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EXE: Automatically Generating Inputs
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This article presents EXE, an effective bug-finding tool that automatically generates inputs that
crash real code. Instead of running code on manually or randomly constructed input, EXE runs
it on symbolic input initially allowed to be anything. As checked code runs, EXE tracks the con-
straints on each symbolic (i.e., input-derived) memory location. If a statement uses a symbolic
value, EXE does not run it, but instead adds it as an input-constraint; all other statements run
as usual. If code conditionally checks a symbolic expression, EXE forks execution, constraining
the expression to be true on the true branch and false on the other. Because EXE reasons about
all possible values on a path, it has much more power than a traditional runtime tool: (1) it can
force execution down any feasible program path and (2) at dangerous operations (e.g., a pointer
dereference), it detects if the current path constraints allow any value that causes a bug. When
a path terminates or hits a bug, EXE automatically generates a test case by solving the current
path constraints to find concrete values using its own co-designed constraint solver, STP. Because
EXE’s constraints have no approximations, feeding this concrete input to an uninstrumented ver-
sion of the checked code will cause it to follow the same path and hit the same bug (assuming
deterministic code).

EXE works well on real code, finding bugs along with inputs that trigger them in: the BSD and
Linux packet filter implementations, the udhcpd DHCP server, the pcre regular expression library,
and three Linux file systems.
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1. INTRODUCTION

Attacker-exposed code is often a tangled mess of deeply-nested conditionals,
labyrin-thine call chains, huge amounts of code, and frequent, abusive use of
casting and pointer operations. For safety, this code must exhaustively vet
input received directly from potential attackers (such as system call parame-
ters, network packets, even data from USB sticks). However, attempting to
guard against all possible attacks adds significant code complexity and re-
quires awareness of subtle issues such as arithmetic and buffer overflow con-
ditions, which the historical record unequivocally shows programmers reason
about poorly.

Currently, programmers check for such errors using a combination of code
review, manual and random testing, dynamic tools, and static analysis. While
helpful, these techniques have significant weaknesses. The code features de-
scribed above make manual inspection even more challenging than usual. The
number of possibilities makes manual testing far from exhaustive, and even
less so when compounded by the programmer’s limited ability to reason about
all these possibilities. While random “fuzz” testing [Miller et al. 1990] often
finds interesting corner case errors, even a single equality conditional can de-
rail it: satisfying a 32-bit equality in a branch condition requires correctly
guessing one value out of four billion possibilities. Correctly getting a sequence
of such conditions is hopeless. Dynamic tools require test cases to drive them,
and thus have the same coverage problems as both random and manual test-
ing. Finally, while static analysis can benefit from full path coverage, the fact
that it inspects rather than executes code means that it reasons poorly about
bugs that depend on accurate value information (the exact value of an index or
size of an object), pointers, and heap layout, among many others.

This article describes EXE (EXecution generated Executions), an unusual
but effective bug-finding tool built to deeply check real code. The main in-
sight behind EXE is that code can automatically generate its own (potentially
highly complex) test cases. Instead of running code on manually or randomly
constructed input, EXE runs it on symbolic input that is initially allowed to
be anything. As checked code runs, if it tries to operate on symbolic (i.e.,
input-derived) expressions, EXE replaces the operation with its correspond-
ing input-constraint; it runs all other operations as usual. When code condi-
tionally checks a symbolic expression, EXE forks execution, constraining the
expression to be true on the true branch and false on the other. When a path
terminates or hits a bug, EXE automatically generates a test case that will
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run this path by solving the path’s constraints for concrete values using its
codesigned constraint solver, STP (Simple Theorem Prover).

EXE amplifies the effect of running a single code path since the use of STP
lets it reason about all possible values that the path could be run with, rather
than a single set of concrete values from an individual test case. For instance,
a dynamic memory checker such as Purify [Hastings and Joyce 1992] only
catches an out-of-bounds array access if it is provided with a test case where
the index (or pointer) has a specific concrete value that is out-of-bounds. In
contrast, when EXE explores the same path (which it does automatically), it
identifies this bug if there is any possible input value on the given path that
can cause an out-of-bounds access to the array. Similarly, for an arithmetic
expression that uses symbolic data, EXE can solve the associated constraints
for values that cause an overflow or a division/modulo by zero. Moreover, for
an assert statement, EXE can reason about all possible input values on the
given path that may cause the assert to fail. If the assert does not fail, then
either (1) no input on this path can cause it to fail, (2) EXE does not have the
full set of constraints (see Section 5), or (3) there is a bug in EXE.

The ability to automatically generate concrete inputs to execute program
paths has several nice features. First, EXE can test any code path it wishes
(and given enough time, exhaust all of them), thereby getting coverage out of
practical reach from random or manual testing. Second, EXE generates actual
attacks. This ability lets it show that external forces can exploit a bug, im-
proving on static analysis, which often cannot distinguish minor errors from
showstoppers. Third, the presence of a concrete input allows the user to eas-
ily discard error reports due to bugs in EXE or STP: the user can confirm
the error report by simply rerunning an uninstrumented copy of the checked
code on the concrete input to verify that it actually hits the bug (note that
both EXE and STP are sound with respect to the test cases generated, and
therefore false positives can only arise due to implementation bugs in EXE
and/or STP).

Careful codesign of EXE and STP has resulted in a system with several
novel features. First, STP primitives let EXE build constraints for all C ex-
pressions with perfect accuracy, down to a single bit. (The main exception is
floating-point, which STP does not handle.) EXE handles pointers, unions,
bit-fields, casts, and aggressive bit-operations such as shifting, masking, and
byte swapping. Because EXE is dynamic (it executes the checked code), it has
access to runtime information typically not available to static analyses. All
nonsymbolic (i.e., concrete) operations happen exactly as they would in unin-
strumented code and produce exactly the same results: when these results
appear in future constraints they are correct, not approximations. In our con-
text, this accuracy means that if (1) EXE has the full set of constraints for a
given path, (2) STP can produce a concrete solution from these constraints, and
(3) the path is deterministic, then rerunning the checked system on these con-
crete values will force the program to follow the same exact path to the error
or termination that generated this set of constraints.

In addition, STP provides the speed needed to make perfect accuracy use-
ful. Aggressive customization makes STP often 100 times faster than more
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traditional constraint solvers while handling a broader class of examples. Cru-
cially, STP efficiently reasons about constraints that refer to memory using
symbolic pointer expressions, which presents more challenges than one may
expect. For example, given a concrete pointer a and a symbolic variable i with
the constraint 0 ≤ i ≤ n, the conditional expression if (a[i] == 10) is essen-
tially equivalent to a big disjunction: if (a[0] == 10 || . . . || a[n] == 10).
Similarly, an assignment a[i] = 42 represents a potential assignment to any
element in the array between 0 and n.

The result of these features is that EXE finds bugs in real code, and auto-
matically generates concrete inputs to trigger them. It generates evil packet
filters that exploit buffer overruns in the very mature and audited Berkeley
Packet Filter (BPF) code as well as its Linux equivalent (Section 6.1). It gen-
erates packets that cause invalid memory reads in the udhcpd DHCP server
(Section 6.2), and bad regular expressions that compromise the pcre library
(Section 6.3), previously audited for security holes. In prior work, it gener-
ated raw disk images that, when mounted by a Linux kernel, would crash it or
cause a buffer overflow [Yang et al. 2006].

Both EXE and STP are contributions of this article, which is organized as
follows. We first give an overview of the entire system (Section 2), then describe
STP and its key optimizations (Section 3), and do the same for EXE (Section 4).
Finally, we summarize the main limitations (Section 5), present experimental
results (Section 6), discuss related work (Section 7), and conclude (Section 8).

2. EXE OVERVIEW

This section gives an overview of EXE. We illustrate EXE’s main features by
walking the reader through the simple code example in Figure 1. When EXE
checks this code, it explores each of the three possible paths, and finds two er-
rors: an illegal memory write (line 12) and a division by zero (line 16). Figure 2
gives a partial transcript of a checking run.

To check their code with EXE, programmers only need to mark which mem-
ory locations should be treated as holding symbolic data whose values are ini-
tially entirely unconstrained. These memory locations are typically the input
to the program. In the example, the call make symbolic(&i) (line 4) marks the
four bytes associated with the 32-bit variable i as symbolic. The programmers
then compile their code using the EXE compiler, exe-cc, which instruments
it using the CIL source-to-source translator [Necula et al. 2002]. This instru-
mented code is then compiled with a normal compiler (e.g., gcc), linked with
the EXE runtime system to produce an executable (in Figure 2, ./a.out), and
run.

As the program runs, EXE executes each feasible path, tracking the con-
straints on the input which will take it down each path. When a program path
terminates, EXE calls STP to solve the path’s constraints for concrete values.
A path terminates when (1) exit() is called, (2) the program crashes, (3) an
assertion fails, or (4) EXE detects an error. Constraint solutions are literally
the concrete bit values for an input that will cause the given path to execute.
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Fig. 1. A contrived, but complete C program (simple.c) that generates five test cases when run
under EXE, two of which trigger errors (a memory overflow at line 12 and a division by zero at
line 16). This example is used heavily throughout the article. We assume it runs on a 32-bit
little-endian machine.

When generated in response to an error, they provide a concrete attack that
can be launched against the tested system.

2.1 Instrumentation

The EXE compiler has the following main jobs. First, it inserts checks around
every assignment, expression, and branch in the tested program to determine
if its operands are concrete or symbolic. An operand is defined to be concrete if
and only if all its constituent bits are concrete. If all operands are concrete, the
operation is executed just as in the uninstrumented program. If any operand is
symbolic, the operation is not performed; instead, the operation is passed to the
EXE runtime system, which adds it as a constraint for the current path. For
example, Figures 3 and 4 give the transformation rules for assignment involv-
ing primitive variables. Figure 3 covers the case when the right hand side is a
single primitive variable, while Figure 4 covers the case when the right hand
side is a binary operator involving exactly two primitive variables. All other
assignments involving primitive variables can be recursively decomposed to
these two main cases. Assignment involving array indexing and pointer deref-
erences is more complicated and is discussed in Section 3.

For the example’s expression p = (char *)a + i * 4 (line 8), EXE checks
if the operands a and i on the right hand side of the assignment are concrete.
If so, it executes the expression, assigning the result to p. However, since i
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Fig. 2. Transcript of compiling and running the C program shown in Figure 1.

Fig. 3. Transformation rule for assignment v = w for any primitive variables v and w of type T.
sym(&v) returns the symbolic expression associated with variable v, or <null> if v is concrete.

is symbolic, EXE instead adds the constraint that p equals (char∗)a + i ∗ 4.
Note that because i can have one of four values (0 ≤ i ≤ 3), p simultaneously
refers to four different locations a[0], a[1], a[2] and a[3]. In addition, EXE
treats memory as untyped bytes (§ 3.2) and thus does not get confused by this
(dubious) cast, nor the subsequent type-violating modification of a low-order
byte at line 9.

Second, exe-cc inserts code to fork program execution when it reaches a
symbolic branch point, so that it can explore each possibility. Figure 5 shows
the transformation rule for conditional expressions. To understand how this
transformation works, consider the if-statement at line 5, if(i >= 4). Since i

is symbolic, so is this expression. Thus, EXE forks execution (using the UNIX
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Fig. 4. Transformation rule for v = x OP y where primitive variables x and y are of type T, and
OP is a binary operator. sym(&v) returns the symbolic expression associated with variable v, or
<null> if v is concrete. mk sym exp constructs a new symbolic expression.

Fig. 5. Transformation rule for conditional expressions if(e) s1 else s2. is sym(e) returns
<true> iff e is a symbolic expression, and returns <false> otherwise. add sym constraint(c)

adds the constraint c to the set of constraints on the current path. path feasible() determines
whether the current set of constraints has a solution, and kill() terminates execution on the
current path.

fork() system call) and on the true path asserts that i ≥ 4 is true, and on
the false path that it is not. Each time it adds a branch constraint (using
add sym constraint in Figure 5), EXE queries STP to check that there exists
at least one solution for the current path’s constraints. If not, the path is
impossible and EXE stops executing it. In our example, both branches are
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Fig. 6. Transformation template for checking error condition c. emit error() emits an error,
together with a corresponding test case, and exits. push constraint() is defined in Figure 5.

possible, so EXE explores both (though the true path exits immediately at
line 6).

2.2 Default Checks

In order to find generic program errors, exe-cc inserts code that calls to check
if a symbolic expression could have any possible value that could cause either
(1) a null or out-of-bounds memory reference or (2) a division or modulo by zero.
If so, EXE forks execution and (1) on the true path asserts that the condition
does occur, emits a test case, and terminates; (2) on the false path asserts
that the condition does not occur and continues execution (to find more bugs).
Extending EXE to support other checks is easy. Figure 6 shows a template
transformation that checks whether an error condition c occurs.

These checks are powerful because if EXE has the entire set of constraints
on such expressions and STP can solve them, then EXE can detect if any input
exists on that path that causes the error. Similarly, if the check passes, then no
input exists that causes the error on that path, i.e., the path has been verified

as safe under all possible input values.
These checks find two errors in our example. First, the symbolic index *p in

the expression a[*p] (line 12) can cause an out-of-bounds error because *p can
equal 4: the pointer p was computed using i with the constraint 0 ≤ i < 4 (line
8). Thus, i = 2 is legal, which means p can point to the low-order byte of a[2]
(recall that each element of a has four bytes). The value of this byte is 4 after
the subtraction at line 9. Since a[4] references an illegal location (one byte
past the end of a), EXE forks execution and on one path asserts that i = 2 and
emits an error (test2.ptr.err) and a test case (test2.out), and on the other
asserts that i 6= 2 and continues.

Second, the symbolic expression t / a[i] (line 16) can generate a division
by zero, which EXE detects by tracking and solving the constraints that (1)
i can equal 0, 1, or 3 and (2) a[0] can equal 0 after the decrement at line 9.
EXE again forks execution, emits an error (test3.div.err) and a test case
(test3.out) and exits. The other path adds the constraint that i 6= 0 and
continues.

Note, EXE automatically turns a programmer assert(e) on a symbolic ex-
pression e into a universal check of e simply because it tries to exhaust both
paths of if-statements. If EXE determines that e can be false, it will go down
the assertion’s false path, hitting its error handling code. Further, if STP
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Fig. 7. Execution for the simple C program in Figure 1: EXE generates five test cases, two of which
are errors.

cannot find any such value, none exists on this path. In the example, EXE
explores both branches at line 20, and proves that no input value exists that
can cause either assert (line 21 and line 23) to fail. We leave working through
this logic as an exercise for the more energetic reader. Even a cursory attempt
should show the trickiness of manual reasoning about all-paths and all-values
for even trivial code fragments. (We spent more time than we would like to
admit puzzling over our own hand-crafted example and eventually gave up,
resorting to using EXE to double-check our oft-wrong reasoning.)

Finally, EXE can be configured to insert additional forks at certain program
points, in order to explore error prone states. For example, we can config-
ure EXE to fork at each arithmetic operation, and add on one path the con-
straint that the operation triggers an arithmetic overflow (if possible), and on
the other path that it doesn’t. Similarly, we can ask EXE to fork at each cast:
for narrowing casts, bugs may be introduced when the bits lost are not all zero,
while for widening casts from a signed to an unsigned, bugs can be introduced
via sign extension—if the signed variable is negative, the result of the cast
is a very large number, which sometimes is not intended. While these extra
forks are not necessary to find generic bugs such as buffer overflows and divi-
sion/modulo by zero bugs, they can prove very useful in finding cross-checking
errors (see Section 6.4).

2.3 Mechanics of the EXE Tool

The paths followed by EXE for our example are shown graphically in Figure 7.
The branch points (both explicit and implicit) where EXE forks a new process
are represented by rhombuses, and the test cases it generates by sequences of
four bytes.
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Mechanically, at each run of the instrumented code, EXE creates a new di-
rectory and, for each path, creates two files: one to hold the concrete bytes it
generates, the other to hold the values for each decision (1 to take the true
branch, 0 to take the false). The choice points enable easy replay of a single
path for debugging. The values can either be read back by using a trivial driver
(which EXE provides) or used completely separately from EXE.

In our example, the three paths and two errors lead to five pairs of files that
hold (1) concrete byte values for i (these files have the suffix .out) and (2) the
branch decisions for that path (suffix .forks). EXE creates a symbolic link
exe-last pointing to the most recent output directory. The two errors are in
.err files. If we look at the contents of the file for the division bug (test3.out),
it shows that each byte of i is zero, which when concatenated in the right order
and treated as an unsigned 32-bit quantity equals 0, as required. The branch
decision states that we take the false branch at line 5, followed by the (implicit)
false branch of the memory overflow check at line 9, and finally the (implicit)
true branch of the division check at line 16. Similarly, the concrete values for
the pointer error are byte 0 equals 2 and bytes 1, 2, 3 equal 0, which when
concatenated yields the 32-bit value 2 as needed.

As expected, EXE is sound with respect to the tests it generates. That is, the
concrete test case in each .out file is guaranteed to follow the branch points
in the corresponding .forks file. However, errors in EXE and STP can lead to
violations of this key property. Thus, EXE tracks the basic blocks visited when
generating a given test case and automatically verifies that the same path is
executed when the concrete values are rerun on the checked code. This check
found many bugs inside EXE.

3. KEY FEATURES OF STP

This section gives a high-level overview of STP’s key features, including the
support it provides to EXE for accurately modeling memory. It then describes
the optimizations STP performs, and shows experimental numbers evaluating
their efficiency.

EXE’s constraint solver is, more precisely, a decision procedure for bitvec-
tors and arrays. Decision procedures are programs which determine the sat-
isfiability of logical formulas that can express constraints relevant to software
and hardware, and have been a mainstay of program verification for several
decades. In the past, these decision procedures have been based on variations
of Nelson and Oppen’s cooperating decision procedures framework [Nelson and
Oppen 1979] for combining a collection of specialized decision procedures into a
more comprehensive decision procedure capable of handling a more expressive
logic than any of the specialized procedures can do individually.

The Nelson-Oppen approach has two downsides. Whenever a specialized
decision procedure can infer that two expressions are equal, it must do so
explicitly and communicate the equality to the other specialized decision
procedures, which can be expensive. Worse, the framework tends to lead to
a web of complex dependencies, which makes its code difficult to understand,
tune, or get right. These problems hampered CVCL [Barrett and Berezin 2004;

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 10, Pub. date: December 2008.



EXE: Automatically Generating Inputs of Death · 10: 11

Barrett et al. 2004], a state-of-the-art decision procedure that we implemented
previously.

Our CVCL travails motivated us to simplify the design of STP by exploit-
ing the extreme improvement in SAT solvers over the last decade. STP
forgoes Nelson-Oppen contortions, and instead preprocesses the input through
the application of mathematical and logical identities, and then eagerly trans-
lates constraints into a purely propositional logical formula that it feeds to an
off-the-shelf SAT solver (we use MiniSAT [Een and Sorensson 2003]). As a
result, the STP implementation is four times smaller than CVCL’s, yet often
runs orders of magnitude faster. STP is also more modular, because its pieces
work in isolation. Modularity and simplicity help constraint solvers as they do
everything else. In a sense, STP can be viewed as the result of applying the
systems approach to constraint solving that has worked so well in the context
of SAT: start simple, measure bottlenecks on real workloads, and tune to ex-
actly these cases. STP was recently judged the cowinner of the 32-bit bitvector
(QF UFBV32) division of the SMTLIB competition [SMTLIB 2006] held as a
satellite event of CAV’06 [Ball and Jones 2006].

Recently, several other decision procedures have been based on eager trans-
lation to SAT, including Saturn [Xie and Aiken 2005], UCLID [Bryant et al.
2002], and Cogent [Cook et al. 2005]. Saturn is a static program analysis
framework that translates C operations to SAT. It does not directly deal with
arrays, so it avoids many interesting problems and optimizations. UCLID im-
plements features such as arrays and arbitrary precision integer arithmetic,
but does not focus on bitvector operations. Cogent is perhaps the most similar
in architecture and purpose to STP. Judging from the published descriptions of
these systems, STP’s focus on optimizations for arrays is unique (and uniquely
important for use with EXE). STP also has simplifications on word-level op-
erations that are not discussed in the description of Cogent. (At this time,
it is difficult to do side-by-side performance comparisons because of lack of
common benchmarks and input syntax; Saturn, UCLID, and Cogent also didn’t
participate in the SMTLIB competition.)

3.1 STP Primitives

Systems code often treats memory as untyped bytes, and observes a single
memory location in multiple ways. For example, by casting signed variables to
unsigned, or (in the code we checked) treating an array of bytes as a network
packet, inode, packet filter, etc., through pointer casting.

As a result, STP also views memory as untyped bytes. It provides only
three data types: booleans, bitvectors, and arrays of bitvectors. A bitvector is
a fixed-length sequence of bits. For example, 0010 is a constant, 4-bit bitvec-
tor representing the constant 2. With the exception of floating-point, which
STP does not support, all C operators have a corresponding STP operator that
can be used to impose constraints on bitvectors. STP implements all arith-
metic operations (even nonlinear operations such as multiplication, division,
and modulo), bitwise boolean operations, relational operations (less than, less
than, or equal, etc.), and multiplexers, which provide an if-then-else construct
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that is converted into a logical formula (similar to C’s ternary operator). In ad-
dition, STP supports bit concatenation and bit extraction, features EXE makes
extensive use of in order to translate untyped memory into properly-typed
constraints.

STP implements its bitvector operations by translating them to operations
on individual bits. There are two expression types: terms, which have bitvector
values, and formulas, which have boolean values. If x and y are 32-bit bitvec-
tor values, x + y is a term returning a 32-bit result, and x + y < z is a formula.
In the implementation, terms are converted into vectors of boolean formulas
consisting entirely of single bit operations (AND, XOR, etc.). Each operation
is converted in a fairly obvious way: for example, a 32-bit add is implemented
as a ripple-carry adder. Formulas are converted into DAGs of single bit op-
erations, where expressions with identical structure are represented uniquely
(expression nodes are looked up in a hash table whenever they are created to
see whether an identical node already exists). Simple boolean optimizations
are applied as the nodes are created; for example, a call to create a node for
AND(x, FALSE) will just return the FALSE node. The resulting boolean DAG is
then converted to CNF by the standard method of naming intermediate nodes
with new propositional variables.

3.2 Mapping C Code to STP Constraints

EXE represents each symbolic data block as an array of 8-bit bitvectors. The
main advantage of using bitvectors is that they, like the C memory blocks that
they represent, are essentially untyped. This property allows us to easily ex-
press constraints that refer to the same memory in different ways; each read
of memory generates constraints based on the static type of the read (e.g., int,
unsigned, etc.) but these types do not persist.

EXE uses STP to solve constraints on input as follows. First, it tracks what
memory locations in the checked code hold symbolic values. Second, it trans-
lates expressions to bitvector based constraints. We discuss each step below.

Initially, there are no symbolic bytes in the checked code. When the user
marks a byte-range, b, as symbolic, EXE calls into STP to create a correspond-
ing, identically-sized array b sym, and records in a table that b corresponds to
b sym. In Figure 1 (line 4), the call to make the 32-bit variable i symbolic causes
EXE to allocate a bitvector array isym with four 8-bit elements and record that
the concrete address of i (&i) corresponds to it.

As the program executes, the table mapping concrete bytes to STP bitvectors
grows in exactly two cases:

(1) v = e: where e is a symbolic expression (i.e., has at least one symbolic
operand). EXE builds the symbolic expression esym representing e, and
records that &v (which provides a unique identifier for v) maps to it. Note
that EXE does not allocate a new STP variable in this case but instead will
substitute esym for v in subsequent constraints. EXE removes this mapping
when v is overwritten with a concrete value or deallocated. In Figure 1
(line 8), EXE records the fact that p maps to expression (char∗)a + isym ∗ 4
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and substitutes any subsequent use of p’s value with this expression. (Note
that a is replaced by the actual base address of array a in the program.)

(2) b[e]: where e is a symbolic expression and b is a concrete array. Since STP
must reason about the set of values that b[e] could reference, EXE imports
b into STP by allocating an identically-sized STP array b sym, and initializ-
ing it to have the same (constant) contents as b. It then records that b maps
to b sym and removes this mapping only when the array is deallocated.
In Figure 1 (line 12), the array expression a[*p] causes EXE to allocate
asym, a 16-element array of 8-bit bitvectors, and assert that:

asym = {1, 0, 0, 0, 3, 0, 0, 0, 5, 0, 0, 0, 2, 0, 0, 0}

Each expression e used in a symbolic operation is constructed in the follow-
ing way. For each read of size n of a storage location L in e, EXE checks if L is
concrete. If so, the read of L is replaced by its concrete value (i.e., a constant).
Otherwise, EXE breaks down L into its corresponding bytes b0, . . . , bn−1. It
then builds a symbolic expression with the same size as L by concatenating
each byte’s (possibly symbolic) value. For each byte bi it queries its data struc-
tures to check if bi is symbolic. If not, it uses its current concrete value (an
8-bit constant), otherwise it looks up and uses its symbolic expression (b i)sym.

For example, in Figure 1 (line 8), EXE builds the symbolic expression corre-
sponding to (char*)a + i*4 as follows. EXE determines that the first read of a
is concrete and so replaces a with its concrete address (denoted a) represented
as a 32-bit bitvector constant. It then determines that i is symbolic, and thus
breaks it down into its four bytes, which are mapped to their corresponding
STP bitvector array elements isym[0], isym[1], isym[2], and isym[3]. Then, the four
bitvectors are concatenated to obtain the expression isym[3] @ isym[2] @ isym[1]
@ isym[0] (where “@” denotes bitvector concatenation, and we use little-endian
order for multi-byte values), which corresponds to the four-byte read of i. Fi-
nally, the constant 4 is replaced by the corresponding 32-bit bitvector constant
0...00000100. The resulting expression is

a + (isym[3]@isym[2]@isym[1]@isym[0]) ∗ 0...00000100

A limitation of STP is that it does not support pointers directly. EXE emu-
lates symbolic pointer expressions by mapping them as an array reference at
some offset. For each pointer p in the checked code, EXE tracks the data ob-
ject to which p points by instrumenting all allocation and deallocation sites as
well as all pointer arithmetic expressions (standard techniques developed by
bounds-checking compilers [Ruwase and Lam 2004]). For example, in Figure 1
(line 4), EXE records that p points to the data block a of size 16. Then, when
EXE encounters a pointer dereference *p: (1) it looks up the block b to which
pointer p refers; (2) looks up the corresponding STP array b sym associated with
b; and (3) computes the (possibly symbolic) offset of p from the base of the ob-
ject it points to (i.e., o = p - b). EXE can then use the symbolic expression
b sym[isym + osym] in symbolic constraints.
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However, STP’s lack of pointer support means that when EXE encounters a
double-dereference **p of a symbolic pointer p it concretizes the first derefer-
ence (*p), fixing it to one of the possibly many storage locations it could refer to.
(However, the result of **p can still be a symbolic expression.) The user is also
informed when this happens. This situation has rarely shown up in practice
(see Section 4.3), but we are working on removing it.

3.3 Concrete Solutions

STP’s ability to generate a concrete solution for a given set of constraints is
essential for EXE. Whenever EXE terminates to execute a path thorough the
program under checking, it asks STP for a concrete solution for the set of con-
straints gathered on that path. Effectively, this solution represents a test case
that will drive an uninstrumented version of the checked program through the
exact same path as the one explored by EXE. In the case of an error path, the
test case represents an actual attack that can be mounted against the vulner-
able program. The ability to independently confirm the attack is a significant
advantage of EXE, which allows it to have absolutely no false positives (while
EXE is sound with respect to the attacks it generates, there can still be false
positives due to bugs in EXE and/or STP).

Currently, STP can generate a single solution for a given set of constraints.
However, note that EXE can easily overcome this limitation by using the fol-
lowing simple algorithm: (1) given a set of constraints C on input I, we first
ask STP for a solution s; (2) we add constraint I 6= s to the constraint set C

and ask STP for a new solution. We can repeat this algorithm to obtain more
solutions (if they exist).

While in general EXE requires a single solution for a set of constraints,
we do employ this algorithm to determine whether a symbolic variable has a
single concrete solution (by simply checking if a solution can still be generated
in step (2) of the algorithm above). If a symbolic variable has a single solution,
we can replace it by a concrete variable with the right value. This optional
check in EXE has a big impact on performance for certain benchmarks, but
unfortunately it slows down other benchmarks, and for this reason we only
enable it when it proves beneficial.

3.4 The Key to Speed: Fast Array Constraints

Almost always, the main bottleneck in STP when used in EXE is reasoning
about arrays. This subsection discusses STP’s key array optimizations.

STP is an implementation of logic, so it is a purely functional language. The
logic has one-dimensional arrays that are indexed by bitvectors and contain
bitvectors. The operations on arrays are read(A , i), which returns the value at
location A[i] where A is an array and i is an index expression of the correct
type, and write(A , i, v), which returns a new array with the same value as A

at all indexes except i, where it has the value v. Array reads and writes can
appear as subexpressions of an if-then-else construct, denoted by ite(c, a, b ),
where c is the condition, a the then expression, and b the else expression.
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STP eliminates array expressions by translating them to bitvector prim-
itives (which it then translates to SAT). This is accomplished through two
main transformations. The first, read-over-write, eliminates all write(A , i, v)
expressions:1

read(write(A , i, v), j) ⇒ ite(i = j, v, read(A , j))

The second, read elimination, eliminates all read expressions via a transfor-
mation mentioned in Bryant et al. [2002] that enforces the axiom that if two
indexes is and it are the same, then read(A , is) and read(A , it) should return
the same value. Mechanically, STP first replaces each occurrence of a read
read(A , i j) with a new variable v j, and then for each two terms is, it ever used
to index into the same array A, it adds the array axiom:

is = it ⇒ vs = vt.

For example, consider the formula:

(read(A , i1) = e1) ∧ (read(A , i2) = e2) ∧ (read(A , i3) = e3).

The transformed result would be:

(v1 = e1) ∧ (v2 = e2) ∧ (v3 = e3) ∧ (i1 = i2 ⇒ v1 = v2)∧

(i1 = i3 ⇒ v1 = v3) ∧ (i2 = i3 ⇒ v2 = v3).

Read elimination expands each formula by n(n − 1)/2 nodes, where n is the
number of syntactically distinct index expressions. Unfortunately, this blowup
is lethal for arrays of a few thousand elements, which occur frequently in EXE.
Fortunately, while finessing this problem appears hard in general, two opti-
mizations we developed work well on the constraints generated by EXE.

The array substitution optimization reduces the number of array variables
by substituting out all constraints of the form read(A , c) = e, where c is a con-
stant and e does not contain another array read. Programs often index into
arrays using constant indexes, so this is a case that occurs often in practice
(see Section 4.3). The optimization has two passes. The first pass builds a
substitution table with the left-hand-side of each such equation (read(A , c)) as
the key and the right-hand-side (e) as the value, and then deletes the equation
from the EXE query. The second pass over the expression replaces each occur-
rence of a key by the corresponding table entry. Note that for soundness, if we
encounter a second equation whose left-hand-side is already in the table, the
second equation is not deleted and the table is not changed. For our example,
if we saw a subsequent equation read(A , i1) = e4 we would leave it; the second
pass of the algorithm would rewrite it as e1 = e4.

The second optimization, array-based refinement, delays the translation of
array reads with nonconstant indexes, in effect introducing some laziness into
STP’s handling of arrays, in the hope of avoiding the O(n2) blowup from the
read elimination transformation. Its main trick is to solve a less-expensive

1Note that a write makes sense only inside a read node. A write node by itself has no effect, and
can be ignored.
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approximation of the formula, check the result in the original formula, and try
again with a more accurate approximation if the result is incorrect.

Initially, all array read expressions are replaced by variables to yield an
approximation of the original formula. The resulting logical formula is under-
constrained, since it ignores the array axioms that require that array reads
return the same values when indexes are the same. If the resulting under-
constrained formula is not satisfiable, there is no solution for the original for-
mula and STP returns unsatisfiable.

If, however, the SAT solver finds a solution to the under-constrained for-
mula, then that solution is not guaranteed to be correct because it could vio-
late one of the array axioms. For example, suppose STP is given the formula
(read(A , 0) = 0) ∧ (read(A , i) = 1). STP would first apply the substitution op-
timization by deleting the constraint read(A , 0) = 0 from the formula, and in-
serting the pair (read(A , 0), 0)) in the substitution table. Then, it would replace
read(A , i) by a new variable vi, thus generating the under-constrained formula
vi = 1. Suppose STP finds the solution i = 1 and vi = 1. STP then translates
the solution to the variables of the original formula to get (read(A , 0) = 0) ∧

(read(A , 1) = 1). This solution is satisfiable in the original formula as well, so
STP terminates since it has found a true satisfying assignment.

However, suppose that STP finds the solution i = 0 and vi = 1. Under this
solution, the original formula evaluates to (read(A , 0) = 0) ∧ (read(A , 0) = 1),
which gives 0 = 1. Hence, the solution to the under-constrained formula is
not a solution to the original formula. When this happens, it must be because
some array axiom was violated. STP adds array axioms to the formula and
solves again until it gets a correct result. There are many policies for adding
axioms, any of which is correct and will terminate so long as all of the axioms
are added in the worst case. The current policy, which seems to work well, is
to find an array index term for which at least one axiom is violated, then add
all of the axioms involving that term. In our example, it will add the axiom
i = 0 ⇒ read(A , i) = read(A , 0). Then, the process of finding a satisfying as-
signment is repeated, by calling the SAT solver on the new under-constrained
formula. The result must satisfy the newly added axioms, which the previous
assignment violated, so the algorithm will not repeat assignments and will not
violate previously added axioms. This process must terminate since there are
only finitely many array axioms.

In the worst case, the algorithm will add all n(n − 1)/2 array axioms, at
which time it is guaranteed to return a correct result because there are no
more axioms it can violate. However, in practice, this loop will often terminate
quickly because the formula can be proved unsatisfiable without all the array
axioms, or because it luckily finds a true satisfying assignment without adding
all the axioms.

3.5 Boolean and Mathematical Simplifications

In addition to the above mentioned optimizations, STP implements several
boolean and mathematical identities. These identities, or simplifications, also
dramatically reduce the size of the input, before it is fed to the SAT solver.
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Some example identities include the associativity and commutativity laws for
addition and multiplication, distribution of multiplication by constants over
addition, and the combination of like terms (e.g., x + (−x) is simplified to 0).
Simplifications play a crucial role in STP’s efficiency and robustness. Instead of
listing all the simplifications implemented in STP, we discuss the value added
by simplifications, as well as their pitfalls, which may not be immediately
apparent.

The simplifications in STP can be classified into two categories: (1) those
that cause the input DAG (Directed Acyclic Graph) to blow-up (i.e., the num-
ber of nodes in the output DAG is typically much larger than in the input, often
quadratic in size), and (2) those that typically do not cause such blow-up. We
refer to the identities falling in the former category as blow-up simplifications,
and we need to be very careful when deciding whether they should be applied.
As an example, consider the quadratic blow-up of a thousand node DAG into
a million node DAG. Such an increase can often be lethal for either the sub-
sequent simplifications or for the SAT solver itself, and so in this case the
simplification should not be applied. An example of a blow-up simplification is
the distributivity law of multiplication over addition. This law often increases
the DAG size. For example, consider the input DAG (x + y)n, where (x + y) is a
shared expression. The output after the transformation is xn + nxn−1y + ... + yn.
This transformation breaks the sharing, which in turns increases the DAG
significantly, becoming problematic for subsequent stages. On the other hand,
the distributivity law is very useful when one of the multiplicands is a con-
stant, often allowing STP to combine like terms. The lesson learned here is
that the DAG size (usually highly determined by the amount of subexpression
sharing) plays a critical role in determining whether a simplification should
be applied.

Consistent with this observation, simplifications that are guaranteed to re-
duce the size of the DAG should always be applied. Two such simplifications
are constant folding and constant propagation. In constant folding, terms such
as 2 + 3 are simplified to 5 (another example is reducing 0@0 to 00, where @
is the concatenation operator). In constant folding, values of known constants
are substituted in more complex expressions. For example, consider an input
(x = 5) ∧ (x + y + z = 7). Replacing x with 5 in (x + y + z = 7) is an instance of
constant propagation.

These simplification can have a huge impact on subsequent stages of STP,
as shown by the experimental results in Section 3.6. For example, consider a
constraint involving an array read, of the form A[x] = 2. If the constant folding
and propagation simplifications can infer that x is a constant and this fact is
propagated to the subsequent array optimizations, this constraint would go
directly into the substitution map, instead of generating the more expensive
array read axioms.

3.6 Measured Performance

The optimizations outlined in Sections 3.4 and 3.5 have made it possible to deal
with fairly large constant arrays when there are relatively few nonconstant
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Table I. Performance of STP and CVCL on a Regression
Suite of 8,495 Test Cases Taken from our Test Programs.
Queries time out (are aborted) after 60 seconds, which
underestimates performance differences, since they could
run for much longer. Using this conservative estimate,
fully optimized STP is roughly 30X faster than the
unoptimized version and 550X faster than CVCL and has

no timeouts

Solver Total Time Timeouts

CVCL 60,366s 546
STP (no optimizations) 3,378s 36
STP (substitution) 1,216s 1
STP (refinement) 624s 1
STP (simplifications) 336s 0
STP (subst+refinement) 513s 1
STP (simplif+subst) 233s 0

STP (simplif+refinement) 220s 0
STP (all optimizations) 110s 0

index expressions, which is sufficient to permit considerable progress in using
EXE on real examples.

Table I gives experimental measurements for these optimizations. The ex-
periment consists of running different versions of STP and our old solver,
CVCL, over the performance regression suite we have built up of 8,495 test
cases taken from our test programs. The experiments for all solvers were run
on a Pentium 4 machine at 3.2 GHz, with 2 GB of RAM and 512 KB of cache.
The table gives the times taken by CVCL, baseline STP with no optimizations,
STP with a subset of all optimizations enabled, and STP with full optimiza-
tions, that is, substitution, array-based refinement, and simplifications. The
third column shows the number of examples on which each solver timed out.
The timeout was set at 60 seconds, and is added as penalty to the time taken
by the solver (but in fact causes us to grossly underestimate the time taken by
CVCL and earlier versions of STP since they could run for many minutes or
even hours on some of the examples).

The baseline STP is nearly 20 times faster than CVCL, and more interest-
ingly, times out in far fewer cases. The fully optimized version of STP is about
30 times faster than the unoptimized version, almost 550 times faster than
CVCL, and there are no timeouts.

4. EXE OPTIMIZATIONS

This section presents optimizations EXE uses and measures their effectiveness
on five benchmarks. We first present two optimizations: caching constraints
to avoid calling STP (Section 4.1), and removing irrelevant constraints from
the queries EXE sends to STP (Section 4.2). We then measure the cumulative
improvement of these optimizations, and provide an empirical feel for what
symbolic execution looks like, including the time spent in various parts of EXE,

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 10, Pub. date: December 2008.



EXE: Automatically Generating Inputs of Death · 10: 19

and a description of the symbolic slice through the code (Section 4.3). Finally,
we discuss and measure EXE’s search heuristics (Section 4.4).

4.1 Constraint Caching

EXE caches the result of satisfiability queries and constraint solutions in order
to avoid calling STP when possible. This cache is managed by a server process
so that multiple EXE processes (created by forking at each conditional) can
coordinate. Before invoking STP on a query q, an EXE process prints q as
a string, computes an MD4 cryptographic hash of this string, and sends this
hash to the server. The server checks its persistent cache (a file) and if it gets
a hit, returns the result. If not, the EXE process does a local STP query and
then sends the (hash, result) pair back to the server. Constraint solutions are
cached in a similar way.

4.2 Constraint Independence Optimization

This section describes one of EXE’s most important optimizations, constraint

independence, which exploits the fact that we can often divide the set of con-
straints EXE tracks into multiple independent subsets of constraints. Two con-
straints are considered to be independent if they have disjoint sets of operands
(i.e., disjoint sets of array reads).

For example, assume EXE tracks the following set of three constraints:

(A[1] = A[2] + A[3]) ∧ (A[2] > A[4]) ∧ (A[7] = A[8])

We can divide this set into two subsets of independent constraints

(A[1] = A[2] + A[3]) ∧ (A[2] > A[4])

and

A[7] = A[8]

and solve them separately. Breaking a constraint into multiple independent
subsets has two benefits. First, EXE can discard irrelevant constraints when
it asks STP if a constraint c is satisfiable, with a corresponding decrease
in cost. Instead of sending all the constraints collected so far to STP, EXE
only sends the subset of constraints sc to which c belongs, ignoring all other
constraints. The worst case, when no irrelevant constraints are found, costs
no more than the original query (omitting the small cost of computing the
independent subsets).

Second, this optimization yields additional cache hits, since a given subset
of independent constraints may have appeared individually in previous runs.
Conversely, including all constraints vastly increases the chance that at least
one is different and so gets no cache hit. To illustrate, assume we have the
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following code fragment, which operates on two unconstrained symbolic arrays
A and B:

if (A[i] > A[i+1]) {

...

}

if (B[j] + B[j-1] == B[j+1]) {

...

}

There are four paths through this code; EXE will thus create four processes.
After forking and following each branch, EXE checks if the path is satisfiable.
Without the constraint independence optimization, each of these four satisfia-
bility queries will differ and miss in the cache. However, if the optimization is
applied, some queries repeat. For example, when the second branch is reached,
two of the four queries will be

(A[i] > A[i + 1]) ∧ (B[ j] + B[ j− 1] = B[ j + 1])

and

(A[i] ≤ A[i + 1]) ∧ (B[ j] + B[ j− 1] = B[ j + 1]),

which both devolve to

B[ j] + B[ j− 1] = B[ j + 1]

since, in each query, the first constraint is unrelated to the last one, and its
satisfiability was already determined when EXE reached the first branch.

Real programs often have many independent branches, which introduce
many irrelevant constraints. These add up quickly. For example, assuming
n consecutive independent branches (the example above is such an instance
for n = 2), EXE will issue 2(2n − 1) queries to STP (for each if statement, we
issue two queries to check if both branches are possible). The optimization ex-
ponentially reduces this query count to 2n (two queries the first time we see
each branch), since the rest of the time we find the result in the cache.

We compute the constraint independence subsets by constructing a graph G,
whose nodes are the set of all array reads used in the given set of constraints.
For the first example in the section, the set of nodes is {A[1], A[2], A[3], A[4],
A[7], A[8]}. We add an edge between nodes ni and nj of G if and only if there
exists a constraint c that contains both as operands. Once the graph G is
constructed, we apply a standard algorithm to determine G’s connected com-
ponents. Finally, for each connected component, we create a corresponding
independent subset of constraints by adding all the constraints that contain
at least one of the nodes in that connected component. At the implementation
level, we don’t construct the graph G explicitly. Instead, we keep the nodes
of G in a union-find structure (as described in Chapter 21 of Cormen et al.
[2001]), which we update each time a new constraint is added.

There are two additional issues that our algorithm has to take into
account. First, an array read may contain a symbolic index. In this case, we
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Table II. Optimization Measurements, Times in Minutes. STP
cost gives time spent in STP when all optimizations are enabled.
Tables III, IV, and V explore the fully optimized run (All) in

more detail

bpf expat pcre tcpdump udhcpd

Test cases 7333 360 866 2140 328

None 30.6 28.4 31.3 28.2 30.4
Caching 32.6 30.8 34.4 27.0 36.4
Independence 17.8 25.2 10.0 24.9 30.5
All 10.3 26.3 7.5 23.6 32.1

STP cost 6.9 24.6 2.8 22.4 23.1

are conservative and merge all the elements of that array into a single subset.
For example, if a constraint refers to A[i], where i is a symbolic index, then
the algorithm would merge all the elements of A into the same subset. We
could optimize this in the future by looking at the constraints imposed on the
symbolic index i. For example, if i could only have values 1 or 2, then only A[1]
and A[2] need to be merged.

The second issue relates to array writes. Since EXE and STP arrays are
functional, each array read explicitly contains an ordered list of all array writes
performed so far. Each array write is remembered as a pair consisting of the
location that was updated, and the expression that was written to that loca-
tion. When processing this list of array writes, we are again conservative, and
merge all the expressions written into the array (the right hand side of each
array write) into the subset of the original read. In addition, if any array write
is performed at a symbolic index, we merge all the elements of the array into
a single subset.

4.3 Experiments

We evaluate our optimizations on five benchmarks. These benchmarks con-
sist of the three applications discussed in Section 6, bpf, pcre, and udhcpd, to
which we added two more: expat, an XML parser library, and tcpdump, a tool
for printing out the headers of packets on a network interface that match a
boolean expression.

We run each benchmark under four versions of EXE: no optimization,
caching only, independence only, and finally with both optimizations turned
on. As a baseline, we run each benchmark for roughly 30 minutes using
the unoptimized version of EXE, and record the number of test cases n that
this run generates. We then run the other versions until they generate n test
cases. All experiments are performed on a dual-core 3.2 GHz Intel Pentium D
machine with 2 GB of RAM, and 2048 KB of cache.

Table II gives the number of test cases generated, as well as the runtime
for each optimization combination. Full optimization (All) significantly sped
up two of five benchmarks: bpf by roughly a factor of three, and pcre by more
than a factor of four. Both tcpdump and expat had marginal improvements
(20% and 7% faster, respectively), but udhcpd slows down by 5.6%. As the last
row shows, with the exception of pcre, the time spent in STP represents by far
the dominant cost of EXE checking.
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Table III. Optimization Breakdown

bpf expat pcre tcpdump udhcpd

1 Cache hit rate 92.8% 0% 83% 35% 9.1%
2 Hit rate w/o independence 0.1% 0% 17.5% 12.6% 9.1%
3 Avg. # of independent subsets 19 2,824 122 13 1

4 Independence overhead 0m 0m .1m 0m 0m
5 Cache lookup cost 1.1m 1.2m 1.9m 0.4m 2.1m
6 % of lookup spent printing 72% 96% 84% 90% 95%

Table IV. Dynamic Counts from Queries Sent to STP

bpf expat pcre tcpdump udhcpd

1 # of queries (cache misses) 163K 5K 188K 22K 4K
2 Total # of constraints 0.4M 9.6M 3.5M 1.3M 0.6M
3 Total # of nodes 2.0M 32.7M 17.8M 20.7M 431.7M
4 # non-linear constraints 4K 11K 96K 343K 508K
5 % constraints non-linear 0.9% 0.1% 2.8% 27.1% 81.1%
6 Reads from symbolic array 0.4M 11.8M 3.8M 1.6M 4.0M
7 % sym. array reads with sym. index 0.3% 0.3% 2.9% 7.8% 62.9%

8 Writes to symbolic array 62 2.3M 0.7M 0 0
9 % sym. array writes with sym. index 100% 0% 1.8% 0% 0%

Table III breaks down the full optimization run. As its first three rows
show, caching without independence is not a win—its overhead (see Table II)
actually increases runtime for most applications, varying between 6.5% for
bpf and 19.7% for pcre. With independence, the hit rate jumps sharply for
both bpf and pcre (and, to a lesser extent, tcpdump), due to its removal of ir-
relevant constraints. The other two applications show no benefit from these
optimizations—udhcpd has no independent constraints and expat has no cache
hits. The average number of independent subsets (row 3) shows how interde-
pendent our constraints are, varying from over 2,800 subsets for expat to only
1 (i.e., no independent constraints) for udhcpd.

The next three rows (4–6) measure the overhead spent in various parts of
EXE. Reassuringly, the cost of independence is near zero. On the other hand,
cache lookup overhead (row 5) is significant, due almost entirely to our naive
implementation. On each cache lookup (Section 4.1), EXE prints the query as
a string and then hashes it. As the table shows (row 6) the cost of printing
the string dominates all other cache lookup overheads. Obviously, we plan to
eliminate this inefficiency in the next version of the system.

Table IV breaks down the queries sent to STP. The first three rows give
the total number of queries, constraints, and nodes. These last two numbers
give a feel for query complexity: bpf is the easiest case (a small number of
constraints, with roughly five nodes per constraint), whereas udhcpd is the
worst with 688 nodes per constraint.

The next two rows give the number of nonlinear constraints (row 4) and
their percentage (row 5) of the total constraints (from row 2). Nonlinear con-
straints contain one or more nonlinear operators—multiplication, division,
or modulo—whose right-hand side is not a constant power of two. In gen-
eral, the more nonlinear operations, the slower constraint solving gets, as the
SAT circuits that STP constructs for these operations are expensive. For our
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Table V. Dynamic Counts from EXE Execution Runs

bpf expat pcre tcpdump udhcpd

1 Symbolic input size (bytes) 96 10 16 84 548
2 Total statements run (not unique) 298,195 41,345 423,182 40,097 15,258
3 % of statements symbolic 29.2% 8.5% 34.7% 41.7% 23.6% %

4 Explicit symbolic branch points 77,024 1,969 98,138 11,425 888
5 % with both branches feasible 11.3% 19.3% 0.9% 19.4% 52.8%
6 Avg. # symbolic branches per path 38.33 43.44 55.72 103.37 200.14

7 Symbolic checks 1,490 904 4,451 552 1,535
8 Pointer concretizations 0 0 0 73 0
9 Symbolic args. to uninstr. calls 0 0 0 0 0

benchmarks, only udhcpd has a large number of non-linear constraints, which
translates into a large amount of time spent in STP.

The final four rows (6–9) give the number of reads and writes from and to
symbolic data blocks, and the percentage of these that use symbolic indexes.
While there are many array operations, with the exception of udhcpd, very few
use symbolic indexes, which explains why the STP array substitution opti-
mization (Section 3.4) was such a big win.

Table V gives more dynamic execution counts from the full optimization
runs. The first row gives the number of bytes initially marked as symbolic; this
represents the size of the symbolic filter and data in bpf, the size of the XML
expression to be parsed in expat, the packet length in udhcpd and tcpdump, and
the regular expression pattern length in pcre.

The next row (row 2) gives the total number of dynamic statements executed
(assignments, branches, parameter, and return value passing) across all paths
executed by EXE, while the next (row 3) gives the percentage that are sym-
bolic. For our benchmarks, this percentage varies from only 8.46% for expat to
41.70% for tcpdump. This numbers are encouraging and validate our approach
of mixing concrete and symbolic execution, which lets us ignore a large amount
of code in the programs we check.

The next three rows (4–6) look at symbolic branches, including the implicit
branches EXE does for checking. Row 4 gives the total number of explicit sym-
bolic branch points and row 5 the percentage of these branch points that had
both branches feasible. (EXE pruned the other branches because the path’s
constraints were not satisfiable.) On our benchmarks, EXE was able to prune
more than 80% of the branches it encountered, with the exception of udhcpd
where it pruned (only) 47.18% of the branches. These results are reassur-
ing for scalability—while the potential number of paths in the search space
grows exponentially with the number of symbolic branches, the actual growth
is much smaller: real code appears to have many dependencies between pro-
gram points.

Row 6 measures the average number of symbolic branches (both implicit
and explicit) per path. This number is large: ranging from around 38 up to
200 branches, which means that random guessing would have a hard time
satisfying all the branches to get to the end of one path, much less the hundreds
or thousands that EXE can systematically explore.
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Row 7 gives the total number of times EXE performed a symbolic check. (In
addition to these checks, EXE performs many more similar concrete checks.)
Row 8 shows how many times EXE had to concretize a pointer because it
encountered a symbolic dereference of a symbolic pointer (Section 3.2). This
situation occurs in only one of our five benchmarks, tcpdump. Finally, row 9
shows that no uninstrumented functions were called with symbolic data as
arguments.

4.4 Search Heuristics

When EXE forks execution, it must pick which branch to follow first. By de-
fault, EXE uses depth-first search (DFS), picking randomly between the two
branches. DFS keeps the current number of processes small (linear in the
depth of the process chain), but works poorly in some cases. For example, if
EXE encounters a loop with a symbolic variable as a bound, DFS can get stuck
since it attempts to execute the loop as many times as possible, thus potentially
taking a very long time to exit the loop.

In order to overcome this problem, we use search heuristics to drive the
execution along interesting execution paths (e.g., that cover unexplored state-
ments). After a fork call, each forked EXE process calls into a search server
with a description of its current state (e.g., its current file, line number, and
backtrace) and blocks until the server replies. The search server examines
all blocked processes and picks the best one in terms of some heuristic that
is more global than simply picking a random branch to follow. Our current
heuristic uses a mixture of best-first and depth-first search. The search server
picks the process blocked at the line of code run the fewest number of times
and then runs this process (and its children) in a DFS manner through four
branches, picking a random branch at each point where execution down both
edges is feasible. It then picks another best-first candidate and iterates. This
is just one of many possible heuristics, and the server is structured so that new
heuristics are easy to plug in.

We experimentally evaluate our best-first search (BFS) heuristic in the con-
text of one of our benchmarks, the Berkeley Packet Filter (BPF) (described in
more detail in Section 6.1). We start two separate executions of EXE, one us-
ing DFS and the other using BFS. We let both EXE executions run until they
achieved full basic block coverage. Figure 8 compares BFS to DFS in terms of
basic block coverage. (For visual clarity the graph only shows block coverage
for the first 1,500 test cases, as only a few blocks are missing from the coverage
by these test cases.) BFS converges to full coverage more than twice as fast as
DFS: 7,956 test cases versus 18,667. More precisely, EXE gets 91.74% block
coverage, since there are several basic blocks in BPF that EXE cannot reach,
such as dead code (e.g., the failure branch of asserts), or branches that do not
depend on the input marked as symbolic.

Figure 9 then compares EXE against random testing, also in terms of ba-
sic block coverage. We generate one million random test cases of the same
size as those generated by EXE, and run these random test cases through a
lightly-instrumented version of BPF that records basic block coverage. These
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Fig. 8. Best-first search vs. depth-first search.

Fig. 9. EXE with best-first search vs. random testing.

test cases only cover 56.96% of the blocks in BPF; EXE achieves the same cov-
erage in only 75 tests when using BFS. Even more strikingly, these million
random test cases yield only 131 unique paths through the code, while each
of EXE’s test cases represents a unique path. Most importantly, random test-
ing did not have a wall clock time advantage over BFS: random testing with a
million test cases took over four times as long as running BPF through EXE
with BFS.

5. LIMITATIONS

This section summarizes the most important limitations of EXE and STP. On
the constraint-solving side, STP neither supports floating point arithmetic nor
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provides pointers. All other operations present in C are supported, albeit non-
linear operations such as multiplication and modulo are often very slow.

Since STP does not provide pointers, EXE maps pointer dereferences to ar-
ray references at some offset, by tracking the base object of each pointer in the
program, as discussed in Section 3.2. As a consequence of this (but also be-
cause of the interaction with uninstrumented code, as discussed below), EXE
may not be always able to determine the underlying object of the pointer being
dereferenced, which in turn leads it to concretize part of the symbolic pointer
expression, as discussed in more detail in Section 3.2. When this happens,
EXE may discard certain execution paths, but will continue to make progress.
Note that a straightforward remedy to this problem would be to model mem-
ory as a single STP array indexed by 32-bit bitvectors, but this approach is
currently too slow to be practical.

Interaction with uninstrumented code may lead to EXE missing some con-
straints, which in turn may lead it to explore impossible paths. For this reason,
our approach has been to instrument all the code on which the program being
checked depends, including any standard libraries. The approach of mixed con-
crete and symbolic execution, combined with other optimizations presented in
this article, has made this approach feasible, as shown by our experimental
results in Section 6.

Last but not least, an important limitation of EXE is that it does not directly
support data blocks of symbolic size. To be precise, EXE technically does sup-
port symbolic sizes, but these are usually immediately concretized while run-
ning the program. As an illustration, consider the following for loop, where n

is a symbolic unsigned integer representing the size of the array a:

for (i=0; i < n; i++)

a[i] = i;

Before the first iteration through the loop, EXE will encounter the branch
condition 0 < n. As a result, it will fork execution, setting the value of n to 0 on
one path, and adding the constraint n >= 1 on the other. On the latter path,
after the first iteration is executed, EXE will encounter the branch condition
1 < n, and again, it will fork execution, setting the value of n to 1 on one path,
and adding the constraint n >= 2 on the other. Thus, the loop is explored in an
iterative deepening manner, by successively setting the value of the length n

to 0, 1, 2, and so on. Thus, when running our benchmarks, we usually set the
length of the symbolic input to a fixed (larger) concrete value. Making symbolic
execution effectively handle inputs of a symbolic size is still an open problem
in the context of real applications. One direction that we plan to explore in the
future is the inference of loop invariants combined with support for universal
quantifiers in the constraint solving domain.

6. USING EXE TO FIND BUGS

This section presents three case studies that use EXE to find bugs in: (1) two
packet filter implementations, (2) the udhcpd DHCP server, and (3) the pcre
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Fig. 10. A BPF filter of death.

Perl compatible regular expressions library. We also summarize a previous
effort of applying EXE to file system code.

6.1 Packet Filters

Many operating systems allow programs to specify packet filters which de-
scribe the network packets they want to receive. Most packet filter implemen-
tations are variants of the Berkeley Packet Filter (BPF) system. BPF filters are
written in a pseudo-assembly language, downloaded into the kernel, validated
by the BPF system, and then applied to incoming packets. We used EXE to
check the packet filter in both FreeBSD and Linux. FreeBSD uses BPF, while
Linux uses a heavily modified version of it. EXE found two buffer overflows
in the former and four errors in the latter. BPF is one particularly hard test
of EXE—small, heavily-inspected and mature code, written by programmers
known for their skill.

A filter is an array of instructions specifying an opcode (code), a possible
memory offset to read or write (k), and several other fields. The BPF inter-
preter iterates over this filter, executing each opcode’s corresponding action.
This loop is the main source of vulnerabilities but is hard to test exhaustively
(e.g., hitting all opcodes even once using random testing takes a long time).

We used a two-part checking process. First, we marked a fixed-sized array
of filter instructions as symbolic and passed it to the packet filter validation
routine bpf validate, which returns 1 if it considers a filter legal. For each
valid filter, we then mark a fixed-size byte array (representing a packet) as
symbolic and run the filter interpreter bpf filter on the symbolic filter with
the symbolic packet, thus checking the filter against all possible data packets
of that length.

This checking illustrates one of EXE’s interesting features: it turns inter-
preters into generators of the programs they can interpret. In our example,
running the BPF interpreter on a symbolic filter causes it to generate all pos-
sible filters of that length, since each branch of the interpreter will fork execu-
tion, adding a constraint corresponding to the opcode it checked.

Figure 10 shows one of the two filters EXE found that cause buffer overflows
in FreeBSD’s BPF. The bug can occur when the opcode of a BPF instruction
is either BPF STX or BPF LDX | BPF MEM. As shown in Figure 11, bpf validate

forgets to bounds check the memory offset given by these instructions, as it
does for instructions with opcodes BPF ST or BPF LD | BPF MEM. This missing
check means these instructions can write or read arbitrary offsets off the fixed-
sized buffer mem, thus crashing the kernel or allowing a trivial exploit.

Linux had a trickier example. EXE found three filters that can crash
the kernel because of an arithmetic overflow in a bounds check, shown in
Figure 12. As with BPF, the offset field (k) causes the problem as illustrated in
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Fig. 11. The BPF code Figure 10’s filter exploits.

Fig. 12. A Linux filter of death.

Fig. 13. The Linux code Figure 12’s filter exploits.

Figure 13. Here, the code to interpret BPF LD instructions eventually calls the
function skb header pointer, which computes an offset into a given packet’s
data and returns it. This routine is passed s[0].k as the offset parame-
ter, and values 4 or 2 as the len parameter. It extracts the size of the cur-
rent message header into hlen and checks that offset + len ≤ hlen. How-
ever, the filter can cause offset to be very large, which means the signed
addition offset + len will overflow to a small value, passing the check, but
then causing that very large offset value to be added to the message data
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Fig. 14. An EXE generated packet that causes an out-of-bounds read in udhcpd.

pointer. This allows attackers to easily crash the machine. This error would be
hard to find with random testing. Its occurrence in highly-visible, widely-used
code, demonstrates that such tricky cases can empirically withstand repeated
manual inspection.

6.2 A Complete Server: udhcpd

We also checked udhcpd-0.9.8, a clean, well-tested user-level DHCP server.
We marked its input packet as symbolic, and then modified its network read
call to return a packet of at most 548 bytes. After running udhcpd long enough
to generate 596 test cases, EXE detected five different memory errors: four-
byte read overflows at lines 213 and 214 in dhcpd.c and three similar errors
at lines 79, 94, and 99 in options.c. These errors were not found when we
tested the code using random testing. EXE generated packets to trigger all of
these errors, one of which is shown in Figure 14. We confirmed these errors by
rerunning the concrete error packets on an uninstrumented version of udhcpd
while monitoring it with valgrind, a tool that dynamically checks for some
types of memory corruption and storage leaks [Nethercote and Seward 2003].

Upon investigating the cause of these errors, we discovered that the
get option method in options.c lacks several bounds checks. This method
extracts the option with the given code from a given packet’s option buffer.
Let us consider one representative code snippet, shown in Figure 15. Note
that options in DHCP packets are stored in one large buffer of variable-size
entries, where the first byte of each entry stores the option’s code, the second
the length len of the option data, with the next len bytes being the option
data itself. EXE automatically generated test packets which cause the code in
Figure 15 to overflow the size of the originally allocated packet in three differ-
ent places. Conceptually, these three overflows stem from two errors. The first
is that the loop invariant of i < length does not guarantee that i + OPT LEN =

i + 1 will be in-bounds, hence such a bounds check should be included at the
beginning of the conditional statement on line 7. More importantly, however,
consider the case in which optionptr[i + OPT LEN] = 0 and i = length - 2.
The conditional on line 8 will evaluate to false, but the function will return a
pointer to the first byte past the end of the buffer. This particular case is in-
dicative of a larger issue with trusting the length provided in the option entry.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 10, Pub. date: December 2008.



10: 30 · C. Cadar et al.

Fig. 15. Snippet of code from the get option function in udhcpd.

Even if the returned pointer does not point outside of the allocated buffer, the
client of this function is expecting to receive a pointer to between one and four
bytes of memory, depending on the code. Hence a valid returned pointer can
still translate into an overflowing read after the function has returned. This is
exactly why we found out-of-bounds reads: the caller of get option memcpy-
ed four bytes starting at the first byte past the end of the buffer. A potential
fix might involve looking up the expected length of the option data given its
code and comparing it to the one provided in the packet, for example, enforc-
ing the requirement that codes corresponding to IP address options always be
four bytes long. Note that similar bounds issues were found in other parts of
the get option function.

6.3 Perl Compatible Regular Expressions

The pcre library [PCRE] is used by several popular open-source projects,
including Apache, PHP, and Postfix. For speed, pcre provides a routine
pcre compile, which compiles a pattern string into a regular expression for
later use. This routine has been the target of security advisories in the past
[PCRE - CERT 2005].

We checked this routine by marking a null-terminated pattern string as
symbolic and then passing it to pcre compile. EXE quickly found a class of
issues with this routine in a recent version of pcre (6.6). The function iter-
ates over the provided pattern twice, first to do basic error checking and to
estimate how much memory to allocate for the compiled pattern, and second
to do actual compilation. The bugs found included overflowing reads in the
check posix syntax helper function (pcre compile.c:1361-1363), called during
the first pass, as well as more dangerous overflowing reads and writes in the
compile regex and compile branch helpers (illegal writes on pcre compile.c
lines 3400-3401 and 3515-3616), which are called during the compilation pass.
While the first problem may appear to be an innocent read past the end of the
buffer, it allows illegal expressions to enter the second pass, causing more se-
rious issues. The substring “[\0^\0]” is especially dangerous because strings
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Fig. 16. EXE-generated regular expression patterns that cause out-of-bounds writes (leading to
aborts in glibc on free) when passed as the first argument to pcre compile.

Fig. 17. Snippet of code from PCRE.

which end with this sequence will cause pcre to skip over both null characters
and continue parsing unallocated or uninitialized memory. Figure 16 show
a representative sample of EXE-generated patterns that trigger overflows in
pcre, which in turn cause glibc aborts.

Let us discuss in greater detail the issue in which PCRE reads past the end
of the pattern buffer. Consider the code snippet shown in Figure 17, in which
ptr points to the indicated sequence of characters. Since the character at ptr
is a [, the check posix syntax function is called. Inside this function, ptr is
incremented and terminator is set to the current character, the null charac-
ter. Without checking whether it has reached the end of a string, the function
again increments the pointer. Finding a ^ there, it increments ptr yet again.
Hence, ptr now points to the second null character in the pattern. The second
conditional in the function evaluates to true, as the current character is equal
to the terminator (both are \0) and the next character is a ]. The new value
of ptr, which has been incremented over one null character and which now
points to a second, is then written back to the caller. Since check posix syntax

now returns true, the original conditional evaluates to true. Therefore, ptr is
incremented past the second null character and parsing continues.
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Fig. 18. Cross-checking of the form f−1(f(x)) = x that verifies ntohl and htonl correctly invert
each other for all 32-bit inputs.

In most cases, the error checking in the first pass later rejects this regular
expression and hence the compilation pass never begins: EXE found many
such test cases in which the extent of the damage was only a read off the end
of the pattern buffer. However, EXE also found several test cases (shown in
Figure 16) in which the characters following the string termination character
were such that the pattern was not flagged as invalid in the first pass. In the
compilation pass, these patterns then triggered several writes past the end
of the buffer allocated to store the compiled regular expression. This caused
sufficient heap corruption to cause glibc to abort when the buffer was later
freed. PCRE reports errors like “PCRE compilation failed at offset 13: internal
error: code overflow,” but does not prevent the buffer overflow from occurring
(and glibc from aborting).

The author of the library fixed the bug soon after being notified, and so the
latest version of pcre as of this writing (7.0) does not exhibit this problem.

6.4 Cross-Checking Applications with EXE

One interesting application of EXE is the cross-checking of a function and its
supposed inverse, as well as the cross-checking of several implementations of
the same function.

Given two routines f and f−1, intended to be inverses of each other, we can
check whether this is the case by making their inputs symbolic and writing
an assert statement of the form assert(f(f−1(x)) == x). As mentioned in
Section 2, when EXE hits an assert it will systematically search the set of
constraints to try to violate the condition asserted (as with any conditional).
An assert passes only if EXE could not find any input that would violate it.
This means that if no errors occurred in EXE, and STP solved all gathered
constraints, the two routines are proven to be inverses.

For example, networking code uses the functions ntohl and htonl to byte-
swap 32-bit values between “host” and “network” order. As Figure 18 shows,
using EXE to check that a given implementation does this correctly for all in-
puts is trivial. Note that if the system terminates, then ntohl is proven to in-
vert htonl for all 32-bit inputs (as is htonl in the opposite direction). This leads
to the startling results that if either ntohl or htonl is correct, then passing the
assertion equals full verification of total correctness! When applicable, such
a verification method is much more practical than the traditional approach of
theorem proving plus correctness specification.
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In a similar fashion, we can ask EXE to find places where two routines f and
f’ intended to implement the same function fail to do so by making their in-
puts symbolic and asserting assert(f(x) == f’(x)). Routines with identical
functionality but different implementations appear commonly in different im-
plementations of core libraries. EXE can be used to cross-check these against
each other to ruthlessly search for inputs that lead to incompatible outputs. If
it cannot find any (and it terminates), then EXE has verified that no incompat-
ibilities exist.

In a previous article [Cadar and Engler 2005], we used EGT, a primitive
version of EXE, to cross-check three different implementations of printf. All
implementations (intentionally) implemented only a subset of the ANSI C99
standard (e.g., one version was written for embedded devices). Our cross-
checking methodology was to mark the format string specifier as symbolic,
generate test cases for each implementation, and then cross-check the concrete
test cases against glibc’s printf. We found a total of 579 inputs that produced
different behavior. As a single example, one implementation of printf incor-
rectly handled the “’” specifier which should comma-separate integer digits
into groups of three. The exact test case was

printf("%’d", -155209728);

// correct: -155,209,728

// observed: -15,5209,728

6.5 Generating Disks of Death

We previously used EXE to generate disk images for three file systems
(ext2, ext3, and JFS) that when mounted would crash or compromise the Linux
kernel [Yang et al. 2006]. At a high level, the checking worked as follows. We
wrote a special device driver that returned symbolic blocks to its callers. We
then compiled Linux using EXE and ran it as a user-level process (so fork

would work) and invoked the mount system call, which caused the file system
to read symbolic blocks, thereby driving checking.

We found bugs in all three file systems, demonstrating that EXE can handle
complex systems code. Further, these errors would almost certainly be beyond
the reach of random testing. For example, the Linux ext2 “read super block”
routine has over forty if-statements to check the data associated with the super
block. Any randomly-generated super block must satisfy these tests before
it can reach even the next level of error checking, much less triggering the
execution of “real code” that performs actual file system operations.

7. RELATED WORK

A shorter version of this article appeared in the Proceedings of the 13th ACM

Conference on Computer and Communications Security (CCS’06), October 30 -
November 3, 2006 [Cadar et al. 2006]. We described an initial, primitive
version of EXE (then called EGT) in an invited workshop article [Cadar and
Engler 2005]. EGT did not support reads or writes of symbolic pointer ex-
pressions, symbolic arrays, bit-fields, casting, sign-extension, arithmetic over-
flow, and our symbolic checks. We also gave an overview of EXE in the file
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system checking article [Yang et al. 2006] discussed in Section 6.5. That arti-
cle took EXE as a given and used it to find bugs. In contrast, both STP and
EXE are contributions of this article (and its preliminary version [Cadar et al.
2006]), which we describe in more detail as well as focus on a broader set of
applications.

Simultaneously with our initial work [Cadar and Engler 2005], DART
[Godefroid et al. 2005] also generated test cases from symbolic inputs. DART
runs the tested unit code on random input and symbolically gathers con-
straints at decision points that use input values. Then DART negates one of
these symbolic constraints to generate the next test case. DART only handles
integer constraints and devolves to random testing when pointer constraints
are used, with the usual problems of missed paths.

The CUTE project [Sen et al. 2005] extends DART by tracking symbolic
pointer constraints of the form: p = NULL, p 6= NULL, p = q, or p 6= q. In ad-
dition, CUTE tracks constraints formed by reading or writing symbolic mem-
ory at constant offsets (such as a field dereference p→field), but unlike EXE
it cannot handle symbolic offsets. For example, the article on CUTE shows
that on the code snippet a[i] = 0; a[j] = 1; if (a[i] == 0) ERROR, CUTE
fails to find the case when i equals j, which would have driven the code down
both paths. In contrast to both DART and CUTE, EXE has completely accu-
rate constraints on memory, and thus can (potentially) check code much more
thoroughly.

CBMC is a bounded model checker for ANSI-C programs Clarke and
Kroening [2003] designed to cross-check an ANSI C reimplementation of a cir-
cuit against its Verilog implementation. Unlike EXE, which uses a mixture
of concrete and symbolic execution, CBMC runs code entirely symbolically. It
takes (and requires) an entire, strictly-conforming ANSI C program, which it
translates into constraints that are passed to a SAT solver. CBMC provides full
support for C arithmetic and control operations, as well as reads and writes of
symbolic memory. However, it has several serious limitations. First, it has
a strongly-typed view of memory, which prevents it from checking code that
accesses memory through pointers of different types. Second, because CBMC
must translate the entire program to SAT, it can only check standalone pro-
grams that do not interact with the environment (e.g., by using system calls
or even calling code for which there is no source). Both of these limits seem to
prevent CBMC from checking the applications in this article. Finally, CBMC
unrolls all loops and recursive calls, which means that it may miss bugs that
EXE can find and also that it may execute some symbolic loops more times
than the current set of constraints allows.

Larson and Austin [2003] present a system that dynamically tracks prim-
itive constraints associated with tainted data (e.g., data that comes from un-
trusted sources such as network packets) and warns when the data could be
used in a potentially dangerous way. They associate tainted integers with an
upper and lower bound and tainted strings with their maximum length and
whether the string is null-terminated. At potentially dangerous uses of in-
puts, such as array references or calls to the string library, they check whether
the integer could be out of bounds, or if the string could violate the library
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function’s contract. Thus, as EXE, this system can detect an error even if it
did not actually occur during the program’s concrete execution. However, their
system lacks almost all of the symbolic power that EXE provides. Further, they
cannot generate inputs to cause paths to be executed; users must provide test
cases and they can only check paths covered by these test cases.

7.1 Static checking and static input generation

There has been much recent work on static bug finding, including better type
systems [DeLine and Fähndrich 2001; Foster et al. 2002; Flanagan and Fre-
und 2000], static analysis tools [Foster et al. 2002; Ball and Rajamani 2001;
Coverity; Das et al. 2002; Flanagan et al. 2002; Bush et al. 2000; Wagner et al.
2000], and statically solving constraints to generate inputs that would cause
execution to reach a specific program point or path [Boyer et al. 1975; Gotlieb
et al. 1998; Ball 2004; Ball et al. 2001; Brumley et al. 2006]. The insides
of these tools look dramatically different from EXE. An exception is Saturn
[Xie and Aiken 2005], which expresses program properties as boolean con-
straints and models pointers and heap data down to the bit level. Dynamic
analysis requires running code, static analysis does not. Thus, static tools
often take less work to apply (just compile the source and skip what cannot be
handled), can check all paths (rather than only executed ones), and can find
bugs in code it cannot run (such as operating systems code). However, because
EXE runs code, it can check much deeper properties, such as complex expres-
sions in assertions, or properties that depend on accurate value information
(the exact value of an index or size of an object), pointers, and heap layout,
among many others. Further, unlike static analysis, EXE has no false posi-
tives. However, we view the two approaches as complementary: there is no
reason not to use lightweight static techniques and then use EXE.

7.2 Software Model Checking

Model checkers have been used to find bugs in both the design and the imple-
mentation of software [Holzmann 1997, 2001; Brat et al. 2000; Corbett et al.
2000; Ball and Rajamani 2001; Godefroid 1997; Yang et al. 2004]. These ap-
proaches often require a lot of manual effort to build test harnesses. However,
to some degree, the approaches are complementary to EXE: the tests EXE gen-
erates could be used to drive the model checked code, similar to the approach
embraced by the Java PathFinder (JPF) project [Khurshid et al. 2003]. JPF
combines model checking and symbolic execution to check applications that
manipulate complex data structures written in Java. JPF differs from EXE in
that it does not have support for untyped memory (not needed because Java is
a strongly typed language) and does not support symbolic pointers.

7.3 Dynamic techniques for test and input generation

Past dynamic input generation work seem to focus on generating an input
to follow a specific path, motivated by the problem of answering programmer
queries as to whether control can reach a specific statement or not [Ferguson
and Korel 1996; Gupta et al. 1998]. EXE instead focuses on bug finding, in
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particular the problems of exhausting all input-controlled paths and universal
checking, neither addressed by prior work.

8. CONCLUSION

We have presented EXE, which uses robust, bit-level accurate symbolic
execution to find deep errors in code and automatically generate inputs that
will hit these errors. A key aspect of EXE is its modeling of memory and its
codesigned, fast constraint solver STP. We have applied EXE to a variety of
real, tested programs where it was powerful enough to uncover subtle and
surprising bugs.

ACKNOWLEDGMENTS

We would like to thank Paul Twohey for his work on the regression suite, Mar-
tin Casado for providing us tcpdump in an easy to check form, and Suhabe
Bugrara, Ted Kremenek, Darko Marinov, Adam Oliner, Ben Pfaff, and Paul
Twohey for their valuable comments.

REFERENCES

BALL, T. 2004. A theory of predicate-complete test coverage and generation. In Proceedings of the

3rd International Symposium on Formal Methods for Components and Objects (FMCO’04).

BALL, T. AND JONES, R. B., eds. 2006. Proceedings of the 18th International Conference on Com-

puter Aided Verification (CAV’06), Seattle, WA. Lecture Notes in Computer Science, vol. 4144.

Springer.

BALL, T., MAJUMDAR, R., MILLSTEIN, T., AND RAJAMANI, S. K. 2001. Automatic predicate
abstraction of C programs. In Proceedings of the ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI’01). ACM Press, 203–213.

BALL, T. AND RAJAMANI, S. 2001. Automatically validating temporal safety properties of inter-
faces. In Proceedings of the Workshop on Model Checking of Software (SPIN’01).

BARRETT, C. AND BEREZIN, S. 2004. CVC Lite: A new implementation of the cooperating validity
checker. In Proceedings of the 18th International Conference on Computer Aided Verification

(CAV’04), R. Alur and D. A. Peled Eds. Lecture Notes in Computer Science. Springer.

BARRETT, C., BEREZIN, S., SHIKANIAN, I., CHECHIK, M., GURFINKEL, A., AND DILL, D. L. 2004.
A practical approach to partial functions in CVC Lite. In Proceedings of the 2nd Workshop on

Pragmatics of Decision Procedures in Automated Reasoning (PDPAR’04), Cork, Ireland.

BOYER, R. S., ELSPAS, B., AND LEVITT, K. N. 1975. Select – A formal system for testing and
debugging programs by symbolic execution. ACM SIGPLAN Notices 10, 6, 234–245.

BRAT, G., HAVELUND, K., PARK, S., AND VISSER, W. 2000. Model checking programs. In Proceed-

ings of the IEEE International Conference on Automated Software Engineering (ASE’00).

BRUMLEY, D., NEWSOME, J., SONG, D., WANG, H., AND JHA, S. 2006. Towards automatic gener-
ation of vulnerability-based signatures. In Proceedings of the 2006 IEEE Symposium on Security

and Privacy (SSP’06).

BRYANT, R. E., LAHIRI, S. K., AND SESHIA, S. A. 2002. Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted functions. In Proceedings

of the Conference on Computer-Aided Verification (CAV’02), E. Brinksma and K. G. Larsen Eds.
Springer-Verlag, 78–92.

BUSH, W., PINCUS, J., AND SIELAFF, D. 2000. A static analyzer for finding dynamic programming
errors. Softw. Pract. Exp. 30, 7, 775–802.

CADAR, C. AND ENGLER, D. 2005. Execution generated test cases: How to make systems code
crash itself. In Proceedings of the 12th International SPIN Workshop on Model Checking of

Software (SPIN’05). A longer version of this article appeared as Tech. rep. CSTR-2005-04,
Computer Systems Laboratory, Stanford University.

ACM Transactions on Information and System Security, Vol. 12, No. 2, Article 10, Pub. date: December 2008.



EXE: Automatically Generating Inputs of Death · 10: 37

CADAR, C., GANESH, V., PAWLOWSKI, P., DILL, D., AND ENGLER, D. 2006. EXE: Automati-
cally generating inputs of death. In Proceedings of the 13th ACM Conference on Computer and

Communications Security (CCS’06).

CLARKE, E. AND KROENING, D. 2003. Hardware verification using ANSI-C programs as a ref-
erence. In Proceedings of Asia and South Pacific Design Automation Conference (ASP-DAC’03.
IEEE Computer Society Press, 308–311.

COOK, B., KROENING, D., AND SHARYGINA, N. 2005. Cogent: Accurate theorem proving for
program verification. In Proceedings of the Conference on Computer-Aided Verification (CAV’05),
K. Etessami and S. K. Rajamani Eds. Lecture Notes in Computer Science, vol. 3576. Springer
Verlag, 296–300.

CORBETT, J., DWYER, M., HATCLIFF, J., LAUBACH, S., PASAREANU, C., ROBBY, AND ZHENG, H.
2000. Bandera: Extracting finite-state models from Java source code. In Proceedings of the 22nd

International Conference on Software Engineering (ICSE’00).

CORMEN, T. H., LEISERSON, C. E., RIVEST, R. L., AND STEIN, C. 2001. Introduction to Algo-

rithms. The MIT Electrical Engineering and Computer Science Series. MIT Press/McGraw Hill.

COVERITY. SWAT: the Coverity software analysis toolset. http://coverity.com.

DAS, M., LERNER, S., AND SEIGLE, M. 2002. Path-sensitive program verification in polynomial
time. In Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design

and Implementation (PLDI’02). Berlin, Germany.
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