
Building your own C Toolkit: Part 2

Duncan C. White,
d.white@imperial.ac.uk

Dept of Computing,
Imperial College London

6th June 2013

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 1 / 16

Advanced Tools (continued) Today’s Contents

Last week, we introduced the idea of building a C programming
toolkit, and covered the following tools or techniques:

Programmer’s Editors.
Automatic Compilation: Make.
Automatic Ruthless Testing.
Debugging: gdb.
Generating prototypes automatically: proto.
Fixing memory leaks: libmem.

Today, we’re going to carry on, and cover:

Optimization and Profiling.
Generating ADT modules automatically.
Reusable ADT modules: hashes, sets, lists, trees etc.
Building shortlived tools on the fly.
Parser and Lexer Generator tools: yacc and lex.

As last week, there’s a tarball of examples associated with this
lecture. Both lectures’ slides and tarballs are available on CATE
and at: http://www.doc.ic.ac.uk/~dcw/c-tools/

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 2 / 16

Advanced Tools Optimization and Profiling (tarball 01.hash-profile)

gcc and most other C compilers can be asked to optimize the
code they generate, gcc’s option for this is -O. Worth trying,
rarely makes a significant difference.

What makes far more difference is finding the hot spots using a
profiler and selectively optimizing them. Can produce dramatic
speedups, and profiling often produces surprises.

Let’s try profiling the bugfixed hash module’s iterate 10000 test
program, and see what surprises there may be:

Add -pg to CFLAGS and LDLIBS in Makefile.
Run make clean all (compile and link with -pg, which generates
instrumented code which tracks function entry and exit times.
Run ./iterate 10000, which runs a bit slower than normal
(because profiling slows it down a bit), producing a binary
profiling file called gmon.out.
The tool gprof then analyzes the executable and the data file,
producing a report showing the top 10 functions (across all their
calls) sorted by percentage of total runtime. Run:
gprof ./iterate gmon.out > profile.orig

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 3 / 16

Advanced Tools Optimization and Profiling (tarball 01.hash-profile)

head profile.orig shows results like:

% cumul self self total

time seconds seconds calls us/call us/call name

38.71 3.37 3.37 20000 168.37 206.96 hashFree

22.92 5.36 1.99 10000 199.44 289.14 hashCopy

11.29 6.34 0.98 10000 98.22 98.22 hashCreate

10.31 7.24 0.90 325330000 0.00 0.00 copy_tree

8.87 8.01 0.77 650660000 0.00 0.00 free_tree

650 million calls to free tree and 325 million calls to copy tree are
suspicious. Aha! The hash table’s array of trees has 32533 entries!

hashFree and hashCopy have the same structure, iterating over the
array of trees making one call to free tree/copy tree per tree. The vast
majority of these trees are empty.

We can double the speed of iterate by adding if(the tree != NULL)
conditions on tree calls in hashFree, hashCopy and others.

We might also consider shrinking the size of the array of trees to some
smaller prime number - or, more radically, adding code to dynamically
resize the array (and rehash all the keys) when the hash gets full.

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 4 / 16

Advanced Tools Autogenerating ADTs: datadec (03.datadec/04.datadec-eg)

Principle: It’s often an excellent idea to import cool features
from other languages.

For example, Perl teaches us the importance of hashes (aka Java
dictionaries) - (key,value) storage implemented using hash tables.
We’ve already seen a hash module bring this ability to C.

Many years ago, I realised that one of the best features of
functional programming languages such as Haskell is the ability
to define recursive shaped data types, as in:

intlist = nil or cons(int head, intlist tail);

I’d dearly love to have that ability in C. If only there was a tool
that reads such type definitions and automatically writes a C
module that implements them..

I looked around, couldn’t find anything anywhere. Noone seemed
to have ever suggested that such a tool could be useful!

Decision time: do I abandon my brilliant idea, or write the tool?

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 5 / 16

Advanced Tools Autogenerating ADTs: datadec (03.datadec/04.datadec-eg)

I wrote the tool! A fortnight’s work one summer, the result was
datadec - in the 03.datadec directory, also installed on DoC linux
machines. After installing it, use it as follows:

In 04.datadec-eg you’ll find an input file types.in containing:

TYPE {

intlist = nil or cons(int first, intlist next);

illist = nil or cons(intlist first, illist next);

idtree = leaf(string id)

or node(idtree left, idtree right);

}

To generate a C module called datatypes from types.in, invoke:

datadec datatypes types.in

datatypes.c and datatypes.h are normal C files, you can read them,
write test programs against the interface, use them in production code.
But don’t modify them, because then you can’t...

... modify types.in - suppose you realise that an idtree node needs to
store an id as well as the trees. Change the type defn, rerun datadec.
Now the idtree_node() constructor takes 3 arguments!

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 6 / 16

Advanced Tools Autogenerating ADTs: datadec (03.datadec/04.datadec-eg)

Let’s look inside datatypes.h, to find what idtree functions
datadec generates. First we find two constructors:

extern idtree idtree_leaf(string);

extern idtree idtree_node(idtree, idtree);

Then we find a function telling you whether a tree is a leaf or a node:
extern kind_of_idtree idtree_kind(idtree);

Using the enumerated type:
typedef enum { idtree_is_leaf, idtree_is_node } kind_of_idtree;

Then two deconstructor functions which, given a tree of the appropriate
shape, breaks it into it’s constituent pieces:

extern void get_idtree_leaf(idtree, string *);

extern void get_idtree_node(idtree, idtree *, idtree *);

The final function prints a tree to a file in human readable format
(which you can control):

extern void print_idtree(FILE *, idtree);

Note that there’s no free function. Surprisingly hard to automatically
generate - should you free the ‘id’ parameter inside a leaf or not?

I recommend the following: while experimenting with types.in, forget
free()ing. When your recursive types have become stable, you should
write the tree-traversing void free TYPE(TYPE t) functions yourself.
Add them to the GLOBAL section (after @@) in types.in - man datadec
for more details.

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 7 / 16

Advanced Tools Autogenerating ADTs: datadec (03.datadec/04.datadec-eg)

Looking in testidtree.c, we build two leaves, and then test that
we can break them apart again:

idtree t1 = idtree_leaf("absolutely");

testleaf(t1, "absolutely", "ab");

idtree t2 = idtree_leaf("fabulous");

testleaf(t2, "fabulous", "fab");

testleaf(t, expected, treename) tests that t is a leaf with the expected
id, treename is a symbolic name for the tree:

void testleaf(idtree t, char *expected, char *treename)

{

char label[1024];

sprintf(label, "isnode(%s)", treename);

inteqtest(idtree_kind(t), idtree_is_leaf, label);

string id;

get_idtree_leaf(t, &id);

sprintf(label, "getleaf(%s)", treename);

streqtest(id, expected, label);

}

inteqtest(value, expected, label) and streqtest(value, expected, label)
are integer and string equality tests that print ok/fail messages.
Next, testidtree.c constructs a node from our two leaves, and tests that
we can break it apart correctly:

idtree t = idtree_node(t1, t2);

inteqtest(idtree_kind(t), idtree_is_node,

"isnode((ab,fab))");

idtree l, r;

get_idtree_node(t, &l, &r);

testleaf(l, "absolutely", "left((ab,fab))");

testleaf(r, "fabulous", "right((ab,fab))");

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 8 / 16

Advanced Tools Reusable ADT modules: hashs, lists, trees, sets etc

Most problems are made a lot easier by a library of trusted
modules - provided, generated by datadec or handwritten:

indefinite length dynamic strings
indefinite length dynamic arrays
indefinite length sparse dynamic arrays
linked lists (single or double linked)
stacks (can just use lists)
queues and priority queues
binary trees
hashes
sets - hashes with no values? trees? sparse arrays?
bags - frequency hashes
anything else you find useful (.ini file parsers? test frameworks?)

The C standard library fails to provide any of the following (C++
provides the Standard Template Library): So build them yourself
as and when you need them, and reuse them at every
opportunity, to raise C to a higher level!

Reuse can be done without object orientation, it’s not hard!

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 9 / 16

Advanced Tools Building Shortlived tools on the fly (05.tiny-tool)

We often find ourselves writing hundreds of repetitive “pattern
instances”, differing only in small details, eg:

int plus(int a, int b) { return (a+b); }

int minus(int a, int b) { return (a-b); }

int times(int a, int b) { return (a*b); }

...

All that varies from line to line is (funcname,operator), plus perhaps
the type ’int’ is also a parameter?
Why not generate them automatically using an ad-hoc tool, scaffolding
that you build in 30 minutes or less, use a few times, then discard?
Specify input format (as a little language) and corresponding output:

INPUT:

line 1: typename T eg. int

foreach line>1: F, Op pairs

OUTPUT:

foreach line>1: "T F(T a, T b) { return (a Op b); }"

Ok, first observe that this is a simple job for a scripting language like
Perl, here’s a Perl oneliner I composed in about two minutes:

perl -nle ’if($.==1){$t=$_;next} ($f,$op)=split(/,/);...

print "$t $f($t a, $t b) { return (a $op b); }"’

Even if we write this in C, might take about 30 minutes using low-level
string manipulation, or 10-15 minutes using standard library function
strtok(). See 05.tiny-tool/README for details.

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 10 / 16

Advanced Tools Parser and Lexer Generator tools (06.expr1)

Scaling the previous idea of little languages up, you often need to
write parsers and lexical analysers. This problem has been solved!
Like datadec, lex and yacc generate C code from declarative
definitions of tokens and language grammars.
As a simple example, consider integer constant expressions such
as 3*(10+16*(123/3) mod 7). The basic ‘tokens’ needed are:

Numeric constants (eg ‘123’).
Various one-character operators (eg. ‘(’, ‘+’, ‘*’, ‘)’ etc).
A Haskell-inspired keyword ‘mod’ (i.e. modulus, ‘%’ in C terms).

Specify the input tokens as regular expressions:
[0-9]+ return NUMBER;

\+ return PLUS;

- return MINUS;

* return MUL;

\/ return DIV;

mod return MOD;

\(return OPEN;

\) return CLOSE;

\n /* ignore end of line */;

[\t]+ /* ignore whitespace */;

. return TOKERR;

See lexer.l for the full lex input file, containing the above rules and some
prelude. This file can be turned into C code via: lex -o lexer.c lexer.l.

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 11 / 16

Advanced Tools Parser and Lexer Generator tools (06.expr1)

These tokens can be combined to form expressions using the
following BNF-style grammar rules (in yacc-format):

%token PLUS MINUS MUL DIV MOD OPEN CLOSE TOKERR

%token NUMBER

%start oneexpr

%%

oneexpr : expr

;

expr : expr PLUS term

| expr MINUS term

| term

;

term : term MUL factor

| term DIV factor

| term MOD factor

| factor

;

factor : NUMBER

| OPEN expr CLOSE

;

parser.y contains these rules plus some yacc-specific prelude, including
a short main program that calls the parser. This can be turned into C
code (parser.c and parser.h) via: yacc -vd -o parser.c parser.y

You can now compile and link parser.c and lexer.c to form expr1, just
type make. See the Makefile for details. expr1 is a recognizer: it will
say whether or not the expression (on standard input) is valid.

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 12 / 16

Advanced Tools Expression calculator (07.expr2)

Directory 07.expr2 extends our recognizer so that it calculates
the value of the expression and displays it. There are two sets of
changes from the previous version:
First, we modify one line in lexer.l to store the value of the
integer constant into ‘yylval.n’:

[0-9]+ yylval.n=atoi(yytext); return NUMBER;

Second, in parser.y there are several changes: add to the prelude:
static int expr_result = 0;

Then make main display the result after a successful parse:
printf("result: %d\n", expr_result);

Above the token definitions, add:
%union { int n; }

%token <n> NUMBER

%type <n> expr term factor

Add actions to grammar rules with more than one sub-part, taking the
calculated value from each sub-part and computing the result, plus a
top level action which sets expr result. Here’s a sample:
oneexpr : expr { expr_result = $1; }

;

expr : expr PLUS term { $$ = $1 + $3; }

| expr MINUS term { $$ = $1 - $3; }

| term

;

term : term MUL factor { $$ = $1 * $3; }

| term DIV factor { $$ = $1 / $3; }

...

After make we have expr2, an expression calculator. Play with it.
Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 13 / 16

Advanced Tools Expression calculator with named constants (08.expr3)

Directory 08.expr3 extends our calculator, allowing a factor to be
an identifier - an IDENT token, representing a named constant.
There are three sets of changes from the previous version:

Add a new consthash module, which stores our named constants.
Add a line in lexer.l to recognise and return our new token:

[a-z][a-z0-9]* yylval.s=strdup(yytext);return IDENT;

parser.y has several changes: add to the prelude:
#include "consthash.h"

Then main needs to create the constant hash right at the start, destroy
it at the end:

init_consthash(argc > 1);

if(yyparse()....

destroy_consthash();

Change the union declaration to:
%union { int n; char *s; }

Tell the parser that IDENT builds a string:
%token <s> IDENT

Add the new factor rule:
| IDENT { $$ = lookup_const($1); }

After make we have expr3, a calculator with named constants. Play
with it.

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 14 / 16

Advanced Tools Expression treebuilder (10.expr5)

Directory 10.expr5 contains our final yacc/lex example, which
replaces calculation with treebuilding (using datadec): prepare
types.in, add Makefile rules:
TYPE {

arithop = plus or minus or times or divide or mod;

expr = num(int n)

or id(string s)

or binop(expr l, arithop op, expr r)

;

}

parser.y has several changes: add to the prelude:
#include "types.h"

Change expr result from an int to an expr:
static expr expr_result = NULL;

main should print out the expression tree (on parse success):
print_expr(stdout, expr_result);

Change the union declaration to:
%union { int n; char *s; expr e; }

Change the type of all expression rules to e, the union’s expr:
%type <e> expr term factor

Change all the actions, for example:
expr : expr PLUS term { $$ = expr_binop($1, arithop_plus(), $3); }

| expr MINUS term { $$ = expr_binop($1, arithop_minus(), $3); }

...

factor : NUMBER { $$ = expr_num($1); }

| IDENT { $$ = expr_id($1); }

After make we have expr5, an expression parser and treebuilder.

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 15 / 16

Summary Everyone needs their toolkit!

If you’re not impressed by expression parsers, the tarball also
contains 11.haskell-tiny-treebuilder, which defines a tiny Haskell
subset, builds a parser, and builds trees to represent it. Still not
impressed? 12.haskell-tiny-codegen translates it to C!
Follow 100,000 years of human history by tool-using and
tool-making. Build yourself a powerful toolkit. Choose tools you
like; become expert in each.
When necessary, build tools yourself to solve problems that
irritate you. Don’t be afraid! Try to build tools that save you
more time than they cost you to make.
I didn’t mention: regular expression libraries; all the things you
can do with function pointers; text processing tools; OO
programming in C etc etc.
Most importantly: enjoy your C programming! Build your toolkit
- and let me know if you write any particularly cool tools!
Finally, scripting languages like Perl or Python are fantastic
timesavers. I run a Perl course each December, notes available
at: http://www.doc.ic.ac.uk/~dcw/perl2012/

Duncan White (Imperial) Building your own C Toolkit: Part 2 6th June 2013 16 / 16

	Advanced Tools (continued)
	Today's Contents

	Advanced Tools
	Optimization and Profiling (tarball 01.hash-profile)
	Autogenerating ADTs: datadec (03.datadec/04.datadec-eg)
	Reusable ADT modules: hashs, lists, trees, sets etc
	Building Shortlived tools on the fly (05.tiny-tool)
	Parser and Lexer Generator tools (06.expr1)
	Expression calculator (07.expr2)
	Expression calculator with named constants (08.expr3)
	Expression treebuilder (10.expr5)

	Summary
	Everyone needs their toolkit!

