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Abstract

Robust portfolio optimization aims to maximize the worst-case portfolio return
given that the asset returns are allowed to vary within a prescribed uncertainty
set. If the uncertainty set is not too large, the resulting portfolio performs well
under normal market conditions. However, its performance may substantially de-
grade in the presence of market crashes, that is, if the asset returns materialize
far outside of the uncertainty set. We propose a novel robust optimization model
for designing portfolios that include European-style options. This model trades o�
weak and strong guarantees on the worst-case portfolio return. The weak guarantee
applies as long as the asset returns are realized within the prescribed uncertainty
set, while the strong guarantee applies for all possible asset returns. The result-
ing model constitutes a convex second-order cone program, which is amenable to
e�cient numerical solution procedures. We evaluate the model using simulated
and empirical backtests and analyze the impact of the insurance guarantees on the
portfolio performance.

Key words: robust optimization, portfolio optimization, portfolio insurance,
second-order cone programming.

1 Introduction

Investors face the challenging problem of how to distribute their current wealth over a
set of available assets, such as stocks, bonds, and derivatives, with the goal to earn the
highest possible future wealth. One of the �rst mathematical models for this problem was
formulated by Harry Markowitz [32]. In his Nobel prize-winning work, he observed that a
rational investor does not aim solely at maximizing the expected return of an investment,
but also at minimizing its risk. In the Markowitz model, the risk of a portfolio is measured
by the variance of the portfolio return. A practical advantage of the Markowitz model is
that it reduces to a convex quadratic program, which can be solved e�ciently.

∗Corresponding author: sz02@doc.ic.ac.uk

1



Although the Markowitz model has triggered a tremendous amount of research ac-
tivities in the �eld of �nance, it has serious disadvantages which have discouraged prac-
titioners from using it. The main problem is that the means and covariances of the
asset returns, which are important inputs to the model, have to be estimated from noisy
data. Hence, these estimates are not accurate. In fact, it is fundamentally impossible
to estimate the mean returns with statistical methods to within workable precision, a
phenomenon which is sometimes referred to as mean blur [29, 34]. Unfortunately, the
mean-variance model is very sensitive to the distributional input parameters. As a re-
sult, the model ampli�es any estimation errors, yielding extreme portfolios which perform
badly in out-of-sample tests [16, 12, 36, 18].

Many attempts have been undertaken to ease this ampli�cation of estimation errors.
Black and Litterman [10] suggest Bayesian estimation of the means and covariances
using the market portfolio as a prior. Jagannathan and Ma [26] as well as Chopra [14]
impose portfolio constraints in order to guide the optimization process towards more
intuitive and diversi�ed portfolios. Chopra et al. [15] use a James-Steiner estimator for
the means which tilts the optimal allocations towards the minimum-variance portfolio,
while DeMiguel et al. [18] employ robust estimators.

In recent years, robust optimization has received considerable attention. Robust opti-
mization is a powerful modelling paradigm for decision problems subject to non-stochastic
data uncertainty [6]. The uncertain problem parameters are assumed to be unknown but
con�ned to an uncertainty set, which re�ects the decision maker's uncertainty about the
parameters. Robust optimization models aim to �nd the best decision in view of the
worst-case parameter values within these sets. Ben-Tal and Nemirovski [7] propose a
robust optimization model to immunize a portfolio against the uncertainty in the asset
returns. They show that when the asset returns can vary within an ellipsoidal uncer-
tainty set determined through their means and covariances, the resulting optimization
problem is reminiscent of the Markowitz model. This robust portfolio selection model
still assumes that the distributional input parameters are known precisely. Therefore, it
su�ers from the same shortcomings as the Markowitz model.

Robust portfolio optimization can also be used to immunize a portfolio against the un-
certainty in the distributional input parameters. Goldfarb and Iyengar [22] use statistical
methods for constructing uncertainty sets for factor models of the asset returns and show
that their robust portfolio problem can be reformulated as a second-order cone program.
Tütüncü and Koenig [41] propose a model with box uncertainty sets for the means and
covariances and show that the arising model can be reduced to a smooth saddle-point
problem subject to semide�nite constraints. Rustem and Howe [39] describe algorithms
to solve general continuous and discrete minimax problems and present several appli-
cations of worst-case optimization for risk management. Rustem et al. [38] propose a
model that optimizes the worst-case portfolio return under rival risk and return forecasts
in a discrete minimax setting. El Ghaoui et al. [20] show that the worst-case Value-
at-Risk under partial information on the moments can be formulated as a semide�nite
program. Ben-Tal et al. [5] as well as Bertsimas and Pachamanova [9] suggest robust
portfolio models in a multi-period setting. A recent survey of applications of robust
portfolio optimization is provided in the monograph [21]. Robust portfolios of this kind
are relatively insensitive to the distributional input parameters and typically outperform
classical Markowitz portfolios [13].

Robust portfolios exhibit a non-inferiority property [38]: whenever the asset returns
are realized within the prescribed uncertainty set, the realized portfolio return will be
greater than or equal to the calculated worst-case portfolio return. Note that this prop-
erty may fail to hold when the asset returns happen to fall outside of the uncertainty set.
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In this sense, the non-inferiority property only o�ers a weak guarantee. When a rare event
(such as a market crash) occurs, the asset returns can materialize far beyond the uncer-
tainty set, and hence the robust portfolio will remain unprotected. A straightforward
way to overcome this problem is to enlarge the uncertainty set to cover also the most
extreme events. However, this can lead to robust portfolios that are too conservative and
perform poorly under normal market conditions.

In this paper we will use portfolio insurance to hedge against rare events which are
not captured by a reasonably sized uncertainty set. Classical portfolio insurance is a
well studied topic in �nance. The idea is to enrich a portfolio with speci�c derivative
products in order to obtain a deterministic lower bound on the portfolio return. The
insurance holds for all possible realizations of the asset returns and can therefore be
quali�ed as a strong guarantee. Numerous studies have investigated the integration of
options in portfolio optimization models. Ahn et al. [1] minimize the Value-at-Risk of
a portfolio consisting of a single stock and a put option by controlling the portfolio
weights and the option strike price. Dert and Oldenkamp [19] propose a model that
maximizes the expected return of a portfolio consisting of a single index stock and several
European options while guaranteeing a maximum loss. Howe et al. [24] introduce a risk
management strategy for the writer of a European call option based on minimax using box
uncertainty. Lutgens et al. [30] propose a robust optimization model for option hedging
using ellipsoidal uncertainty sets. They formulate their model as a second-order cone
program which may have, in the worst-case, an exponential number of conic constraints.

This paper combines robust portfolio optimization and classical portfolio insurance
with the objective of providing two layers of guarantees. The weak non-inferiority guar-
antee applies as long as the returns are realized within the uncertainty set, while the
strong portfolio insurance guarantee also covers cases in which the returns are realized
outside of the uncertainty set. The ideas set out in this paper are related to the concept
of Comprehensive Robustness proposed by Ben-Tal et al. [4]. Comprehensive Robust-
ness aims to control the deterioration in performance when the uncertainties materialize
outside of the uncertainty set. Our work establishes the relationship between o�ering
guarantees beyond the uncertainty set and portfolio insurance. Indeed, we will show that
in order to control the deterioration in portfolio return, our model will allocate wealth
in put and call options. The premia of these options will determine the cost to satisfy
the guarantee levels. Our contributions can be summarized as follows:

(1) We extend the existing robust portfolio optimization models to include options as
well as stocks. Because option returns are convex piece-wise linear functions of the
underlying stock returns, options cannot be treated as additional stocks, and the
use of an ellipsoidal uncertainty set is no longer adequate. Under a no short-sales
restriction on the options, we demonstrate how our model can be reformulated as a
convex second-order cone program that scales gracefully with the number of stocks
and options. We also show that our model implicitly minimizes a coherent risk
measure [3]. Coherency is a desirable property from a risk management viewpoint.

(2) We describe how the options in the portfolio can be used to obtain additional strong
guarantees on the worst-case portfolio return even when the stock returns are realized
outside of the uncertainty set. We show that the arising Insured Robust Portfolio
Optimization model trades o� the guarantees provided through the non-inferiority
property and the derivative insurance strategy. Using conic duality, we reformulate
this model as a tractable second-order cone program.

(3) We perform a variety of numerical experiments using simulated as well as real market
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data. In our simulated tests we illustrate the tradeo� between the non-inferiority
guarantee and the strong insurance guarantee. We also evaluate the performance of
the Insured Robust Portfolio Optimization model under �normal� market conditions,
in which the asset prices are governed by geometric Brownian motions, as well as in
a market environment in which the prices experience signi�cant downward jumps.
The impact of the insurance guarantees on the portfolio performance is also analyzed
using real market prices.

The rest of the paper is organized as follows. In Section 2 we review robust portfolio
optimization and elaborate on the non-inferiority guarantee. In Section 3 we show how
a portfolio that contains options can be modelled in a robust optimization framework
and how strong insurance guarantees can be imposed on the worst-case portfolio return.
We also demonstrate how the resulting model can be formulated as a tractable second-
order cone program. In Section 4 we report on numerical tests in which we compare
the insured robust model with the standard robust model as well as the classical mean-
variance model. We run simulated as well as empirical backtests. Conclusions are drawn
in Section 5, and a notational reference table is provided in Appendix A.1.

2 Robust Portfolio Optimization

Consider a market consisting of n stocks. Moreover, denote the current time as t = 0
and the end of investment horizon as t = T . A portfolio is completely characterized by a
vector of weights w ∈ Rn, whose elements add up to 1. The component wi denotes the
percentage of total wealth which is invested in the ith stock at time t = 0. Furthermore,
let r̃ denote the random vector of total stock returns over the investment horizon, which
takes values in Rn+. By de�nition, the investor will receive r̃i dollars at time T for every
dollar invested in stock i at time 0. We will always denote random variables by symbols
with tildes, while their realizations are denoted by the same symbols without tildes. The
return vector r̃ is representable as

r̃ = µ+ ε̃, (1)

where µ = E[r̃] ∈ Rn+ denotes the vector of mean returns and ε̃ = r̃ − E[r̃] stands for
the vector of residual returns. We assume that Cov[r̃] = E[ε̃ε̃T ] = Σ ∈ Rn×n is strictly
positive de�nite. The return r̃p on some portfolio w is given by

r̃p = wT r̃ = wTµ+wT ε̃.

Markowitz suggested to determine an optimal tradeo� between the expected return
E[r̃p] and the risk Var[r̃p] of the portfolio [32]. The optimal portfolio can thus be found
by solving the following convex quadratic program

max
w∈Rn

{
wTµ− λwTΣw | wT1 = 1, l ≤ w ≤ u

}
, (2)

where the parameter λ characterizes the investor's risk-aversion, the constant vectors
l,u ∈ Rn are used to model portfolio constraints, and 1 ∈ Rn denotes a vector of 1s.

2.1 Basic Model

Robust optimization o�ers a di�erent interpretation of the classical Markowitz problem.
Ben-Tal and Nemirovski [7] argue that the investor wishes to maximize the portfolio
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return and thus attempts to solve the uncertain linear program

max
w∈Rn

{
wT r̃ | wT1 = 1, l ≤ w ≤ u

}
.

However, this problem is not well-de�ned. It constitutes a whole family of linear pro-
grams. In fact, for each return realisation we obtain a di�erent optimal solution. In
order to disambiguate the investment decisions, robust optimization adopts a worst-case
perspective. In this modelling framework, the return vector r̃ remains unknown, but it is
believed to materialize within an uncertainty set Θr. To immunize the portfolio against
the inherent uncertainty in r̃, we maximize the worst-case portfolio return, where the
worst-case is calculated with respect to all asset returns in Θr. This can be formalized
as a max-min problem

max
w∈Rn

{
min
r∈Θr

wTr | wT1 = 1, l ≤ w ≤ u
}
. (3)

The objective function in (3) represents the worst-case portfolio return should r̃ be
realized within Θr. Note that this quantity depends in a non-trivial way on the portfolio
vector w.

There are multiple ways to specify Θr. A natural choice is to use an ellipsoidal
uncertainty set

Θr =
{
r : (r − µ)TΣ−1(r − µ) ≤ δ2

}
. (4)

As shown in an in�uential paper by El Ghaoui et al. [20], when r̃ has �nite second-order
moments, then, the choice

δ =
√

p

1− p
for p ∈ [0, 1) and δ = +∞ for p = 1 (5)

implies the following probabilistic guarantee for any portfolio w:

P
{
wT r̃ ≥ min

r∈Θr
wTr

}
≥ p. (6)

The investor controls the size of the uncertainty set by choosing the parameter p. For p
close to 0, the ellipsoid shrinks to {µ}, and therefore the investor is only concerned about
the average performance of the portfolio. When p is close to 1, the ellipsoid becomes very
large, which implies that the investor wants to safeguard against a large set of possible
return outcomes. Thus, the choice of uncertainty set size depends on the risk attitude of
the investor.

It is shown in [7] that for ellipsoidal uncertainty sets of the type (4), problem (3)
reduces to a convex second-order cone program [27].

max
w∈Rn

{
wTµ− δ

∥∥∥Σ1/2w
∥∥∥

2

∣∣∣ wT1 = 1, l ≤ w ≤ u
}

(7)

Note that (7) is very similar to the classical Markowitz model (2). The main di�erence is

that the standard deviation
∥∥Σ1/2w

∥∥
2

=
√
wTΣw replaces the variance. The parameter

δ is the analogue of λ, which determines the risk-return tradeo�. It can be shown that
(2) and (7) are equivalent problems in the sense that for every λ there is some δ for which
the two problems have the same optimal solution.
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2.2 Parameter Uncertainty

In the Introduction we outlined the shortcomings of the Markowitz model, which carry
over to the equivalent mean-standard deviation model (7): both models are highly sensi-
tive to the distributional input parameters (µ,Σ). These parameters, in turn, are di�cult
to estimate from noisy historical data. The optimization problems (2) and (7) amplify
these estimation errors, yielding extreme portfolios that perform poorly in out-of-sample
tests. It turns out that robust optimization can also be used to immunize the portfolio
against uncertainties in µ and Σ. The starting point of such a robust approach is to
assume that the true parameter values are unknown but contained in some uncertainty
sets which re�ect the investor's con�dence in the parameter estimates.

Assume that the true (but unobservable) mean vector µ ∈ Rn is known to belong to
a set Θµ, and the true covariance matrix Σ ∈ Rn×n is known to belong to a set ΘΣ.
Robust portfolio optimization aims to �nd portfolios that perform well under worst-case
values of µ and Σ within the corresponding uncertainty sets. The parameter robust
generalization of problem (7) can thus be formulated as

max
w∈Rn

{
min
µ∈Θµ

wTµ− δ max
Σ∈ΘΣ

∥∥∥Σ1/2w
∥∥∥

2

∣∣∣ wT1 = 1, l ≤ w ≤ u
}
. (8)

There are multiple ways to specify the new uncertainty sets Θµ and ΘΣ. Let µ̂ be

the sample average estimate of µ, and Σ̂ the sample covariance estimate of Σ. In the
remainder, we will assume that the estimate Σ̂ is reasonably accurate such that there is
no uncertainty about it. This assumption is justi�ed since the estimation error in µ̂ by
far outweighs the estimation error in Σ̂, see e.g. [16]. Thus, we may view the uncertainty
set for the covariance matrix as a singleton, ΘΣ = {Σ̂}. We note that all the following
results can be generalized to cases in which ΘΣ is not a singleton. This, however, leads
to more convoluted model formulations. If the stock returns are serially independent and
identically distributed, we can invoke the Central Limit Theorem to conclude that the
sample mean µ̂ is approximately normally distributed. Henceforth we will thus assume
that

µ̂ ∼ N (µ,Λ), Λ = (1/E)Σ, (9)

where E is the number of historical samples used to calculate µ̂. It is therefore natural
to assume an ellipsoidal uncertainty set for the means,

Θµ =
{
µ : (µ− µ̂)TΛ−1(µ− µ̂) ≤ κ2

}
, (10)

where κ =
√
q/(1− q) for some q ∈ [0, 1). The con�dence level q has an analog interpre-

tation as the parameter p in (6). Using the above speci�cations of the uncertainty sets,
problem (8) reduces to

max
w∈Rn

{
wT µ̂− κ

∥∥∥Λ1/2w
∥∥∥

2
− δ

∥∥∥Σ̂1/2w
∥∥∥

2

∣∣∣ wT1 = 1, l ≤ w ≤ u
}
, (11)

see [13]. By using the relations (9), one easily veri�es that (11) is equivalent to

max
w∈Rn

{
wT µ̂−

(
κ√
E

+ δ

)∥∥∥Σ̂1/2w
∥∥∥

2

∣∣∣ wT1 = 1, l ≤ w ≤ u
}
.

This problem is equivalent to (7) with the risk parameter δ shifted by κ/
√
E. Therefore,

it is also equivalent to the standard Markowitz model. Hence, seemingly nothing has
been gained by incorporating parameter uncertainty into the model (7).
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Ceria and Stubbs [13] demonstrate that robust optimization can nevertheless be used
to systematically improve on the common Markowitz portfolios (which are optimal in
(2), (7), and (11)). The key idea is to replace the elliptical uncertainty set (10) by a less
conservative one. Since the estimated expected returns µ̂ are symmetrically distributed
around µ, we expect that the estimation errors cancel out when summed over all stocks.
It may be more natural and less pessimistic to explicitly incorporate this expectation
into the uncertainty model. To this end, Ceria and Stubbs set

Θµ =
{
µ : (µ− µ̂)TΛ−1(µ− µ̂) ≤ κ2, 1T (µ− µ̂) = 0

}
. (12)

With this new uncertainty set problem (8) reduces to

max
w∈Rn

{
wT µ̂− κ

∥∥∥Ω1/2w
∥∥∥

2
− δ

∥∥∥Σ̂1/2w
∥∥∥

2

∣∣∣ wT1 = 1, l ≤ w ≤ u
}
, (13)

where

Ω = Λ− 1
1TΛ1

Λ11TΛ,

see [13]. A formal derivation of the optimization problem (13) is provided in Theorem A.1
in Appendix A.

2.3 Uncertainty Sets with Support Information

For ease of exposition, consider again the basic model of Section 2.1. When the uncer-
tainty set Θr becomes excessively large, as is the case when δ → +∞ or, equivalently,
when p → 1 (see (5)), Θr may extend beyond the support of r̃, which coincides with
the positive orthant of Rn. The resulting portfolios can then become unnecessarily con-
servative. To overcome this de�ciency, we modify Θr de�ned in (4) by including a
non-negativity constraint

Θ+
r =

{
r ≥ 0 : (r − µ)TΣ−1(r − µ) ≤ δ2

}
. (14)

It can be shown that problem (3) with Θr replaced by Θ+
r is equivalent to

max
w,s∈Rn

{
µT (w − s)− δ

∥∥∥Σ1/2(w − s)
∥∥∥

2

∣∣∣ wT1 = 1, s ≥ 0, l ≤ w ≤ u
}
. (15)

Remark 2.1 (Relation to coherent risk measures) Problem (15) can be shown to
implicitly minimize a coherent downside risk measure [3] associated with the underlying
uncertainty set. Natarajan et al. [37] show that there exists a one-to-one correspondence
between uncertainty sets and risk measures (see also [8]). In what follows, we will brie�y
explain this correspondence in the context of problem (15). Introduce a linear space of
random variables

V =
{
wT r̃ : w ∈ Rn

}
, (16)

and de�ne the risk measure ρ : V → R through

ρ(wT r̃) = max
r

{
−wTr | r ∈ Θ+

r

}
(17)

= min
s≥0
−µT (w − s) + δ

∥∥∥Σ1/2(w − s)
∥∥∥

2
.

It can be seen that problem (15) is equivalent to the risk minimization problem

min
w

{
ρ
(
wT r̃

)
| 1Tw = 1, l ≤ w ≤ u

}
. (18)
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Since the feasible set in (17) is a subset of the support of r̃, the risk measure ρ is coherent,
see [37, Theorem 4]. Moreover, ρ can be viewed as a downside risk measure since it
evaluates to worst-case return over an uncertainty set centered around the expected asset
return vector.

As in Section 2.2, model (15) may be improved by immunizing it against the uncer-
tainty in the distributional input parameters. Using similar arguments as in Theorem A.1,
it can be shown that the parameter robust variant of problem (15),

max
w,s

{
min
µ∈Θµ

µT (w − s)− δ max
Σ∈ΘΣ

∥∥∥Σ1/2(w − s)
∥∥∥

2

∣∣∣ wT1 = 1, s ≥ 0, l ≤ w ≤ u
}
,

is equivalent to

max
w,s,v

{
µ̂Tv − κ

∥∥∥Ω1/2v
∥∥∥

2
− δ

∥∥∥Σ̂1/2v
∥∥∥

2

∣∣∣ wT1 = 1, w − s = v, s ≥ 0, l ≤ w ≤ u
}
.

(19)
We note that we could have directly obtained (19) from the basic model (3) by de�ning

the uncertainty set for the returns as

Θ+
r,µ =

{
r ≥ 0 : ∃µ ∈ Θµ, (r − µ)TΣ−1(r − µ) ≤ δ2

}
(20)

where Θµ is de�ned as in (12). The uncertainty set Θ+
r,µ accounts for the uncertainty

in the returns whilst taking into consideration that the centroid µ of Θ+
r , as de�ned in

(14), has to be estimated and is therefore also subject to uncertainty.
Problem (19) implicitly minimizes a coherent risk measure associated with the un-

certainty set Θ+
r,µ. Coherency holds since Θ+

r,µ is a subset of the support of r̃, see
Remark 2.1. Some risk-tolerant investors may not want to minimize a risk measure with-
out imposing a constraint on the portfolio return. Taking into account the uncertainty
in the expected asset returns motivates us to constrain the worst-case expected portfolio
return,

min
µ∈Θµ

wTµ ≥ µtarget,

where µtarget represents the return target the investor wishes to attain in average. This
semi-in�nite constraint can be reformulated as a second-order cone constraint of the form

wT µ̂− κ
∥∥∥Ω1/2w

∥∥∥
2
≥ µtarget. (21)

The optimal portfolios obtained from problem (19), with or without the return target
constraint (21), provide certain performance guarantees. They exhibit a non-inferiority
property in the sense that, as long as the asset returns materialize within the prescribed
uncertainty set, the realized portfolio return never falls below the optimal value of prob-
lem (19). However, no guarantees are given when the asset returns are realized outside
of the uncertainty set.

In Section 3 we suggest the use of derivatives to enforce strong performance guaran-
tees, which will complement the weak guarantees provided by the non-inferiority property.

3 Insured Robust Portfolio Optimization

Since their introduction in the second half of the last century, options have been praised
for their ability to give stock holders protection against adverse market �uctuations [31].
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A standard option contract is determined by the following parameters: the premium or
price of the option, the underlying security, the expiration date, and the strike price. A
put (call) option gives the option holder the right, but not the obligation, to sell to (buy
from) the option writer the underlying security by the expiration date and at the pre-
scribed strike price. American options can be exercised at any time up to the expiration
date, whereas European options can be exercised only on the expiration date itself. We
will only work with European options, which expire at the end of investment horizon,
that is, at time T . We restrict attention to these instruments because of their simplicity
and since they �t naturally in the single period portfolio optimization framework of the
previous section.

We now brie�y illustrate how options can be used to insure a stock portfolio. An
option's payo� function represents its value at maturity as a function of the underlying
stock price ST . For put and call options with strike price K, the payo� functions are
thus given by

Vput(ST ) = max{0,K − ST } and Vcall(ST ) = max{0, ST −K}, (22)

respectively. Assume now that we hold a portfolio of a single long stock and a put option
on this stock with strike price K. Then, the payo� of the portfolio amounts to

Vpf(ST ) = ST + Vput(ST ) = max{ST ,K}.

This shows that the put option with strike price K prevents the portfolio value at ma-
turity from dropping below K. Of course, this insurance comes at the cost of the option
premium, which has to be paid at the time when the option contract is negotiated.

Similarly, assume that we hold a portfolio of a single shorted stock and a call option
on this stock with strike price K. Then, the payo� function of this portfolio is

Vpf(ST ) = −ST + Vcall(ST ) = max{−ST ,−K},

which insures the portfolio value at maturity against falling below −K.
Although we focus on European options expiring at time T , all models to be developed

in this paper remain valid for American options exercisable at time T . We emphasize
that the timing �exibility of American options cannot be exploited in the single-period
setting under consideration, and therefore American options are usually too expensive
for our purposes. Nevertheless, if there are only very few European options expiring at
the end of the investment horizon, it may be bene�cial to include American options into
our portfolio to increase the spectrum of available strike prices.

3.1 Robust Portfolio Optimization with Options

Assume that there are m European options in our market, each of which has one of the
n stocks as an underlying security. We denote the initial investment in the options by
the vector wd ∈ Rm. The component wdi denotes the percentage of total wealth which
is invested in the ith option at time t = 0. A portfolio is now completely characterized
by a joint vector (w,wd) ∈ Rn+m, whose elements add up to 1. In what follows, we
will forbid short-sales of options and therefore require that wd ≥ 0. Short-selling of
options can be very risky, and therefore the imposed restriction should be in line with
the preferences of a risk-averse investor.

The return r̃p of some portfolio (w,wd) is given by

r̃p = wT r̃ + (wd)T r̃d, (23)
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where r̃d represents the vector of option returns. It is important to note that r̃d is
uniquely determined by r̃, that is, there exists a function f : Rn → Rm such that
r̃d ≡ f(r̃).

Let option j be a call with strike price Kj on the underlying stock i, and denote the
return and the initial price of the option by r̃dj and Cj , respectively. If Si0 denotes the

initial price of stock i, then its end-of-period price can be expressed as Si0r̃i. Using the
above notation, we can now explicitly express the return r̃dj as a convex piece-wise linear
function of r̃i,

fj(r̃) =
1
Cj

max
{

0, Si0r̃i −Kj

}
= max {0, aj + bj r̃i} , with aj = −Kj

Cj
< 0 and bj =

Si0
Cj

> 0. (24a)

Similarly, if r̃dj is the return of a put option with price Pj and strike price Kj on the

underlying stock i, then r̃dj is representable as a slightly di�erent convex piece-wise linear
function of r̃i,

fj(r̃) = max {0, aj + bj r̃i} , with aj =
Kj

Pj
> 0 and bj = −S

i
0

Pj
< 0. (24b)

Using the above notation, we can write the vector of option returns r̃d compactly as

r̃d = f(r̃) = max {0,a+ Br̃} , (25)

where a ∈ Rm, B ∈ Rm×n are known constants determined through (24a) and (24b),
and `max' denotes the component-wise maximization operator.

As in Section 2.3, we adopt the view that the investor wishes to maximize the worst-
case portfolio return whilst assuming that the stock returns r̃ will materialize within the
uncertainty set Θ+

r as de�ned in (14). This problem can be formalized as

max
w,wd

 min
r∈Θr
rd=f(r)

wTr + (wd)Trd
∣∣∣ 1Tw + 1Twd = 1, l ≤ w ≤ u, wd ≥ 0

 , (26)

which is equivalent to

maximize
w,wd,φ

φ (27a)

subject to wTr + (wd)Trd ≥ φ ∀r ∈ Θ+
r , r

d = f(r) (27b)

1Tw + 1Twd = 1 (27c)

l ≤ w ≤ u, wd ≥ 0. (27d)

Note that the worst-case objective is reexpressed in terms of the semi-in�nite constraint
(27b), and at optimality, φ represents the worst-case portfolio return. In the remainder
we will work with the epigraph formulation (27) instead of the max-min formulation (26)
because it enables us to incorporate portfolio insurance constraints in a convenient way,
see Section 3.2.

The constraint (27b) looks intractable, but it can be reformulated in terms of �nitely
many conic constraints.
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Theorem 3.1 Problem (27) is equivalent to

maximize
w,wd,y,s,φ

φ (28a)

subject to µT (w + BTy − s)− δ
∥∥∥Σ1/2(w + BTy − s)

∥∥∥
2

+ aTy ≥ φ (28b)

1Tw + 1Twd = 1 (28c)

0 ≤ y ≤ wd, s ≥ 0 (28d)

l ≤ w ≤ u, wd ≥ 0, (28e)

which is a tractable second-order cone program.

Proof Assume �rst that δ > 0. We observe that the semi-in�nite constraint (27b) can
be reexpressed in terms of the solution of a subordinate minimization problem,

min
r∈Θr
rd=f(r)

wTr + (wd)Trd ≥ φ. (29)

By using the de�nitions of the function f and the set Θ+
r , we obtain a more explicit

representation for this subordinate problem.

min
r,rd

wTr + (wd)Trd

subject to
∥∥∥Σ−1/2(r − µ)

∥∥∥
2
≤ δ

r ≥ 0

rd ≥ 0

rd ≥ a+ Br

(30)

For any �xed portfolio vector (w,wd) feasible in (27), problem (30) represents a convex
second-order cone program. Note that sincewd ≥ 0 for any admissible portfolio, (30) has
an optimal solution (r, rd) which satis�es the relation (25). The dual problem associated
with (30) reads:

max
y∈Rm,s∈Rn

µT (w + BTy − s)− δ
∥∥∥Σ1/2(w + BTy − s)

∥∥∥
2

+ aTy

subject to 0 ≤ y ≤ wd, s ≥ 0
(31)

Note that strong conic duality holds since the primal problem (30) is strictly feasible for
δ > 0, see [2, 27]. Thus, both the primal and dual problems (30) and (31) are feasible
and share the same objective values at optimality. This allows us to replace the inner
minimization problem in (29) by the maximization problem (31). The requirement that
the optimal value of (31) be larger than or equal to φ is equivalent to the assertion that
there exist y ∈ Rm, s ∈ Rn feasible in (31) whose objective value is larger than or equal to
φ. This justi�es the constraints (28b) and (28d). All other constraints and the objective
function in (28) are the same as in (27), and thus the two problems are equivalent.

We now assume that δ = 0. Then, by de�nition, the uncertainty set Θ+
r = {µ} and
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rd = f(µ). Therefore, constraint (27b) reduces to

µTw + f(µ)Twd ≥ φ

⇐⇒ µTw + (max {0, a+ Bµ})T wd ≥ φ

⇐⇒ µTw + max
0≤y≤wd

{
aTy + µTBTy

}
≥ φ

⇐⇒ max
0≤y≤wd
s≥0

{
µT (w + BTy − s) + aTy

}
≥ φ,

where the last equivalence holds because µ ≥ 0. Constraint (27b) is thus equivalent to
(28b) and (28d).

Observe that in the absence of options we must set wd = 0, which implies via constraint
(28d) that y = 0. Thus, (28) reduces to (15), that is, the robust portfolio optimization
problem of a stock only portfolio.

We note that Lutgens et al. [30] propose a robust portfolio optimization model that
incorporates options and also allows short-sales of options. However, their problem refor-
mulation contains, in the worst case, an exponential amount of second-order constraints
whereas our reformulation (28) only contains a single conic constraint at the cost of
excluding short-sales of options.

As in Section 2.3, one can immunize model (27) against estimation errors in µ̂. If we
replace the uncertainty set Θ+

r by Θ+
r,µ de�ned in (20), then problem (27) reduces to the

following second-order cone program similar to (28).

maximize φ

subject to µ̂Tv − κ
∥∥∥Ω1/2v

∥∥∥
2
− δ

∥∥∥Σ̂1/2v
∥∥∥

2
+ aTy ≥ φ

w + BTy − s = v, and (28c), (28d), (28e)

(32)

This model guarantees the optimal portfolio return to exceed φ conditional on the stock
returns r̃ being realized within the uncertainty set Θ+

r,µ. In what follows, we will thus
refer to φ as the conditional worst-case return.

3.2 Robust Portfolio Optimization with Insurance Guarantees

We now augment model (32) by requiring the realized portfolio return to exceed some
fraction θ ∈ [0, 1] of φ under every possible realization of the return vector r̃. This
requirement is enforced through a semi-in�nite constraint of the form

wTr + (wd)Trd ≥ θφ ∀r ≥ 0, rd = f(r). (33)

Model (32) with the extra constraint (33) provides two layers of guarantees: the weak
non-inferiority guarantee applies as long as the returns are realized within the uncertainty
set, while the strong portfolio insurance guarantee (33) also covers cases in which the
stock returns are realized outside of Θ+

r,µ.
1 The level of the portfolio insurance guarantee

is expressed as a percentage θ of the conditional worst-case portfolio return φ, which can
be interpreted as the level of the non-inferiority guarantee. This re�ects the idea that the

1In reality one has to also consider counterparty risk of the options, but this is beyond the scope of

this paper.
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derivative insurance strategy only has to hedge against certain extreme scenarios, which
are not already covered by the non-inferiority guarantee. It also prevents the portfolio
insurance from being overly expensive. The Insured Robust Portfolio Optimization model
can be formulated as

maximize
w,wd,φ

φ (34a)

subject to wTr + (wd)Trd ≥ φ ∀r ∈ Θ+
r,µ, r

d = f(r) (34b)

wTr + (wd)Trd ≥ θφ ∀r ≥ 0, rd = f(r) (34c)

1Tw + 1Twd = 1 (34d)

l ≤ w ≤ u, wd ≥ 0. (34e)

Note that the conditional worst-case return φ drops when the uncertainty set Θ+
r,µ

increases. At the same time, the required insurance level decreases, and hence the insur-
ance premium drops as well. This manifests the tradeo� between the non-inferiority and
insurance guarantees. In Proposition 3.1 below we show that when the highest possible
uncertainty is assigned to the returns (by setting p = 1, see (5)), or the highest insurance
guarantee is demanded (by setting θ = 1), the same optimal conditional worst-case return
is obtained. Intuitively, this can be explained as follows. When the uncertainty set cov-
ers the whole support, then the insurance guarantee adds nothing to the non-inferiority
guarantee. Conversely, the highest possible insurance is independent of the size of the
uncertainty set.

Proposition 3.1 If u ≥ 0, then the optimal objective value of problem (34) for p = 1
coincides with the optimal value obtained for θ = 1.

Proof Since u ≥ 0, there are feasible portfolios with w ≥ 0. Thus, φ ≥ θφ ≥ 0 at
optimality. For p = 1, the uncertainty sets in (34b) and (34c) coincide, which implies
that (34c) becomes redundant. For θ = 1, on the other hand, (34b) becomes redundant.
In both cases we end up with the same constraint set. Thus, the claim follows.

Although we exclusively use uncertainty sets of the type (20), the models in this paper
do not rely on any assumptions about the size or shape of Θ+

r,µ and can be extended
to almost any other geometry. We note that for the models to be tractable, it must be
possible to describe Θ+

r,µ through �nitely many linear or conic constraints.
Problem (34) involves two semi-in�nite constraints: (34b) and (34c). In Theorem 3.2

we show that (34) still has a reformulation as a tractable conic optimization problem.

Theorem 3.2 Problem (34) is equivalent to the following second-order cone program.

maximize φ

subject to µ̂Tv − κ
∥∥∥Ω1/2v

∥∥∥
2
− δ

∥∥∥Σ̂1/2v
∥∥∥

2
+ aTy ≥ φ

aTz ≥ θφ
w + BTy − s = v

w + BTz ≥ 0

1Tw + 1Twd = 1

0 ≤ y ≤ wd, 0 ≤ z ≤ wd,
s ≥ 0, wd ≥ 0, l ≤ w ≤ u.

(35)

13



Proof We already know how to reexpress (34b) in terms of �nitely many conic con-
straints. Therefore, we now focus on the reformulation of (34c).

As usual, we �rst reformulate (34c) in terms of a subordinate minimization problem,

min
r≥0

rd=f(r)

wTr + (wd)Trd ≥ θφ. (36)

By using the de�nition of the function f and the fact that wd ≥ 0, the left-hand side of
(36) can be reexpressed as the linear program

min
r,rd

wTr + (wd)Trd

subject to r ≥ 0

rd ≥ 0

rd ≥ a+ Br.

(37)

The dual of problem (37) reads

max
z∈Rm

aTz

subject to w + BTz ≥ 0

0 ≤ z ≤ wd.

(38)

Strong linear duality holds because the primal problem (37) is manifestly feasible. There-
fore, the optimal objective value of problem (38) coincides with that of problem (37), and
we can substitute (38) into the constraint (36). This leads to the postulated reformulation
in (35).

Note that problem (35) implicitly minimizes a coherent risk measure determined
through the uncertainty set

{(r, rd) : r ∈ Θ+
r,µ, r

d = f(r)}. (39)

Coherency holds since this uncertainty set is a subset of the support of the random
vector (r̃, r̃d), see Remark 2.1. A risk-tolerant investor may want to move away from the
minimum risk portfolio. This is achieved by appending an expected return constraint to
the problem:

E[r̃p] = wTµ+ (wd)TE[max {0,a+ Br̃}] ≥ µtarget. (40)

For any distribution of r̃, we can evaluate the expected return of the options via sam-
pling. Since sampling is impractical when the expected returns are ambiguous, one may
alternatively use a conservative approximation of the return target constraint (40),

wTµ+ (wd)T (max {0,a+ Bµ}) ≥ µtarget. (41)

Indeed, (40) is less restrictive than (41) by Jensen's inequality. To account for the
uncertainty in the estimated means, we can further robustify (41) as follows,

max
q∈Rm

µT (w + BTq) + aTq

subject to 0 ≤ q ≤ wd

}
≥ µtarget ∀µ ∈ Θµ,
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which is equivalent to

max
q∈Rm

µ̂T (w + BTq)− κ
∥∥Ω1/2(w + BTq)

∥∥
2

+ aTq

subject to 0 ≤ q ≤ wd

}
≥ µtarget.

As a third alternative, the investor may wish to disregard the expected returns of the
options altogether in the return target constraint. Taking into account the uncertainty
in the estimated means, we thus obtain the second-order cone constraint

wT µ̂− κ
∥∥∥Ω1/2w

∥∥∥
2
≥ µtarget, (42)

which is identical to (21). The advantages of this third approach are twofold.
Firstly, by omitting the options in the expected return constraint, we force the model

to use the options for risk reduction and insurance only, but not for speculative reasons.
Only the stocks are used to attain the prescribed expected return target. In light of
the substantial risks involved in speculation with options, this might be attractive for
risk-averse investors.

Secondly, the inclusion of an expected return constraint converts (35) to a mean-risk
model [23], which minimizes a coherent downside risk measure, see Remark 2.1. However,
Dert and Oldenkamp [19] and Lucas and Siegmann [28] have identi�ed several pitfalls that
may arise when using mean-downside risk models in the presence of highly asymmetric
asset classes such as options and hedge funds. The particular problems that occur in the
presence of options have been characterized as the Casino E�ect : Mean-downside risk
models typically choose portfolios which use the least amount of money that is necessary
to satisfy the insurance constraint, whilst allocating the remaining money in the assets
with the highest expected return. In our context, a combination of inexpensive stocks
and put options will be used to satisfy the insurance constraint. Since call options are
leveraged assets and have expected returns that increase with the strike price [17], the
remaining wealth will therefore generally be invested in the call options with the highest
strike prices available. The resulting portfolios have a high probability of small losses
and a very low probability of high returns. Since the robust framework is typically used
by risk-averse investors, the resulting portfolios are most likely in con�ict with their
risk preferences. It should be emphasized that the Casino E�ect is characteristic for
mean-downside risk models and not a side-e�ect of the robust portfolio optimization
methodology. In order to alleviate its impact, Dert and Oldenkamp propose the use of
several Value-at-Risk constraints to shape the distribution of terminal wealth. Lucas
and Siegmann propose a modi�ed risk measure that incorporates a quadratic penalty
function to the expected losses. In all our numerical tests, we choose to exclude the
expected option returns from the return target constraint. This will avoid betting on
the options and thus mitigate the Casino E�ect. As we will show in the next section,
our numerical results indicate that the suggested portfolio model successfully reduces the
downside risk and sustains high out-of-sample expected returns.

4 Computational Results

In Section 4.1 we investigate the optimal portfolio composition for di�erent levels of risk-
aversion and illustrate the tradeo� between the weak non-inferiority guarantee and the
strong insurance guarantee. In Section 4.2 we conduct several tests based on simulated
data, while the tests in Section 4.3 are performed on the basis of real market data. In both
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sections, we compare the out-of-sample performance of the insured robust portfolios with
that of the non-insured robust and classical mean-variance portfolios. The comparisons
are based on the following performance measures: average yearly return, worst-case
and best-case monthly returns, yearly variance, skewness, and Sharpe ratio [40]. All
computations are performed using the C++ interface of the MOSEK 5.0.0.105 conic
optimization toolkit on a 2.0 GHz Core 2 Duo machine running Linux Ubuntu 8.04. The
details of the experiments are described in the next sections.

4.1 Portfolio Composition and Tradeo� of Guarantees

All experiments in this section are based on the n = 30 stocks in the Dow 30 index.
We assume that for each stock there are 40 put and 40 call options that mature in one
year. The 40 strike prices of the put and call options for one particular stock are located
at equidistant points between 70% and 130% of the stock's current price. In total, the
market thus comprises 2400 options in addition to the 30 stocks.

In our �rst simulated backtests, we assume that the stock prices are governed by a
multivariate geometric Brownian motion,

dS̃it
S̃it

= µci dt+ σci dW̃
i
t , i = 1 . . . n,

E
[
dW̃ i

t dW̃
j
t

]
= ρcij dt, i, j = 1 . . . n,

(43)

where S̃i denotes the price process of stock i and W̃ i denotes a standard Wiener process.
The continuous-time parameters µci , σ

c
i , and ρcij represent the drift rates, volatilities

and correlation rates of the instantaneous stock returns, respectively. We calibrate this
stochastic model to match the annualized means and covariances of the total returns
of the Dow 30 stocks reported in Idzorek [25]. The transformation which maps the
annualized parameters to the continuous-time parameters in (43) is described in [35, p.
345]. Furthermore, we assume that the risk-free rate amounts to rf = 5% per annum
and that the options are priced according to the Black-Scholes formula [11].

In the experiments of this section we do not allow short-selling of stocks. Further-
more, we assume that there is no parameter uncertainty. Therefore, we set q = 0. In
the �rst set of tests we solve problem (35) without an expected return constraint and
without a portfolio insurance constraint. We determine the optimal portfolio allocations
for increasing sizes of uncertainty sets parameterized by p ∈ [0, 1). The optimal portfo-
lio weights are visualized in the top left panel of Figure 1, and the optimal conditional
worst-case returns are displayed in the bottom left panel. For simplicity, we only report
the total percentage of wealth allocated in stocks, calls, and put options, and provide no
information about the individual asset allocations. All instances of problem (35) consid-
ered in this test were solved within less than 2 seconds, which manifests the tractability
of the proposed model.

Figure 1 exhibits three di�erent allocation regimes. For small values of p, the optimal
portfolios are entirely invested in call options or a mixture of calls and stocks. This
is a natural consequence of the leverage e�ect of the call options, which have a much
higher return potential than the stocks when they mature in-the-money. As a result,
the optimal conditional worst-case return is very high. Large investments in call options
tend to be highly risky; this is re�ected by a sudden decrease in call option allocation at
threshold value p ≈ 7%.

We also observe a regime which is entirely invested in stocks. Here, the risk is mini-
mized through variance reduction by diversi�cation, and no option hedging is involved.
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At higher uncertainty levels, there is a sudden shift to portfolios composed of stocks
and put options. This transition takes place when the uncertainty set is large enough
such that stock-only portfolios necessarily incur a loss in the worst case. The e�ect of
the put options can be observed in the bottom left panel of Figure 1, which shows a
constant worst-case return φ > 1 for higher uncertainty levels. Here, risk is not reduced
through diversi�cation. Instead, an aggressive portfolio insurance strategy is adopted
using deep in-the-money put options. The put options are used to cut away the losses,
and thus φ > 1. For high uncertainty levels, maximizing the conditional worst-case
return amounts to maximizing the absolute insurance guarantee because the uncertainty
set converges to the support of the returns, see Proposition 3.1.

The Black-Scholes market under consideration is arbitrage-free. An elementary ar-
bitrage argument implies that the maximum guaranteed lower bound on the return of
any portfolio is not larger than the risk-free return exp(rfT ). The conditional worst-case
return in problem (35) is therefore bounded above by exp(rfT ) already for moderately
sized uncertainty sets. This risk-free return can indeed be attained, al least approxi-
mately, by combining a stock and a put option on that stock with a very large strike
price. Note that the put option matures in-the-money with high probability. Thus, the
resulting portfolio pays o� the strike price in most cases and is almost risk-free. Its con-
ditional worst-case return is only slightly smaller than exp(rfT ) (for large uncertainty
sets with p . 1). However, investing in an almost risk-free portfolio keeps the expected
portfolio return fairly low, that is, close to the risk-free return.

In order to bypass this shortcoming, we impose an expected return constraint on
the stock part of the portfolio with a target return of 8% per annum, see (42). The
results of model (35) with an expected return constraint and without a portfolio insurance
constraint are visualized on the right hand side of Figure 1. Most of the earlier conclusions
remain valid, but there are a few di�erences. Because the stocks are needed to satisfy
the return target, we now observe that all portfolios put a minimum weight of nearly
90% in stocks. For higher levels of uncertainty, the allocation in put options increases
gradually when higher uncertainty is assigned to the returns.

The optimal conditional worst-case return smoothly degrades for increasing uncer-
tainty levels and now drops below 1. Here, we anticipate a loss in the worst-case. Recall
that the (negative) conditional worst-case return can be interpreted as a risk measure,
see Remark 2.1. In order to satisfy the expected return constraint, the optimal portfolios
have to take higher risks than in the absence of an expected return constraint. As a
result, the optimal conditional worst-case return is now lower (due to the higher risk)
than before. This is a natural consequence of the risk-return tradeo�. For p & 90%, the
conditional worst-case return saturates at the worst-case return that can be guaranteed
with certainty.

Next, we analyze the e�ects of the insurance constraint on the conditional worst-case
return. To this end, we solve problem (35) for various insurance levels θ ∈ [0, 1] and
uncertainty levels p ∈ [0, 1), whilst still requiring the expected return to exceed 8%.
Figure 2 shows the conditional worst-case return as a function of p and θ.

For any �xed p, the conditional worst-case return monotonically decreases with θ.
Observe that this decrease is steeper for lower values of p. When the uncertainty set
is small, the conditional worst-case return is relatively high. Therefore, the inclusion of
the insurance guarantee has a signi�cant impact due to the high insurance costs that are
introduced. When the uncertainty set size is increased, the conditional worst-case return
drops, and portfolio insurance needs to be provided for a lower worst-case portfolio return
at an associated lower portfolio insurance cost.

When θ = 1, the portfolio is insured against dropping below the conditional worst-case
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Figure 1: Visualization of the optimal portfolio allocations (top) and corresponding
conditional worst-case returns (bottom), with (right) and without (left) an expected
return constraint.

return. That is, the optimal portfolio provides the highest possible insurance guaran-
tee that is still compatible with the expected return target. This optimal portfolio is
independent of the size of the uncertainty set, and therefore the worst-case return is
constant in p. For p & 80%, the uncertainty set converges to the support of the returns,
and the resulting optimal portfolio is independent of θ, see Proposition 3.1. Note that if
the expected return target is increased, then the guaranteed worst-case return for θ = 1
decreases. In fact, in order to satisfy the higher expected return constraint the cost of
insurance has to be decreased. The cost of insurance can only be lowered by decreasing
the allocation in put options, which implies a lower guaranteed worst-case return.

4.2 Out-of-Sample Evaluation Using Simulated Prices

A series of controlled experiments with simulated data help us to assess the performance
of the proposed Insured Robust Portfolio Optimization (irpo) model under di�erent
market conditions. We �rst generate price paths under a multivariate geometric Brownian
motion model to re�ect �normal� market conditions. Next, we use a multivariate jump-
di�usion process to simulate a volatile environment in which market crashes can occur.
In both settings, we compare the performance of the irpo model to that of the Robust
Portfolio Optimization (rpo) model (19), and the classical Mean-Variance Optimization
(mvo) model. The optimal mvo portfolio is found by minimizing the variance of the
portfolio return subject to an expected portfolio return constraint. In this case the
estimated means and covariance matrix of the asset returns are used without taking
parameter uncertainty into account. In Section 4.2.1 we describe the data simulation,
the rolling-horizon backtest procedure, and the various performance measures that are
used to compare the models. In Section 4.2.2 we discuss the test results.
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Figure 2: Tradeo� of weak and strong guarantees.

4.2.1 Backtest Procedure and Evaluation

The following experiments are again based on the stocks in the Dow 30 index. The �rst
test series is aimed at assessing the performance of the models under �normal� market
conditions. To this end, we assume that the stock prices are governed by the multivariate
geometric Brownian motion described in (43).

We denote by r̃l the vector of the asset returns over the interval [(l−1)∆t, l∆t], where
∆t is set to one month (i.e., ∆t = 1/12) and l ∈ N. By solving the stochastic di�erential
equations (43), we �nd

r̃il = exp
[(
µci −

(σci )
2

2

)
∆t+ ε̃il

√
∆t
]
, i = 1 . . . n, (44)

where {ε̃l}l∈N are independent and identically normally distributed with zero mean and
covariance matrix Σc ∈ Rn×n with entries Σcij = ρcijσ

c
iσ
c
j for i, j = 1 . . . n.

To evaluate the performance of the di�erent portfolio models, we use the following
rolling-horizon procedure:

1. Generate a time-series of L monthly stock returns {rl}Ll=1 using (44) and initialize
the iteration counter at l = E. The number E < L determines the size of a moving
estimation window.

2. Calculate the sample mean µ̂l and sample covariance matrix Σ̂l of the stock returns
{rl}ll′=l−E+1 in the current estimation window. We assume that there are 20 put
and 20 call options available for each stock that expire after one month. The 20
strike prices of the options are assumed to scale with the underlying stock price:
the proportionality factor ranges from 80% to 120% in steps of 2%.2

Next, convert the estimated monthly volatilies to continuous-time volatilities via
the transformation in [35, p. 345] and calculate the option prices via the Black-

2This set of options is a reasonable proxy for the set available in reality. Depending on liquidity, there

might be more or fewer options available, but the use of 20 strike prices oriented around the spot prices

seems a good compromise.
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Model k Type p q θ Model k Type p q θ

1 mvo � � �
2 rpo 0.50 0.80 � 17 irpo 0.70 0.80 0.00
3 rpo 0.60 0.80 � 18 irpo 0.70 0.80 0.70
4 rpo 0.70 0.80 � 19 irpo 0.70 0.80 0.80
5 rpo 0.80 0.80 � 20 irpo 0.70 0.80 0.90
6 rpo 0.90 0.80 � 21 irpo 0.70 0.80 0.99
7 irpo 0.50 0.80 0.00 22 irpo 0.80 0.80 0.00
8 irpo 0.50 0.80 0.70 23 irpo 0.80 0.80 0.70
9 irpo 0.50 0.80 0.80 24 irpo 0.80 0.80 0.80
10 irpo 0.50 0.80 0.90 25 irpo 0.80 0.80 0.90
11 irpo 0.50 0.80 0.99 26 irpo 0.80 0.80 0.99
12 irpo 0.60 0.80 0.00 27 irpo 0.90 0.80 0.00
13 irpo 0.60 0.80 0.70 28 irpo 0.90 0.80 0.70
14 irpo 0.60 0.80 0.80 29 irpo 0.90 0.80 0.80
15 irpo 0.60 0.80 0.90 30 irpo 0.90 0.80 0.90
16 irpo 0.60 0.80 0.99 31 irpo 0.90 0.80 0.99

Table 1: Parameter settings of the portfolio models used in the backtests.

Scholes formula.3 For the irpomodel we then calculate the necessary option related
data al and Bl de�ned in (25).

3. Determine the optimal portfolios (wk
l ,w

d,k
l ) corresponding to the models k =

1, . . . , 31 speci�ed in Table 1.

4. For strategy k, the portfolio return rkl+1 over the interval [l∆t, (l + 1)∆t] is given
by:

rkl+1 = (wk
l )Trl+1 + (max {0, al + Bl rl+1})T wd,kl .

Since rl+1 is outside of the estimation window, this constitutes an out-of-sample
evaluation.

5. If l < L− 1, then increment l and go to step 2. Otherwise, terminate.

In all backtests we set L = 240 and use an estimation window of size E = 120. We
set the risk-free rate to rf = 5% per annum and the expected return target to 8% per
annum. We allow short-selling of individual stocks up to −20% and do not impose upper
bounds on the portfolio weights.

The rolling-horizon procedure generates L−E returns {rkl }Ll=E+1 for our 31 portfolio
strategies indexed by k. For each of these strategies we calculate the following perfor-
mance measures: the out-of-sample mean, variance, skewness, Sharpe ratio, worst-case

3In reality, one would use option prices observed in the market instead of calculated ones. An empirical

backtest based on real option price data is provided in Section 4.3.
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and best-case monthly return.

µ̂k =
1

L− E

L∑
l=E+1

rkl , (mean)

(σ̂2)k =
1

L− E − 1

L∑
l=E+1

(rkl − µ̂k)2, (variance)

γ̂k =
1

L− E

L∑
l=E+1

((rkl − µ̂k)/σ̂k)3, (skewness)

ŜR
k

=
µ̂k − rf
σ̂k

, (Sharpe ratio)

r̂k = min {rkl : E + 1 ≤ l ≤ L}, (worst-case return)

r̂
k

= max {rkl : E + 1 ≤ l ≤ L}. (best-case return)

By assuming an initial wealth of 1, we also calculate the �nal wealth ω̂k of strategy k as
follows

ω̂k =
L∏

t=E+1

rkl .

We repeat the rolling-horizon procedure described above R = 300 times with di�erent
random generator seeds and calculate averages of the performance measures. We also
estimate the probability of the di�erent portfolio strategies (with k > 1) yielding a higher
�nal wealth than the Markowitz strategy (with k = 1) by counting the simulation runs
in which this outperformance is observed. Finally, we compute the excess return of any
strategy k relative to the Markowitz strategy, ω̂k/ω̂1 − 1, averaged over all simulation
runs.

A property of the geometric Brownian motion price process is that there are almost
surely no discontinuities in the price paths. In reality, rare events such as market crashes
can occur, and therefore the Jump-Di�usion model introduced by Merton [33] may be
more suitable to describe real price movements. Under Merton's Jump-Di�usion model,
the stock prices are governed by the stochastic di�erential equations

dS̃it
S̃it

= (µci − λcη) dt+ σci dW̃
i
t + d

Ñt∑
j=1

(Ỹj − 1), i = 1 . . . n,

E
[
dW̃ i

t dW̃
j
t

]
= ρcij dt, i, j = 1 . . . n,

(45)

where Ñ is a Poisson process with arrival intensity λc, and {Ỹj}j∈N is a sequence of in-

dependent identically distributed nonnegative random variables. Ñt denotes the number
of jumps, or market crashes, between 0 and time t, while the Ỹj represent the relative

price changes when such crashes occur. W̃t and Ñt are assumed to be independent.
For simplicity, we assume that all stock prices jump at the same time. Moreover,

instead of making the jump sizes stochastic, as in the general formulation above, we
assume that all prices experience a deterministic relative change of η = −15% when a
crash occurs. We set λc = 2, indicating that on average there are two crashes per year.
Solving the stochastic di�erential equations (45) we obtain the following expression for
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the stock returns

r̃il = exp
[(
µci −

(σci )
2

2
− λcη

)
∆t+ ε̃il

√
∆t
] Ñl∆t∏
j=Ñ(l−1)∆t+1

Yj , i = 1 . . . n, (46)

where Ñt follows a Poisson distribution with parameter λc∆t and Yj = eη for all j. We
now repeat the previously described rolling-horizon backtest by using (46) instead of
(44).

4.2.2 Discussion of Results

The results of our simulated backtests based on the geometric Brownian motion model
are summarized in Table 3.

In comparison with the nominal mvo portfolio, we observe that the rpo portfolios
exhibit a signi�cantly higher average return at the cost of a relatively small increase in
variance. This is also re�ected by the Sharpe ratio values, which are higher than that
of the mvo portfolio for all levels of p. When p increases, we notice a slight decrease in
variance and expected return because the portfolios become more conservative. We see
that the non-insured rpo portfolios outperform the mvo portfolio with probability 75%.
This indicates that taking the uncertainty of the mean estimates into account results in
a considerable improvement of out-of-sample performance.

Next, we assess the performance of the irpo portfolios. For a �xed insurance level
θ, we observe that the worst-case monthly return (Min) increases with p. In most cases,
it also increases with θ for �xed p. However, this is not always the case. At p = 80%,
for instance, the worst-case return for θ = 90% is higher than for θ = 99%. The reason
for this is that a large portion of wealth is allocated to the options in order to satisfy
the high insurance demands. Because there are no price jumps, these options have a low
probability to mature in-the-money. The options have a noticeable e�ect on the skewness
of the portfolio returns, which increases with p and θ. This is because the put options are
e�ectively cutting away the losses and therefore cause the portfolio return distribution
to be positively skewed.

Finally, for all tested values of p and θ, the irpo portfolios accumulate a higher �nal
wealth than the nominal mvo portfolio in about 65% of the cases. In terms of Sharpe
ratio, the irpo portfolios perform comparable to the rpo portfolios. However, the non-
insured rpo portfolios have an increased expected return and a higher probability of
outperforming the nominal mvo portfolio in terms of realized wealth. Note that, although
the irpo portfolios have a lower probability of outperforming the mvo portfolio, they
achieve higher excess returns than the rpo portfolios because the options help preserve
wealth over time. We conclude that under normal market conditions the non-insured
rpo model seems to generate the most attractive out-of-sample results.

The results of our simulated backtests based on Merton's jump di�usion model are
summarized in Table 4. The following discussion highlights the di�erences to the results
obtained using the geometric Brownian motion model.

The rpo portfolios still have a signi�cant probability of outperforming the mvo port-
folio in terms of realized wealth. Due to the crashes, however, this probability now
decreases to 65% (as opposed to 75% in the absence of crashes). Notice that the worst-
case monthly returns of the rpo portfolios are of the same order of magnitude as those
of the mvo portfolio. We also observe that the realized returns for the rpo and mvo

portfolios are highly negatively skewed because of the downward jumps of the prices.
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The irpo portfolios have an increased expected return and lower variance with re-
spect to the mvo portfolio for all tested values of p and θ. This is also re�ected by an
improvement in Sharpe ratio, which for p = 60% and θ = 99% is 60% higher than that
of the mvo portfolio. The irpo portfolios exhibit increased skewness relative to the mvo
and rpo portfolios. The skewness of the irpo portfolios becomes positive for values of
p ≥ 80% and θ = 99%. The worst-case return gradually improves with increasing values
of p and θ, and for p = 90% the worst-case is 50% higher than that of the nominal mvo
portfolio. Finally, the irpo portfolios achieve a higher realized wealth than the mvo

portfolio in about 77% of the simulation runs. Notice also that the excess returns mono-
tonically increase with θ. The increase in realized wealth is due to the option insurance
which helps preserve wealth during market crashes. In contrast, the crashes cause large
losses of wealth to the mvo and rpo portfolios.

In conclusion, the simulated tests indicate that the irpo model has advantages over
the mvo and rpo models when the market exhibits jumps. It typically results in a higher
realized wealth and Sharpe ratio.

4.3 Out-of-Sample Evaluation Using Real Market Prices

Simulated stock and option prices may give an unrealistic view of how our portfolio
strategies perform in reality due to the following reasons. Firstly, it is known that
real stock returns are not serially independent and identically distributed. Secondly,
real option prices deviate from those obtained via the Black-Scholes formula by using
historical volatilities. Finally, we are restricted to invest in the options traded in the
market, and our assumption about the range of available strike prices may not hold.

Therefore, we now evaluate the portfolio strategies under the same rolling-horizon
procedure described in the previous section but with real stock and option prices. His-
torical stock and option prices are obtained from the OptionMetrics IvyDB database,
which is one of the most complete sources of historical option data available. We limit
ourselves to the equity indices shown in Table 2. These indices were chosen because
they have the most complete time-series in the database. As before, we rebalance on a
monthly basis, and at every rebalancing date we consider all available European put and
call options that expire in one month.4 Because the irpo strategy is long in options, we
use the highest option ask prices to make sure that we could have acquired the options
at the speci�ed prices.

The time-series covers the period from 18/01/1996 until 18/09/2008. We use an
estimation window of 15 months.5 Moreover, we allow short-selling in every equity index
up to −20% of total portfolio value but impose no upper bounds on the weights. The
target expected return is set to 8% per annum. The range of tested p and θ values is the
same as in the previous section, see Table 1.

4.3.1 Discussion of Results

The results of the backtests based on real market prices are given in Table 5. Similar to
the out-of-sample results based on simulated prices, the rpo portfolios produce higher
expected returns than the nominal mvo model, while their Sharpe ratios are more than
twice as large as that of the mvo portfolio for all tested values of p.

4In order to avoid the use of erroneous option data, we only selected those options for which the

implied volatility was supplied and which had a bid and ask price greater than 0. We found that this

procedure allowed us to �lter out incorrect entries.
5Di�erent estimation windows yielded slightly di�erent out-of-sample results. However, the general

conclusions are independent of the choice of the estimation window.
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Ticker Name

XMI AMEX Major Market Index
SPX S&P 500 Index
MID S&P Midcap 400 Index
SML S&P Smallcap 600 Index
RUT Russell 2000 Index
NDX NASDAQ 100 Index

Table 2: Equity indices used in the historical backtest.

The irpo portfolios also outperform the mvo portfolio in terms of expected return
and Sharpe ratio for all values of p and θ. However, compared to the rpo portfolios,
they have a slightly lower expected return on average. This decrease in expected return
is due to the cost of insurance. We also observe that the irpo portfolios have smaller
variance than the rpo portfolios for all tested parameter settings. On average the irpo
portfolios also produce slightly higher Sharpe ratios than the rpo portfolios.

In Figure 3 we plot the cumulated wealth over time of the mvo portfolio, an rpo

portfolio with p = 50%, an irpo portfolio with p = 50% and θ = 70%, and an irpo

portfolio with p = 50% and θ = 99%. The irpo portfolio with θ = 70% performed better
than the mvo and rpo portfolios. However, we emphasize that the performance of the
irpo model is highly dependent on the values chosen for p and θ. For example, it can
be observed that with p = 50% and θ = 99% the irpo portfolio is outperformed by the
rpo portfolio due to the high cost of insurance.

For all tested parameters values, the irpo model yields a higher worst-case monthly
return than the rpo model and a signi�cant increase in skewness for levels of p ≥ 60%.
The worst-case return monotonically increases with p. However, it is not always increas-
ing in θ. High insurance levels of θ & 90% lead to large investments in put options which
expire worthless with high probability. This is also re�ected by a signi�cant drop in
expected return and an associated decrease in Sharpe ratio.

The reasons for this are twofold. Firstly, the strong insurance guarantees are more
expensive in reality than in the simulations. This is because the Black-Scholes formula
underestimates the prices of far out-of-the-money put options when historical volatilies
are used. Secondly, we are limited to invest in the options that are traded in the market
and are therefore unable to invest in options with strike prices that would have resulted
in better portfolios.

To conclude, we note that for this particular data set the rpo and irpo portfolios
systematically outperform the nominal mvo portfolio in terms of expected return and
Sharpe ratio. On average the rpo portfolios achieve higher expected returns than the
irpo portfolios, whereas the irpo portfolios obtain slightly higher average Sharpe ratios.
We also conclude that the performance of the irpo model is highly dependent on the
chosen values of p and θ. The insurance levels should therefore be tuned to market
behavior. Higher insurance levels can help preserve the accumulated portfolio wealth
when the market is volatile and experiences jumps. Lower insurance levels are preferable
in less volatile periods since unnecessary insurance costs are avoided.

5 Conclusions

In this paper, we extend robust portfolio optimization to accommodate options. More-
over, we show how the options can be used to provide strong insurance guarantees, which
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Figure 3: Cumulated return of the mvo, rpo, and irpo portfolios using monthly
rebalancing between 19/06/1997 and 18/09/2008.

also hold when the stock returns are realized outside of the prescribed uncertainty set.
Using conic and linear duality, we reformulate the problem as a convex second-order cone
program, which is scalable in the amount of stocks and options and can be solved e�-
ciently with standard optimization packages. The proposed methodology can be applied
to a wide range of uncertainty sets and can therefore be seen as a generic extension to
the robust portfolio optimization framework.

We �rst perform backtests on simulated data, in which the asset prices re�ect nor-
mal market conditions as well as market crashes. In both cases the option premia are
calculated using the standard Black-Scholes model. The simulated results indicate that
the insured robust portfolios have lower expected returns than the non-insured robust
portfolios under normal market conditions but have clear advantages with respect to
Sharpe ratio, expected return, as well as cumulative wealth, when the prices experience
jumps.

Since the Black-Scholes prices might not re�ect realistic option premia, we also per-
form backtests on historical data. We observe that on average the rpo portfolios achieve
higher expected returns than the irpo portfolios, whereas the irpo portfolios obtain
higher Sharpe ratios. The results also indicate that the performance of the irpo model
is highly dependent on the values chosen for p and θ. When the insurance level is set too
high, the cost of insurance causes the performance to deteriorate. Therefore, the level of
insurance should be tuned to the market; to preserve wealth, higher insurance levels can
bene�t the portfolio when the market is volatile and experiences jumps. Lower insurance
levels are preferable in less volatile periods since unnecessary insurance costs are avoided.
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A Appendix

A.1 Notational Reference Table

n Number of stocks
m Number of options
r̃p Total portfolio return
rf Risk-free rate

w, wd Weights of the stocks and options, respectively
1 Vector of ones
l, u Lower and upper bounds on the weights of the stocks

r̃, r̃d Total stock and option returns, respectively
µ, Σ Mean vector and covariance matrix of r̃, respectively

µ̂, Σ̂ Sample mean and sample covariance matrix of r̃, respectively
Λ Covariance matrix of µ̂
Ω Modi�ed covariance matrix of µ̂
λ Risk-aversion parameter
µtarget Portfolio return target
p, q Probabilities of r̃ and µ̂ to be realized within their respective

uncertainty sets, respectively
Θr Uncertainty set for r̃
Θ+
r Uncertainty set for r̃ including support infomation

Θµ Uncertainty set for µ
Θ+
r,µ Uncertainty set for r̃ and µ including support infomation

δ, κ Size parameters for the uncertainty sets Θ+
r,µ and Θµ, respectively

φ Conditional worst-case portfolio return
θ Insurance level
T End of investment horizon

S̃i
t , i = 1, . . . , n Price of stock i at time tfW i, i = 1, . . . , n Standard Wiener processes

Ñ Poisson process
λc Arrival intensity
η Relative price change during crash
µc, σc, ρc Instantaneous drifts, volatilities and correlation rates, respectively
L Size of the time-series
E Size of the estimation window
Ki, i = 1, . . . ,m Strike price of option i
Pi, Ci, i = 1, . . . ,m Price of option i if it is a call/put option
a,B Parameters of function f

f Function relating r̃ and r̃d

A.2 Proof of Theorem A.1

Theorem A.1 For Θµ de�ned as in (12), and ΘΣ = {Σ̂}, problem (8) is equivalent to
the following second-order cone program,

max
w∈Rn

{
wT µ̂− κ

∥∥∥Ω1/2w
∥∥∥

2
− δ

∥∥∥Σ̂1/2w
∥∥∥

2

∣∣∣ wT1 = 1, l ≤ w ≤ u
}
,

where

Ω = Λ− 1
1TΛ1

Λ11TΛ.
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Proof Because ΘΣ is a singleton, it is clear that problem (8) is equivalent to

max
w∈Rn

{
min
µ∈Θµ

wTµ− δ
∥∥∥Σ̂1/2w

∥∥∥
2

∣∣∣ wT1 = 1, l ≤ w ≤ u
}
. (47)

When κ = 0, the claim is obviously true. In the rest of the proof we thus assume that
κ > 0. Using the de�nition of the uncertainty set Θµ, the inner minimization problem
in (47) can be rewritten as

min
µ∈Rn

wTµ

subject to
∥∥∥Λ−1/2(µ− µ̂)

∥∥∥
2
≤ κ

1T (µ− µ̂) = 0.

(48)

For any �xed portfolio w, problem (48) represents a second-order cone program. We
proceed by dualizing (48). After a few minor simpli�cation steps, we obtain the dual
problem

max
q∈R

wT µ̂− κ
∥∥∥Λ1/2(w − q1)

∥∥∥ . (49)

Strong conic duality holds since the primal problem (47) is strictly feasible for κ > 0.
Thus, both the primal and dual problems (47) and (48) are feasible and share the same
objective values at optimality. Since κ > 0, the optimal dual solution is given by

q∗ = argmin
q∈R

∥∥∥Λ1/2(w − q1)
∥∥∥ =

wTΛ1
1TΛ1

.

By substituting q∗ into (49) we obtain the optimal value of (48), which amounts to

wT µ̂− κ
∥∥∥Ω1/2w

∥∥∥
2
. (50)

We can now substitute (50) into (47) to obtain the postulated result.
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