KLEE: Unassisted and Automatic Generation of High-Coverag
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler
Stanford University

Abstract bolic values and replace corresponding concrete program
We present a new symbolic execution toelL g€, ca- operations with ones Fhat manipulate symbolic values_.
When program execution branches based on a symbolic

pable of automatically generating tests that achieve

high coverage on a diverse set of complex andvalue, the system (conceptually) follows both branches,

environmentally-intensive programs. We usatkE to on each path maintaining a set of constraints called the
thoroughly check all 89 stand-alone programs in thepath conditionwhich mu§t hold on.executlon of that
GNU COREUTILS utility suite, which form the core path. When a path terminates or hits a bug, a test case

. . ' - . can be generated by solving the current path condition
user-level environmentinstalled on millions of Unix sys-

. : for concrete values. Assuming deterministic code, feed-
tems, and arguably are the single most heavily tested se . . o .
. . ing this concrete input to a raw, unmodified version of
of open-source programs in existence.Ee-generated . .
. L e checked code will make it follow the same path and
tests achieve high line coverage — on average over 90%.
T L hit the same bug.
per tool (median: over 94%) — and significantly beat Results are promising. However, while researchers
the coverage of the developers’ own hand-written tes P 9- !
. . : . have shown such tools can sometimes get good cover-
suite. When we did the same for 75 equivalent tools in

the BusyBOx embedded system suite, results were everi;":1ge and find bugs on a small number of programs, it
better, including 100% coverage on 31 of them. as been an open question whether the approach has any

We also usedLEE as a bug finding tool, applying it to hope of consistently achieving high coverage on real ap-

oo ; plications. Two common concerns are (1) the exponen-
.452 appllcauor]s (over 43.0K tot.al lines OT code), Wheretial number of paths through code and (2) the challenges
it found 56 serious bugs, including three iREUTILS

. . in handling code that interacts with its surrounding envi-
that had been missed for over 15 years. Finally, we usei;p g g

KLEE to crosscheck purportedly identicalByBox and onment, such as the operating system, the network, or
-NECK purpe yid the user (colloquially: “the environment problem”). Nei-
CoRreuTILs utilities, finding functional correctness er-

rors and a myriad of inconsistencies ther concern has_ been much helped by the fact that most
' past work, including ours, has usually reported results on
1 Introduction a limited set of hand-picked benchmarks and typically
) has not included any coverage numbers.
Many classes of errors, such as functional correctness Thjs paper makes two contributions. First, we present
bugs, are difficult to find without executing a piece of 5 new symbolic execution tookLEE, which we de-

code. The importance of such testing — combined withsigned for robust, deep checking of a broad range of ap-
the difficulty and poor performance of random and man-p|ications, leveraging several years of lessons from our
ual approaches — has led to much recent work in uspyevious tool, EXE [16]KLEE employs a variety of con-
ing symbolic executioto automatically generate testin- gyraint solving optimizations, represents program states
puts [11,14-16,20-22,24,26,27,36]. At a high-level,compactly, and uses search heuristics to get high code
these tools use variations on the following idea: '”SteaQ:overage. Additionally, it uses a simple and straight-
of running code on manually- or randomly-constructedsoryard approach to dealing with the external environ-
input, the_y run it on sympolic input initi_ally alloyved 10 ment. These features improxeEE’s performance by

be “anything.” They substitute program inputs with Sym- gyer an order of magnitude and let it check a broad range

of system-intensive programs “out of the box.”

*Author names are in alphabetical order. Daniel Dunbar isrthi
author of thex LEE system.

Second, we show that Ee’s automatically-generated tests hit over 90% of the lines in each tool (median:
tests get high coverage on a diverse set of real, com- over 94%), achieving perfect 100% coverage in 16
plicated, and environmentally-intensive programs. Our COREUTILStools and 31 BsyBOX tools.

most in-depth evaluation applies.Ee to all 89 pro- 2 KLEE can get significantly more code coverage than
grams! in the latest stable version of GNUGREUTILS a concentrated, sustained manual effort. The roughly
(version 6.10), which contains roughly 80,000 lines of 89-hour run used to generat®REUTILSline cover-
library code and 61,000 lines in the actual utilities [2]. age beat the developers’ own test suite — built incre-
These programs interact extensively with their environ- mentally over fifteen years — by 16.8%!

ment to provide a variety of functions, including man- 3 With one exception,KLEE achieved these high-

aging the file system (e.gl,s, dd, chnod), display-
ing and configuring system properties (elgognane,
printenv, host nane), controlling command invo-
cation (e.g.nohup, ni ce, env), processing text files

coverage results on unaltered applications. The sole
exception,sort in COREUTILS, required a single
edit to shrink a large buffer that caused problems for
the constraint solver.

(e.g.,sort, od, pat ch), and so on. They form the 4 KLEE finds importanterrors in heavily-tested code. It
core user-level environment installed on many Unix sys- found ten fatal errors in GREUTILS (including three
tems. They are used daily by millions of people, bug that had escaped detection for 15 years), which ac-
fixes are handled promptly, and new releases are pushed count for more crashing bugs than were reported in
regularly. Moreover, their extensive interaction with the 2006, 2007 and 2008 combined. It further found 24
environment stress-tests symbolic execution where it has bugs in BJSYBOX, 21 bugs in MNIX, and a security
historically been weakest. vulnerability in H STAR— a total of 56 serious bugs.

Further, finding bugs in GREUTILSIS hard. They are 5 The fact thakLEE test cases can be run on the raw
arguably the single most well-tested suite of open-source version of the code (e.g., compiled wijlecc) greatly
applications available (e.g., is there a program the reader simplifies debugging and error reporting. For exam-
has used more under Unix thahs”?). In 1995, ran- ple, all COREUTILS bugs were confirmed and fixed
dom testing of a subset of GREUTILS utilities found within two days and versions of the testsee gen-
markedly fewer failures as compared to seven commer- erated were included in the standard regression suite.
cial Unix systems [35]. The last@REUTILS vulnerabil- 6 KLEE is not limited to low-level programming er-
ity reported on the SecurityFocus or US National Vulner- rors: when used to crosscheck purportedly identical
ability databases was three years ago [5, 7]. BusyBox and GNU REUTILS tools, it automat-

In addition, we checked two othemux utility suites: ically found functional correctness errors and a myr-
BusyBoOx, a widely-used distribution for embedded sys- iad of inconsistencies.
tems [1], and the latest release foruix [4]. Finally, we 7 KLEE can also be applied to non-application code.
checked the HSTAR operating system kernel as a con- When applied to the core of thel&TAR kernel, it
trast to application code [39]. achieved an average line coverage of 76.4% (with

Our experiments fall into three categories: (1) those disk) and 67.1% (without disk) and found a serious
where we do intensive runs to both find bugs and get high security bug.
coverage (OREUTILS, HISTAR, and 75 BysyBOX util- The next section gives an overview of our approach.
ities), (2) those where we quickly run over many appli- Section 3 describesLEE, focusing on its key optimiza-
cations to find bugs (an additional 204BYBOX util- tions. Section 4 discusses how to model the environment.
ities and 77 MNix utilities), and (3) those where we The heart of the paper is Section 5, which presents our
crosscheck equivalent programs to find deeper correciexperimental results. Finally, Section 6 describes rdlate
ness bugs (67 BsyBox utilities vs. the equivalent 67 in - work and Section 7 concludes.
COREUTILS). .

In total, we rarkLEE on more than 452 programs, con- 2 Overview
taining over 430K total lines of code. To the best of ourThjs section explains howLEE works by walking the
knowledge, this represents an order of magnitude moreaader through the testing of IMIx’s t r tool. Despite
code and distinct programs than checked by prior symits small size — 169 lines, 83 of which are executable —

bolic test generation work. Our experiments show: it illustrates two problems common to the programs we
1 KLEE gets high coverage on a broad set of complexzheck:

programs. Its automatically generated tests covered; complexity. The code aims to translate and delete
84.5% of the total lines in GREUTILSand 90.5% in characters from its input. It hides this intent well be-

BusyBox (ignoring library code). On average these a4th non-obvious input parsing code, tricky bound-

ary conditions, and hard-to-follow control flow. Fig-
ure 1 gives a representative snippet.

1we ignored utilities that are simply wrapper calls to othetsch
asar ch (“unanme -nf)andvdir (“Is -1 -b").

2 Environmental Dependenciesviost of the code is 1 : void expandchar *arg unsigned char *buffer) { 8
controlled by values derived from environmental in-2 : int i, ag 9

put. Command line arguments determine what pro- - WTf”e(*g?fg_)_{’ W g i(lJ:
cedures execute, input values determine which way, argﬂ.“
if-statements trigger, and the program depends on the : i=ac=0:
ability to read from the file system. Since inputs can7? : if (farg >="0" && *arg <="'7") {
be invalid (or even malicious), the code must handle® ; do {_ o
. . . : ac = (ac << 3) + *argt+ — ' 0’ ;
these cases gracefully. It is not trivial to test all im- ;. it
portant values and boundary cases. 11: 1 while (i<4 && *arg>="0" && *arg<="7');
The code illustrates two additional common features.iz }*?Uffe,][*(* - as o)
. . . ' : else if (*farg = "\ 0’
First, it has bugs, WthlP(LEI.E finds apd generates test . “buffer-+ = *argr+:
cases for. SecondLEE quickly achieves good code 1s: } else if (farg == ") { 12%
coverage: in two minutes it generates 37 tests that covels: arg+; 13
all executable statements. L | = rarghh 14
. . . 18: if (fargt+ 1="-") { 15!
KLEE has two goals: (1) hit every line of executable ;. *puffer+ = * [;
code in the program and (2) detect at each dangerous ope: arg —= 2;
eration (e.g., dereference, assertionqily input value — 2L: continue;
exists that could cause an errar.ee does so by running gg e}lc —
programssymbolically unlike normal execution, where 5. while (i <= ag *bufferr+ = i++;
operations produce concrete values from their operandgs: argr+; * Skip T *
here they generate constraints that exactly describe thé: } Stl)sif . _
set of values possible on a given path. WhemE de- 2;:) ullers+ = marges;
tects an error or when a path reachegaint call, KLEE 29: }
solves the current path’s constraints (callecpash con- 30: ...
dition) to produce a test case that will follow the same31: int main(int arge char* argy]) { 1
ath when rerun on an unmodified version of the checke§2: int index = 1, 2
p ; _ 3 if (argc > 1 && argfindeX[0] == " -") { 3
program (e.g, compiled withcc). 34 o 4
KLEE is designed so that the paths followed by theggi } 2
unmodified program will always follow the same path 37 é;{pancuarg\/[index++], index): 7

KLEE took (i.e., there are no false positives). However,zg.
non-determinism in checked code and buggi®E or 39: }
its models have produced false positives in practice. The
ability to rerun tests outside @iLEE, in conjunctionwith Figyre 1: Code snippet from Muix's t r, representative
standard tools such agib andgcov is invaluable for of the programs checked in this paper: tricky, non-obvious,
diagnosing such errors and for validating our results. difficult to verify by inspection or testing. The order of the

We next show how to useLEE, then give an overview statements on the path to the error at line 18 are numbered on
of how it works. the right hand side.

2.1 Usage

A user can start checking many real programs witge '€ first option,- - max-ti me, tells KLEE to check

in seconds:KLEE typically requires no source modifi- - Pc for at most two minutes. The rest describe the
cations or manual work. Users first compile their codeSymbolic inputs. The option-symargs 1 10 10

to bytecode using the publicly-available LLVM com- Says to use zero to three command line arguments, the

piler [33] for GNU C. We compiled r using: first 1 character long, the others 10 characters [8ide
) option--symfiles 2 2000 says to use standard
I'lvmgec --emt-llvm-c tr.c -o tr.bc input and one file, each holding 2000 bytes of symbolic

Users then rukLEE on the generated bytecode, option- data. The option - max-fail 1 says to fail at most
9 y » OP one system call along each program path (sée2).

ally stating the number, size, and type of symbolic inputs
to test the code on. For we used the command: 2.2 Symbolic execution withk LEE

klee --max-tinme 2 --symargs 1 10 10 WhenKLEE runs ont r, it finds a buffer overflow error
--symfiles 2 2000 --nmax-fail 1 tr.bc atline 18 in Figure 1 and then produces a concrete test

2The program has one line of dead code, an unreachable return 3Since strings in C are zero terminated, this essentiallyeigtes
statement, which, reassuringks, EE cannot run. arguments ofip tothat size.

case{r ["" "")that hitsit. Assuming the options 3.1 Basic architecture

of the previous subsectior|EE runst r as follows: At any one timeKLEE may be executing a large number

1 KLEE constructs symbolic command line string argu- of states. The core ofLEE is an interpreter loop which
ments whose contents have no constraints other thage|ects a state to run and then symbolically executes a
zero-termination. It then constrains the number of ar-single instruction in the context of that state. This loop
guments to be between 0 and 3, and their sizes to bgontinues until there are no states remaining, or a user-
1, 10 and 10 respectively. It then cafl®i n with gefined timeout is reached.
these initial path constraints. _ Unlike a normal process, storage locations for a state

2 _\NhenK_LEE hits the branchargc > 1 atline :_33’ ~— registers, stack and heap objects — refer to expres-
it uses its constraint solver STP [23] to see which di-gjons (trees) instead of raw data values. The leaves of
rections can execute given the current path conditiongy expression are symbolic variables or constants, and
For this brar_lch, both directions are DOSSib{‘E_EE the interior nodes come from LLVM assembly language
forks execution and follows both paths, adding thegperations (e.g., arithmetic operations, bitwise manipu-
constrainar gc > 1onthefalse pathamk gc <1 |ation, comparisons, and memory accesses). Storage lo-
on the true path. cations which hold a constant expression are said to be

3 Given more than one active patkl.EE must pick :oncrete
which one to execute first. We describe its algorithm Symbolic execution of the majority of instructions is

in Section 3.4. For now assume it follows the pathgyraightforward. For example, to symbolically execute
that reaches the bug. As it does BOEE adds further 5, | VM add instruction:

constraints to the contents af g, and forks for a
total of five times (lines denoted with & ™): twice
online 33, and then onlines 3, 4, and 1®kpand. kLeE retrieves the addends from ther c0 and¥%sr c1

4 At each dangerous operation (e.g., pointer dereferregisters and writes a new expressiddd(%sr cO,
ence) KLEE checks if any possible value allowed by osr c1) to the%st register. For efficiency, the code
the current path condition would cause an error. Onthat builds expressions checks if all given operands are
the annotated patk,EE detects no errors before line concrete (i.e., constants) and, if so, performs the opera-
18. At that point, however, it determines that input tjon natively, returning a constant expression.
values exist that allow the read af g to go out of Conditional branches take a boolean expression
bounds: after taking the true branch at line 15, the(branch condition) and alter the instruction pointer of
code incrementar g twice without checking if the the state based on whether the condition is true or false.
string has ended. If it has, this increment skips thex e queries the constraint solver to determine if the

%dst = add i 32 %rc0O, %rcl

terminating’ \0" and points to invalid memory. branch condition is either provably true or provably false
5 KLEE generates concrete values éargc andar gv along the current path; if so, the instruction pointer is
(ie,tr ["" "")that when rerun on a raw ver- ypdated to the appropriate location. Otherwise, both

sion oft r will hit this bug. It then continues follow- pranches are possiblecLEE clones the state so that it

ing the current path, adding the constraint that thecan explore both paths, updating the instruction pointer

error does not occur (in order to find other errors). and path condition on each path appropriately.

. Potentially dangerous operations implicitly generate

3 TheKLEE Architecture branches that check if any input value exists that could
KLEE is a complete redesign of our previous systemCause an error. For example, a division instruction gen-
EXE [16]. At a high level,KLEE functions as a hybrid €rates a branch that checks for a zero divisor. Such
between an operating system for symbolic processes arjf@nches work identically to normal branches. Thus,
an interpreter. Each symbolic process has a register filVen when the check succeeds (i.e., an error is detected),
stack, heap, program counter, and path condition. TEX€cution continues on the false path, which adds the
avoid confusion with a Unix process, we referdoee’s nggation of the check as a.constraint (e.g., making the
representation of a symbolic process atae Programs divisor not zero). If an error is detected,EE generates
are compiled to the LLVM [33] assembly language, a& test case to trigger the error and terminates the state.
RISC-like virtual instruction set.KLEE directly inter- As with other dangerous operations, load and store in-
prets this instruction set, and maps instructions to conStructions generate checks: in this case to check that the

straints without approximation (i.e. bit-level accurady) address is in-bounds of a valid memory object. However,
load and store operations present an additional compli-

2 , : . . cation. The most straightforward representation of the
KLEE does not currently support: symbolic floating point,

| ongj np, threads, and assembly code. Additionally, memory objects M€MOry L_JSEd by checked code would be a flat byte ar-
are required to have concrete sizes. ray. In this case, loads and stores would simply map to

array read and write expressions respectively. UnfortuThus, we spent a lot of effort on tricks to simplify ex-
nately, our constraint solver STP would almost never begressions and ideally eliminate queries (no query is the
able to solve the resultant constraints (and neither wouldastest query) before they reach STP. Simplified queries
the other constraint solvers we know of). Thus, as inmake solving faster, reduce memory consumption, and
EXE, KLEE maps every memory object in the checkedincrease the query cache’s hit rate (see below). The main
code to a distinct STP array (in a sense, mapping a flagjuery optimizations are:

address space to a segmented one). This representationExpression Rewriting The most basic optimizations
dramatically improves performance since it lets STP ig-mirror those in a compiler: e.g., simple arithmetic sim-
nore all arrays not referenced by a given expression. plifications ¢ + 0 = x), strength reductiorx(» 2™

Many operations (such as bound checks or object-levet x << n), linear simplification2+*x - x = Xx).
copy-on-write) require object-specific information. If a Constraint Set Simplification Symbolic execution
pointer can refer to many objects, these operations betypically involves the addition of a large number of con-
come difficult to perform. For simplicityLEE sidesteps straints to the path condition. The natural structure of
this problem as follows. When a dereferenced poipter programs means that constraints on same variables tend
can refer toV objects,KLEE clones the current stat€ to become more specific. For example, commonly an in-
times. In each state it constraipsto be within bounds exact constraint such as < 10 gets added, followed
of its respective object and then performs the approprisome time later by the constraint= 5. KLEE actively
ate read or write operation. Although this method cansimplifies the constraint set by rewriting previous con-
be expensive for pointers with large points-to sets, mosstraints when new equality constraints are added to the
programs we have tested only use symbolic pointers thatonstraint set. In this example, substituting the value for
refer to a single object, arkLEE is well-optimized for z into the first constraint simplifies it tor ue, which
this case. KLEE eliminates.

Implied Value ConcretizationVhen a constraint such
asxz + 1 = 10 is added to the path condition, then the
The number of states grows quite quickly in practice:value ofx has effectively become concrete along that
often even small programs generate tens or even hurpath.KLEE determines this fact (in this case that= 9)
dreds of thousands of concurrent states during the firsind writes the concrete value back to memory. This en-
few minutes of interpretation. When we ramREUTILS sures that subsequent accesses of that memory location
with a 1GB memory cap, the maximum number of con-can return a cheap constant expression.

3.2 Compact state representation

current states recorded was 95,982 (fosst i d), and Constraint IndependenceMany constraints do not
the average of this maximum for each tool was 51,385¢verlap in terms of the memory they reference. Con-
This explosion makes state size critical. straint independence (taken from EXE) divides con-

SinceKLEE tracks all memory objects, it can imple- straint sets into disjoint independent subsets based on the
ment copy-on-write at the object level (rather than pagesymbolic variables they reference. By explicitly track-
granularity), dramatically reducing per-state memory re-ing these subsetLEE can frequently eliminate irrel-
quirements. By implementing the heap as an immutablevant constraints prior to sending a query to the con-
map, portions of the heap structure itself can also bestraint solver. For example, given the constraint set
shared amongst multiple states (similar to sharing por{; < j,; < 20,k > 0}, a query of whethei = 20
tions of page tables acrossr k()). Additionally, this just requires the first two constraints.
heap structure can be cloned in constant time, which is Counter-example CacheRedundant queries are fre-
important given the frequency of this operation. quent, and a simple cache is effective at eliminating a

This approach is in marked contrast to EXE, whichlarge number of them. However, it is possible to build
used one native OS process per state. Internalizing tha more sophisticated cache due to the particular struc-
state representation dramatically increased the numbeure of constraint sets. The counter-example cache maps
of states which can be concurrently explored, both bysets of constraints to counter-examples (i.e., variable as
decreasing the per-state cost and allowing states to shasggnments), along with a special sentinel used when a set
memory at the object (rather than page) level. Addition-of constraints has no solution. This mapping is stored
ally, this greatly simplified the implementation of cachesin a custom data structure — derived from the UBTree
and search heuristics which operate across all states. structure of Hoffmann and Hoehler [28] — which al-
lows efficient searching for cache entries for both sub-
sets and supersets of a constraint set. By storing the
Almost always, the cost of constraint solving dominatescache in this fashion, the counter-example cache gains
everything else — unsurprising, given thatee gen- three additional ways to eliminate queries. In the ex-
erates complicated queries for an NP-complete logicample below, we assume that the counter-example cache

3.3 Query optimization

| Optimizations|| Queries| Time (s) | STP Time (s)] 400 o
None 13717 300 281 ---- Cex. Cache
Independencg| 13717 166 148 B0 b Zﬁiependmce
Cex. Cache 8174 177 156 =
Al 699 20 0] £,
&
Table 1: Performance comparison &fEE’s solver optimiza- §
tions on G®REUTILS. Each tool is run for 5 minutes without = 100
optimization, and rerun on the same workload with the given
optimizations. The results are averaged across all apipis2 | e
0 T e

Num. Instructions (normalized)

currently has entries fofi < 10,7 = 10} (no solution)

and{i < 10,j = 8} (satisfiable, with variable assign- Figure 2: The effect ofLEE’s solver optimizations over
mentsi — 5,7 — 8). time, showing they become more effective over time, as the
1 When a subset of a constraint set has no solutiorgaches fill and queries become more complicated. The num-
then neither does the original constraint set. AddingPer of executed instructions is normalized so that data ean b
constraints to an unsatisfiable constraint set cannct99regated across all applications.
make it satisfiable. For example, given the cache

above,{i < 10,7 = 10,5 = 12} is quickly deter- age number of STP queries are reduced to 5% of the orig-

mined to be unsatisfiable.) .
. ._inal number and the average runtime decreases by more
2 When a superset of a constraint set has a solutlor{han an order of magnitude

that solution also satisfies the original constraint set. It is also worth noting the degree to which STP time

Dropping constraints from a constraint set does not,..
. : . . time spent solving queries) dominates runtime. For the
invalidate a solution to that set. The assignment

) . - o original runs, STP accounts for 92% of overall execution
1 — 5,7 — 8, for example, satisfies eithér< 10 . - S .

. L time on average (the combined optimizations reduce this
or j = 8individually.

A , R .
3 When a subset of a constraint set has a solution, it igy almost 300%). With both optimizations enabled this

0 : .
likely that this is also a solution for the original set. percentage drops to 41%. Finally, Figure 2 shows the

This is because the extra constraints often do not in_efﬂcacy OfKLEE'S optimizations increases with time —

validate the solution to the subset. Because checkinaS the counter-example cache is filled and query sizes

a potential solution is cheaglEE tries substituting gncrease, the speed-up from the optimizations also in-

) .) creases.
in all solutions for subsets of the constraint set and

returns a satisfying solution, if found. For example, 3.4 State scheduling
the constraint sefi < 10, = 8,7 # 3} can still be

& KLEE selects the state to run at each instruction by inter-
satisfied byi — 5,7 — 8.

leaving the following two search heuristics.

To demonstrate the effectiveness of these optimiza- Random Path Selectionaintains a binary tree record-
tions, we performed an experiment whereREUTILS ing the program path followed for all active states, i.e. the
applications were run for 5 minutes with both of these|eaves of the tree are the current states and the internal
optimizations turned off. We then deterministically reran nodes are places where execution forked. States are se-
the exact same workload with constraint independencgected by traversing this tree from the root and randomly
and the counter-example cache enabled separately ar@lecting the path to follow at branch points. Therefore,
together for the same number of instructions. This experwhen a branch point is reached, the set of states in each
iment was done on a large sample cdREUTILS utili- subtree has equal probability of being selected, regard-
ties. The results in Table 1 show the averaged results. |ess of the size of their subtrees. This strategy has two

As expected, the independence optimization by itselimportant properties. First, it favors states high in the
does not eliminate any queries, but the simplifications itoranch tree. These states have less constraints on their
performs reduce the overall running time by almost halfsymbolic inputs and so have greater freedom to reach un-
(45%). The counter-example cache reduces both the rurcovered code. Second, and most importantly, this strat-
ning time and the number of STP queries by 40%. How-egy avoids starvation when some part of the program is
ever, the real win comes when both optimizations are enrapidly creating new states (“fork bombing”) as it hap-
abled; in this case the hit rate for the counter-examplgens when a tight loop contains a symbolic condition.
cache greatly increases due to the queries first being siniNote that the simply selecting a state at random has nei-
plified via independence. For the sample runs, the averther property.

Coverage-Optimized Seartftes to select states likely 1 . ssizet readint fd, void *buf, sizet couny {

to cover new code in the immediate future. It uses heuris2 : i (is_invalid(fd)) {

tics to compute a weight for each state and then ran3: ermo = EBADF;

domly selects a state according to these weights. Curg :) retum —1;

rently these heuristics take into account the minimumg : syuct klee fd *f = &fdsifdl;

distance to an uncovered instruction, the call stack of th& : if (is_concretefile(f)) {

state, and whether the state recently covered new code$: It r = preadf—>realfd, buf. count f->off)
KLEE uses each strategy in a round robin fashion.io': f f(r_;oﬁ_i)z .

While this can increase the time for a particularly effec-11: return

tive strategy to achieve high coverage, it protects against2: } else {

cases where an individual strategy gets stuck. Furtherts: I sym files are fixed size: don't read beyond the end. */
: if (f—>off >= f—>sizg

more, since strategies pick from the same state pool, ings. return O
terleaving them can improve overall effectiveness. 16: count = min(count f—>size — f—>off);
The time to execute an individual instruction can vary17: ~ memcpybuf, f—file_data + f—>off, coun);

f—>off += count

. . . . - 18:
widely between simple instructions (e.g., addition) and; g’ return. count

instructions which may use the constraint solver or forko:
execution (branches, memory accesseQ)EE ensures 21: }
that a state which frequently executes expensive instruc-
tions will not dominate execution time by running each Figure 3: Sketch ofkLEE's model forr ead() .
state for a “time slice” defined by both a maximum num-for each whether the associated file is symbolic or con-
ber of instructions and a maximum amount of time. crete. Iff d refers to a concrete file, we use the operating
. . system to read its contents by callipgead() (lines
4 Environment Modeling 7-11). We useor ead to multiplex access frorRLEE’s
When code reads values from its environment —many states onto the one actual underlying file descrip-
command-line arguments, environment variables, filetor.® If f d refers to a symbolic file,ead() copies from
data and metadata, network packets, etc — we conceptiihe underlying symbolic buffer holding the file contents
ally want to return all values that the read could legallyinto the user supplied buffer (lines 13-19). This ensures
produce, rather than just a single concrete value. When ithat multipler ead() calls that access the same file use
writes to its environment, the effects of these alterationsonsistent symbolic values.
should be reflected in subsequent reads. The combina- Our symbolic file system is crude, containing only a
tion of these features allows the checked program to exsingle directory withV symbolic files in it. KLEE users
plore all potential actions and still have no false posgive specify both the numbeN and the size of these files.
Mechanically, we handle the environment by redirect-This symbolic file system coexists with the real file sys-
ing calls that access it tmodelsthat understand the se- tem, so applications can use both symbolic and concrete
mantics of the desired action well enough to generate théles. When the program callspen with a concrete
required constraints. Crucially, these models are writtername, we (attempt to) open the actual file. Thus, the call:
in normal C code which the user can readily customize,
extend, or even replace without having to understand the
internals ofkLEE. We have about 2,500 lines of code t0 sets fd to point to the actual configuration file
define simple models for roughly 40 system calls (e.9./ et ¢/ f st ab.
open, read, wite, stat, | seek, ftruncate,
ioctl).

int fd = open("/etc/fstab", O RDNLY);

On the other hand, callingpen() with an uncon-
strained symbolic name matches each oftheymbolic
4.1 Example: modeling the file system files in turn, and will also fail once. For example, given
=1, callingopen() with a symbolic command-line

N
For each file system operation we check if the action isargumenar gv[1] :

for an actual concrete file on disk or a symbolic file. For
concrete files, we simply invoke the corresponding sys- int fd = open(argv[1], O RDNLY);
tem call in the running operating system. For symbolic

files we emulate the operation’s effect on a simple symWill resultin two paths: one in whichd points to the
bolic file system, private to each state. single symbolic file in the environment, and one in which

Figure 3 gives a rough sketch of the model for ' d S setto-1indicating an error.

read(), eliding details for dealing with linking, reads ——5 ; L .

. . . . SinceKLEE’s states execute within a single Unix process (the one
on _Standard_mpUL and fallures._ The code maintains a Sgfed to rurkLeE), then unless we duplicated file descriptors for each
of file descriptors, created at filgpen() , and records (which seemed expensive)r @ad by one would affect all the others.

Unsurprisingly, the choice of what interface to model *
has a big impact on model complexity. Rather than hav-_ | 52
ing our models at the system call level, we could have in-
stead built them at the C standard library levfebpen, w0l
fread, etc.). Doing so has the potential performance
advantage that, for concrete code, we could run these ops |
erations natively. The major downside, however, is that
the standard library contains a huge number of functionso ¢
— writing models for each would be tedious and error-
prone. By only modeling the much simpler, low-level |
system call API, we can get the richer functionality by N | 11 ﬁ PR
just compiling one of the many implementations of the SR

; . . o %@Q S & N %@Q Q@Q
C standard library (we use uClibc [6]) and let it worry R @Q" & & @
about correctness. As a side-effect, we simultaneously Execntable Lines of Code ®
check the library for errors as well.
4.2 Failing system calls Figure 4: Histogram showing the number ofd®EUTILS

. L tools that have a given number of executable lines of code
The real environment can fail in unexpected ways (e.g.(ELOC)_

write() fails because of a full disk). Such failures
can often lead to unexpected and hard to diagnose bugs.

Even when applications do try to handle them, this Codqine coverage as reported WOV, because it is W|de|y_

is rarely fully exercised by the regression suite. To helpynderstood and uncontroversial. Of course, it grossly
catch such errorsxLEE will optionally simulate envi- ynderestimatesLEE’s thoroughness, since it ignores the
ronmental failures by failing system calls in a controlled fact thatkLEE explores many different unique paths with
manner (similar to [38]). We made this mode optional)| possible values. We expect a path-based metric would
since not all applications care about failures — a simpleshow even more dramatic wins.

application may ignore disk crashes, while a mail server \\ie measure coverage by runningeE-generated test
expends a lot of code to handle them. cases on a stand-alone version of each utility and using
4.3 Rerunning test cases gcov to measure coverage. Running tests independently

... of KLEE eliminates the effect of bugs KLEE and veri-
KLEE-generated test cases are rerun on the unmodlfleﬁ

. L : . ies that the produced test case runs the code it claims.
native binaries by supplying them to a replay driver we

provide. The individual test cases describe an instancg[ao(')\ll(i),;eéhcO lfl_rh(;ovg(;angoi (r:?)iﬂttslil;)r glry f:ggsel(i?r:cc;oggirlln ;r:)e
of the symbolic environment. The driver uses this de- ’ y y 9

scription to create actual operating system objects (ﬁlesr,n""keS the results harder to. mterp.ret: ,
1 It double-counts many lines, since often the same li-

pipes, ttys, directories, links, etc.) containing the con- b ¢ o led b licat
crete values used in the test case. It then executes the un- 2raty unction Is called by many applications.

modified program using the concrete command-line ar- 2 't Iggfawlyfundgr-cou“tsdcgverage. (I)_fter_1, the b:iflk of
guments from the test case. Our biggest challenge was & 'lPrary function called by an application Is effec-
making system calls fail outside &i.EE — we built a tively dead code since the library code is general but
simple utility that uses thpt r ace debugging interface call sites are not. For examplprintf is excep-

to skip the system calls that were supposed to fail and tionally complex, but the ca_h)rl nt_f (_ hel I 0")
instead return an error. can only hit a small a fraction (missing the code to

) print integers, floating point, formatting, etc.).
5 Evaluation However, we do include library code when measuring

This section describes our in-depth coverage experith® raw size of the applicatiokLEE must successfully

ments for ®REUTILS (§ 5.2) and BISYBOX (§ 5.3) handle this library code (and gets no credit for doing so)
as well as errors found during quick bug-finding runsin order to exercise the code in the tool itself. We mea-
(§ 5.4). We use<LEE to find deep correctness errors by SUre size in terms of executable lines of code (ELOC)

crosschecking purportedly equivalent tool implementa Ry counting the total number of executable lines in the

tions § 5.5) and close with results forIlSTAR (§5.6). final executable afte_r global optimization, which e_Iimi-
nates uncalled functions and other dead code. This mea-

sure is usually a factor of three smaller than a simple line
We use line coverage as a conservative measwesrH- count (usingwe - 1).
produced test case effectiveness. We chose executableln our experiment&LEE minimizes the test cases it

5.1 Coverage methodology

COREUTILS BusyBOX 100% e — e
Coverage KLEE | Devel. || KLEE | Devel. = Base ol nlul |
(w/o lib) tests tests tests tests ~ 80% t i l| I
100% 16 1 31 7 S A
90-100% 40 6 24 3 Q 6o% (ff
80-90% 21 20 10 15 %
70-80% 7 23 5 6 g 40%
60-70% 5 15 2 7 g
50-60% - 10 - 4 20%
40-50% - 6 - -
30-40% - 3 - 2 0% 25 50 75
20-30% - 1 - 1
10-20% ' 3 ' _ Figure 5: Line coverage for each application with and without
0-10% . 1 . 30 failing system calls.
Overall cov. 84.5% | 67.7% || 90.5% | 44.8%
Med cov/App || 94.7% | 72.5% || 97.5% | 58.9%
Ave cov/App || 90.9% | 68.4% || 93.5% | 43.7% so presumably a tool implementer or user would as well.
After these runs completed, we improved them by failing
Table 2: Number of @REuUTILStools which achieve line system calls (se§4.2).

coverage in the given ranges fiotEe and developers’ tests
(library code not included). The last rows shows the aggre-
gate coverage achieved by each method and the average andThe first two columns in Table 2 give aggregate line
median coverage per application. coverage results. On average our tests cover 90.9% of
the lines in each tool (median: 94.7%), with an overall
- . (aggregate) coverage across all tools of 84.5%. We get
generates by only emitting tests cases for paths that hit 85004, jine coverage on 16 tools, over 90% on 56 tools,

new statement or branch in the main utility code. A userg, 4 over 80% on 77 tools (86.5% of all tools). The min-
that wants high library coverage can change this setting; ., um coverage achieved on any tool is 62.6%.

5.2 GNU COREUTILS We believe such high coverage on a broad swath of ap-
We now giveKLEE coverage results for all 89 GNU plications "out of the box_ conv_lncm_glyshows the power
of the approach, especially since it is across the entire

COREUTILS utilities. tool suite rather than focusing on a few particular appli-
Figure 4 breaks down the tools by executable lines g P PP

of code (ELOC), including library code the tool calls. Caﬂznz.rtantl KLEE generates hiah coverage with few
While relatively small, the tools are not toys — the small- P Y, 9 9 9

est five have between 2K and 3K ELOC, over half (52)?38?2;12?5:]:/(v)irthozr l?zgs;lg\?e:gnz’(# g7e ?glsegi;?aég;
have between 3K and 4K, and ten have over 6K. . ' b 9 . '

Provi K included. h luat dThe maximum number needed was 129 (for thétbol)
revious ~work, —ours Included, has evalualed,, gy needed 5. As a crude measure of path complexity,

ﬁon(sjtrawln—tt)ageg exr:ecutlli) n 0|2 a t;mall ntIJtmt;er tﬁae counted the number of static branches run by each test
and-seiected benchmarks. - Reporting resu’ts for M, qq usingicov® (i.e., an executed branch counts once

entire (OREUTILS suite, t_he_worst along W't_h the _best, no matter how many times the branch ran dynamically).
prevents us from hand-picking results or unintentionally.

cheating through the use of fragile optimizations. The average path length was 76 (median: 53), the maxi-

. mum was 512 and (to pick a random number) 160 were
Almost all tools were tested using the same comman%‘t least 250 branches long

(command arguments explainedsi2.1):

5.2.1 Line coverage results

Figure 5 shows the coverageEeE achieved on each
./run <tool -name> --max-tinme 60 tool, with and without failing system call invocations.

--symargs 10 2 2 Hitting system call failure paths is useful for getting the

--symfiles 2 8 last few lines of high-coverage tools, rather than signif-

[--rmax-fail 1] icantly improving the overall results (which it improves
As specified by the - max-t i me option, we ran each from_79.9% to 84.5%). _The one exceptiorpiu;d which
tool for about 60 minutes (some finished before this limit, "equires system call failures to go from a dismal 21.2%
afew up to three minutes after). For eight tools where théo 72.6%. The second best improvement for a single tool
coverage results of these values were unsatisfactory, wi§ & more modest 13.1% extra coverage oncthéool.
consulted theran page and increased the number and 6 gcov terminology, a branch is a possible branch direction, i.e.
size of arguments and files. We found this easy to doa simple if statement has two branches.

100% paste -d\\ abcdefghijkl mopqr st uvwxyz
pr -e t2.txt

tac -r t3.txt t3.txt

nkdir -Z ab

nkfifo -Z a b

0% nmknod -Z a b p

md5sum -c t1.txt

ptx -F\\ abcdef ghij kl mopqgr st uvwxyz
ptx x t4.txt

seq -f % 1

tlixt: "\t \t MD5("

50%

—50% t

KLEE vs. Manual (ELOC %)

—100%

1 10 25 50 75

t2.txt: " \b\b\b\b\b\b\b\t "
Figure 6: Relative coverage difference betweeree and Ei:xi \n
ixt:"a

the COREUTILSmManual test suite, computed by subtracting
the executable lines of code covered by manual tdsis.)
from KLEE tests(L) and dividing by the total possible:
(Lkiee — Lman)/Ltotar- Higher bars are better fen_EE,
which beats manual testing on all but 9 applications, often
significantly.

Figure 7: KLEE-generated command lines and inputs (modi-
fied for readability) that cause program crashes @REUTILS
version 6.10 when run on Fedora Core 7 with SELinux on a
Pentium machine.

KLEE achieves 76.9% overall branch coverage, while the
developers’ tests get only 56.5%.
Each utility in COREUTILS comes with an extensive Finally, it is important to note that althougtLEE’s
manually-written test suite extended each time a new buguns significantly beat the developers’ tests in terms of
fix or extra feature is added. As Table 2 showsKLEE coverageKLEE only checks for low-level errors and vi-
beats developer tests handily on all aggregate measuresiations of user-level asserts. In contrast, developés tes
overall total line coverage (84.5% versus 67.7%), avertypically validate that the application output matches the
age coverage per tool (90.9% versus 68.4%) and mediagxpected one. We partially address this limitation by val-
coverage per tool (94.7% versus 72.5%). At a more deidating the output of these utilities against the output pro
tailed level,KLEE gets 100% coverage on 16 tools and duces by a different implementation ($g8.5).
over 90% coverage on 56 while the developer tests geft) 23 Buas found
100% on a single utilityt(r ue) and reach over 90% on ~ 9
only 7. Finally, the developers tests get below 60% cov-KLEE found ten unique bugs in @REUTILS (usually
erage on 24 tools whileLEE always achieves over 60%. memory error crashes). Figure 7 gives the command
In total, an 89 hour run ofkLEE (about one hour per ap- lines used to trigger them. The first three errors ex-
plication) exceeds the coverage of a test suite built oveisted since atleast 1992, so should theoretically crash any
a period of fifteen years by 16.8%! CoRrEeuTILSdistribution up to 6.10. The others are more

Figure 6 gives a relative view ofLEE versus devel- recent, and do not crash oldep@EuTILS distributions.
oper tests by subtracting the lines hit by manual testing/Vhile one bug (inseq) had been fixed in the develop-
from those hit by LEE and dividing this by the total pos- ers’ unreleased version, the other bugs were confirmed
sible. A bar above zero indicates tikatEE beat the man- and fixed within two days of our report. In addition, ver-
ual test (and by how much); a bar below shows the opposions of thekLEE-generated test cases for the new bugs
site. KLEE beats manual testing, often significantly, on were added to the official QREUTILS test suite.
the vast majority of the applications. As an illustrative example, we discuss the bugpm

To guard against hidden bias in line coverage, we(used to paginate files before printing) hit by the invoca-
also compared the taken branch coverage (as reported B¢n “pr - e t 2.t xt”in Figure 7. The code contain-
gcov) of the manual an&kLEE test suites. While the ing the bug is shown in Figure 8. On the path that hits
absolute coverage for both test suites decreage=s’s the bug, botfthar s_per i nput _t ab andchar s_per ¢
relative improvement over the developers’ tests remainséqual tab width (let's call itr’). Line 2665 computes

width = (T — input _position modT) using the

T\We ran the test suite using the commareisy RUNNEXPENSI VE -~ macro on line 602. The root cause of the bug is the in-

_TESTS=YES RUN.VERY _EXPENS|I VE_TESTS=YES nuake correct assumption that< z mod y < y, which only

check andmake check-root (as root). A small number of tests i : . s
(14 out of 393) which require special configuration were ot from holds for positive Integers. Whennput _posi ti on

manual inspection we do not expect these to have a significmtct 1S POSitive, wi dth will be less thanT S_ince 0 <
on our results. i nput _position mod T < T. However, in the pres-

5.2.2 Comparison against developer test suites

10

1 Random @@ Devel Bl KLEE

602: #define TAB_WIDTH(c_, h_) ((c.) — ((h.) % (c.))) 100

1322: clump_buff = xmallodMAX (8,chars per_input_tab));

... Il (set s to clumpbuff) 80

2665: width = TAB_WIDTH(charsper_c, input_position);

2666:

2667: if (untabify_input) 60 |

2668: {

2669: for (i = width; i; ——i) 40 L

2670: *st+ = 7

2671: chars= width;

2672: } 20

Figure 8: Code snippet fronpr where a memory 0 N N

overflow ofcl unp_buf f via pointers is possible if é&&&&«@ﬁé& & T F S S ‘@b@o@ @Q’&e@ S
char s_per _i nput .t ab == char s_per _c and R 0&4& ©

i nput _position < 0.

Figure 9: Coverage of random vs. manual \a.EE testing
for 15 randomly-chosen @REuUTILS Utilities. Manual testing
beats random on average, whileee beats both by a signifi-
cant margin.

ence of backspaceispput _posi t i on can become neg-
ative, so(—7" < i nput posi tion mod T < 7). Con-
sequentlywi dt h can be as large a9 — 1.

The bug arises when the code allocates a buffer
cl unp_buf f of sizeT (line 1322) and then writesi dth tool natively withoutgcov for 65 minutes (using the
characters into this buffer (lines 2669-2670) via thesame random seed as the first run), recorded the number
pointers (initially set tocl unp_buf f). Becausevi dth of test cases generated, and then reran ugiamy for
can be as large &' — 1, a memory overflow is possible. that number. This run completely eliminates theov

This is a prime example of the power of symbolic ex- overhead, and overall it generates 44% more tests than
ecution in finding complex errors in code which is hard during the initial run.

to reason about manually — this bug has existegrin However, these 44% extra tests increase the average
since at least 1992, wheno®EuTILs was first added to coverage per tool by only 1%, with 11 out of 15 utili-
a CVS repository. ties not seeing any improvement— showing that random

gets stuck for most applications. We have seen this pat-
tern repeatedly in previous work: random quickly gets
In our opinion, the ©REUTILS manual tests are un- the cases it can, and then revisits them over and over. In-
usually comprehensive. However, we compare to rantuitively, satisfying even a single 32-bit equality reagsr
dom testing both to guard against deficiencies, and to gejorrectly guessing one value out of four billion. Cor-
a feel for how constraint-based reasoning compares teectly getting a sequence of such conditionals is hope-
blind random guessing. We tried to make the comparisoness. Utilities such asspl i t (the worst performer), il-
apples-to-apples by building a tool that takes the saméustrate this dynamic well: their input has structure, and
command line agLEE, and generates random values for the difficulty of blindly guessing values that satisfy its
the specified type, number, and size range of inputs. ltules causes most inputs to be rejected.
then runs the checked program on these values using the one unexpected result was that for 11 of these 15
same replay infrastructure &sEe. For time reasons, programskLEE explores paths to termination (i.e., the
we randomly chose 15 benchmarks (shown in Figure 9phecked code callsxit ()) only a few times slower
and ran them for 65 minutes (to always exceed the tim@nhan random does!KLEE explored paths to termina-
given tokLEE) with the same command lines used whentjon in roughly the same time for three programs and,
run with KLEE. in fact, was actually faster for three othese(, t ee,
Figure 9 shows the coverage for these program&indnohup). We were surprised by these numbers, be-
achieved by random, manual, aKicEE tests. Unsurpris- cause we had assumed a constraint-based tool would run
ingly, given the complexity of OREUTILSprogramsand orders of magnitude more slowly than raw testing on a
the concerted effort of the @REUTILS maintainers, the per-path basis, but would have the advantage of explor-
manual tests get significantly more coverage than raning more unique paths over time (with all values) because
dom.KLEE handily beats both. it did not get stuck. While the overhead on four pro-
Becausegcov introduces some overhead, we alsograms matched this expectation (where constraint solver
performed a second experiment in which we ran eacloverhead made paths ran 7x to 220x more slowly than

5.2.4 Comparison with random tests

11

native execution), the performance tradeoff for the oth- | date -1

. . cut -f t3.txt
ers is more nuanced. Assume we have a branch deepin ! S --co

install --m
the program. Covering both true and false directions us- EhIO\INn f" a- nmet er -
ing traditional testing requires running the program from tho-loa - envdi r

L S .| setuidgid a C

start to finish twice: once for the true path and again printf "%« B setuidgid
for the false. In contrast, whileLEE runs each instruc- od t1.txt envui dgi d
tion more slowly than native execution, it only needs to | 54 t2. txt envdir -
run the instruction path before the branch once, since it| printf % arp - Ainet
forks execution at the branch point (a fast operationgiven | printf %o tar :jf -

top

[

its object-level copy-on-write implementation). As path | tr
length grows, this ability to avoid redundantly rerunning | tr [=

setarch ""
<full-path>/linux32

path prefixes gets increasingly important. tr [a-z e p—
With that said, the reader should view the per-path | tl.txt:a hexdunp -e "
costs of random anklLEE as very crude estimates. First, t2.txt: A pi ng6 -

the KLEE infrastructure random uses to run tests adds | f3.txt: \t \n
about 13ms of per-test overhead, as compared to around _ _)
1ms for simply invoking a program from a script. This Flgure 10: KLE_E_-generated command lines and |_nputs (modi-
code runs each test case in a sandbox directory, maki;gd for readability) that cause program crashes s BBOX.

B

| - t and ¢ . ¢ bi hen multiple applications crash because of the same shared
a clean environment, and creates various sy,s em objecty 1) niece of code, we group them by shading.
with random contents (e.qg., files, pipes, tty’s). It then
runs the tested program with a watchdog to terminate
infinite Io_op_s. Wh."e a dedicated tgstmg tool must OlOsus only 44.8% for the developers’ suite. The developers
roughly similar actions, presumably it could shave some

. L do better on only one benchmadq.

milliseconds. However, this fixed cost matters only for
short program runs, such as when the code exits with ag 4 Bug-finding: Minix + all BUSYBOX tools
error. In cases where random can actually make progress S o
and explore deeper program paths, the inefficiency of reTo demonstrat&LEE’s applicability to bug finding, we
running path prefixes starts to dominate. Further, we conUSedKLEE to check all 279 BSYBOX tools and 84
servatively compute the path completion ratefeee: ~ MINIX tools [4] in a series of short runs. These 360+
when its time expires, roughly 30% of the states it hasapplications cover a wide range of functionality, such

created are still alive, and we give it no credit for the @s networking tools, text editors, login utilities, archiv
work it did on them. ing tools, etc. While the tests generatedknee dur-

ing these runs are not sufficient to achieve high coverage
(due to incomplete modeling), we did find many bugs
BusyBoOXx is a widely-used implementation of standard quickly: 21 bugs in BISYBox and another 21 in Mi1x
UNix utilities for embedded systems that aims for smallhave been reported (many additional reports await in-
executable sizes [1]. Where there is overlap, it aims tespection). Figure 10 gives the command lines for the
replicate @REUTILS functionality, although often pro- BusyBox bugs. All bugs were memory errors and were
viding fewer features. We ran our experiments on a bugfixed promptly, with the exception afat e which had
patched version of Bsysox 1.10.2. We ran the 75 been fixed in an unreleased tree. We have not heard back
utilities & in the BusyBoXx “cor eut i | s” subdirectory from the Minix developers.

(14K lines of code, with another 16K of library code),))

using the same command lines as when checkingee ~ 2-5 Checking tool equivalence

UTILS, except we did not fail system calls. Thus far, we have focused on finding generic errors that
As Table 2 showskLEE does even better than on g, not require knowledge of a program’s intended be-

COREUTILS: over 90.5% total line coverage, on aver- pavior. We now show how to do much deeper checking
age covering 93.5% per tool with a median of 97.5%. Itjnc|yding verifying full functional correctness on a finite
got 100% coverage on 31 and over 90% on 55 utilities. gat of explored paths.

BusyYBOX has a less comprehensive manual test suite
than GREUTILS (in fact, many applications don’t seem
to have any tests). ThuslEE beats the developers tests
by roughly a factor of two: 90.5% total line coverage ver-

5.3 BusyBOX utilities

KLEE makes no approximations: its constraints have
perfect accuracy down to the level of a single bit. If
KLEE reaches anssert and its constraint solver states
the false branch of th@sser t cannot execute given the

8We are actually measuring coverage on 72 files because tseverzg;u_rrent path constraints, then it mvedthat no Vall_Je
utilities are implemented in the same file. exists orthe current paththat could violate the assertion,

12

 unsigned mod_optunsigned x, unsigned y) { trived example in Figure 11, which crosschecks a triv-

1:

2 if((y & —y) ==vy) /I power of twc® ial modulo implementationnfod) against one that opti-
3: retun x & (y—1); mizes for modulo by powers of twarpd_opt). It first

g : elsrztum Y %y, makes the inputx andy symbolic and then uses the
6:) ' assert (line 14) to check for differences. Two code
7 : unsigned modunsigned x, unsigned y) { paths reach thimssert, depending on whether the
g o fetun x % y; test for power-of-two (line 2) succeeds or fails. (Along
10- ?m mair() { the way,KLEE generates a division-by-zero test case for
11: unsigned xy; wheny = 0.) The true path uses the solver to check that
12: makesymboliq&x, sizeofx)); the constrainfy& — y) == y implies (z&(y — 1)) ==

iif g‘;‘;‘?@i}y&z‘)“‘igﬁ r?:éi’éyi()x) 2%y holds for all values. This query succeeds. The
15 retun O V== Py false path checks the vacuous tautology that the con-
16: } straint (y& — y) # y implies thatz%y == 2%y also

holds. ThekLEE checking run then terminates, which
Figure 11: Trivial prog_ram |Ilustrat|ng equwalence checklng. means thakLEE has proved equiva|ence for all non-zero
KLEE proves total equivalence whenz 0. values using only a few lines of code.

modulo bugs INKKLEE or non-determinism in the Cod%. This methodo'ogy is useful in a broad range of con-
Importantly,KLEE will do such proofs for any condition texts. Most standardized interfaces — such as libraries,
the programmer expresses as C code, from a simple nopretworking servers, or compilers — have multiple im-
null pointer check, to one verifying the correctness of aplementations (a partial motivation for and consequence
program’s output. of standardization). In addition, there are other common

This property can be leveraged to perform deepegases where multiple implementations exist:
checking as follows. Assume we have two procedures

f andf’ that take a single argument and purport to im-
plement the same interface. We can verify functional
equivalence on a per-path basis by simply feeding them
the same symbolic argument and asserting they return
the same valueassert (f(x) == f’(x)). Each
time KLEE follows a pgth that reaches this a_ssertio_n, it equivalence check to verif§—(f(x)) = «, such as:
checks if any value exists on that path that violates it. If asser t (UNconpr ess(conpr ess(x)) ==x)
it finds none exists, then it has proven functional equiv-] : ’
alence on that path. By implication, if one function is EXperimental results. We show that this technique
correct along the path, then equivalence proves the oth&@n find deep correctness errors and scale to real pro-
one is as well. Conversely, if the functions compute dif-9r@ms by crosschecking 670REUTILS tools against
ferent values along the path and theser t fires, then their allegedly gquwalent stl_aox implementations.
KLEE will produce a test case demonstrating this differ-FOr €xample, given the same input, thessox and
ence. These are both powerful results, completely beCOREUTILSVersions ofxc should output the same num-
yond the reach of traditional testing. One way to look atP€r of lines, words and bytes. In fact, both thes¥Box
KLEE is that it automatically translates a path through a@nd GREUTILS tools intend to conform to IEEE Stan-
C program into a form that a theorem prover can reasoflard 1003.1[3] which specifies their behavior.
about. As a result, proving path equivalence just takes a We built a simple infrastructure to make crosschecking
few lines of C code (the assertion above), rather than aautomatic. Given two tools, it renames all their global
enormous manual exercise in theorem proving. symbols and then links them together. It then runs both
Note that equivalence results only hold on the finite sewith the same symbolic environment (same symbolic ar-
of paths thakLEE explores. Like traditional testing, it guments, files, etc.) and compares the data printed to
cannot make statements about paths it misses. Howevest dout . When it detects a mismatch, it generates a test
if KLEE is able to exhaust all paths then it has shown totalcase that can be run to natively to confirm the difference.

general, many isolated algorithms can be tested this way, gg. The first three lines show hard correctness er-
at least up to some input size. _ rors (which were promptly fixed by developers), while
We help make these points concrete using the conthe others mostly reveal missing functionality. As an ex-
9Code that depends on the values of memory addresses will no‘?‘rnple of a serious correctness bL,Jg’ the first line g_lves the
satisfy determinism sinceL e will almost certainly allocate memory ~ INPUtS that _When run on @YBO_XS conmcauses It to
objects at different addresses than native runs. behave as if two non-identical files were identical.

1 f isasimple reference implementation drida real-
world optimized version.

2 f’ is a patched version df that purports only to
remove bugs (so should have strictly fewer crashes)
or refactor code without changing functionality.

3 f has an inverse, which means we can change our

13

[Input | Busygox | COREUTILS
commtl. txt t2.txt [does not show difference] [shows difference]
tee - [does not copy twice to stdout] [does]
tee "" <tl.txt [infinite loop] [terminates]
cksum / "4294967295 0 /" "/ 1s a directory"
split / "/: Is adirectory"
tr [duplicates input on stdout] "m ssing operand”
[0 “'< 1] "bi nary operator expected"
sum-s <t1.txt "97 1 -" "97 1"
tail -2l [rejects] [accepts]
unexpand -f [accepts] [rejects]
split - [rejects] [accepts]
I's --color-bl ah [accepts] [rejects]
tl.ixt: a t2.txt: b

Table 3: Very small subset of the mismatcheseE found between the BsyBox and GOREUTILSVersions of equivalent utili-
ties. The first three are serious correctness errors; maseafthers are revealing missing functionality.

for (int j=0; j<8; j++)
make symbolid&arggj], sizeofarggj]));
kern_syscal(argq0], argg1], argg§2], arg43],
arg44], arggs], argg6], argg7]);

| Test | Random | KLEE | ELOC | 1 : static void tes{void *upage unsigned num.calls) {
With Disk | 50.1% | 67.1% | 4617 2 ?ﬁak(esymbolic(upage PI?SSIZE)); .
:) 0 3 or (int i=0; i<num.calls i++
No Disk 48.0% | 76.4% | 2662 4 Uit t argq8l;
5 -
6

Table 4: Coverage on the EBTAR kernel for runs with up to
three system calls, configured with and without a disk. For 7 :
comparison we did the same runs using random inputs for one8 :

million trials. 9:
10: sysself_halt);

11: }

5.6 The HiStar OS kernel])))
Figure 12: Test driver for HSTAR: it makes a single page of

We have also appliedlLEE to checking non-application user memory symbolic and executes a user-specified number
code by using it to check the HiStar [39] kernel. We usedof system calls with entirely symbolic arguments.
a simple test driver based on a user-mod&HR ker-
nel. The driver creates the core kernel data structures and
initializes a single process with access to a single page of KLEE’S constraint-based reasoning allowed it to find a
user memory. It then calls the test function in Figure 12 tricky, critical security bug in the 32-bit version ofiB-
which makes the user memory Symbo"c and executes aAR. Figure 13 shows the code for the function contain-
predefined number of system calls using entirely syming the bug. The functiosaf e_addpt r is supposed
bolic arguments. As the system call number is encodedP setxof to true if the addition overflows. However,
in the first argument, this simple driver effectively tests because the inputs are 64 bit long, the test used is insuf-
all (sequences of) system calls in the kernel. ficient (it should bg(r < a) || (r < b))andthe
Although the setup is restrictive, in practice we havefunction can fail to indicate overflow for large values of
found that it can quickly generate test cases — sequenc
of system call vectors and memory contents — which Thesaf e.addptr function validates user memory
cover a large portion of the kernel code and uncove@ddresses prior to copying data to or from user space. A
interesting behaviors. Table 4 shows the coverage opkernel routine takes a user address and a size and com-
tained for the core kernel for runs with and without a Putes if the user is allowed to access the memory in that
disk. When configured with a disk, a majority of the un- range; this routine uses the overflow to prevent access
covered code can only be triggered when there are a largghen a computation could overflow. This bug in com-
number of kernel objects. This currently does not happe,{puting overflow therefore allows a malicious process to
in our testing environment; we are investigating ways to9ain access to memory regions outside its control.
exercise this code adequatelly_ during testing. As a qwclg Related Work
comparison, we ran one million random tests through
the same driver (similar t§ 5.2.4). As Table 4 shows, Many recent tools are based on symbolic execution [11,
KLEE’s tests achieve significantly more coverage thanl4-16,20-22,24,26,27,36]. We contrast hawee
random testing both for runs with (+17.0%) and without deals with the environment and path explosion problems.
(+28.4%) a disk. To the best of our knowledge, traditional symbolic ex-

14

: uintptr_t safeaddpt{int *of, uint64.t a uint64_t b) { 7 Conclusion

1
g : :;'”(trptztar) =a+h Our long-term goal is to take an arbitrary program and
4 *of = 1: routinely get 90%-+ code coverage, crushing it under test
5 retum T, cases for all interesting inputs. While there is still a long
6:} way to go to reach this goal, our results show that the ap-

proach works well across a broad range of real code. Our
Figure 13: HISTAR function containing an important security SYStEMKLEE, automatically generated tests that, on av-

vulnerability. The function is supposed to setf to true erage, covered over 90% of the lines (in aggregate over
if the addition overflows but can fail to do so in the 32-bit 80%) in roughly 160 complex, system-intensive appli-
version for very large values af. cations “out of the box.” This coverage significantly

exceeded that of their corresponding hand-written test

suites, including one built over a period of 15 years.
ecution systems [17, 18, 32] are static in a strict sense and |, total, we usedLEE to check 452 applications (with
do not interact with the running environment at all. They gyer 430K lines of code), where it found 56 serious bugs,
either cannot handle programs that make use of the enncluding ten in @REUTILS, arguably the most heavily-
vironment or require a complete working model. More tested collection of open-source applications. To the best
recent workin test generation [16, 26, 36] does allow ex-of our knowledge, this represents an order of magnitude
ternal interactions, but forces them to use entirely conmore code and distinct programs than checked by prior
crete procedure call arguments, which limits the behavsympolic test generation work. Further, becadsee’s
iors they can explore: a concrete external call will do €x-constraints have no approximations, its reasoning allow
actly whatitdid, rather than all things it could potenyiall it to prove properties of paths (or find counter-examples
do. InKLEE, we strive for a functional balance between ithout false positives). We used this ability both to
these two alternatives; we allow both interaction with theprove path equivalence across many real, purportedly

outside environment and supply a model to simulate inigentical applications, and to find functional correctness
teraction with a symbolic one. errors in them.
The path explosion problem has instead received more The techniques we describe should work well with

attention [11,22,24,27,34]. Similarly to the searchother tools and provide similar help in handling a broad
heuristics presented in Section 3, search strategies pretass of applications.

posed in the past include Best First Search [16], Gener-
ational Search [27], and Hybrid Concolic Testing [34]. 8 Acknowledgements
Orthogonal to search heuristics, researchers have atie thank the GNU ©OREUTILS developers, particularly
dressed the path explosion problem by testing paths conthe CorREUTILS maintainer Jim Meyering for promptly
positionally [8, 24], and by tracking the values read andconfirming our reported bugs and answering many ques-
written by the program [11]. tions. We similarly thank the developers of/BYBOX,
Like KLEE, other symbolic execution systems imple- particularly the BISYBOX maintainer, Denys Vlasenko.
ment their own optimizations before sending the queriesNVe also thank Nickolai Zeldovich, the designer af3H
to the underlying constraint solver, such as the simplerar, for his great help in checking IISTAR, including
syntactic transformations presented in [36], anddtie- writing a user-level driver for us. We thank our shepard
straint subsumptionptimization discussed in [27]. Terence Kelly, the helpful OSDI reviewers, and Philip
Similar to symbolic execution systems, model check-Guo for valuable comments on the text. This research
ers have been used to find bugs in both the design andas supported by DHS grant FA8750-05-2-0142, NSF
the implementation of software [10, 12,19, 25,29, 30]. TRUST grant CCF-0424422, and NSF CAREER award
These approaches often require a lot of manual effort tdCNS-0238570-001. A Junglee Graduate Fellowship par-
build test harnesses. However, the approaches are sontgally supported Cristian Cadar.
what complementary teLEE: the testkLEE generates
can be used to drive the model checked code, similar ttﬁeferences
the approach embraced by Java PathFinder [31,37]. [1] Busybox.wwv. busybox. net, August 2008.
Previously, we showed that symbolic execution can [2] Coreutils. wwmwv. gnu. or g/ sof t war e/ coreutils, August
find correctness errors by crosschecking various imple- 2008.
mentations of the same library function [15]; this paper [3] IEEE Std 1003.1, 2004 editiomww. uni x. or g/ ver si on3/
shows that the technique scales to real programs. Subse- ' €e-std- htni, May 2008.
quent to our initial work, others applied similar ideas to [4 MINIX 3. www. mi ni x3. or g, August 2008.
finding correctness errors in applications such as networkl5] SecurityFocusww. secur i t yf ocus. com March 2008.
protocol implementations [13] and PHP scripts [9]. [6] uCLibc.wwv. ucl i be. or g, May 2008.

15

(7]

(8]

El

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

United States National Vulnerability Databaseyd. ni st. [24]
gov, March 2008.

ANAND, S., GODEFROID, P., AND TILLMANN, N. Demand-

driven compositional symbolic execution. Froceedings of [25]
Tools and Algorithms for the Construction and Analysis of-Sy

tems (TACAS 2008)

ARTZI, S., KIEZUN, A., DOLBY, J., TiP, F., DIG, D., PARAD- [26]

KAR, A., AND ERNST, M. D. Finding bugs in dynamic web
applications. InProceedings of the International Symposium on
Software Testing and Analysis (ISSTA 2008)

BALL, T., AND RAJAMANI, S. Automatically validating tempo-
ral safety properties of interfaces. Pmoceedings of the 8th Inter-
national SPIN Workshop on Model Checking of Software (SPIN
2001)

BOONSTOPPELP., GADAR, C.,AND ENGLER, D. RWset: At-
tacking path explosion in constraint-based test generatitn
Proceedings of Tools and Algorithms for the Construction an
Analysis of Systems (TACAS 2Q08)

[27]

(28]

[29]

BRAT, G., HAVELUND, K., PARK, S.,AND VISSER W. Model
checking programs. ItEEE International Conference on Auto- [30]
mated Software Engineering (ASE 2000)

BRUMLEY, D., CABALLERO, J., LIANG, Z., NEWSOME, J., [31]

AND SONG, D. Towards automatic discovery of deviations in
binary implementations with applications to error detattand
fingerprint generation. IfProceedings of USENIX Security Sym-
posium (USENIX Security 2007)

BRUMLEY, D., NEWSOME, J., ONG, D., WANG, H., AND
JHA, S. Towards automatic generation of vulnerability-badgd s
natures. IrProceedings of the 2006 IEEE Symposium on Security
and Privacy (IEEE S&P 2006)

CADAR, C.,AND ENGLER, D. Execution generated test cases:
How to make systems code crash itself. Aroceedings of the
12th International SPIN Workshop on Model Checking of Soft-
ware (SPIN 2005)

CADAR, C., GANESH, V., PawLowskI, P., DiLL, D., AND
ENGLER, D. EXE: Automatically generating inputs of death.
In Proceedings of the 13th ACM Conference on Computer and
Communications Security (CCS 2006)

CLARKE, E.,AND KROENING, D. Hardware verification using
ANSI-C programs as a reference. Pnoceedings of the Asia and
South Pacific Design Automation Conference (ASP-DAC 2003)

CLARKE, E., KROENING, D.,AND LERDA, F. A tool for check-
ing ANSI-C programs. IrProceedings of Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2004)

CoRBETT, J., DWYER, M., HATCLIFF, J., LAUBACH, S.,
PAsAREANU, C., ROBBY, AND ZHENG, H. Bandera: Extracting
finite-state models from Java source codePtaceedings of the
International Conference on Software Engineering (ICSE®QO

(32]

(33]

(34]

(35]

(36]

(37]

CosTA, M., CASTRO, M., ZHOU, L., ZHANG, L., AND
PEINADO, M. Bouncer: Securing software by blocking bad in-
put. InProceedings of the 21th ACM Symposium on Operating
Systems Principles (SOSP 2007)

CosTA, M., CROWCROFT J., CASTRO, M., ROWSTRON A.,
ZHOU, L., ZHANG, L., AND BARHAM, P. Vigilante: end-to-end
containment of Internet worms. Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP 2005)

(38]

(39]

EmmI, M., MAJUMDAR, R.,AND SEN, K. Dynamic test input
generation for database applicationsirternational Symposium
on Software Testing and Analysis (ISSTA 2007)

GANESH, V., AND DiLL, D. L. A decision procedure for bit-
vectors and arrays. IRroceedings of the 19th International Con-
ference on Computer Aided Verification (CAV 2007)

16

GODEFROID, P. Compositional dynamic test generation Pho-
ceedings of the 34th Symposium on Principles of Programming
Languages (POPL 2007)

GODEFROID, P. Model Checking for Programming Languages
using VeriSoft. InProceedings of the 24th ACM Symposium on
Principles of Programming Languages (POPL 1997)

GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Di-
rected automated random testing. Rmoceedings of the Con-
ference on Programming Language Design and Implementation
(PLDI 2005)

GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Automated
whitebox fuzz testing. liProceedings of Network and Distributed
Systems Security (NDSS 2008)

HOFFMANN, J.,AND KOEHLER, J. A new method to index and
query sets. IrProceedings of the Sixteenth International Joint
Conference on Artificial Intelligence (IJCAI 1999)

HoOLzZMANN, G. J. From code to models. Rroceedings of
2nd International Conference on Applications of Concucieto
System Design (ACSD 2001)

HoOLzZMANN, G. J. The model checker SPINSoftware Engi-
neering 235 (1997), 279-295.

KHURSHID, S., ASAREANU, C. S.,AND VISSER W. Gen-
eralized symbolic execution for model checking and testitrg
Proceedings of Tools and Algorithms for the Constructiond an
Analysis of Systems (TACAS 2Q03)

KROENING, D., CLARKE, E.,AND YORAv, K. Behavioral con-
sistency of C and Verilog programs using bounded model check
ing. In Proceedings of the 40th Design Automation Conference
(DAC 2003)

LATTNER, C.,AND ADVE, V. LLVM: A compilation framework
for lifelong program analysis & transformation. Rroceedings
of the international symposium on Code generation and opdim
tion (CGO 2004)

MAJUMDAR, R.,AND SEN, K. Hybrid concolic testing. IfPro-
ceedings of the 29th International Conference on Softwaig-E
neering (ICSE 2007)

MILLER, B., KOskl, D., LEE, C. P., MAGANTY, V., MURTHY,
R., NATARAJAN, A., AND STEIDL, J. Fuzz revisited: A re-
examination of the reliability of UNIX utilities and sends.
Tech. rep., University of Wisconsin - Madison, 1995.

SEN, K., MARINOV, D., AND AGHA, G. CUTE: A concolic

unit testing engine for C. Iim 5th joint meeting of the European
Software Engineering Conference and ACM Symposium on the
Foundations of Software Engineering (ESEC/FSE 2005)

VISSER W., PASAREANU, C. S.,AND KHURSHID, S. Test
input generation with Java PathFinder. Pmoceedings of the
2004 ACM SIGSOFT International Symposium on Software Test-
ing and Analysis (ISSTA 2004)

YANG, J., AR, C.,AND ENGLER, D. eXplode: a lightweight,
general system for finding serious storage system error8rdn
ceedings of the 7th Symposium on Operating Systems Degign an
Implementation (OSDI 2006)

ZELDOVICH, N., BoYD-WICKIZER, S., KOHLER, E., AND
MAZIERES, D. Making information flow explicit in HiStar. In
Proceedings of the 7th Symposium on Operating SystemsrDesig
and Implementation (OSDI 2006)

