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ABSTRACT
We present results for the “Impact Project Focus Area” on
the topic of symbolic execution as used in software testing.
Symbolic execution is a program analysis technique intro-
duced in the 70s that has received renewed interest in recent
years, due to algorithmic advances and increased availability
of computational power and constraint solving technology.
We review classical symbolic execution and some modern
extensions such as generalized symbolic execution and dy-
namic test generation. We also give a preliminary assess-
ment of the use in academia, research labs, and industry.

Categories and Subject Descriptors
D.2.5 [Testing and Debugging]: Symbolic execution

General Terms
Reliability

Keywords
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1. INTRODUCTION
The ACM-SIGSOFT Impact Project is documenting the

impact that software engineering research has had on soft-
ware development practice. In this paper, we present pre-
liminary results for documenting the impact of research in
symbolic execution for automated software testing. Sym-
bolic execution is a program analysis technique that was
introduced in the 70s [8, 15, 31, 35, 46], and that has found
renewed interest in recent years [9,12,13,28,29,32,33,40,42,
43,50–52,56,57].
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Symbolic execution is now the underlying technique of
several popular testing tools, many of them open-source:
NASA’s Symbolic (Java) PathFinder1, UIUC’s CUTE and
jCUTE2, Stanford’s KLEE3, UC Berkeley’s CREST4 and
BitBlaze5, etc. Symbolic execution tools are now used in in-
dustrial practice at Microsoft (Pex6, SAGE [29], YOGI7 and
PREfix [10]), IBM (Apollo [2]), NASA and Fujitsu (Sym-
bolic PathFinder), and also form a key part of the com-
mercial testing tool suites from Parasoft and other compa-
nies [60].

Although we acknowledge that the impact of symbolic ex-
ecution in software practice is still limited, we believe that
the explosion of work in this area over the past years makes
for an interesting story about the increasing impact of sym-
bolic execution since it was first introduced in the 1970s.
Note that this paper is not meant to provide a comprehen-
sive survey of symbolic execution techniques; such surveys
can be found elsewhere [19, 44, 49]. Instead, we focus here
on a few modern symbolic execution techniques that have
shown promise to impact software testing in practice.

Software testing is the most commonly used technique for
validating the quality of software, but it is typically a mostly
manual process that accounts for a large fraction of software
development and maintenance. Symbolic execution is one of
the many techniques that can be used to automate software
testing by automatically generating test cases that achieve
high coverage of program executions.

Symbolic execution is a program analysis technique that
executes programs with symbolic rather than concrete in-
puts and maintains a path condition that is updated when-
ever a branch instruction is executed, to encode the con-
straints on the inputs that reach that program point. Test
generation is performed by solving the collected constraints
using a constraint solver. Symbolic execution can also be
used for bug finding, where it checks for run-time errors or
assertion violations and it generates test inputs that trigger
those errors.

The original approaches to symbolic execution [8,15,31,35,
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46] addressed simple sequential programs with a fixed num-
ber of input data of primitive type. Modern approaches,
such as generalized symbolic execution (GSE) [33] and
jCUTE [51], address multi-threaded programs with complex
data structures as inputs. Much of the popularity of sym-
bolic execution applied to large programs is due to recent ad-
vances in dynamic test generation [12, 28], extending prior
work originating in the 80s and 90s [16, 17, 36] where the
symbolic execution is performed at run-time, along concrete
program executions. We discuss these techniques in more
detail in the next section.

Symbolic execution still suffers from scalability issues due
to the large number of paths that need to be analyzed
and the complexity of the constraints that are generated.
However, algorithmic advances, newly available Satifiability
Modulo Theories (SMT) solvers8 and more powerful ma-
chines have already made it possible to apply such tech-
niques to large programs (with millions lines of code) and to
discover subtle bugs in commonly used software – ranging
from library code to network and operating systems code –
saving millions of dollars (see Section 3).

2. SYMBOLIC EXECUTION
The key idea behind symbolic execution [35] is to use as

input values symbolic values instead of actual data, and to
represent values of program variables as symbolic expres-
sions. As a result, the outputs computed by a program are
expressed as a function of the symbolic inputs.

Symbolic execution maintains a symbolic state, which
maps variables to symbolic expressions, and a symbolic path
constraint PC, a first order quantifier free formula over sym-
bolic expressions. PC accumulates constraints on the inputs
that trigger the execution to follow the associated path. At
every conditional statement if (e) S1 else S2, PC is up-
dated with conditions on the inputs to choose between al-
ternative paths. A fresh path condition PC′ is created and
initialized to PC ∧¬σ(e) (“else” branch) and PC is updated
to PC ∧ σ(e) (“then” branch), where σ(e) denotes the sym-
bolic predicate obtained by evaluating e in symbolic state σ.
Note that unlike in concrete execution, both branches can
be taken, resulting in two execution paths. If any of PC or
PC′ becomes un-satisfiable, symbolic execution terminates
along the corresponding path. Satisfiability is checked with
a constraint solver.

Whenever symbolic execution along a path terminates
(normally or with an error), the current PC is solved and
the solution forms the test inputs—if the program is exe-
cuted on these concrete inputs, it will take the same path
as the symbolic execution and terminate. Symbolic execu-
tion of code containing loops or recursion may result in an
infinite number of paths; therefore, in practice, one needs to
put a limit on the search, e.g., a timeout or a limit on the
number of paths or exploration depth.

2.1 Generalized Symbolic Execution
Generalized symbolic execution (GSE) [33] extends clas-

sical symbolic execution with the ability of handling multi-
threading and program fragments whose inputs are recur-
sive data structures. GSE performs symbolic execution by
leveraging an off-the-shelf model checker, whose built-in ca-
pabilities allow handling multi-threading (and other forms
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of non-determinism). GSE handles input recursive data
structures by using lazy initialization. GSE starts execu-
tion of the method on inputs with uninitialized fields and
non-deterministically initializes fields when they are first ac-
cessed during the method’s symbolic execution. This allows
symbolic execution of program methods without requiring
an a priori bound on the number of input objects. The ap-
proach handles input arrays in a similar way. Method pre-
conditions can be used to ensure that fields are initialized
to values permitted by the precondition. Partial correctness
properties are given as assertions in the program.

On the first access to an un-initialized reference field, GSE
non-deterministically initializes it to null, to a reference to
a new object with un-initialized fields, or to a reference to
an object created during a prior initialization step; in this
way all the aliasing possibilities in the inputs are treated
systematically. Once the field has been initialized, the ex-
ecution proceeds according to the concrete (non-symbolic)
execution semantics. The model-checker systematically han-
dles the non-determinism introduced when creating different
heap configurations and when updating path conditions.

2.2 Dynamic Test Generation
Recent work on using symbolic execution for dynamic

test case generation—such as Directed Automated Ran-
dom Testing (DART) [28], EXecution Generated Executions
(EGT/EXE) [12, 13] or Concolic Testing (CUTE) [52]—
improve classical symbolic execution by making a distinction
between the concrete and the symbolic state of a program.
The code is essentially run unmodified, and only statements
that depend on the symbolic input are treated differently,
adding constraints to the current path condition. This dy-
namic test generation approach has been implemented in
various flavors, some of which are discussed in Section 3.

A significant scalability challenge for this technique is how
to handle the exponential number of paths in the code. Re-
cent extensions have tried to address this challenge by us-
ing heuristics to guide path exploration [13,29], interleaving
symbolic execution with random testing [40], caching func-
tion summaries for later use by higher-level functions [26] or
eliminating redundant paths by analyzing the values read
and written by the program [7].

Dynamic test generation based on symbolic execution has
been implemented in a variety of tools [9, 11–13, 28, 29, 41,
52,57]. We present several of them in the following section.

3. TOOLS AND IMPACT
In this section we present several recent tools that are

based on symbolic execution, together with a preliminary
assessment of their impact in practice. In the very limited
scope of this paper, it is impossible to review here all the
relevant tools. Instead, we focus on a few representative ones
that implement the different flavors of symbolic execution
presented in the previous section. Albeit incomplete, we
do hope that this list convinces the reader of the growing
impact of symbolic execution in practice.

JPF–SE and Symbolic (Java) PathFinder. The orig-
inal GSE framework was developed for Java programs and
used NASA’s Java PathFinder (JPF) model checker as an
enabling technology (see JPF–SE [1]), although GSE can
be made to work with other model checkers and imperative
languages. Since JPF is a general purpose model checker,



GSE benefits from its collection of built-in state space explo-
ration capabilities, such as different search strategies (e.g.,
heuristic search) as well as partial order and symmetry re-
ductions; (abstract) state matching can be used to avoid
performing redundant work [59]. A similar tool [23] uses
the Bogor model checking framework, instead of JPF, while
yet another approach uses SPIN [54], for checking parallel
numeric applications.

GSE originally leveraged JPF using a source-to-source
program transformation, but a more recent implementation
of GSE, Symbolic PathFinder (SPF) [43], takes a different
approach: instead of running the instrumented program on
the standard JPF JVM, SPF implements a non-standard in-
terpretation of Java bytecode using a modified JPF JVM,
thereby performing symbolic execution more directly. Sym-
bolic JPF stores symbolic information in attributes associ-
ated with the JPF concrete states, and it supports mixed
concrete/symbolic execution.

SPF can analyze both Java bytecode and statechart mod-
els, e.g., Simulink/Stateflow, Standard UML, or Rhapsody
UML, via automatic translation into bytecode. SPF can
handle mixed integer and real constraints, and complex
mathematical constraints, via heuristic solving. A parallel
version also exists [56].

SPF is part of the JPF project9 (open-sourced since 2003)
and it has been applied at NASA in various projects, such
as test case generation for the Orion control software (where
it helped uncover subtle bugs [43]), fault tolerant protocols,
NextGen (TSAFE) aviation software or robot executives.
SPF has been extended with a symbolic string analysis at
Fujitsu, where it is being used for testing web applications10.
MIT’s tool JFuzz [32], a concolic whitebox fuzzer for Java,
is built on top of SPF and is freely available from the JPF
web site.

DART. DART [28], short for “Directed Automated Ran-
dom Testing”, blends dynamic test generation with random
testing and model checking techniques with the goal of sys-
tematically executing all (or as many as possible) feasible
paths of a program, while checking each execution for vari-
ous types of errors. DART executes a program starting with
some given or random concrete inputs, gathers symbolic con-
straints on inputs at conditional statements along the exe-
cution, and then uses a constraint solver to infer variants of
the previous inputs in order to steer the next execution of
the program towards an alternative feasible execution path.
This process is repeated systematically or heuristically until
all feasible execution paths are explored or a user-defined
coverage criteria is met.

A key observation in DART is that imprecision in sym-
bolic execution can be alleviated using concrete values and
randomization: whenever symbolic execution does not know
how to generate a constraint for a program statement de-
pending on some inputs, one can always simplify this con-
straint using the concrete run-time values of those inputs.
In those cases, symbolic execution degrades gracefully by
leveraging concrete values into a form of partial symbolic
execution. DART was first implemented at Bell Labs for
testing C programs, and has inspired many other extensions
and tools since.
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CUTE and jCUTE. CUTE (A Concolic Unit Testing En-
gine) and jCUTE (CUTE for Java) [50–52] extends DART to
handle multi-threaded programs that manipulates dynamic
data structures using pointer operations. CUTE avoids im-
precision due to pointer analysis by representing and solving
pointer constraints approximately. In multi-threaded pro-
grams, CUTE combines concolic execution with dynamic
partial order reduction to systematically generate both test
inputs and thread schedules.

CUTE and jCUTE were developed in University of Illi-
nois at Urbana-Champaign for C and Java programs, re-
spectively. Both tools have been applied to test several
open-source software including java.util library of Sun’
JDK 1.4 and bugs detected by these tools have been made
available to the developers. Concolic testing has also been
studied in different courses at several universities.

CREST. CREST [9] is an open-source tool for concolic
testing of C programs. CREST is an extensible platform
for building and experimenting with heuristics for selecting
which paths to test for programs with far too many exe-
cutions paths to exhaustively explore. Since being released
as an open source in May 2008 11, CREST has been down-
loaded 1500+ times and has been used by several research
groups. For example, CREST has been used to build tools
for augmenting existing test suites to test newly-changed
code [62] and for detecting SQL injection vulnerabilities [47],
has been modified to run distributed on a cluster for testing
a flash storage platform [34], and has been used to experi-
ment with more sophisticated concolic search heuristics [4].
CREST has also been used in teaching courses at few uni-
versities.

SAGE: Automated Whitebox Fuzzing. Whitebox
fuzzing [29] is a recent approach to security testing which ex-
tends the scope of systematic dynamic test generation from
unit testing to whole-application testing. Whitebox fuzzing
is able to scale to large file parsers embedded in applications
with millions of lines of code and execution traces with bil-
lions of machine instructions, such as Microsoft Excel. Sev-
eral key technical innovations made this possible: new tech-
niques for symbolically executing very long execution traces
with billions of program instructions, for symbolic execution
at the x86 assembly level, for compact representation of path
constraints, new parallel state-space search algorithms like
the generational search, and new support in SMT solvers
(such as Z3 [22]) for test generation.

Whitebox fuzzing was first implemented in SAGE [29] and
since adopted in several other tools, such as CatchConv, Fuz-
zgrind, Immunity, etc. Over the last couple of years, white-
box fuzzers have found many new security vulnerabilities
(buffer overflows) in Windows [29] and Linux [42] applica-
tions, including codecs, image viewers and media players.
Notably, SAGE found roughly one third of all the bugs dis-
covered by file fuzzing during the development of Microsoft’s
Windows 7 [27], saving millions of dollars by avoiding ex-
pensive security patches for nearly a billion PCs worldwide.
Since 2008, SAGE has been continually running on an av-
erage of 100+ machines automatically “fuzzing” hundreds of
applications in a dedicated security testing lab. To date, this
represents the largest computational usage ever for any SMT
solver, according to the authors of the Z3 SMT solver [22].

11Available at http://code.google.com/p/crest



Pex. Pex [57] implements Dynamic Symbolic Execution
to generate test inputs for .NET code, supporting languages
such as C#, VisualBasic, and F#. Pex extends the basic ap-
proach in several unique ways: While Pex can use concrete
values to simplify constraints, Pex usually faithfully repre-
sents the semantics of almost all .NET instructions symbol-
ically, including safe and unsafe code, as well as instructions
that refer to the object oriented .NET type system, such
as type tests and virtual method invocations. Pex uses the
SMT solver Z3 [22] to compute models, i.e. test inputs, for
satisfiable constraint systems. Pex uses approximations for
theories for which Z3 has no precise decision procedures, e.g.
for string [6] and floating point arithmetic [38]. Pex sup-
ports the generation of test inputs of primitive types as well
as (recursive) complex data types, for which Pex automati-
cally computes a factory method which creates an instance
of a complex data type by invoking a constructor and a se-
quence of methods, whose parameters are also determined
by Pex. Pex combines several search strategies which select
the order in which different execution paths are attempted,
in order to achieve high code coverage quickly [61]. In ad-
dition to the test case generation capabilities, Pex comes
with a mock and stub framework, which makes it easy to
write and reuse models for .NET libraries. [21]. Pex enables
Parameterized Unit Testing [58], an extension of traditional
unit testing.

Pex is a Visual Studio 2010 Power Tool12. It is used by
several groups within Microsoft. Externally, Pex is available
under academic and commercial licenses. The stand-alone
Pex tool has been downloaded more than 40,000 times. Any-
one can try out Pex in the browser13, where visitors let Pex
analyze more than 250,000 programs within the first five
months of the launch of the website.

EXE. EXE [13] is a symbolic execution tool for C designed
for comprehensively testing complex software, with an em-
phasis on systems code. To deal with the complexities of
systems code, EXE models memory with bit-level accuracy.
This is needed because systems code often treats memory
as untyped bytes, and observes a single memory location in
multiple ways: e.g., by casting signed variables to unsigned,
or treating an array of bytes as a network packet, inode, or
packet filter through pointer casting. As importantly, EXE
provides the speed necessary to quickly solve the constraints
generated by real code, through a combination of low-level
optimizations implemented in its purposely designed con-
straint solver STP [13, 25], and a series of higher-level ones
such as caching and irrelevant constraint elimination.

As a result of these features, EXE was able to automati-
cally generate high-coverage test suites, and to discover deep
bugs and security vulnerabilities in a variety of complex
code, ranging from library code to file systems, packet filters,
device drivers and network servers and tools [7, 12,13,63].

KLEE. KLEE [11] is a redesign of EXE, built on top of the
LLVM [39] compiler infrastructure. Like EXE, it performs
mixed concrete/symbolic execution, models memory with
bit-level accuracy, employs a variety of constraint solving
optimizations, and uses search heuristics to get high code
coverage. One of the key improvements of KLEE over EXE
is its ability to store a much larger number of concurrent
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states, by exploiting sharing among states at the object-,
rather than at the page-level as in EXE. Another important
improvement is its ability to handle interactions with the
outside environment — e.g., with data read from the file
system or over the network — by providing models designed
to explore all possible legal interactions with the outside
world.

KLEE has been open-sourced in June 200914. Since then,
it has been downloaded by a variety of users from both
the academia and the industry. In particular, it has been
used and extended by several research groups, with some of
these extensions being contributed back to the main branch.
These users have built upon KLEE in a variety of areas,
ranging from wireless sensor networks [48] to automated de-
bugging [64], reverse engineering and testing of binary device
drivers [14,37], exploit generation [3], online gaming [5], and
schedule memoization in multithreaded code [20].

4. CONCLUSION
In this paper we focused on modern symbolic execution

techniques that have become popular in recent years, specif-
ically to enable systematic testing for bug finding; we also
reviewed the associated tools and their impact in practice.
Symbolic execution has also served as a basis for formal ver-
ification [18,24,30], which is not a focus of this paper.

We outline here some of the challenges to symbolic execu-
tion and its wider adoption in software engineering practice.
A significant scalability challenge for symbolic execution is
how to handle the exponential number of paths in the code.
Further advances in compositional techniques [26], pruning
redundant paths [7], and heuristics search [9,40] are needed.
Parallelization can also help [13, 29, 53, 56] since the paths
generated by symbolic execution can be analyzed indepen-
dently. Incremental techniques that leverage program dif-
ferences to focus symbolic execution also hold promise for
checking programs as they evolve [45].

Real applications often require solving complex, non-
linear mathematical constraints that are undecidable or very
hard to solve; new heuristic techniques are necessary to solve
such problems [38, 55]. Test case generation for web appli-
cations and security problems requires solving string con-
straints and combinations of numeric and string constraints.
Progress in these areas would significantly extend the impact
of symbolic execution to new application domains.
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