
Perl Short Course: Some Exercises to try

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

January 2015

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 1 / 14

Exercises from Lecture 2 Square roots

Try writing a little Perl program that reads in a number from
stdin, and computes the square root of that number using the
following while loop, printing out a message like
"The square root of $x is $w".

my $w = $x; my $h = 1;

while (abs($w-$h) > 0.001)

{

$w = ($w+$h)/2;

$h = $x/$w;

}

Hint: you might want to use printf() (see perldoc -f printf) to
control the number of decimal places of the square root.

Now wrap your ”find and display a square root” logic in a for loop,
displaying square roots of some range of numbers.

Once you’ve read the 4th lecture (defining your own functions), turn
the ”find the square root of x” while loop into a separate function and
call it.

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 2 / 14

Exercises from Lecture 2 I/O examples

Merge eg2 and eg3 to sum up the leading numbers in a specific
named file.

Write a program that reads every line from stdin, lower-cases it
using lc() and writes the lower-cased lines into a file called
lower. You might call the program mklower.

Do the same for uc() and ucfirst(lc()).

Exercise: Write a simple one word per line translator program
that reads every line from STDIN, chomps it, assumes it’s a single
word, looks it up in a hash, replaces it (if present) with the
corresponding value, and prints it out. i.e. given:
%trans = ("hello" => "bonjour", "my" => "mon", friend" => "ami");

translates the input (given one word per line)
hello duncan my friend to bonjour duncan mon ami.

Exercise: modify mklower slightly: remove the word STDIN from the
<STDIN> getline call, leaving the mysterious syntax <>. The third
lecture explains what this syntax means - but try to work it out for
yourself experimentally with mklower’s behaviour.

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 3 / 14

Exercises from Lecture 3 Looking people up

Build a Perl program storing (username,roomno) pairs in a
hash, which then reads usernames - from stdin, or a text file, as
you like - until the end-of-input is reached, and prints the name
and corresponding room number for each.

Then replace the set of names and their associated room
numbers with an external input file, reading them in and then
building the in-memory hash. (At this early stage in your Perl
knowledge, you might need to store usernames and room
numbers on adjacent lines in the input file).

Next, replace the hash with a dbm file (with an initialization
program that reads the names and room numbers from a text
file, and stores them in the dbm-tied hash).

Consider how to use regexes to add approximate matching for a
name. One option: build a regex matching the same pattern of
consonants as the target name, but replacing every vowel with
[aeiou]+, then grep through the keys of the roomno hash for
regex matches.

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 4 / 14

Exercises from Lecture 3 Reinvent grep

Generalise several of your earlier STDIN or single-file processing
programs to act as proper filters, receiving one or more command
line arguments and opening and processing each of them in turn,
defaulting to stdin if no arguments are given.
Implement a simplified Perl version of the Unix grep command -
taking two or more command line arguments (die with a nice
usage message if not enough arguments!):

1st argument: a literal string to search for (use shift @ARGV to
extract and remove it).
All remaining arguments: filenames to search for the above string.

Use the process-all-lines-in-all-files idiom, and print out the
current filename and line if the line contains the search string.
Count line numbers (reset each file) and print out the filename
and current line number on matching lines.
Now check that your tool works when Perl regex meta-characters
are embedded (as long as your invocation from the command line
single quotes the search string). How might you disable regex
meta-characters?

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 5 / 14

Exercises from Lecture 3 Search by Word Frequency

Prepare an input file containing a list of words, in no particular
order, one per line. Write a program to open such a file - take
the filename on the command line - read each line, delete leading
and trailing whitespace from each line, delete leading or trailing
punctuation too, and then print each line (word) out.

Now make this word-splitter program count word frequencies - do
$freq{$word}++ for each word $word you find. After processing
all lines, print out a sorted list of frequencies of all the words
found - using magic sort numerically by value syntax:

foreach my $word (sort {$freq{$a} <=> $freq{$b}} (keys(%freq)))

Now, wrap the complete make and print frequency table logic in
a loop that processes each of the files named in @ARGV -
emptying the frequency hash for each file.

Now, modify the program so that $ARGV[0] contains a word to
search for, and all the rest of @ARGV contains filenames to look in.

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 6 / 14

Exercises from Lecture 3 Search by Word Frequency

For each file, first use your frequency building code to build the
frequency table for that file.

Then print out the filename if the particular word was present in
the table (i.e. if the frequency of that word is more than 0!).

This is now a primitive indexer - you give it a word and a list of
filenames (all in one-word-per-line format) and it searches for the
word in all the filenames.

Now store the frequency arrays to disk, so that next time we
could just use the frequency table not have to recalculate it!

To do this, you’d need to use a Unix DBM file for each file’s
frequency array. It would be sensible to store the DBM files in a
separate directory, to avoid cluttering up the normal directory.

You’d also need two programs - one to index (or reindex) a list of
files, and another to perform a search for a word...

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 7 / 14

Exercises from Lecture 4 ”Foreach Word” exercises

Several examples from the 2nd and 3rd session assume each line
of a file contained a single word - because we didn’t know how to
split multiple words in a line apart - but now use split()):

The general ”foreach word in each line of a file” idiom is:
while(my $line = <STDIN>) # each $line == sequence of words

{

chomp $line;

$line =~ s/^\s+//; # remove leading whitespace

$line =~ s/\s+$//; # remove trailing whitespace

foreach my $word (split(/\s+/, $line))

{

process $word..

}

Similarly, some examples read records - where we spread each
record out across several lines, one field per line. Much nicer to
have all fields on a single line, perhaps comma separated:
username,roomno

The general ”foreach (x,y) pair in each line of a file” idiom is:
while(my $line = <STDIN>) # each $line == comma-separated pair x,y

{

chomp $line;

my($x, $y) = split(/\s*,\s*/, $line);

process ($x,$y) pair

}

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 8 / 14

Exercises from Lecture 4 ”Foreach Word” exercises

Revisit such one-field-per-line programs, most obviously the
username,roomno exercise (from lecture 3 exercises above), and
use the ”foreach (x,y) pair in each line of a file” idiom - or
variants of it dealing with triples etc - to make them take input
where usernames and room numbers are on the same line.

Returning to the word indexer example from lecture 3:

Use the ”foreach word in each line of a file” idiom to allow the
indexer to split each line into multiple words and index each word.

Convert the indexer into separate functions, nicely laid out. Use
strict, warnings and Function::Parameters.

Record (perhaps in a dbm file?) when each data file was last
indexed. Write a reindex program to check the modification time of
each indexed document file and reindex modified documents.

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 9 / 14

Exercises from Lecture 4 ”Foreach Word” exercises

Hint: use Perl’s stat() function to find a file’s modification
timestamp (see perldoc -f stat for details).

Take any of your earlier exercises, such as the various filters
you’ve written, and divide them up into appropriately named and
commented functions.

Familiarise yourself with complex references - use the Data::Dumper

module to print them out.

Modify the 4th lecture’s array-of-hash example eg14, replacing
the entire inner foreach loop that builds the @x array with a map

invocation that begins my @x = map

If you’re feeling brave, you can make the body of the outer foreach

a single statement beginning print join(", ", map.... Do you think this
is clearer than the loop, or harder to read? This may tell you how
much you love functional vs imperative programming styles:-)

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 10 / 14

Exercises from Lecture 5

In your personal Postgres database, create some new table with a
few fields, perhaps storing information about People (eg name,
sex, age, phone no), or information about your CD collection (if
you still have one). Then write a CGI script that connects to
your Postgres database, and experiment with retrieving
information for the table and displaying it (perhaps as an HTML
table), inserting a record into the table, querying, deleting and
updating records etc. How general can you make it? could it be
reused to edit a different table?
Read HTML::Parse’s documentation, work out how to extract
the plain text (i.e. stuff between html tags) from a given URL
fetched by LWP::Simple. First: display the plain text, minimally
formatted. Second: build a frequency hash of the frequencies of
each word in the plain text, and produce an ascii histogram of
non-unique words sorted in descending order of frequency.
Use Getopt::Long to merge your lower-casing and upper-casing
filters into one, via an --uppercase flag. Could it do anything else?
Generalise eg7 (the tie version of mksecret) to populate the tied
DBM file with every word in the input (using the while(<>)) idiom.
Then run it against successively larger word lists (such as
/usr/share/dict/words) and see how the DBM filesize grows.

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 11 / 14

Exercises from Lecture 6

Convert (any version of) the List module’s function comments
into POD and add an overview section. perldoc List now
displays the POD documentation - make List’s documentation as
good as other modules.
Build a few more simple classes, either with bless or Moose (read
the extra notes document), perhaps linking with Person (via
”class A contains one-or-more instances of class B”). eg
representing information about people, the organisations they
work for, their immediate bosses etc.
Recode some medium size collection of Java classes into Perl.
Treat interfaces as stub parent classes. Familiarize yourself with
Java vs Perl OO practice. Compare and contrast.
Build another common ADT as a Perl module/class, eg. a sorted
binary tree (modelled on a Haskell style recursive data
declaration: tree = leaf(string) or node(left-tree,right-tree).
Write an in-order traversal function which makes a callback to a
user-supplied function for each leaf string. Write a tree rebalance
function. Implement tree sorting.

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 12 / 14

Exercises from Lecture 7

Try implementing a functional fold/reduce operator in Perl.
Reimplement sumarray using it. Using lecture 8 benchmarking
info, benchmark the original sumarray (on a reasonably large list)
vs the reduced version.

Think of other situations where you could usefully embed
coderefs in data structures, eg. data-driven programming, and
implement one of them in Perl.

If you can’t think of such a situation, a Delta Queue of event
functions to call at future times is extremely useful for discrete
event simulations. A suitable model is a list of (deltatime,
eventfunction, eventdata) triples, where events are enqueued in
”from now delta” time order.

Consider some design patterns from Rob Chatley’s Software
Engineering Design course - can they be translated into Perl?

Think where else you could use iterators and function factories?

Think where else you could use lazy lists (streams)?

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 13 / 14

Exercises from Lecture 8

Given only the code snippet:
push @{$list{$x}}, $y;

what can you deduce about the structure that %list represents?
What about $info in this snippet:

$info->{A}{B}{C}[5]

Use Data::Dumper to investigate Perl’s auto-vivification via various
examples. One such example might be:

my $ref;

push @{$ref->{A}{B}{C}}, 10

Look back at programs you’ve written in other languages, and
see if any, recoded into Perl, offer scope for Agile Data
Structures techniques. Try them out.
Benchmark some Perl snippets, eg. compare the speeds of
various Perl builtins, such as string comparison (eq) versus
pattern matching an anchored regex against the same string, or
x+x vs x*2 vs x<<1. Any surprises?
Profile the biggest piece of Perl code you’ve written yet - perhaps
the word indexer from lecture 3 (including the extensions
described here in this document under lecture 4 exercises), or the
lazy lists of programmers from lecture 6. Any surprises?

Duncan White (CSG) Perl Short Course: Some Exercises to try January 2015 14 / 14

	Exercises from Lecture 2
	Square roots
	I/O examples

	Exercises from Lecture 3
	Looking people up
	Reinvent grep
	Search by Word Frequency

	Exercises from Lecture 4
	"Foreach Word" exercises

	Exercises from Lecture 5
	Exercises from Lecture 6
	Exercises from Lecture 7
	Exercises from Lecture 8

