% 65.8% 61.7% 50.2% 74.7% 674 72.7%

Pumpkin 6m3 4k 2k 54.6% 56.1% 59.7% 47.8% 53.1% 62.8% 302 62.5%

RedKitchen 6m3 7k 5k 46.1% 46.8% 49.3% 42.0% 41.4% 54.1% 588 52.7%

Stairs 5m3 2k 1k 25.2% 27.3% 29.9% 21.4% 13.9% 34.1% 68 32.7%

Average 51.9% 53.0% 58.2% 49.5% 46.8% 66.1% 63.5%

strategy. We use the same pose proposal strategies
as for our method, i.e. NN, kNN, and WAP with
k = 5. The comparison with respect to this baseline
is reported in Sec. 3.6.1.

In addition, we also compare the performance of
our real-time keyframe method with two landmark-
based approaches. Both of them require an offline
training phase and thus, are not suitable for inte-
gration into real-time SLAM systems. Those methods
can be considered for relocalization tasks when a
previously scanned scene is revisited, and there is suf-
ficient time for training in between. The comparison,
however, allows us to get an estimate of how close we
can get to the performance of those offline methods.
The first LbA method employs the fast ORB feature
descriptor [46] and a database of 3D points which is
built during the training phase. Relocalization then
becomes a problem of 2D-3D feature matching which
is solved using RANSAC and the perspective 3-point
method. The second method is a random forest ap-
proach for directly estimating correspondences be-
tween 2D image points and 3D locations in a canonical
representation of the reconstructed scene. The details
for both methods are given in [28], and a comparison
with our method is discussed in Sec. 3.6.2.

3.6 Results
In the following we investigate different properties
of our relocalization system. Besides quantifying the
actual performance for pose recovery in comparison
to baselines, we also explore the impact of different
parameters and the scalability to larger scenes. We
also report detailed timings and computational im-
pacts of the individual components of our method.

3.6.1 Baseline comparison
Our main quantitative results for the comparison to
the keyframe baseline are summarized in Table 1.

Both, our approach and the baseline perform best in
terms of successfully recovered frames when using
the kNN proposal strategy. Overall, our approach is
able to recover from significantly more test frames
compared to this baseline. In all the experiments, we
set k=5 such that in total 6 poses (including the WAP)
are used for initializing ICP. Using WAP alone as a
single proposal does not perform too well for both
our method and the baseline (see Table 1). However,
adding it as an additional pose proposal in the kNN
approach seems beneficial. This is investigated in
more detail in Sec. 3.6.6. In Fig. 6 we show some more
detailed statistics of the angular and translational
error distributions for our method and the baseline
when using the kNN strategy.

The given percentage of successful frames is always
with respect to the total number of tested frames as
listed in the column ‘Recovery’. The column ‘Harvest’
indicates the number of frames used for simulating
keyframe harvesting, or in case of the baseline directly
the number of keyframes. The number of accepted
keyframes for our approach is given in the column
‘Keyframes’. Note that these quantitative results cor-
respond to a simulated setting where it is assumed
that all ‘Harvest’ frames are observed before the ‘Re-
covery’ frames are tested.

3.6.2 Comparison with landmark-based approaches

In Fig. 7 we compare our method and also the ‘tiny
image baseline’ with the performance of two LbAs
which have been discussed in [28]4. Those meth-
ods require an offline training phase in which the
landmark database respectively the regression forests
are constructed. This offline training yields favorably
performance on all of the sequences compared to

4. The error thresholds in [28] were set to 5 cm and 5 degrees, so
numbers reported here are updated for 2 cm and 2 degrees.
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Fig. 6. Error statistics: Angular and translational error distributions are shown for our fern-based method and
the ‘tiny image baseline’ when using the kNN pose proposal strategy. The large translational error for the ‘Stairs’
scene is explained by the repetitive appearance of stair cases which yields ambiguities that are difficult to resolve.
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Fig. 7. Comparison with offline LbAs: Compared
to our real-time fern-based method, the two of-
fline landmark-based approaches perform favorably.
Though, their applicability is limited to scenarios of re-
visiting a previously reconstructed scene after training.

our real-time approach, but limits the applicability of
those approaches.

3.6.3 Number of ferns and acceptance threshold
The main comparative results are obtained with our
default setting of m = 500 ferns and a keyframe
acceptance threshold of t= 0.2. In Fig. 8 we compare
the performance of our method using the kNN with
k = 5 strategy with varying parameters m and t.
We observe that initially adding more ferns improves
relocalization while further improvement beyond 500
ferns is marginal. Regarding keyframe acceptance,
we find that a lower threshold (t = 0.1) yielding
denser scene coverage does not necessarily improve
relocalization. Setting the threshold too high (t= 0.3)
yields a too sparse sampling of keyframes and relocal-
ization performance decreases. A visual example for
the coverage of the ‘Chess’ scene for varying values
of t is shown in Fig. 2. The number of accepted
keyframes for the three different thresholds are pro-
vided in Fig. 8. For our largest scene ‘RedKitchen’
those numbers are 1368, 588, and 272, and for the
smallest scene ‘Heads’ 218, 91, and 45 keyframes are
accepted (on average) under the different thresholds.

3.6.4 Effect of randomness
In general, the relocalization performance is very sta-
ble across different runs in which the ferns have been
randomly constructed from scratch. Also, the number
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Fig. 8. Effect of number of ferns and harvesting
threshold: Relocalization performance when varying
the number of ferns m (top graph) and changing the
keyframe acceptance threshold t (bottom graph). Ini-
tially increasing the number of ferns improves perfor-
mance, which levels off after m= 500. The threshold t
influences the number (in white), and thus, the density
of keyframes. Optimal coverage seems to be obtained
with t=0.2 (see also Fig. 2 for a visual example).

of accepted keyframes (overlaid in white) does not
vary significantly. The only larger variance is found
for the challenging ‘Stairs’ sequence. In Fig. 9 the
variation across three different runs with default fern
setting is summarized.

3.6.5 Effect of frame size
Up to a factor of 16, the downsampling of frames
has little impact on the overall performance as can be
seen in Fig. 10. For higher factors a significant drop
in performance can be observed. In practice, we use
a factor of 16 yielding frames of size 40× 30 which is
computationally beneficial for subsequent processing,
in particular, when applying the Gaussian blur.

3.6.6 Nearest neighbors and proposal selection
For k = 5 we have tested the kNN strategy with
and without including the interpolated pose WAP.
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Fig. 9. Effect of randomness: Performance is rela-
tively robust to the effect of randomness in different
fern constructions. Only for the challenging ‘Stairs’
sequence we found some significant variation in per-
formance over different runs.
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Fig. 10. Effect of frame size: Downsampling with
factors up to 16 has little impact on the overall relocal-
ization performance. Performance drops significantly
for 32 and 64. We use a factor of 16 which yields
a frame size of 40 × 30 and enables very efficient
processing in the subsequent pipeline.

Without WAP we got consistently worse results, so
including it seems beneficial. This is summarized in
Fig. 11 where we also report the selection frequencies
of the pose proposals for the kNN strategy with
WAP. Proposal selection is based on the smallest ICP
residual. The WAP proposal is almost as often selected
as the nearest neighbor pose.

We further tested different values for k and the
results are summarized in Fig. 12. Overall perfor-
mance can be slightly increased, in particular on
the ‘Heads’ scene, when considering more neighbors.
However, the running time for the relocalization pro-
cess increases linear with the number of proposals. In
summary, our default setting of k=5 including WAP
seems a good compromise between performance and
speed (see also Sec. 3.6.9).

3.6.7 Importance of color and depth
We also evaluated the importance of using both color
and depth information for the relocalization and com-
pared the performance to two setups where we use
either RGB or depth only. For those experiments we
use a fern encoding with the same capacity as for the
RGB-D version, i.e. same number of ferns and 4-bit
block codes. Instead of associating each bit to one
channel, in the RGB only setup we randomly select
a channel per bit when constructing the ferns and
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Fig. 11. Proposal selection: Including the weighted
average pose in the kNN proposal strategy seems
beneficial in terms of relocalization performance. The
selection frequency reveals that the WAP is almost as
often selected as the nearest neighbor (NN) pose.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Chess Fire Heads Office Pumpkin RedKitchen Stairs Average

k=5 k=10 k=20 k=40

Fig. 12. Effect of number of neighbors: Relocal-
ization performance can be slightly increased when
considering more keyframe proposals. This, however,
comes with higher computational costs. Overall, our
default setting of k=5 seems a good compromise.

those selections are spatially varying. For the depth
only variant, all 4 bits are associated with the depth
channel, and thus the corresponding feature tests are
evaluated on depth only. The results are summarized
in Fig. 13. The best performance is obtained when
using the full RGB-D information. The RGB only
version still performs reasonable and might suggest
that our relocalization module could be employed
in RGB SLAM systems. The average of successfully
recovered frames drops from 66.1% to 62.7%. Depth
information alone is not sufficient to obtain a similarly
good performance. The performance measure for the
latter one is only 52.5%.

3.6.8 Scalability to larger scenes
An important aspect of keyframe-based approaches
is scalability to large scenes. In particular, this is
a challenge for whole image matching approaches
such as our baseline where the search for closest
keyframes can become impractical when thousands
of keyframes are stored. In order to evaluate the scal-
ability of our approach, we performed the following
experiment. We constructed a single conservatory of
ferns with our default parameters m = 500, t = 0.2
and k = 5. We then used all 26,000 frames from all
seven scenes for keyframe harvesting. In total, 2091
frames are accepted as keyframes, which is slightly
less than the sum over all keyframes from individual
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Fig. 13. Importance of color and depth: Best re-
localization performance is obtained when using the
full RGB-D information. A system using RGB only still
performs reasonable, while depth information alone
seems insufficient to obtain good performance.

scenes, i.e. 2181. In the most right column in Table 1
we report the relocalization performance when using
this ‘All-in-One’ keyframe representation. The over-
all performance is only slightly worse compared to
the scene-specific constructions. We believe this indi-
cates promising scalability properties for our encoding
scheme and a model capacity which is sufficient for
representing large scenes of more than 30m3 and
thousands of frames.

3.6.9 Timings
Real-time performance of relocalization is essential
when being integrated into a tracking and mapping
pipeline. In the following we report average timings
for individual components of our method. All timings
have been acquired while running KinectFusion on
the ‘RedKitchen’ scene where a relocalization module
based on the default setup and 574 stored frames is
assumed to be in place. This allows us to measure the
expected impact of keyframe harvesting and recovery
under realistic conditions. While the KinectFusion
pipeline itself is mostly running on GPU (Nvidia
Geforce GTX 580), our relocalization runs currently
entirely on a single core CPU (Intel Xeon 2.27 GHz).

The key intervention to the existing pipeline is that
every incoming frame is pushed through the frame
encoding and dissimilarity computation mechanism.
So, even in normal tracking mode our method has an
impact on the overall tracking and mapping perfor-
mance. We found this impact to be very small, with
only 3ms for frame encoding including computation
of κI . A KinectFusion system running at 30 FPS will
continue to run at 27 FPS when keyframe harvesting
is running in the same computation thread. Of course,
the relocalization module could also run in a parallel,
dedicated thread. When tracking is lost, we measure
160ms for camera recovery with kNN with k = 5
including 6 runs of ICP (for the k+1 proposals). The
total impact of relocalization during tracking recov-
ery is about 165ms, which keeps the system reason-
ably responsive. For comparison, the timings increase
slightly for the ‘All-in-One’ representation with 2091
keyframes where harvesting takes about 7ms.

4 MARKER-FREE AUGMENTED REALITY

Real-time 3D reconstruction provided by RGB-D sys-
tems such as KinectFusion enables exciting aug-
mented reality applications. Here, we present a pro-
totype of an AR system with potential use in med-
ical and industrial environments where digital 3D
models or scans of physical objects are available.
In medical settings, anatomical scans of patients are
frequently acquired with computed tomography (CT)
or magnetic resonance imaging (MRI) systems for the
task of diagnosis, interventional planning and surgical
navigation. For example, in keyhole surgery doctors
use the anatomical scan to plan the port placement of
instruments to have optimal access to the region of
interest [47]. Industrial AR systems for support and
training of complex maintenance tasks [19] benefit
from overlay of 3D geometries and other information
extracted from available CAD or mesh models [7],
[48]. In contrast to systems based on optical tracking
and RGB only cameras, an additional depth sensor
can overcome challenges such as occlusion handling
and fusion of real and virtual objects.

Let us assume we are given a surface mesh of a
real world object consisting of a set of n 3D vertices
V = {vi}ni=1. For example, the mesh could have
been extracted from an available 3D scan and could
represent the skin surface of a patient’s head. In order
to be able to correctly overlay object-specific visual
information on top of the camera image, we need to
find a transformation T : R3 7→ R3 which registers the
mesh and the online 3D reconstruction. We assume
the latter is represented as a truncated signed distance
function (TSDF) [6] denoted as D : R3 7→ R where
zero-crossings correspond to object surfaces. Finding
the optimal transformation T̂ can be formulated as an
optimization problem as follows

T̂ = arg min
T

n∑
i

min [|D(T (vi))| , λ] . (5)

Here, the value λ truncates the cost function which
makes it robust to outliers and missing data in par-
tially reconstructed objects. The minimum of the cost
function corresponds to the transformation where a
large number of mesh vertices is located at object sur-
faces, i.e. at zero-crossings in the TSDF volume. The
advantage of this direct mesh-to-volume registration
is that no explicit correspondences are required be-
tween the 3D model and the reconstruction. However,
a sufficiently good initialization is important.

As mentioned earlier, we assume a user controlled
camera which allows us to employ a simple man-
ual initialization mechanism which works well in
practice. Although, an automatic approach can be
envisioned [49]. When a reasonable part of the object
to be augmented has been reconstructed, we display
the 3D mesh model with a fixed offset in front of
the camera. The user’s task is then to navigate the
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mesh model by moving the camera to the proximity
of the reconstructed object. Enabling z-buffer based
rendering gives additional guidance to the user when
the mesh and the reconstruction are sufficiently close.
The actual registration can then be performed auto-
matically. We employ the downhill simplex algorithm
as an iterative optimization method which requires
less than 5 seconds for the registration. Once the
transformation according to Eq. (5) is determined, any
information contained in the object’s 3D model or scan
can be correctly overlaid on top of the tracked camera
images. This procedure enables compelling, marker-
free AR which for example allows to peek inside
the human body and visualize anatomical details of
clinically relevant structures as illustrated for a head
phantom in Fig. 14.

5 CONCLUSION

In this extended version of our work on keyframe-
based relocalization using randomized ferns we ex-
plored in particular the performance under varying
set of parameters. We hope this exploration provides
valuable insights about our method. The comparison
with (offline) landmark-based methods shows that
there is still space for improvement in terms of re-
localization performance. An additional comparison
with online LBAs would be interesting but is beyond
the scope of this work. Setting up an entirely fair and
convincing comparison with existing implementations
(e.g. FAB-MAP [30]) is a challenge on its own due
to the complexity of finding optimal parameters for
methods developed by someone else. The main limi-
tation of keyframe-based approaches, that the camera
view should not be substantially different from views
covered by keyframes, could be potentially overcome
using synthetic view sampling [36]. Here, our com-
pact frame encoding is a key advantage. Instead of
synthesizing whole frames, we only need to synthe-
size the compact codes for novel views which could
dramatically reduce computational costs.

Another possibility to improve the relocalization
performance could be to consider a multi-frame re-
trieval process similar to [50]. Instead of only looking
at one incoming frame and try to relocalize its par-
ticular pose, one could consider a set of consecutive
frames for which a frame-to-frame tracking could
give additional information about the relative pose
trajectory. This information could then be matched to
a set of retrieved pose proposals which would ideally
improve the robustness for selecting the correct poses.

An interesting direction for future work would be
to investigate how loop-closure detection could be
realized within our method. Similar to [32], one could
build a scene graph where stored keyframes corre-
spond to nodes. As pointed out in [32], loop-closure
and tracking recovery are similar events of edge cre-
ation between active and existing graph nodes.

In a similar context, one could explore the use of
continuous pose retrieval for detecting tracking drift.
When a previously scanned area of a scene is revisited
one could compare the current pose estimation of the
tracking algorithm with pose proposals obtained from
the relocalization module. If the frame dissimilarity
is very low, but the difference between the estimated
and retrieved pose is large this could indicate a drift in
the tracking. This information could then potentially
be used for map correction.

In conclusion, with our current relocalization
method we provided a solution to the main causes of
tracking failure in systems such as KinectFusion. This
has been acknowledged by the Kinect for Windows
development team which has integrated our method
into the Kinect for Windows SDK5.
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