
Integrating Model Checking and Inductive Logic
Programming

Dalal Alrajeh1, Alessandra Russo1, Sebastian Uchitel1,3, and Jeff Kramer1

1 Imperial College London
{da04,ar3,su2,jk}@doc.ic.ac.uk

2 University of Buenos Aires/CONICET
s.uchitel@dc.uba.ar

Abstract. In this paper we argue that Inductive Logic Programming
can provide automated support to correct errors identified by model
checking, and that model checking problems provide the relevant context
for learning hypotheses that are meaningful within the domain being
studied. We present a general framework for such integration, discuss its
main characteristics and present an overview of its application.

1 Introduction

Model Checking is an automated technique for verifying formal artefacts. It has
been successfully used to verify system designs and properties in a variety of
application domains, ranging from hardware and software systems to biological
systems. A model checker requires a model provided in some formal description
language and a semantic property that such model is expected to meet. The
model checker then automatically checks the validity of the specified property
in the model semantics. If the property is found to not hold, a counterexample
is generated which shows how the property can be falsified.

The automatic generation of counterexamples is one of model checking’s pow-
erful features for system fault detection. Counterexamples are meant to help
engineers in the tasks of identifying the cause of a property violation and cor-
recting the model. However, these tasks are far from trivial with little automated
support. Even in relatively small models such tasks can be very complex since
(i) counterexamples are expressed in terms of the model semantics rather than
the modelling language, (ii) counterexamples show the symptom and not the
cause of the violation and (iii) any manual modification to the model may fail to
resolve the problem and even introduce violations to other desirable properties.

Inductive Logic Programming (ILP), on the other hand, is at the intersec-
tion of inductive learning and logic programming and is concerned with learning
general principles (in the form of logic programs) that explain (positive and
negative) observations with respect to an existing background knowledge also
expressed as a logic program. As the search space for hypotheses might be very
large (sometimes infinite), ILP methods make use of a language bias that con-
strains the search by defining the syntactic structure of the hypotheses to be
computed. However, identifying a priori the precise relationship between back-
ground knowledge, observations and language bias that would lead to the most
relevant hypotheses within the given domain remains a difficult task.

2 Dalal Alrajeh, Alessandra Russo, Sebastian Uchitel, and Jeff Kramer

In this paper, we argue that model checking and ILP can be seen as two com-
plementary approaches with much to gain in their integration – model checking
providing ILP with a precise context for learning the most relevant hypothe-
ses in the domain being studied, and ILP supplying model checking with an
automatic method for learning corrections to models. We discuss how this inte-
gration can be achieved, address some of the relevant issues that need to be taken
into consideration and summarise its application to the problem of goal-oriented
requirements elaboration.

2 Model Checking

The process of model checking comprises three main tasks: modelling, specifica-
tion and verification [3]. Modelling is the process of describing in some formal
modelling language an artefact that is to be reasoned about. In the context
of software systems, the artefact is typically related to a system’s design or re-
quirements. The formal language is normally the input to a model checker (e.g. a
process algebra such as FSP [10]) or one that can be automatically translated
into it (e.g. scenario notations such as MSC [7]). The semantics of the formal
language is given in terms of a state-based semantic domain such as Labelled
Transition Systems (LTSs), Kripke structures or Büchi automata. The formal
description resulting from the modelling process is referred to as the model.

The specification task involves formally stating the semantic properties that
the model must satisfy. The specification language is usually some logical for-
malism. In software engineering, temporal logics such as Linear Temporal Logic
(LTL) and Computation Tree Logic are commonly used.

As part of the verification process, the model checker automatically checks
whether the model semantics satisfies the specified property. In other words, it
verifies that the system behaviour captured in the model semantics σ(M) of the
given model M satisfy the specified property S. This is denoted as σ(M) |= S.
When this is not the case, the model checker returns a counterexample, i.e. a
system behaviour that violates the property. For instance, in the case of an
LTS model and an LTL property, a counterexample takes the form of a trace,
i.e. sequence of event labels. A model checker may also be used to generate
witnesses of a property, which are behaviours in σ(M) that satisfy the property.

3 MoCIL: An Integration Approach

A general ILP task [11] can be defined as the task of constructing hypotheses
H that, together with a given background knowledge B, explain a given set of
positive and negative observations O+ ∪O−, namely:

B ∧H |= O+ and B ∧H 6|= O− (1)
The meaning of |= and the exact relationship between B, H O+ and O− rely on
several factors which include the representation language used to express them
(e.g. definite or non-monotonic logic programs), its semantics and the particu-
lar chosen inductive framework [13]. The integration of an ILP task with model
checking has to operate at the semantic level of the two reasoning tasks, for
the learning process to be able to reason over consequences of the given model

Integrating Model Checking and Inductive Logic Programming 3

and learn solutions for correcting the model. The logic programming formalism
and semantics of the ILP task need, therefore, to capture the model semantics,
properties, counterexamples and witnesses of the model checking task, and the
learned hypotheses has to suggest solutions in the modelling language on how
to change the models. We discuss here the main properties that an integration
of ILP and model checking has to address: soundness of the integration, correct-
ness of the inductive solution with respect to counterexamples and witnesses,
and completeness of the solutions with respect to the specified property.

Property 1: Soundness of the integration. The first step of the integration
is the correspondence of the semantics governing the model checking and the ILP
tasks. Models and model semantics of the model checking task are represented
in the form of a logic program that preserves the satisfiability relation of the
model semantics. Such a correspondence is captured by a translation function τ
that has to satisfy the following soundness theorem.

Theorem 1. Let M be a model with a model semantics σ(M). Let τ be a trans-
lation function from the modelling and specification languages to a logic program
formalism. Then, τ is a sound translation if and only if for any expression P in
the specification language if σ(M) |= P then τ(M) |= τ(P).

Note that for the above to hold, τ must express in the logic program all
semantic considerations of the entailment σ(M) |= P . For instance, if M is
written using FSP as a modelling language, its model semantics σ(M) is an LTS
and the specification language is LTL, then τ needs to capture, among other
aspects, the closed world assumption underlying the LTS/LTL entailment.

Property 2. Correctness of an inductive solution. In ILP, a solution to an
inductive task is a hypothesis H that satisfies condition (1), where the meaning
of |= is given by the underlying logical programming semantics and the chosen
inductive framework. Sakama and Inoue [14] have identified several inductive
frameworks under which a hypothesis can constitute a solution to an inductive
problem. These include explanatory, brave, cautious, and learning from satisfia-
bility. The choice of the inductive framework affects the set of acceptable solu-
tions an ILP system may compute and hence the correctness of these solutions
with respect to the detected counterexamples.

The aim of the integration of ILP and model checking is to reduce the set of
counterexamples that a model M covers for a given property S to the empty set.
In other words, it is concerned with computing a refined model M ∪ M̃ that no
longer includes the counterexamples, but preserves the witnesses of S in σ(M).3

Given a model M , a property S consistent with M , a counterexample ψ− and a
witness ψ+ of S, a correct extension of M with respect to ψ+ and ψ− is a model
M̃ so that ψ− 6∈ σ(M ∪ M̃) and ψ+ ∈ σ(M ∪ M̃).

The task of finding M̃ can be expressed as an ILP task. The model M consti-
tutes the core of the background knowledge B, the property S is an integrity con-
straint I that has to be satisfied by the learned hypotheses, the counterexample
and witness(es) represent the negative and positive observations of the learning

3 We consider the case where errors in a model can be corrected by extensions only.

4 Dalal Alrajeh, Alessandra Russo, Sebastian Uchitel, and Jeff Kramer

respectively. In this context, a solution H is a logic program that does not entail
the negative observations under cautious induction, written B∧H 6|=c O

−, whilst
it entails the positive observations under brave induction, written B∧H |=b O

+,
and it is consistent with the integrity constraints I. We refer to such solutions
as correct inductive solutions of O+ and O− with respect to B and I. The rela-
tionship between correct extensions and correct inductive solutions is captured
by the following theorem.

Theorem 2. Let M be a model, S a property, ψ− a counterexample and ψ+

a witness such that ψ− ∈ σ(M) and ψ+ ∈ σ(M). Let B = τ(M), I = τ(S),
O− = τ(ψ−) and O+ = τ(ψ+) and L a language bias. An hypothesis H is a
correct inductive solution of O+ and O− with respect to B and I if and only if
τ−1(H) is a correct extension of M with respect to ψ+ and ψ−.

Note that in the above theorem we assume that the ψ− and ψ+ can be char-
acterised in the specification language and hence can be translated using τ . For
example a trace e1, e2, . . ., en can be described in LTL as

∧n
i=1©iei.

Property 3. Completeness of Solutions. Although the above notion of cor-
rectness of an ILP solution H may guarantee that the detected counterexample
is no longer covered by σ(M ∪ τ−1(H)), it does not guarantee that this ex-
tended model satisfies the specified property S. To ensure the satisfaction of the
property, all counterexamples to S have to be removed while witnesses must be
preserved. This is achieved through iterative steps of correct extensions. Assum-
ing that there exists such an extension M̃ for which σ(M ∪ M̃) |= S, several
iterations may be required, where at each iteration i, (for i ≥ 0) the newly
extended model M ∪ τ−1(H1) ∪ ∪ τ−1(Hi) is verified against the specified
property S and if a counterexample is detected, a new extension τ−1(Hi+1) is
learned that eliminates it.

Although the number of counterexamples maybe infinite, it may be sufficient
to learn solutions that are correct inductive solutions with respect to a finite
set of finite counterexamples. Eliminating such set would have to guarantee
elimination of all counterexamples in the model semantics. We refer to this set as
the set of counterexample characterisations. For instance, such a set exists when
using safety-LTL as the specification language and LTS as the model semantics.
The following theorem captures the completeness property of a set of correct
extensions (τ−1(H1) ∪ ∪ τ−1(Hm)) for the verification problem σ(M) |= S.

Theorem 3. Let M be a model and S a property consistent with M . Given a set
{ψ−

i } of counterexample characterisations and a set {ψ+
j } of witnesses of S, then

there exists a set {Hi} of correct inductive solutions of τ({ψ+
i }) and τ({ψ−

i })
with respect to τ(M) and τ(S) such that σ(M ∪ τ−1(H1)∪∪ τ−1(Hm)) |= S.

4 Problem solving using MoCil

We have successfully applied the MoCIL approach to solve various problems
within the software engineering domain including goal-oriented requirements
elaboration [1] and model transition system refinement [2]. Though these differ in
the input languages, semantics and the specific class of correct extensions, they

Integrating Model Checking and Inductive Logic Programming 5

share a number of characteristics. Their models describe event-based systems,
with a model semantics expressed in terms of finite-state transition systems,
which can be represented as normal logic programs. Due to lack of space, we
briefly summarise here the application to the first.

Goal-oriented Requirements Elaboration refers to the process of identifying
explicit constraints, called operational requirements, on the operations to be
performed by a software so that the system only behaves in a manner that
satisfies the given goals. In [1] we have showed how model checking can be
used to detect incompleteness of operational requirements (i.e. models) with
respect to goals (i.e. properties), and how ILP can be used to learn operational
requirements (i.e correct extensions) that are complete with respect to the given
goals. Table 1 instantiates the concepts discussed above in this problem domain.

In brief, the verification problem is concerned with checking whether an LTS,
i.e. the model semantics of a given operational requirements model R with do-
main knowledge D, expressed in Fluent Linear Temporal Logic (FLTL), satisfies
given goal properties G, also expressed in FLTL, i.e. σ(D ∪ R) |= G, where |=
is interpreted as the FLTL satisfaction relation [6]. When this is not the case,
the LTSA model checker [10] produces the shortest trace ψ− where the goal G
is violated. The LTSA is also used to generate a witness ψ+ of G. The task is
then to compute a correct extension R̃ of operational requirements such that
σ(D ∪R ∪ R̃) |= G.

The model D ∪ R, counterexample ψ− and witness ψ+ are encoded into an
EC program. The choice of EC is influenced by its similarity to FLTL, where it
allows explicit representation of and reasoning about event occurrences and flu-
ent values at different (time) points over a linear time structure. Furthermore, as
requirements are expressed as formulae with negated literals and the valuations
of fluents in traces of the LTS consider a close world assumption, the soundness
of the integration is with respect to EC normal logic programs with negation as
failure and stable model semantics. The generated program is locally stratified,
and therefore has a single stable model. The soundness property can be proven
by showing that for any fluent f in the FLTL language and position i in a trace
σ in the LTS, if σ, i |= f , then the atom holdsAt(f,i,σ) is also true in the stable
model of τ(R ∪D) ∧ τ(ψ) (Theorem 5.1 in [1]).

An ILP system based on the XHAIL algorithm [12] has been used to compute
correct extensions with respect to ψ− and ψ+. The language bias is defined
to capture clauses that correspond to the syntax of operational requirements
expressions. The system computes multiple correct inductive solutions. These
are translated back into FLTL; one is then selected and added to the initial
model R∪D; the next iteration of the process is then started. At each iteration
it is guaranteed that the inverse translation of the chosen H (i.e. τ−1(H)) is
a correct extension of the correct model with respect to the counterexample
ψ− and witness ψ+ (Theorem 6.1 in [1]). In [1] it is shown that this process
terminates and a complete set of correct extensions has been learned for which
D ∪ R ∪ τ−1(H1)... ∪ τ−1(Hn) |= G.

6 Dalal Alrajeh, Alessandra Russo, Sebastian Uchitel, and Jeff Kramer

Concept Instantiation

Model Operational requirements and domain properties [9] in FLTL [6]

Model Semantics Maximal (w.r.t. traces) deterministic Labelled Transition System [6]

Property Time-bounded achieve goals [4] expressed in FLTL

Counterexample Shortest trace violating a goal

Witness Finite trace that satisfies the goals

Logic Program Event Calculus (EC) [8] normal logic programs

LP models Stable model semantics [5]
Table 1. Concepts in MoCil applied to the requirements elaboration problem.

5 Conclusion and Future Work

In this paper we have briefly presented a framework for integrating model check-
ing and ILP. We have summarised an instantiation of the framework to the
problem domain of goal-oriented requirements elaboration. We believe that this
integrated framework can be used to a variety of problems in different applica-
tion domains including bioinformatics, business process modelling, network and
security managements and normative systems.

References

1. D. Alrajeh. Requirements Elaboration using Model Checking and Inductive Learn-
ing. PhD thesis, Imperial College London, London, United Kingdom, 2010.

2. D. Alrajeh, J. Kramer, A. Russo, and S. Uchitel. An inductive approach for
modal transition system refinement. In Technical Communications of the 27th
Intl. Conf. on Logic Programming, pages 106–116, 2011.

3. E.M. Clarke, O. Grumberg, and D.A. Peled. Model checking. MIT Press, Cam-
bridge, MA, USA, 1999.

4. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements ac-
quisition. Science of Computer Programming, 20(1):3–50, 1993.

5. M. Gelfond and V. Lifschitz. The stable model semantics for logic programming.
In R.A. Kowalski and K. Bowen, editors, Proc. of 5th Intl. Conf. on Logic Pro-
gramming, pages 1070–1080, 1988.

6. D. Giannakopoulou and J. Magee. Fluent model checking for event-based systems.
In Proc. of the 9th European softw. Eng. conf., pages 257–266, 2003.

7. ITU. Message Sequence Charts. Intl. Telecommunications Union, Telecommunica-
tion Standardisation Sector, 1996.

8. R. A. Kowalski and M. Sergot. A logic-based calculus of events. New generation
Comp. , 4(1):67–95, 1986.

9. E. Letier and A. van Lamsweerde. Deriving operational software specifications
from system goals. In Proc. of 10th ACM SIGSOFT Symp. on Foundations of
Softw. Eng., pages 119–128, 2002.

10. J. Magee and J. Kramer. Concurrency : State Models and Java Programs. John
Wiley and Sons, 1999.

11. S. Muggleton and L. de Raedt. Inductive logic programming: Theory and methods.
The Journal of Logic Programming, 19-20(Supplement 1):629 – 679, 1994.

12. O. Ray. Nonmonotonic abductive inductive learning. J. of Applied Logic, 7(3):329–
340, 2009.

13. C. Sakama and K. Inoue. Brave induction. In Proc. of the 18th Intl. Conf. on
Inductive Logic Programming, pages 261–278, 2008.

14. C. Sakama and K. Inoue. Brave induction: a logical framework for learning from
incomplete information. Machine Learning, 76:3–35, 2009.

