
C PROGRAMMING TOOLS
part of the PROGRAMMING III course

Evangelos Ververas e.ververas16@ic.ac.uk

Duncan White d.white@imperial.ac.uk

Pedro Mediano



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TABLE OF CONTENTS

RUNNING THE PROGRAM

Debugging

Memory Problems

Profiling

Testing

2



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

DEBUGGING



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

THE GNU DEBUGGER: gdb

According to GNU, a debugger:
Allows you to see what is going on ‘inside’ another program
while it executes – or what another program was doing at the
moment it crashed.

Typical debugging cycle:

1. Start the program.
2. Stop execution.
3. Diagnose problem.
4. Re-write the code.
5. Go back to step 1.

3



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

THE GNU DEBUGGER: gdb

According to GNU, a debugger:
Allows you to see what is going on ‘inside’ another program
while it executes – or what another program was doing at the
moment it crashed.

Typical debugging cycle:

1. Start the program.

2. Stop execution.
3. Diagnose problem.
4. Re-write the code.
5. Go back to step 1.

3



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

THE GNU DEBUGGER: gdb

According to GNU, a debugger:
Allows you to see what is going on ‘inside’ another program
while it executes – or what another program was doing at the
moment it crashed.

Typical debugging cycle:

1. Start the program.
2. Stop execution.

3. Diagnose problem.
4. Re-write the code.
5. Go back to step 1.

3



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

THE GNU DEBUGGER: gdb

According to GNU, a debugger:
Allows you to see what is going on ‘inside’ another program
while it executes – or what another program was doing at the
moment it crashed.

Typical debugging cycle:

1. Start the program.
2. Stop execution.
3. Diagnose problem.

4. Re-write the code.
5. Go back to step 1.

3



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

THE GNU DEBUGGER: gdb

According to GNU, a debugger:
Allows you to see what is going on ‘inside’ another program
while it executes – or what another program was doing at the
moment it crashed.

Typical debugging cycle:

1. Start the program.
2. Stop execution.
3. Diagnose problem.
4. Re-write the code.

5. Go back to step 1.

3



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

THE GNU DEBUGGER: gdb

According to GNU, a debugger:
Allows you to see what is going on ‘inside’ another program
while it executes – or what another program was doing at the
moment it crashed.

Typical debugging cycle:

1. Start the program.
2. Stop execution.
3. Diagnose problem.
4. Re-write the code.
5. Go back to step 1.

3



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

A QUICK gdb CHEATSHEET

r Execute the program loaded
bt or where Print the call frame stack
b [N|FUNC] Break at line N or at the start of function FUNC

l Print code around current location
p [VAR] Print contents of variable VAR
x [ADDR] Examine contents of address ADDR

watch [VAR] Break whenever variable VAR is written
help, quit Hopefully self-explanatory

Don’t forget to use &
You might like cgdb or gdb -tui

4



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEMORY PROBLEMS



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEMORY ISSUES
Memory problems are the most serious C problems:
→ Often claimed that 99% of serious C bugs are

memory-allocation related.

WHY IS THAT?
In general, C does not care and lets you play with memory at
will.

5



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEMORY ISSUES
Memory problems are the most serious C problems:
→ Often claimed that 99% of serious C bugs are

memory-allocation related.

WHY IS THAT?
In general, C does not care and lets you play with memory at
will.

5



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEMORY ISSUES
Memory problems are the most serious C problems:
→ Often claimed that 99% of serious C bugs are

memory-allocation related.

WHY IS THAT?
In general, C does not care and lets you play with memory at
will.

5



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

REALLY BAD STUFF

Things you REALLY shouldn’t do:
I Not checking array bounds.

I Dereferencing null pointers.
I free() something twice.
I Causing a stack overflow.
I Writing read-only memory.

int array[4], i;
for (i=0;i<10;i++)
array[i] = 0;

Common result of these is a

Segmentation fault

6



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

REALLY BAD STUFF

Things you REALLY shouldn’t do:
I Not checking array bounds.
I Dereferencing null pointers.

I free() something twice.
I Causing a stack overflow.
I Writing read-only memory.

int *ptr = NULL;

*ptr = 1;

Common result of these is a

Segmentation fault

6



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

REALLY BAD STUFF

Things you REALLY shouldn’t do:
I Not checking array bounds.
I Dereferencing null pointers.
I free() something twice.

I Causing a stack overflow.
I Writing read-only memory.

int *p =
malloc(5*sizeof(int));

free(p);
free(p);

Common result of these is a

Segmentation fault

6



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

REALLY BAD STUFF

Things you REALLY shouldn’t do:
I Not checking array bounds.
I Dereferencing null pointers.
I free() something twice.
I Causing a stack overflow.

I Writing read-only memory.

int main(){
main();
return 0;

}

Common result of these is a

Segmentation fault

6



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

REALLY BAD STUFF

Things you REALLY shouldn’t do:
I Not checking array bounds.
I Dereferencing null pointers.
I free() something twice.
I Causing a stack overflow.
I Writing read-only memory.

char *s = "get ready";

*s = ’x’;

Common result of these is a

Segmentation fault

6



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

REALLY BAD STUFF

Things you REALLY shouldn’t do:
I Not checking array bounds.
I Dereferencing null pointers.
I free() something twice.
I Causing a stack overflow.
I Writing read-only memory.

Common result of these is a

Segmentation fault

6



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEMORY LEAKS

Always free() what you malloc()!

I Unfree’d memory will remain useless.
I Leaky programs might eat your whole RAM;
I And they’re usually slower.

There are lots of tools out there:
→ valgrind, libmem

7



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEMORY LEAKS

Always free() what you malloc()!

I Unfree’d memory will remain useless.
I Leaky programs might eat your whole RAM;
I And they’re usually slower.

There are lots of tools out there:
→ valgrind, libmem

7



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEMORY LEAKS

Always free() what you malloc()!

I Unfree’d memory will remain useless.
I Leaky programs might eat your whole RAM;
I And they’re usually slower.

There are lots of tools out there:
→ valgrind, libmem

7



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

PROFILING



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

PROFILING

DEFINITION

Profiling is a form of dynamic program analysis that measures,
for example, the space (memory) or time complexity of a
program, the usage of particular instructions, or the frequency
and duration of function calls.

Make yourself useful:
→ Find the hot spots that really need optimizing.
→ Never start optimizing before profiling.

8



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

PROFILING

DEFINITION

Profiling is a form of dynamic program analysis that measures,
for example, the space (memory) or time complexity of a
program, the usage of particular instructions, or the frequency
and duration of function calls.

Make yourself useful:
→ Find the hot spots that really need optimizing.
→ Never start optimizing before profiling.

8



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

SIMPLE “PROFILING” TOOLS

Two blunt, yet accessible tools for performance analysis:

htop

X Monitor memory and CPU usage in real-time.
× All processes are mixed up.

time

X Measure user, kernel and system execution time.
× Not very accurate.

gcc -pg / gprof

X The only proper C profiler for gcc.

9



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

SIMPLE “PROFILING” TOOLS

Two blunt, yet accessible tools for performance analysis:

htop

X Monitor memory and CPU usage in real-time.
× All processes are mixed up.

time

X Measure user, kernel and system execution time.
× Not very accurate.

gcc -pg / gprof

X The only proper C profiler for gcc.

9



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

SIMPLE “PROFILING” TOOLS

Two blunt, yet accessible tools for performance analysis:

htop

X Monitor memory and CPU usage in real-time.
× All processes are mixed up.

time

X Measure user, kernel and system execution time.
× Not very accurate.

gcc -pg / gprof

X The only proper C profiler for gcc.

9



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

SIMPLE “PROFILING” TOOLS

Two blunt, yet accessible tools for performance analysis:

htop

X Monitor memory and CPU usage in real-time.
× All processes are mixed up.

time

X Measure user, kernel and system execution time.
× Not very accurate.

gcc -pg / gprof

X The only proper C profiler for gcc.

9



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

UNDERSTANDING THE PROFILER

There are (mostly) three things profilers can do:

FLAT PROFILE

Show time spent in each function and total number of calls.
CALL GRAPH

Build a who-calls-who diagram of all functions.
ANNOTATED SOURCE

Display source with a line-by-line execution count.

Explore some profilers:
→ gprof, callgrind, perftools

And use a profile visualization tool:
→ kcachegrind

10



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

UNDERSTANDING THE PROFILER

There are (mostly) three things profilers can do:

FLAT PROFILE

Show time spent in each function and total number of calls.
CALL GRAPH

Build a who-calls-who diagram of all functions.
ANNOTATED SOURCE

Display source with a line-by-line execution count.

Explore some profilers:
→ gprof, callgrind, perftools

And use a profile visualization tool:
→ kcachegrind

10



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEASURING TIME

Common profilers (e.g. gprof)
usually measure user time,
instead of kernel or wall clock
time.

X Not affected by other
irrelevant processes

× Useless if program spends
most of the time in kernel.

#include <stdlib.h>

void siesta(void) {
sleep(5);
return;

}

int main() {
unsigned int i;
for (i=0; i<100; i++) {

siesta();
}
return 0;

}

11



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEASURING TIME

Common profilers (e.g. gprof)
usually measure user time,
instead of kernel or wall clock
time.

X Not affected by other
irrelevant processes

× Useless if program spends
most of the time in kernel.

#include <stdlib.h>

void siesta(void) {
sleep(5);
return;

}

int main() {
unsigned int i;
for (i=0; i<100; i++) {

siesta();
}
return 0;

}

11



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

MEASURING TIME

Common profilers (e.g. gprof)
usually measure user time,
instead of kernel or wall clock
time.

X Not affected by other
irrelevant processes

× Useless if program spends
most of the time in kernel.

#include <stdlib.h>

void siesta(void) {
sleep(5);
return;

}

int main() {
unsigned int i;
for (i=0; i<100; i++) {
siesta();

}
return 0;

}

11



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TESTING



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TESTING

I Pragmatic programmer’s tip 62:
Tests that run with every build are much more
effective than test plans that sit on a shelf.

I Corollary:
Automate your tests.

We’ll talk about automatic tests in
make, cmake, git

12



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TESTING

I Pragmatic programmer’s tip 62:
Tests that run with every build are much more
effective than test plans that sit on a shelf.

I Corollary:
Automate your tests.

We’ll talk about automatic tests in
make, cmake, git

12



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TESTING

I Pragmatic programmer’s tip 62:
Tests that run with every build are much more
effective than test plans that sit on a shelf.

I Corollary:
Automate your tests.

We’ll talk about automatic tests in
make, cmake, git

12



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

AUTOMATED TESTING

I Git hooks:
Run scripts before push/commit.
Good moment for style checks (e.g. Google’s cpplint)

I Makefile tests:
test: testprogram1 testprogram2 ...

./testprogram1

./testprogram2

I CMake tests:
add test(PreliminaryTest testlist)

I Other testing modules (e.g. C++ boost).

13



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

AUTOMATED TESTING

I Git hooks:
Run scripts before push/commit.
Good moment for style checks (e.g. Google’s cpplint)

I Makefile tests:
test: testprogram1 testprogram2 ...

./testprogram1

./testprogram2

I CMake tests:
add test(PreliminaryTest testlist)

I Other testing modules (e.g. C++ boost).

13



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

AUTOMATED TESTING

I Git hooks:
Run scripts before push/commit.
Good moment for style checks (e.g. Google’s cpplint)

I Makefile tests:
test: testprogram1 testprogram2 ...

./testprogram1

./testprogram2

I CMake tests:
add test(PreliminaryTest testlist)

I Other testing modules (e.g. C++ boost).

13



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TEST-DRIVEN DEVELOPMENT

Basic principle:
Write the test before the
function.

I Helps measuring progress.
I Encourages modularity and

extensibility.
I Reduces debugger use.

I But if you find a new bug, write
a test for it!

I Don’t forget to add some
overall tests.

Add a test

Run the test
pass

Write code to
pass the test

fail

Re-run the test
fail

Refactor the
code

pass

14



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TEST-DRIVEN DEVELOPMENT

Basic principle:
Write the test before the
function.

I Helps measuring progress.
I Encourages modularity and

extensibility.
I Reduces debugger use.

I But if you find a new bug, write
a test for it!

I Don’t forget to add some
overall tests.

Add a test

Run the test
pass

Write code to
pass the test

fail

Re-run the test
fail

Refactor the
code

pass

14



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TEST-DRIVEN DEVELOPMENT

Basic principle:
Write the test before the
function.

I Helps measuring progress.
I Encourages modularity and

extensibility.
I Reduces debugger use.

I But if you find a new bug, write
a test for it!

I Don’t forget to add some
overall tests.

Add a test

Run the test
pass

Write code to
pass the test

fail

Re-run the test
fail

Refactor the
code

pass

14



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TEST-DRIVEN DEVELOPMENT

Basic principle:
Write the test before the
function.

I Helps measuring progress.
I Encourages modularity and

extensibility.
I Reduces debugger use.

I But if you find a new bug, write
a test for it!

I Don’t forget to add some
overall tests.

Add a test

Run the test
pass

Write code to
pass the test

fail

Re-run the test
fail

Refactor the
code

pass

14



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TEST-DRIVEN DEVELOPMENT

Basic principle:
Write the test before the
function.

I Helps measuring progress.
I Encourages modularity and

extensibility.
I Reduces debugger use.

I But if you find a new bug, write
a test for it!

I Don’t forget to add some
overall tests.

Add a test

Run the test
pass

Write code to
pass the test

fail

Re-run the test
fail

Refactor the
code

pass

14



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TEST-DRIVEN DEVELOPMENT

Basic principle:
Write the test before the
function.

I Helps measuring progress.
I Encourages modularity and

extensibility.
I Reduces debugger use.

I But if you find a new bug, write
a test for it!

I Don’t forget to add some
overall tests.

Add a test

Run the test
pass

Write code to
pass the test

fail

Re-run the test
fail

Refactor the
code

pass

14



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TEST-DRIVEN DEVELOPMENT

Basic principle:
Write the test before the
function.

I Helps measuring progress.
I Encourages modularity and

extensibility.
I Reduces debugger use.

I But if you find a new bug, write
a test for it!

I Don’t forget to add some
overall tests.

Add a test

Run the test
pass

Write code to
pass the test

fail

Re-run the test
fail

Refactor the
code

pass

14



DEBUGGING MEMORY PROBLEMS PROFILING TESTING

TABLE OF CONTENTS

RUNNING THE PROGRAM

Debugging

Memory Problems

Profiling

Testing

15


	Debugging
	Debuggers
	gdb

	Memory problems
	Segfaults
	Leaks

	Profiling
	Introduction to profiling
	Understanding the profiler
	Measuring time

	Testing
	Pragmatic testing
	Automated testing
	Test-driven development


