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Abstract

We present a new symbolic execution tool,KLEE, ca-
pable of automatically generating tests that achieve
high coverage on a diverse set of complex and
environmentally-intensive programs. We usedKLEE to
thoroughly check all 89 stand-alone programs in the
GNU COREUTILS utility suite, which form the core
user-level environment installed on millions of Unix sys-
tems, and arguably are the single most heavily tested set
of open-source programs in existence.KLEE-generated
tests achieve high line coverage — on average over 90%
per tool (median: over 94%) — and significantly beat
the coverage of the developers’ own hand-written test
suite. When we did the same for 75 equivalent tools in
the BUSYBOX embedded system suite, results were even
better, including 100% coverage on 31 of them.

We also usedKLEE as a bug finding tool, applying it to
452 applications (over 430K total lines of code), where
it found 56 serious bugs, including three in COREUTILS

that had been missed for over 15 years. Finally, we used
KLEE to crosscheck purportedly identical BUSYBOX and
COREUTILS utilities, finding functional correctness er-
rors and a myriad of inconsistencies.

1 Introduction

Many classes of errors, such as functional correctness
bugs, are difficult to find without executing a piece of
code. The importance of such testing — combined with
the difficulty and poor performance of random and man-
ual approaches — has led to much recent work in us-
ing symbolic executionto automatically generate test in-
puts [11, 14–16,20–22,24, 26, 27, 36]. At a high-level,
these tools use variations on the following idea: Instead
of running code on manually- or randomly-constructed
input, they run it on symbolic input initially allowed to
be “anything.” They substitute program inputs with sym-

∗Author names are in alphabetical order. Daniel Dunbar is themain
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bolic values and replace corresponding concrete program
operations with ones that manipulate symbolic values.
When program execution branches based on a symbolic
value, the system (conceptually) follows both branches,
on each path maintaining a set of constraints called the
path conditionwhich must hold on execution of that
path. When a path terminates or hits a bug, a test case
can be generated by solving the current path condition
for concrete values. Assuming deterministic code, feed-
ing this concrete input to a raw, unmodified version of
the checked code will make it follow the same path and
hit the same bug.

Results are promising. However, while researchers
have shown such tools can sometimes get good cover-
age and find bugs on a small number of programs, it
has been an open question whether the approach has any
hope of consistently achieving high coverage on real ap-
plications. Two common concerns are (1) the exponen-
tial number of paths through code and (2) the challenges
in handling code that interacts with its surrounding envi-
ronment, such as the operating system, the network, or
the user (colloquially: “the environment problem”). Nei-
ther concern has been much helped by the fact that most
past work, including ours, has usually reported results on
a limited set of hand-picked benchmarks and typically
has not included any coverage numbers.

This paper makes two contributions. First, we present
a new symbolic execution tool,KLEE, which we de-
signed for robust, deep checking of a broad range of ap-
plications, leveraging several years of lessons from our
previous tool, EXE [16].KLEE employs a variety of con-
straint solving optimizations, represents program states
compactly, and uses search heuristics to get high code
coverage. Additionally, it uses a simple and straight-
forward approach to dealing with the external environ-
ment. These features improveKLEE’s performance by
over an order of magnitude and let it check a broad range
of system-intensive programs “out of the box.”



Second, we show thatKLEE’s automatically-generated
tests get high coverage on a diverse set of real, com-
plicated, and environmentally-intensive programs. Our
most in-depth evaluation appliesKLEE to all 89 pro-
grams1 in the latest stable version of GNU COREUTILS

(version 6.10), which contains roughly 80,000 lines of
library code and 61,000 lines in the actual utilities [2].
These programs interact extensively with their environ-
ment to provide a variety of functions, including man-
aging the file system (e.g.,ls, dd, chmod), display-
ing and configuring system properties (e.g.,logname,
printenv, hostname), controlling command invo-
cation (e.g.,nohup, nice, env), processing text files
(e.g.,sort, od, patch), and so on. They form the
core user-level environment installed on many Unix sys-
tems. They are used daily by millions of people, bug
fixes are handled promptly, and new releases are pushed
regularly. Moreover, their extensive interaction with the
environment stress-tests symbolic execution where it has
historically been weakest.

Further, finding bugs in COREUTILS is hard. They are
arguably the single most well-tested suite of open-source
applications available (e.g., is there a program the reader
has used more under Unix than “ls”?). In 1995, ran-
dom testing of a subset of COREUTILS utilities found
markedly fewer failures as compared to seven commer-
cial Unix systems [35]. The last COREUTILS vulnerabil-
ity reported on the SecurityFocus or US National Vulner-
ability databases was three years ago [5, 7].

In addition, we checked two other UNIX utility suites:
BUSYBOX, a widely-used distribution for embedded sys-
tems [1], and the latest release for MINIX [4]. Finally, we
checked the HISTAR operating system kernel as a con-
trast to application code [39].

Our experiments fall into three categories: (1) those
where we do intensive runs to both find bugs and get high
coverage (COREUTILS, HISTAR, and 75 BUSYBOX util-
ities), (2) those where we quickly run over many appli-
cations to find bugs (an additional 204 BUSYBOX util-
ities and 77 MINIX utilities), and (3) those where we
crosscheck equivalent programs to find deeper correct-
ness bugs (67 BUSYBOX utilities vs. the equivalent 67 in
COREUTILS).

In total, we ranKLEE on more than 452 programs, con-
taining over 430K total lines of code. To the best of our
knowledge, this represents an order of magnitude more
code and distinct programs than checked by prior sym-
bolic test generation work. Our experiments show:
1 KLEE gets high coverage on a broad set of complex

programs. Its automatically generated tests covered
84.5% of the total lines in COREUTILS and 90.5% in
BUSYBOX (ignoring library code). On average these

1We ignored utilities that are simply wrapper calls to others, such
asarch (“uname -m”) andvdir (“ls -l -b”).

tests hit over 90% of the lines in each tool (median:
over 94%), achieving perfect 100% coverage in 16
COREUTILS tools and 31 BUSYBOX tools.

2 KLEE can get significantly more code coverage than
a concentrated, sustained manual effort. The roughly
89-hour run used to generate COREUTILS line cover-
age beat the developers’ own test suite — built incre-
mentally over fifteen years — by 16.8%!

3 With one exception,KLEE achieved these high-
coverage results on unaltered applications. The sole
exception,sort in COREUTILS, required a single
edit to shrink a large buffer that caused problems for
the constraint solver.

4 KLEE finds important errors in heavily-tested code. It
found ten fatal errors in COREUTILS (including three
that had escaped detection for 15 years), which ac-
count for more crashing bugs than were reported in
2006, 2007 and 2008 combined. It further found 24
bugs in BUSYBOX, 21 bugs in MINIX , and a security
vulnerability in HISTAR– a total of 56 serious bugs.

5 The fact thatKLEE test cases can be run on the raw
version of the code (e.g., compiled withgcc) greatly
simplifies debugging and error reporting. For exam-
ple, all COREUTILS bugs were confirmed and fixed
within two days and versions of the testsKLEE gen-
erated were included in the standard regression suite.

6 KLEE is not limited to low-level programming er-
rors: when used to crosscheck purportedly identical
BUSYBOX and GNU COREUTILS tools, it automat-
ically found functional correctness errors and a myr-
iad of inconsistencies.

7 KLEE can also be applied to non-application code.
When applied to the core of the HISTAR kernel, it
achieved an average line coverage of 76.4% (with
disk) and 67.1% (without disk) and found a serious
security bug.

The next section gives an overview of our approach.
Section 3 describesKLEE, focusing on its key optimiza-
tions. Section 4 discusses how to model the environment.
The heart of the paper is Section 5, which presents our
experimental results. Finally, Section 6 describes related
work and Section 7 concludes.

2 Overview

This section explains howKLEE works by walking the
reader through the testing of MINIX ’s tr tool. Despite
its small size — 169 lines, 83 of which are executable —
it illustrates two problems common to the programs we
check:
1 Complexity. The code aims to translate and delete

characters from its input. It hides this intent well be-
neath non-obvious input parsing code, tricky bound-
ary conditions, and hard-to-follow control flow. Fig-
ure 1 gives a representative snippet.

2



2 Environmental Dependencies.Most of the code is
controlled by values derived from environmental in-
put. Command line arguments determine what pro-
cedures execute, input values determine which way
if-statements trigger, and the program depends on the
ability to read from the file system. Since inputs can
be invalid (or even malicious), the code must handle
these cases gracefully. It is not trivial to test all im-
portant values and boundary cases.

The code illustrates two additional common features.
First, it has bugs, whichKLEE finds and generates test
cases for. Second,KLEE quickly achieves good code
coverage: in two minutes it generates 37 tests that cover
all executable statements.2

KLEE has two goals: (1) hit every line of executable
code in the program and (2) detect at each dangerous op-
eration (e.g., dereference, assertion) ifany input value
exists that could cause an error.KLEE does so by running
programssymbolically: unlike normal execution, where
operations produce concrete values from their operands,
here they generate constraints that exactly describe the
set of values possible on a given path. WhenKLEE de-
tects an error or when a path reaches anexit call, KLEE

solves the current path’s constraints (called itspath con-
dition) to produce a test case that will follow the same
path when rerun on an unmodified version of the checked
program (e.g, compiled withgcc).

KLEE is designed so that the paths followed by the
unmodified program will always follow the same path
KLEE took (i.e., there are no false positives). However,
non-determinism in checked code and bugs inKLEE or
its models have produced false positives in practice. The
ability to rerun tests outside ofKLEE, in conjunction with
standard tools such asgdb andgcov is invaluable for
diagnosing such errors and for validating our results.

We next show how to useKLEE, then give an overview
of how it works.

2.1 Usage

A user can start checking many real programs withKLEE

in seconds:KLEE typically requires no source modifi-
cations or manual work. Users first compile their code
to bytecode using the publicly-available LLVM com-
piler [33] for GNU C. We compiledtr using:

llvm-gcc --emit-llvm -c tr.c -o tr.bc

Users then runKLEE on the generated bytecode, option-
ally stating the number, size, and type of symbolic inputs
to test the code on. Fortr we used the command:

klee --max-time 2 --sym-args 1 10 10
--sym-files 2 2000 --max-fail 1 tr.bc

2The program has one line of dead code, an unreachable return
statement, which, reassuringly,KLEE cannot run.

1 : void expand(char *arg, unsigned char *buffer) { 8
2 : int i, ac; 9
3 : while (*arg) { 10*
4 : if (*arg == ’\\’) { 11*
5 : arg++;
6 : i = ac = 0;
7 : if (*arg >= ’0’ && *arg <= ’7’) {
8 : do {
9 : ac = (ac << 3) + *arg++ − ’0’;
10: i++;
11: } while (i<4 && *arg>=’0’ && *arg<=’7’);
12: *buffer++ = ac;
13: } else if (*arg != ’\0’)
14: *buffer++ = *arg++;
15: } else if (*arg == ’[’) { 12*
16: arg++; 13
17: i = *arg++; 14
18: if (*arg++ != ’-’) { 15!
19: *buffer++ = ’[’;
20: arg −= 2;
21: continue;
22: }
23: ac = *arg++;
24: while (i <= ac) *buffer++ = i++;
25: arg++; /* Skip ’]’ */
26: } else
27: *buffer++ = *arg++;
28: }
29: }
30: . . .
31: int main(int argc, char* argv[ ]) { 1
32: int index = 1; 2
33: if (argc > 1 && argv[index][0] == ’-’) { 3*
34: . . . 4
35: } 5
36: . . . 6
37: expand(argv[index++], index); 7
38: . . .
39: }

Figure 1: Code snippet from MINIX ’s tr, representative
of the programs checked in this paper: tricky, non-obvious,
difficult to verify by inspection or testing. The order of the
statements on the path to the error at line 18 are numbered on
the right hand side.

The first option,--max-time, tells KLEE to check
tr.bc for at most two minutes. The rest describe the
symbolic inputs. The option--sym-args 1 10 10
says to use zero to three command line arguments, the
first 1 character long, the others 10 characters long.3 The
option --sym-files 2 2000 says to use standard
input and one file, each holding 2000 bytes of symbolic
data. The option--max-fail 1 says to fail at most
one system call along each program path (see§ 4.2).

2.2 Symbolic execution withKLEE

WhenKLEE runs ontr, it finds a buffer overflow error
at line 18 in Figure 1 and then produces a concrete test

3Since strings in C are zero terminated, this essentially generates
arguments ofup to that size.
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case (tr [ "" "") that hits it. Assuming the options
of the previous subsection,KLEE runstr as follows:
1 KLEE constructs symbolic command line string argu-

ments whose contents have no constraints other than
zero-termination. It then constrains the number of ar-
guments to be between 0 and 3, and their sizes to be
1, 10 and 10 respectively. It then callsmain with
these initial path constraints.

2 WhenKLEE hits the branchargc > 1 at line 33,
it uses its constraint solver STP [23] to see which di-
rections can execute given the current path condition.
For this branch, both directions are possible;KLEE

forks execution and follows both paths, adding the
constraintargc > 1 on the false path andargc ≤ 1
on the true path.

3 Given more than one active path,KLEE must pick
which one to execute first. We describe its algorithm
in Section 3.4. For now assume it follows the path
that reaches the bug. As it does so,KLEE adds further
constraints to the contents ofarg, and forks for a
total of five times (lines denoted with a “*”): twice
on line 33, and then on lines 3, 4, and 15 inexpand.

4 At each dangerous operation (e.g., pointer derefer-
ence),KLEE checks if any possible value allowed by
the current path condition would cause an error. On
the annotated path,KLEE detects no errors before line
18. At that point, however, it determines that input
values exist that allow the read ofarg to go out of
bounds: after taking the true branch at line 15, the
code incrementsarg twice without checking if the
string has ended. If it has, this increment skips the
terminating’\0’ and points to invalid memory.

5 KLEE generates concrete values forargc andargv
(i.e., tr [ "" "") that when rerun on a raw ver-
sion oftr will hit this bug. It then continues follow-
ing the current path, adding the constraint that the
error does not occur (in order to find other errors).

3 The KLEE Architecture

KLEE is a complete redesign of our previous system
EXE [16]. At a high level,KLEE functions as a hybrid
between an operating system for symbolic processes and
an interpreter. Each symbolic process has a register file,
stack, heap, program counter, and path condition. To
avoid confusion with a Unix process, we refer toKLEE’s
representation of a symbolic process as astate. Programs
are compiled to the LLVM [33] assembly language, a
RISC-like virtual instruction set.KLEE directly inter-
prets this instruction set, and maps instructions to con-
straints without approximation (i.e. bit-level accuracy). 4

4KLEE does not currently support: symbolic floating point,
longjmp, threads, and assembly code. Additionally, memory objects
are required to have concrete sizes.

3.1 Basic architecture

At any one time,KLEE may be executing a large number
of states. The core ofKLEE is an interpreter loop which
selects a state to run and then symbolically executes a
single instruction in the context of that state. This loop
continues until there are no states remaining, or a user-
defined timeout is reached.

Unlike a normal process, storage locations for a state
— registers, stack and heap objects — refer to expres-
sions (trees) instead of raw data values. The leaves of
an expression are symbolic variables or constants, and
the interior nodes come from LLVM assembly language
operations (e.g., arithmetic operations, bitwise manipu-
lation, comparisons, and memory accesses). Storage lo-
cations which hold a constant expression are said to be
concrete.

Symbolic execution of the majority of instructions is
straightforward. For example, to symbolically execute
an LLVM add instruction:

%dst = add i32 %src0, %src1

KLEE retrieves the addends from the%src0 and%src1
registers and writes a new expressionAdd(%src0,
%src1) to the%dst register. For efficiency, the code
that builds expressions checks if all given operands are
concrete (i.e., constants) and, if so, performs the opera-
tion natively, returning a constant expression.

Conditional branches take a boolean expression
(branch condition) and alter the instruction pointer of
the state based on whether the condition is true or false.
KLEE queries the constraint solver to determine if the
branch condition is either provably true or provably false
along the current path; if so, the instruction pointer is
updated to the appropriate location. Otherwise, both
branches are possible:KLEE clones the state so that it
can explore both paths, updating the instruction pointer
and path condition on each path appropriately.

Potentially dangerous operations implicitly generate
branches that check if any input value exists that could
cause an error. For example, a division instruction gen-
erates a branch that checks for a zero divisor. Such
branches work identically to normal branches. Thus,
even when the check succeeds (i.e., an error is detected),
execution continues on the false path, which adds the
negation of the check as a constraint (e.g., making the
divisor not zero). If an error is detected,KLEE generates
a test case to trigger the error and terminates the state.

As with other dangerous operations, load and store in-
structions generate checks: in this case to check that the
address is in-bounds of a valid memory object. However,
load and store operations present an additional compli-
cation. The most straightforward representation of the
memory used by checked code would be a flat byte ar-
ray. In this case, loads and stores would simply map to
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array read and write expressions respectively. Unfortu-
nately, our constraint solver STP would almost never be
able to solve the resultant constraints (and neither would
the other constraint solvers we know of). Thus, as in
EXE, KLEE maps every memory object in the checked
code to a distinct STP array (in a sense, mapping a flat
address space to a segmented one). This representation
dramatically improves performance since it lets STP ig-
nore all arrays not referenced by a given expression.

Many operations (such as bound checks or object-level
copy-on-write) require object-specific information. If a
pointer can refer to many objects, these operations be-
come difficult to perform. For simplicity,KLEE sidesteps
this problem as follows. When a dereferenced pointerp
can refer toN objects,KLEE clones the current stateN
times. In each state it constrainsp to be within bounds
of its respective object and then performs the appropri-
ate read or write operation. Although this method can
be expensive for pointers with large points-to sets, most
programs we have tested only use symbolic pointers that
refer to a single object, andKLEE is well-optimized for
this case.

3.2 Compact state representation

The number of states grows quite quickly in practice:
often even small programs generate tens or even hun-
dreds of thousands of concurrent states during the first
few minutes of interpretation. When we ran COREUTILS

with a 1GB memory cap, the maximum number of con-
current states recorded was 95,982 (forhostid), and
the average of this maximum for each tool was 51,385.
This explosion makes state size critical.

SinceKLEE tracks all memory objects, it can imple-
ment copy-on-write at the object level (rather than page
granularity), dramatically reducing per-state memory re-
quirements. By implementing the heap as an immutable
map, portions of the heap structure itself can also be
shared amongst multiple states (similar to sharing por-
tions of page tables acrossfork()). Additionally, this
heap structure can be cloned in constant time, which is
important given the frequency of this operation.

This approach is in marked contrast to EXE, which
used one native OS process per state. Internalizing the
state representation dramatically increased the number
of states which can be concurrently explored, both by
decreasing the per-state cost and allowing states to share
memory at the object (rather than page) level. Addition-
ally, this greatly simplified the implementation of caches
and search heuristics which operate across all states.

3.3 Query optimization

Almost always, the cost of constraint solving dominates
everything else — unsurprising, given thatKLEE gen-
erates complicated queries for an NP-complete logic.

Thus, we spent a lot of effort on tricks to simplify ex-
pressions and ideally eliminate queries (no query is the
fastest query) before they reach STP. Simplified queries
make solving faster, reduce memory consumption, and
increase the query cache’s hit rate (see below). The main
query optimizations are:

Expression Rewriting. The most basic optimizations
mirror those in a compiler: e.g., simple arithmetic sim-
plifications (x + 0 = x), strength reduction (x * 2n

= x << n), linear simplification (2*x - x = x).
Constraint Set Simplification. Symbolic execution

typically involves the addition of a large number of con-
straints to the path condition. The natural structure of
programs means that constraints on same variables tend
to become more specific. For example, commonly an in-
exact constraint such asx < 10 gets added, followed
some time later by the constraintx = 5. KLEE actively
simplifies the constraint set by rewriting previous con-
straints when new equality constraints are added to the
constraint set. In this example, substituting the value for
x into the first constraint simplifies it totrue, which
KLEE eliminates.

Implied Value Concretization. When a constraint such
asx + 1 = 10 is added to the path condition, then the
value ofx has effectively become concrete along that
path.KLEE determines this fact (in this case thatx = 9)
and writes the concrete value back to memory. This en-
sures that subsequent accesses of that memory location
can return a cheap constant expression.

Constraint Independence. Many constraints do not
overlap in terms of the memory they reference. Con-
straint independence (taken from EXE) divides con-
straint sets into disjoint independent subsets based on the
symbolic variables they reference. By explicitly track-
ing these subsets,KLEE can frequently eliminate irrel-
evant constraints prior to sending a query to the con-
straint solver. For example, given the constraint set
{i < j, j < 20, k > 0}, a query of whetheri = 20
just requires the first two constraints.

Counter-example Cache.Redundant queries are fre-
quent, and a simple cache is effective at eliminating a
large number of them. However, it is possible to build
a more sophisticated cache due to the particular struc-
ture of constraint sets. The counter-example cache maps
sets of constraints to counter-examples (i.e., variable as-
signments), along with a special sentinel used when a set
of constraints has no solution. This mapping is stored
in a custom data structure — derived from the UBTree
structure of Hoffmann and Hoehler [28] — which al-
lows efficient searching for cache entries for both sub-
sets and supersets of a constraint set. By storing the
cache in this fashion, the counter-example cache gains
three additional ways to eliminate queries. In the ex-
ample below, we assume that the counter-example cache
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Optimizations Queries Time (s) STP Time (s)

None 13717 300 281
Independence 13717 166 148
Cex. Cache 8174 177 156
All 699 20 10

Table 1: Performance comparison ofKLEE’s solver optimiza-
tions on COREUTILS. Each tool is run for 5 minutes without
optimization, and rerun on the same workload with the given
optimizations. The results are averaged across all applications.

currently has entries for{i < 10, i = 10} (no solution)
and{i < 10, j = 8} (satisfiable, with variable assign-
mentsi → 5, j → 8).

1 When a subset of a constraint set has no solution,
then neither does the original constraint set. Adding
constraints to an unsatisfiable constraint set cannot
make it satisfiable. For example, given the cache
above,{i < 10, i = 10, j = 12} is quickly deter-
mined to be unsatisfiable.

2 When a superset of a constraint set has a solution,
that solution also satisfies the original constraint set.
Dropping constraints from a constraint set does not
invalidate a solution to that set. The assignment
i → 5, j → 8, for example, satisfies eitheri < 10
or j = 8 individually.

3 When a subset of a constraint set has a solution, it is
likely that this is also a solution for the original set.
This is because the extra constraints often do not in-
validate the solution to the subset. Because checking
a potential solution is cheap,KLEE tries substituting
in all solutions for subsets of the constraint set and
returns a satisfying solution, if found. For example,
the constraint set{i < 10, j = 8, i 6= 3} can still be
satisfied byi → 5, j → 8.

To demonstrate the effectiveness of these optimiza-
tions, we performed an experiment where COREUTILS

applications were run for 5 minutes with both of these
optimizations turned off. We then deterministically reran
the exact same workload with constraint independence
and the counter-example cache enabled separately and
together for the same number of instructions. This exper-
iment was done on a large sample of COREUTILS utili-
ties. The results in Table 1 show the averaged results.

As expected, the independence optimization by itself
does not eliminate any queries, but the simplifications it
performs reduce the overall running time by almost half
(45%). The counter-example cache reduces both the run-
ning time and the number of STP queries by 40%. How-
ever, the real win comes when both optimizations are en-
abled; in this case the hit rate for the counter-example
cache greatly increases due to the queries first being sim-
plified via independence. For the sample runs, the aver-
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Figure 2: The effect ofKLEE’s solver optimizations over
time, showing they become more effective over time, as the
caches fill and queries become more complicated. The num-
ber of executed instructions is normalized so that data can be
aggregated across all applications.

age number of STP queries are reduced to 5% of the orig-
inal number and the average runtime decreases by more
than an order of magnitude.

It is also worth noting the degree to which STP time
(time spent solving queries) dominates runtime. For the
original runs, STP accounts for 92% of overall execution
time on average (the combined optimizations reduce this
by almost 300%). With both optimizations enabled this
percentage drops to 41%. Finally, Figure 2 shows the
efficacy ofKLEE’s optimizations increases with time —
as the counter-example cache is filled and query sizes
increase, the speed-up from the optimizations also in-
creases.

3.4 State scheduling

KLEE selects the state to run at each instruction by inter-
leaving the following two search heuristics.

Random Path Selectionmaintains a binary tree record-
ing the program path followed for all active states, i.e. the
leaves of the tree are the current states and the internal
nodes are places where execution forked. States are se-
lected by traversing this tree from the root and randomly
selecting the path to follow at branch points. Therefore,
when a branch point is reached, the set of states in each
subtree has equal probability of being selected, regard-
less of the size of their subtrees. This strategy has two
important properties. First, it favors states high in the
branch tree. These states have less constraints on their
symbolic inputs and so have greater freedom to reach un-
covered code. Second, and most importantly, this strat-
egy avoids starvation when some part of the program is
rapidly creating new states (“fork bombing”) as it hap-
pens when a tight loop contains a symbolic condition.
Note that the simply selecting a state at random has nei-
ther property.
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Coverage-Optimized Searchtries to select states likely
to cover new code in the immediate future. It uses heuris-
tics to compute a weight for each state and then ran-
domly selects a state according to these weights. Cur-
rently these heuristics take into account the minimum
distance to an uncovered instruction, the call stack of the
state, and whether the state recently covered new code.

KLEE uses each strategy in a round robin fashion.
While this can increase the time for a particularly effec-
tive strategy to achieve high coverage, it protects against
cases where an individual strategy gets stuck. Further-
more, since strategies pick from the same state pool, in-
terleaving them can improve overall effectiveness.

The time to execute an individual instruction can vary
widely between simple instructions (e.g., addition) and
instructions which may use the constraint solver or fork
execution (branches, memory accesses).KLEE ensures
that a state which frequently executes expensive instruc-
tions will not dominate execution time by running each
state for a “time slice” defined by both a maximum num-
ber of instructions and a maximum amount of time.

4 Environment Modeling

When code reads values from its environment —
command-line arguments, environment variables, file
data and metadata, network packets, etc — we conceptu-
ally want to return all values that the read could legally
produce, rather than just a single concrete value. When it
writes to its environment, the effects of these alterations
should be reflected in subsequent reads. The combina-
tion of these features allows the checked program to ex-
plore all potential actions and still have no false positives.

Mechanically, we handle the environment by redirect-
ing calls that access it tomodelsthat understand the se-
mantics of the desired action well enough to generate the
required constraints. Crucially, these models are written
in normal C code which the user can readily customize,
extend, or even replace without having to understand the
internals ofKLEE. We have about 2,500 lines of code to
define simple models for roughly 40 system calls (e.g.,
open, read, write, stat, lseek, ftruncate,
ioctl).

4.1 Example: modeling the file system

For each file system operation we check if the action is
for an actual concrete file on disk or a symbolic file. For
concrete files, we simply invoke the corresponding sys-
tem call in the running operating system. For symbolic
files we emulate the operation’s effect on a simple sym-
bolic file system, private to each state.

Figure 3 gives a rough sketch of the model for
read(), eliding details for dealing with linking, reads
on standard input, and failures. The code maintains a set
of file descriptors, created at fileopen(), and records

1 : ssize t read(int fd, void *buf, size t count) {
2 : if (is invalid(fd)) {
3 : errno = EBADF;
4 : return −1;
5 : }
6 : struct klee fd *f = &fds[fd];
7 : if (is concretefile(f)) {
8 : int r = pread(f−>real fd, buf, count, f−>off);
9 : if (r != −1)
10: f−>off += r;
11: return r;
12: } else {
13: /* sym files are fixed size: don’t read beyond the end. */
14: if (f−>off >= f−>size)
15: return 0;
16: count = min(count, f−>size − f−>off);
17: memcpy(buf, f−>file data + f−>off, count);
18: f−>off += count;
19: return count;
20: }
21: }

Figure 3: Sketch ofKLEE’s model forread().

for each whether the associated file is symbolic or con-
crete. Iffd refers to a concrete file, we use the operating
system to read its contents by callingpread() (lines
7-11). We usepread to multiplex access fromKLEE’s
many states onto the one actual underlying file descrip-
tor.5 If fd refers to a symbolic file,read() copies from
the underlying symbolic buffer holding the file contents
into the user supplied buffer (lines 13-19). This ensures
that multipleread() calls that access the same file use
consistent symbolic values.

Our symbolic file system is crude, containing only a
single directory withN symbolic files in it. KLEE users
specify both the numberN and the size of these files.
This symbolic file system coexists with the real file sys-
tem, so applications can use both symbolic and concrete
files. When the program callsopen with a concrete
name, we (attempt to) open the actual file. Thus, the call:

int fd = open("/etc/fstab", O_RDNLY);

sets fd to point to the actual configuration file
/etc/fstab.

On the other hand, callingopen() with an uncon-
strained symbolic name matches each of theN symbolic
files in turn, and will also fail once. For example, given
N = 1, callingopen() with a symbolic command-line
argumentargv[1]:

int fd = open(argv[1], O_RDNLY);

will result in two paths: one in whichfd points to the
single symbolic file in the environment, and one in which
fd is set to-1 indicating an error.

5SinceKLEE’s states execute within a single Unix process (the one
used to runKLEE), then unless we duplicated file descriptors for each
(which seemed expensive), aread by one would affect all the others.
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Unsurprisingly, the choice of what interface to model
has a big impact on model complexity. Rather than hav-
ing our models at the system call level, we could have in-
stead built them at the C standard library level (fopen,
fread, etc.). Doing so has the potential performance
advantage that, for concrete code, we could run these op-
erations natively. The major downside, however, is that
the standard library contains a huge number of functions
— writing models for each would be tedious and error-
prone. By only modeling the much simpler, low-level
system call API, we can get the richer functionality by
just compiling one of the many implementations of the
C standard library (we use uClibc [6]) and let it worry
about correctness. As a side-effect, we simultaneously
check the library for errors as well.

4.2 Failing system calls

The real environment can fail in unexpected ways (e.g.,
write() fails because of a full disk). Such failures
can often lead to unexpected and hard to diagnose bugs.
Even when applications do try to handle them, this code
is rarely fully exercised by the regression suite. To help
catch such errors,KLEE will optionally simulate envi-
ronmental failures by failing system calls in a controlled
manner (similar to [38]). We made this mode optional
since not all applications care about failures — a simple
application may ignore disk crashes, while a mail server
expends a lot of code to handle them.

4.3 Rerunning test cases

KLEE-generated test cases are rerun on the unmodified
native binaries by supplying them to a replay driver we
provide. The individual test cases describe an instance
of the symbolic environment. The driver uses this de-
scription to create actual operating system objects (files,
pipes, ttys, directories, links, etc.) containing the con-
crete values used in the test case. It then executes the un-
modified program using the concrete command-line ar-
guments from the test case. Our biggest challenge was
making system calls fail outside ofKLEE — we built a
simple utility that uses theptrace debugging interface
to skip the system calls that were supposed to fail and
instead return an error.

5 Evaluation
This section describes our in-depth coverage experi-
ments for COREUTILS (§ 5.2) and BUSYBOX (§ 5.3)
as well as errors found during quick bug-finding runs
(§ 5.4). We useKLEE to find deep correctness errors by
crosschecking purportedly equivalent tool implementa-
tions (§ 5.5) and close with results for HISTAR (§5.6).

5.1 Coverage methodology

We use line coverage as a conservative measure ofKLEE-
produced test case effectiveness. We chose executable
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Figure 4: Histogram showing the number of COREUTILS

tools that have a given number of executable lines of code
(ELOC).

line coverage as reported bygcov, because it is widely-
understood and uncontroversial. Of course, it grossly
underestimatesKLEE’s thoroughness, since it ignores the
fact thatKLEE explores many different unique paths with
all possible values. We expect a path-based metric would
show even more dramatic wins.

We measure coverage by runningKLEE-generated test
cases on a stand-alone version of each utility and using
gcov to measure coverage. Running tests independently
of KLEE eliminates the effect of bugs inKLEE and veri-
fies that the produced test case runs the code it claims.

Note, our coverage results only consider code in the
tool itself. They do not count library code since doing so
makes the results harder to interpret:
1 It double-counts many lines, since often the same li-

brary function is called by many applications.
2 It unfairly under-counts coverage. Often, the bulk of

a library function called by an application is effec-
tively dead code since the library code is general but
call sites are not. For example,printf is excep-
tionally complex, but the callprintf("hello")
can only hit a small a fraction (missing the code to
print integers, floating point, formatting, etc.).

However, we do include library code when measuring
the raw size of the application:KLEE must successfully
handle this library code (and gets no credit for doing so)
in order to exercise the code in the tool itself. We mea-
sure size in terms of executable lines of code (ELOC)
by counting the total number of executable lines in the
final executable after global optimization, which elimi-
nates uncalled functions and other dead code. This mea-
sure is usually a factor of three smaller than a simple line
count (usingwc -l).

In our experimentsKLEE minimizes the test cases it
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COREUTILS BUSYBOX

Coverage KLEE Devel. KLEE Devel.
(w/o lib) tests tests tests tests

100% 16 1 31 4
90-100% 40 6 24 3
80-90% 21 20 10 15
70-80% 7 23 5 6
60-70% 5 15 2 7
50-60% - 10 - 4
40-50% - 6 - -
30-40% - 3 - 2
20-30% - 1 - 1
10-20% - 3 - -
0-10% - 1 - 30

Overall cov. 84.5% 67.7% 90.5% 44.8%
Med cov/App 94.7% 72.5% 97.5% 58.9%
Ave cov/App 90.9% 68.4% 93.5% 43.7%

Table 2: Number of COREUTILS tools which achieve line
coverage in the given ranges forKLEE and developers’ tests
(library code not included). The last rows shows the aggre-
gate coverage achieved by each method and the average and
median coverage per application.

generates by only emitting tests cases for paths that hit a
new statement or branch in the main utility code. A user
that wants high library coverage can change this setting.

5.2 GNU COREUTILS

We now giveKLEE coverage results for all 89 GNU
COREUTILS utilities.

Figure 4 breaks down the tools by executable lines
of code (ELOC), including library code the tool calls.
While relatively small, the tools are not toys — the small-
est five have between 2K and 3K ELOC, over half (52)
have between 3K and 4K, and ten have over 6K.

Previous work, ours included, has evaluated
constraint-based execution on a small number of
hand-selected benchmarks. Reporting results for the
entire COREUTILS suite, the worst along with the best,
prevents us from hand-picking results or unintentionally
cheating through the use of fragile optimizations.

Almost all tools were tested using the same command
(command arguments explained in§ 2.1):

./run <tool-name> --max-time 60
--sym-args 10 2 2
--sym-files 2 8
[--max-fail 1]

As specified by the--max-time option, we ran each
tool for about 60 minutes (some finished before this limit,
a few up to three minutes after). For eight tools where the
coverage results of these values were unsatisfactory, we
consulted theman page and increased the number and
size of arguments and files. We found this easy to do,
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Figure 5: Line coverage for each application with and without
failing system calls.

so presumably a tool implementer or user would as well.
After these runs completed, we improved them by failing
system calls (see§ 4.2).

5.2.1 Line coverage results

The first two columns in Table 2 give aggregate line
coverage results. On average our tests cover 90.9% of
the lines in each tool (median: 94.7%), with an overall
(aggregate) coverage across all tools of 84.5%. We get
100% line coverage on 16 tools, over 90% on 56 tools,
and over 80% on 77 tools (86.5% of all tools). The min-
imum coverage achieved on any tool is 62.6%.

We believe such high coverage on a broad swath of ap-
plications “out of the box” convincingly shows the power
of the approach, especially since it is across the entire
tool suite rather than focusing on a few particular appli-
cations.

Importantly,KLEE generates high coverage with few
test cases: for our non-failing runs, it needs a total of
3,321 tests, with a per-tool average of 37 (median: 33).
The maximum number needed was 129 (for the “[” tool)
and six needed 5. As a crude measure of path complexity,
we counted the number of static branches run by each test
case usinggcov6 (i.e., an executed branch counts once
no matter how many times the branch ran dynamically).
The average path length was 76 (median: 53), the maxi-
mum was 512 and (to pick a random number) 160 were
at least 250 branches long.

Figure 5 shows the coverageKLEE achieved on each
tool, with and without failing system call invocations.
Hitting system call failure paths is useful for getting the
last few lines of high-coverage tools, rather than signif-
icantly improving the overall results (which it improves
from 79.9% to 84.5%). The one exception ispwd which
requires system call failures to go from a dismal 21.2%
to 72.6%. The second best improvement for a single tool
is a more modest 13.1% extra coverage on thedf tool.

6In gcov terminology, a branch is a possible branch direction, i.e.
a simple if statement has two branches.
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Figure 6: Relative coverage difference betweenKLEE and
the COREUTILSmanual test suite, computed by subtracting
the executable lines of code covered by manual tests (Lman)
from KLEE tests(Lklee) and dividing by the total possible:
(Lklee − Lman)/Ltotal. Higher bars are better forKLEE,
which beats manual testing on all but 9 applications, often
significantly.

5.2.2 Comparison against developer test suites

Each utility in COREUTILS comes with an extensive
manually-written test suite extended each time a new bug
fix or extra feature is added.7 As Table 2 shows,KLEE

beats developer tests handily on all aggregate measures:
overall total line coverage (84.5% versus 67.7%), aver-
age coverage per tool (90.9% versus 68.4%) and median
coverage per tool (94.7% versus 72.5%). At a more de-
tailed level,KLEE gets 100% coverage on 16 tools and
over 90% coverage on 56 while the developer tests get
100% on a single utility (true) and reach over 90% on
only 7. Finally, the developers tests get below 60% cov-
erage on 24 tools whileKLEE always achieves over 60%.
In total, an 89 hour run ofKLEE (about one hour per ap-
plication) exceeds the coverage of a test suite built over
a period of fifteen years by 16.8%!

Figure 6 gives a relative view ofKLEE versus devel-
oper tests by subtracting the lines hit by manual testing
from those hit byKLEE and dividing this by the total pos-
sible. A bar above zero indicates thatKLEE beat the man-
ual test (and by how much); a bar below shows the oppo-
site. KLEE beats manual testing, often significantly, on
the vast majority of the applications.

To guard against hidden bias in line coverage, we
also compared the taken branch coverage (as reported by
gcov) of the manual andKLEE test suites. While the
absolute coverage for both test suites decreases,KLEE’s
relative improvement over the developers’ tests remains:

7We ran the test suite using the commands:env RUN EXPENSIVE
TESTS=YES RUN VERY EXPENSIVE TESTS=YES make
check andmake check-root (as root). A small number of tests
(14 out of 393) which require special configuration were not run; from
manual inspection we do not expect these to have a significantimpact
on our results.

paste -d\\ abcdefghijklmnopqrstuvwxyz
pr -e t2.txt
tac -r t3.txt t3.txt
mkdir -Z a b
mkfifo -Z a b
mknod -Z a b p
md5sum -c t1.txt
ptx -F\\ abcdefghijklmnopqrstuvwxyz
ptx x t4.txt
seq -f %0 1

t1.txt: "\t \tMD5("
t2.txt: "\b\b\b\b\b\b\b\t"
t3.txt: "\n"
t4.txt: "a"

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in COREUTILS

version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.

Finally, it is important to note that althoughKLEE’s
runs significantly beat the developers’ tests in terms of
coverage,KLEE only checks for low-level errors and vi-
olations of user-level asserts. In contrast, developer tests
typically validate that the application output matches the
expected one. We partially address this limitation by val-
idating the output of these utilities against the output pro-
duces by a different implementation (see§ 5.5).

5.2.3 Bugs found

KLEE found ten unique bugs in COREUTILS (usually
memory error crashes). Figure 7 gives the command
lines used to trigger them. The first three errors ex-
isted since at least 1992, so should theoretically crash any
COREUTILS distribution up to 6.10. The others are more
recent, and do not crash older COREUTILS distributions.
While one bug (inseq) had been fixed in the develop-
ers’ unreleased version, the other bugs were confirmed
and fixed within two days of our report. In addition, ver-
sions of theKLEE-generated test cases for the new bugs
were added to the official COREUTILS test suite.

As an illustrative example, we discuss the bug inpr
(used to paginate files before printing) hit by the invoca-
tion “pr -e t2.txt” in Figure 7. The code contain-
ing the bug is shown in Figure 8. On the path that hits
the bug, bothchars per input tab andchars per c

equal tab width (let’s call itT ). Line 2665 computes
width = (T − input position mod T ) using the
macro on line 602. The root cause of the bug is the in-
correct assumption that0 ≤ x mod y < y, which only
holds for positive integers. Wheninput position

is positive, width will be less thanT since 0 ≤

input position mod T < T . However, in the pres-
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602: #define TAB WIDTH(c , h ) ((c ) − ((h ) % (c )))
. . .
1322: clump buff = xmalloc(MAX (8,chars per input tab));
. . . // (set s to clumpbuff)
2665: width = TAB WIDTH(chars per c, input position);
2666:
2667: if (untabify input)
2668: {
2669: for (i = width; i; −−i)
2670: *s++ = ’ ’;
2671: chars = width;
2672: }

Figure 8: Code snippet frompr where a memory
overflow ofclump buff via pointers is possible if
chars per input tab == chars per c and
input position < 0.

ence of backspaces,input position can become neg-
ative, so(−T < input position mod T < T ). Con-
sequently,width can be as large as2T − 1.

The bug arises when the code allocates a buffer
clump buff of sizeT (line 1322) and then writeswidth
characters into this buffer (lines 2669–2670) via the
pointers (initially set toclump buff). Becausewidth
can be as large as2T −1, a memory overflow is possible.

This is a prime example of the power of symbolic ex-
ecution in finding complex errors in code which is hard
to reason about manually — this bug has existed inpr
since at least 1992, when COREUTILS was first added to
a CVS repository.

5.2.4 Comparison with random tests

In our opinion, the COREUTILS manual tests are un-
usually comprehensive. However, we compare to ran-
dom testing both to guard against deficiencies, and to get
a feel for how constraint-based reasoning compares to
blind random guessing. We tried to make the comparison
apples-to-apples by building a tool that takes the same
command line asKLEE, and generates random values for
the specified type, number, and size range of inputs. It
then runs the checked program on these values using the
same replay infrastructure asKLEE. For time reasons,
we randomly chose 15 benchmarks (shown in Figure 9)
and ran them for 65 minutes (to always exceed the time
given toKLEE) with the same command lines used when
run with KLEE.

Figure 9 shows the coverage for these programs
achieved by random, manual, andKLEE tests. Unsurpris-
ingly, given the complexity of COREUTILSprograms and
the concerted effort of the COREUTILS maintainers, the
manual tests get significantly more coverage than ran-
dom.KLEE handily beats both.

Becausegcov introduces some overhead, we also
performed a second experiment in which we ran each
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Figure 9: Coverage of random vs. manual vs.KLEE testing
for 15 randomly-chosen COREUTILSutilities. Manual testing
beats random on average, whileKLEE beats both by a signifi-
cant margin.

tool natively withoutgcov for 65 minutes (using the
same random seed as the first run), recorded the number
of test cases generated, and then reran usinggcov for
that number. This run completely eliminates thegcov
overhead, and overall it generates 44% more tests than
during the initial run.

However, these 44% extra tests increase the average
coverage per tool by only 1%, with 11 out of 15 utili-
ties not seeing any improvement — showing that random
gets stuck for most applications. We have seen this pat-
tern repeatedly in previous work: random quickly gets
the cases it can, and then revisits them over and over. In-
tuitively, satisfying even a single 32-bit equality requires
correctly guessing one value out of four billion. Cor-
rectly getting a sequence of such conditionals is hope-
less. Utilities such ascsplit (the worst performer), il-
lustrate this dynamic well: their input has structure, and
the difficulty of blindly guessing values that satisfy its
rules causes most inputs to be rejected.

One unexpected result was that for 11 of these 15
programs,KLEE explores paths to termination (i.e., the
checked code callsexit()) only a few times slower
than random does!KLEE explored paths to termina-
tion in roughly the same time for three programs and,
in fact, was actually faster for three others (seq, tee,
andnohup). We were surprised by these numbers, be-
cause we had assumed a constraint-based tool would run
orders of magnitude more slowly than raw testing on a
per-path basis, but would have the advantage of explor-
ing more unique paths over time (with all values) because
it did not get stuck. While the overhead on four pro-
grams matched this expectation (where constraint solver
overhead made paths ran 7x to 220x more slowly than
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native execution), the performance tradeoff for the oth-
ers is more nuanced. Assume we have a branch deep in
the program. Covering both true and false directions us-
ing traditional testing requires running the program from
start to finish twice: once for the true path and again
for the false. In contrast, whileKLEE runs each instruc-
tion more slowly than native execution, it only needs to
run the instruction path before the branch once, since it
forks execution at the branch point (a fast operation given
its object-level copy-on-write implementation). As path
length grows, this ability to avoid redundantly rerunning
path prefixes gets increasingly important.

With that said, the reader should view the per-path
costs of random andKLEE as very crude estimates. First,
the KLEE infrastructure random uses to run tests adds
about 13ms of per-test overhead, as compared to around
1ms for simply invoking a program from a script. This
code runs each test case in a sandbox directory, makes
a clean environment, and creates various system objects
with random contents (e.g., files, pipes, tty’s). It then
runs the tested program with a watchdog to terminate
infinite loops. While a dedicated testing tool must do
roughly similar actions, presumably it could shave some
milliseconds. However, this fixed cost matters only for
short program runs, such as when the code exits with an
error. In cases where random can actually make progress
and explore deeper program paths, the inefficiency of re-
running path prefixes starts to dominate. Further, we con-
servatively compute the path completion rate forKLEE:
when its time expires, roughly 30% of the states it has
created are still alive, and we give it no credit for the
work it did on them.

5.3 BUSYBOX utilities

BUSYBOX is a widely-used implementation of standard
UNIX utilities for embedded systems that aims for small
executable sizes [1]. Where there is overlap, it aims to
replicate COREUTILS functionality, although often pro-
viding fewer features. We ran our experiments on a bug-
patched version of BUSYBOX 1.10.2. We ran the 75
utilities 8 in the BUSYBOX “coreutils” subdirectory
(14K lines of code, with another 16K of library code),
using the same command lines as when checking CORE-
UTILS, except we did not fail system calls.

As Table 2 shows,KLEE does even better than on
COREUTILS: over 90.5% total line coverage, on aver-
age covering 93.5% per tool with a median of 97.5%. It
got 100% coverage on 31 and over 90% on 55 utilities.

BUSYBOX has a less comprehensive manual test suite
than COREUTILS (in fact, many applications don’t seem
to have any tests). Thus,KLEE beats the developers tests
by roughly a factor of two: 90.5% total line coverage ver-

8We are actually measuring coverage on 72 files because several
utilities are implemented in the same file.

date -I
ls --co
chown a.a -
kill -l a
setuidgid a ""
printf "% *" B
od t1.txt
od t2.txt
printf %
printf %Lo
tr [
tr [=
tr [a-z

t1.txt: a
t2.txt: A
t3.txt: \t\n

cut -f t3.txt
install --m
nmeter -
envdir
setuidgid
envuidgid
envdir -
arp -Ainet
tar tf /
top d
setarch "" ""
<full-path>/linux32
<full-path>/linux64
hexdump -e ""
ping6 -

Figure 10: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes in BUSYBOX.
When multiple applications crash because of the same shared
(buggy) piece of code, we group them by shading.

sus only 44.8% for the developers’ suite. The developers
do better on only one benchmark,cp.

5.4 Bug-finding: M INIX + all BUSYBOX tools

To demonstrateKLEE’s applicability to bug finding, we
used KLEE to check all 279 BUSYBOX tools and 84
M INIX tools [4] in a series of short runs. These 360+
applications cover a wide range of functionality, such
as networking tools, text editors, login utilities, archiv-
ing tools, etc. While the tests generated byKLEE dur-
ing these runs are not sufficient to achieve high coverage
(due to incomplete modeling), we did find many bugs
quickly: 21 bugs in BUSYBOX and another 21 in MINIX

have been reported (many additional reports await in-
spection). Figure 10 gives the command lines for the
BUSYBOX bugs. All bugs were memory errors and were
fixed promptly, with the exception ofdate which had
been fixed in an unreleased tree. We have not heard back
from the MINIX developers.

5.5 Checking tool equivalence

Thus far, we have focused on finding generic errors that
do not require knowledge of a program’s intended be-
havior. We now show how to do much deeper checking,
including verifying full functional correctness on a finite
set of explored paths.

KLEE makes no approximations: its constraints have
perfect accuracy down to the level of a single bit. If
KLEE reaches anassert and its constraint solver states
the false branch of theassert cannot execute given the
current path constraints, then it hasprovedthat no value
exists onthe current paththat could violate the assertion,
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1 : unsigned mod opt(unsigned x, unsigned y) {
2 : if ((y & −y) == y) // power of two?
3 : return x & (y−1);
4 : else
5 : return x % y;
6 : }
7 : unsigned mod(unsigned x, unsigned y) {
8 : return x % y;
9 : }
10: int main() {
11: unsigned x,y;
12: make symbolic(&x, sizeof(x));
13: make symbolic(&y, sizeof(y));
14: assert(mod(x,y) == mod opt(x,y));
15: return 0;
16: }

Figure 11: Trivial program illustrating equivalence checking.
KLEE proves total equivalence wheny 6= 0.

modulo bugs inKLEE or non-determinism in the code.9

Importantly,KLEE will do such proofs for any condition
the programmer expresses as C code, from a simple non-
null pointer check, to one verifying the correctness of a
program’s output.

This property can be leveraged to perform deeper
checking as follows. Assume we have two procedures
f andf’ that take a single argument and purport to im-
plement the same interface. We can verify functional
equivalence on a per-path basis by simply feeding them
the same symbolic argument and asserting they return
the same value:assert(f(x) == f’(x)). Each
time KLEE follows a path that reaches this assertion, it
checks if any value exists on that path that violates it. If
it finds none exists, then it has proven functional equiv-
alence on that path. By implication, if one function is
correct along the path, then equivalence proves the other
one is as well. Conversely, if the functions compute dif-
ferent values along the path and theassert fires, then
KLEE will produce a test case demonstrating this differ-
ence. These are both powerful results, completely be-
yond the reach of traditional testing. One way to look at
KLEE is that it automatically translates a path through a
C program into a form that a theorem prover can reason
about. As a result, proving path equivalence just takes a
few lines of C code (the assertion above), rather than an
enormous manual exercise in theorem proving.

Note that equivalence results only hold on the finite set
of paths thatKLEE explores. Like traditional testing, it
cannot make statements about paths it misses. However,
if KLEE is able to exhaust all paths then it has shown total
equivalence of the functions. Although not tractable in
general, many isolated algorithms can be tested this way,
at least up to some input size.

We help make these points concrete using the con-

9Code that depends on the values of memory addresses will not
satisfy determinism sinceKLEE will almost certainly allocate memory
objects at different addresses than native runs.

trived example in Figure 11, which crosschecks a triv-
ial modulo implementation (mod) against one that opti-
mizes for modulo by powers of two (mod opt). It first
makes the inputsx andy symbolic and then uses the
assert (line 14) to check for differences. Two code
paths reach thisassert, depending on whether the
test for power-of-two (line 2) succeeds or fails. (Along
the way,KLEE generates a division-by-zero test case for
wheny = 0.) The true path uses the solver to check that
the constraint(y& − y) == y implies(x&(y − 1)) ==
x%y holds for all values. This query succeeds. The
false path checks the vacuous tautology that the con-
straint(y& − y) 6= y implies thatx%y == x%y also
holds. TheKLEE checking run then terminates, which
means thatKLEE has proved equivalence for all non-zero
values using only a few lines of code.

This methodology is useful in a broad range of con-
texts. Most standardized interfaces — such as libraries,
networking servers, or compilers — have multiple im-
plementations (a partial motivation for and consequence
of standardization). In addition, there are other common
cases where multiple implementations exist:

1 f is a simple reference implementation andf’ a real-
world optimized version.

2 f’ is a patched version off that purports only to
remove bugs (so should have strictly fewer crashes)
or refactor code without changing functionality.

3 f has an inverse, which means we can change our
equivalence check to verifyf−1(f(x)) ≡ x, such as:
assert(uncompress(compress(x))==x).

Experimental results. We show that this technique
can find deep correctness errors and scale to real pro-
grams by crosschecking 67 COREUTILS tools against
their allegedly equivalent BUSYBOX implementations.
For example, given the same input, the BUSYBOX and
COREUTILSversions ofwc should output the same num-
ber of lines, words and bytes. In fact, both the BUSYBOX

and COREUTILS tools intend to conform to IEEE Stan-
dard 1003.1 [3] which specifies their behavior.

We built a simple infrastructure to make crosschecking
automatic. Given two tools, it renames all their global
symbols and then links them together. It then runs both
with the same symbolic environment (same symbolic ar-
guments, files, etc.) and compares the data printed to
stdout. When it detects a mismatch, it generates a test
case that can be run to natively to confirm the difference.

Table 3 shows a subset of the mismatches found by
KLEE. The first three lines show hard correctness er-
rors (which were promptly fixed by developers), while
the others mostly reveal missing functionality. As an ex-
ample of a serious correctness bug, the first line gives the
inputs that when run on BUSYBOX’s comm causes it to
behave as if two non-identical files were identical.
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Input BUSYBOX COREUTILS

comm t1.txt t2.txt [does not show difference] [shows difference]
tee - [does not copy twice to stdout] [does]
tee "" <t1.txt [infinite loop] [terminates]
cksum / "4294967295 0 /" "/: Is a directory"
split / "/: Is a directory"
tr [duplicates input on stdout] "missing operand"
[ 0 ‘‘<’’ 1 ] "binary operator expected"
sum -s <t1.txt "97 1 -" "97 1"
tail -2l [rejects] [accepts]
unexpand -f [accepts] [rejects]
split - [rejects] [accepts]
ls --color-blah [accepts] [rejects]
t1.txt: a t2.txt: b

Table 3: Very small subset of the mismatchesKLEE found between the BUSYBOX and COREUTILSversions of equivalent utili-
ties. The first three are serious correctness errors; most ofthe others are revealing missing functionality.

Test Random KLEE ELOC

With Disk 50.1% 67.1% 4617
No Disk 48.0% 76.4% 2662

Table 4: Coverage on the HISTAR kernel for runs with up to
three system calls, configured with and without a disk. For
comparison we did the same runs using random inputs for one
million trials.

5.6 The HiStar OS kernel

We have also appliedKLEE to checking non-application
code by using it to check the HiStar [39] kernel. We used
a simple test driver based on a user-mode HISTAR ker-
nel. The driver creates the core kernel data structures and
initializes a single process with access to a single page of
user memory. It then calls the test function in Figure 12,
which makes the user memory symbolic and executes a
predefined number of system calls using entirely sym-
bolic arguments. As the system call number is encoded
in the first argument, this simple driver effectively tests
all (sequences of) system calls in the kernel.

Although the setup is restrictive, in practice we have
found that it can quickly generate test cases — sequences
of system call vectors and memory contents — which
cover a large portion of the kernel code and uncover
interesting behaviors. Table 4 shows the coverage ob-
tained for the core kernel for runs with and without a
disk. When configured with a disk, a majority of the un-
covered code can only be triggered when there are a large
number of kernel objects. This currently does not happen
in our testing environment; we are investigating ways to
exercise this code adequately during testing. As a quick
comparison, we ran one million random tests through
the same driver (similar to§ 5.2.4). As Table 4 shows,
KLEE’s tests achieve significantly more coverage than
random testing both for runs with (+17.0%) and without
(+28.4%) a disk.

1 : static void test(void *upage, unsigned num calls) {
2 : make symbolic(upage, PGSIZE);
3 : for (int i=0; i<num calls; i++) {
4 : uint64 t args[8];
5 : for (int j=0; j<8; j++)
6 : make symbolic(&args[j], sizeof(args[j]));
7 : kern syscall(args[0], args[1], args[2], args[3],
8 : args[4], args[5], args[6], args[7]);
9 : }
10: sys self halt();
11: }

Figure 12: Test driver for HISTAR: it makes a single page of
user memory symbolic and executes a user-specified number
of system calls with entirely symbolic arguments.

KLEE’s constraint-based reasoning allowed it to find a
tricky, critical security bug in the 32-bit version of HIS-
TAR. Figure 13 shows the code for the function contain-
ing the bug. The functionsafe addptr is supposed
to set*of to true if the addition overflows. However,
because the inputs are 64 bit long, the test used is insuf-
ficient (it should be(r < a) || (r < b)) and the
function can fail to indicate overflow for large values of
b.

The safe addptr function validates user memory
addresses prior to copying data to or from user space. A
kernel routine takes a user address and a size and com-
putes if the user is allowed to access the memory in that
range; this routine uses the overflow to prevent access
when a computation could overflow. This bug in com-
puting overflow therefore allows a malicious process to
gain access to memory regions outside its control.

6 Related Work

Many recent tools are based on symbolic execution [11,
14–16,20–22,24, 26, 27, 36]. We contrast howKLEE

deals with the environment and path explosion problems.
To the best of our knowledge, traditional symbolic ex-
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1 : uintptr t safe addptr(int *of, uint64 t a, uint64 t b) {
2 : uintptr t r = a + b;
3 : if (r < a)
4 : *of = 1;
5 : return r;
6 : }

Figure 13: HISTAR function containing an important security
vulnerability. The function is supposed to set*of to true
if the addition overflows but can fail to do so in the 32-bit
version for very large values ofb.

ecution systems [17, 18, 32] are static in a strict sense and
do not interact with the running environment at all. They
either cannot handle programs that make use of the en-
vironment or require a complete working model. More
recent work in test generation [16, 26, 36] does allow ex-
ternal interactions, but forces them to use entirely con-
crete procedure call arguments, which limits the behav-
iors they can explore: a concrete external call will do ex-
actly what it did, rather than all things it could potentially
do. In KLEE, we strive for a functional balance between
these two alternatives; we allow both interaction with the
outside environment and supply a model to simulate in-
teraction with a symbolic one.

The path explosion problem has instead received more
attention [11, 22, 24, 27, 34]. Similarly to the search
heuristics presented in Section 3, search strategies pro-
posed in the past include Best First Search [16], Gener-
ational Search [27], and Hybrid Concolic Testing [34].
Orthogonal to search heuristics, researchers have ad-
dressed the path explosion problem by testing paths com-
positionally [8, 24], and by tracking the values read and
written by the program [11].

Like KLEE, other symbolic execution systems imple-
ment their own optimizations before sending the queries
to the underlying constraint solver, such as the simple
syntactic transformations presented in [36], and thecon-
straint subsumptionoptimization discussed in [27].

Similar to symbolic execution systems, model check-
ers have been used to find bugs in both the design and
the implementation of software [10, 12, 19, 25, 29, 30].
These approaches often require a lot of manual effort to
build test harnesses. However, the approaches are some-
what complementary toKLEE: the testsKLEE generates
can be used to drive the model checked code, similar to
the approach embraced by Java PathFinder [31, 37].

Previously, we showed that symbolic execution can
find correctness errors by crosschecking various imple-
mentations of the same library function [15]; this paper
shows that the technique scales to real programs. Subse-
quent to our initial work, others applied similar ideas to
finding correctness errors in applications such as network
protocol implementations [13] and PHP scripts [9].

7 Conclusion
Our long-term goal is to take an arbitrary program and
routinely get 90%+ code coverage, crushing it under test
cases for all interesting inputs. While there is still a long
way to go to reach this goal, our results show that the ap-
proach works well across a broad range of real code. Our
systemKLEE, automatically generated tests that, on av-
erage, covered over 90% of the lines (in aggregate over
80%) in roughly 160 complex, system-intensive appli-
cations “out of the box.” This coverage significantly
exceeded that of their corresponding hand-written test
suites, including one built over a period of 15 years.

In total, we usedKLEE to check 452 applications (with
over 430K lines of code), where it found 56 serious bugs,
including ten in COREUTILS, arguably the most heavily-
tested collection of open-source applications. To the best
of our knowledge, this represents an order of magnitude
more code and distinct programs than checked by prior
symbolic test generation work. Further, becauseKLEE’s
constraints have no approximations, its reasoning allow
it to prove properties of paths (or find counter-examples
without false positives). We used this ability both to
prove path equivalence across many real, purportedly
identical applications, and to find functional correctness
errors in them.

The techniques we describe should work well with
other tools and provide similar help in handling a broad
class of applications.
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MAZI ÈRES, D. Making information flow explicit in HiStar. In
Proceedings of the 7th Symposium on Operating Systems Design
and Implementation (OSDI 2006).

16


