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THE GNU DEBUGGER: gdb

According to GNU, a debugger:
Allows you to see what is going on ‘inside’ another program
while it executes – or what another program was doing at the
moment it crashed.

Typical debugging cycle:

1. Start the program.
2. Stop execution.
3. Diagnose problem.
4. Re-write the code.
5. Go back to step 1.
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A QUICK gdb CHEATSHEET

r Execute the program loaded
bt or where Print the call frame stack
b [N|FUNC] Break at line N or at the start of function FUNC

l Print code around current location
p [VAR] Print contents of variable VAR
x [ADDR] Examine contents of address ADDR

watch [VAR] Break whenever variable VAR is written
help, quit Hopefully self-explanatory

Don’t forget to use &
You might like cgdb or gdb -tui
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MEMORY ISSUES
Memory problems are the most serious C problems:
→ Often claimed that 99% of serious C bugs are

memory-allocation related.

WHY IS THAT?
In general, C does not care and lets you play with memory at
will.
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REALLY BAD STUFF

Things you REALLY shouldn’t do:
I Not checking array bounds.

I Dereferencing null pointers.
I free() something twice.
I Causing a stack overflow.
I Writing read-only memory.

int array[4], i;
for (i=0;i<10;i++)
array[i] = 0;

Common result of these is a

Segmentation fault
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REALLY BAD STUFF

Things you REALLY shouldn’t do:
I Not checking array bounds.
I Dereferencing null pointers.
I free() something twice.

I Causing a stack overflow.
I Writing read-only memory.

int *p =
malloc(5*sizeof(int));

free(p);
free(p);

Common result of these is a

Segmentation fault
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REALLY BAD STUFF

Things you REALLY shouldn’t do:
I Not checking array bounds.
I Dereferencing null pointers.
I free() something twice.
I Causing a stack overflow.

I Writing read-only memory.

int main(){
main();
return 0;

}

Common result of these is a

Segmentation fault
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REALLY BAD STUFF

Things you REALLY shouldn’t do:
I Not checking array bounds.
I Dereferencing null pointers.
I free() something twice.
I Causing a stack overflow.
I Writing read-only memory.

char *s = "get ready";

*s = ’x’;

Common result of these is a

Segmentation fault
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MEMORY LEAKS

Always free() what you malloc()!

I Unfree’d memory will remain useless.
I Leaky programs might eat your whole RAM;
I And they’re usually slower.

There are lots of tools out there:
→ valgrind, libmem

7



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEMORY LEAKS

Always free() what you malloc()!

I Unfree’d memory will remain useless.
I Leaky programs might eat your whole RAM;
I And they’re usually slower.

There are lots of tools out there:
→ valgrind, libmem

7



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEMORY LEAKS

Always free() what you malloc()!

I Unfree’d memory will remain useless.
I Leaky programs might eat your whole RAM;
I And they’re usually slower.

There are lots of tools out there:
→ valgrind, libmem

7



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

PROFILING



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

PROFILING

DEFINITION

Profiling is a form of dynamic program analysis that measures,
for example, the space (memory) or time complexity of a
program, the usage of particular instructions, or the frequency
and duration of function calls.

Make yourself useful:
→ Find the hot spots that really need optimizing.
→ Never start optimizing before profiling.
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SIMPLE “PROFILING” TOOLS

Two blunt, yet accessible tools for performance analysis:

htop

X Monitor memory and CPU usage in real-time.
× All processes are mixed up.

time

X Measure user, kernel and system execution time.
× Not very accurate.

gcc -pg / gprof

X The only proper C profiler for gcc.
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UNDERSTANDING THE PROFILER

There are (mostly) three things profilers can do:

FLAT PROFILE

Show time spent in each function and total number of calls.
CALL GRAPH

Build a who-calls-who diagram of all functions.
ANNOTATED SOURCE

Display source with a line-by-line execution count.

Explore some profilers:
→ gprof, callgrind, perftools

And use a profile visualization tool:
→ kcachegrind
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MEASURING TIME

Common profilers (e.g. gprof)
usually measure user time,
instead of kernel or wall clock
time.

X Not affected by other
irrelevant processes

× Useless if program spends
most of the time in kernel.

#include <stdlib.h>

void siesta(void) {
sleep(5);
return;

}

int main() {
unsigned int i;
for (i=0; i<100; i++) {

siesta();
}
return 0;

}
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TESTING

I Pragmatic programmer’s tip 62:
Tests that run with every build are much more
effective than test plans that sit on a shelf.

I Corollary:
Automate your tests.

We’ll talk about automatic tests in
make, cmake, git
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AUTOMATED TESTING

I Git hooks:
Run scripts before push/commit.
Good moment for style checks (e.g. Google’s cpplint)

I Makefile tests:
test: testprogram1 testprogram2 ...

./testprogram1

./testprogram2

I CMake tests:
add test(PreliminaryTest testlist)

I Other testing modules (e.g. C++ boost).
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TEST-DRIVEN DEVELOPMENT

Basic principle:
Write the test before the
function.

I Helps measuring progress.
I Encourages modularity and

extensibility.
I Reduces debugger use.

I But if you find a new bug, write
a test for it!

I Don’t forget to add some
overall tests.

Add a test

Run the test
pass

Write code to
pass the test

fail

Re-run the test
fail

Refactor the
code

pass
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