
A Non-monotonic Theory of Oracle-guided
Inductive Synthesis

Dalal Alrajeh1, Susmit Jha2, and Sanjit Seshia3

1 Imperial College London, UK
dalal.alrajeh@ic.ac.uk

2 Computer Science Laboratory, SRI International, USA
jha@csl.sri.com

3 EECS, UC Berkeley, USA
sseshia@eecs.berkeley.edu

Specifications provide significant aid in the formal analysis of software sup-
porting tasks such as consistency management, system verification, program
synthesis, program repair and software maintenance. However writing such spec-
ifications is difficult and time-consuming. Several approaches have been proposed
for automatically generating complete specifications from abstract descriptions
(such as UML diagrams and user requirements) which mainly differ in their
method of computation, e.g., refinement operators [7], patterns library [6]. Re-
cent years have seen the emergence of techniques based on inductive learning, for
instance [4]. The input to these techniques are samples classified as either posi-
tive or negative examples. The aim is to learn a specification that is consistent
with all positive examples and inconsistent with all the negative ones. However,
the quality of a learnt specification (and its proximity to the target specification)
heavily depends on the quality of the samples provided to the learner.

Oracle-guided inductive synthesis (OGIS) is a class of approaches that re-
strict the set of samples for learning to those directly relevant to some target
specification [5]. The learner can query an oracle (e.g., a user or verifier) for
examples. The oracle in return responds with positive or negative example that
is intended to guide the learner’s search for candidate specifications. The ora-
cle is also tasked with determining whether the learner has found the correct
specification. Each time a negative (resp. positive) example that is consistent
(resp. inconsistent) with the current candidate specification is given, the learner
proceeds in one of the following directions: (1) the candidate specification is
discarded and a new one is synthesized from the set of examples accumulated
thus far; or (2) an additional specification is synthesized from the new exam-
ple and added to the previous ones; we say in the second case a specification
has been refined. Both directions may lead to learning a correct specification
(consistent with all positive examples but none of the negatives). We argue that
the former, from a practical perspective, requires users to abandon any develop-
ment activities they may have started based on the earlier specification. From a
conceptual view, it violates the principle of elaboration tolerance [2, 8]. The ap-
plicability of the latter, however, depends on the kind of inference allowed by the
learner. Typical OGIS instances that follow this direction assume monotonicity
of the synthesis procedure. By this, it is guaranteed that candidate specifications



generated from new examples are consistent with those of previous iterations.
However, this guarantee does not hold in the case of non-monotonic learners.

In this work, we conduct a formal investigation into properties of oracle-
guided inductive synthesis for specification refinement by examining the impact
of using two types of learners: monotonic and non-monotonic [3]. In monotonic
learning, inferences cannot be invalidated simply by adding new expressions
to a specification. Non-monotonic learning, on the other hand, allows infer-
ences to be made provisionally which can be retracted as new information be-
comes available and thus specifications are extended. Our investigation seeks
to answer the following questions: Does the quality of a specification improve
with a non-monotonic learner? What are the termination guarantees with non-
monotonic learner? In cases where termination is guaranteed, does the use of
a non-monotonic learner improve the speed of termination? In answering these,
we assume an oracle that defines a fixed ordering over the examples generated
and seek to understand the influence of the following factors: (i) the types of
queries submitted to an oracle (e.g., correctness and whether they provide both
positive and negative examples or positive witness only); and (ii) the resources
available to the learner: finite versus infinite memory. We direct our analysis
to a particular instance of OGIS for synthesizing target specifications in Linear
Temporal Logic (LTL) [9]. The quality of a specification is measured in terms of:
the size of the formulas, and the size of the language defined by the formulas. For
monotonic learning, we have developed a monotonic learner that can compute
properties in tight Signal Temporal Logic (a flavour of LTL over continuous sig-
nals) from positive examples only. As for non-monotonic learning, we consider
the approach described in [1] which provides a transformation function from a
subclass of LTL to a non-monotonic logic and vice-versa.

References

1. Alrajeh, D., Ray, O., Russo, A., Uchitel, S.: Using abduction and induction for
operational requirements elaboration. J. Applied Logic 7(3), 275–288 (2009)

2. Baral, C., Zhao, J.: Non-monotonic temporal logics for goal specification. In: Pro-
ceedings of IJCAI07,. pp. 236–242 (2007)

3. Frankish, K.: Non-monotonic inference. In: Barber, A. (ed.) Encyclopedia of Lan-
guage and Linguistics. Elsevier (2005)

4. Gehr, T., Dimitrov, D., Vechev, M.: Learning commutativity specifications. In: Pro-
ceedings of CAV15. pp. 307–323 (2015)

5. Jha, S., Seshia, S.: A theory of formal synthesis via inductive learning. Acta Infor-
matica (2016)

6. van Lamsweerde, A.: Requirements Engineering - From System Goals to UML Mod-
els to Software Specifications. Wiley (2009)

7. Li, F.L., Horkoff, J., Borgida, A., Guizzardi, G., Liu, L., Mylopoulos, J.: From stake-
holder requirements to formal specifications through refinement. In: Proceedings of
REFSQ15 (2015)

8. McCarthy, J.: The artificial intelligence debate: False starts, real foundations. chap.
Mathematical Logic in Artificial Intelligence, pp. 297–311. MIT Press (1988)

9. Pnueli, A.: The temporal logic of programs. In: Proceedings of SFCS77. pp. 46–57
(1977)


