
Introduction to Perl: Third Lecture

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

January 2015

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 1 / 24

Contents

In this third session, we’ll go over more of Perl in detail, we’ll look at:

arrays and lists

hashes

special variables (@ARGV, $_, %ENV)

some more Perl one-liners, and

regular expressions.

Aside: A better way to run Perl Programs

We have seen that when we want to run a Perl program called
eg1, we say: perl eg1.

Wouldn’t it be better if we could just type eg1 to run our
program?

Then we could install our own Perl programs in a public place
and let our friends run them - without them caring what
language the programs are written in!

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 2 / 24

A better way to run Perl Programs

Well, on Unix we can:

First, issue the Unix command:
chmod +x eg1

This makes the file executable.

Second, edit eg1 and add the following line at the top:
#!/usr/bin/perl

This is a special line interpreted by Unix when it executes a
non-machine code program.

Unix executes the named program (the Perl interpreter) with the
script eg1 as a command line argument.

Perl starts up, reads eg1 and proceeds to run it - and then
ignores the first line because it’s a comment!

This is why all Unix shells and most scripting languages use ‘#’

as their one-line comment character.

Now, run eg1 by eg1 (if . is on your path), or ./eg1 if not.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 3 / 24

Arrays and Lists

An array is an ordered collection of scalars (strings or numbers),
declared via my @array, the @ being compulsory.

An array such as @fred is not the same as $fred. Perl keeps the
namespaces of arrays and scalars separate.

Array indices start at 0.

An array may be built up piece by piece:
my @fred;

$fred[0] = "hello";

$fred[1] = 7.1+$a;

$fred[2] = 17.3;

$fred[3] = $c;

Each element of the array is a scalar, which is why an individual
element of @fred is accessed using $fred[expr] not @fred[expr]. This is
admittedly confusing! Perl 6 will use @fred[expr].

Assigning to an element beyond the current end of the array (eg.
$fred[10]=42) extends the array. Intervening elements (here 4..9)
become the undefined value, which looks just like 0.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 4 / 24

Arrays and Lists

A single item may be extracted from an array:
$sum += $fred[$i];

The index expression will be truncated to an integer before the
array is accessed.

Building an array piece by piece is painful: assign a bracketed
comma-separated list of scalars straight into an array:

my @fred = ("hello", 7.1+$a, 17.3, $c);

Inside a list, the .. operator can be used as in @fred = (1..20) or
@let = (’a’..’z’).

If you have a list of single words, for example:
my @fred = ("hello", "there", "how", "are", "you");

Perl provides the quote words syntactic sugar:
my @fred = qw(hello there how are you);

You can iterate over an array by:
foreach my $element (@fred)

{

now do something with $element

}

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 5 / 24

Arrays and Lists Arrays as Tuples

You can also break up an array into a list of variables:
my($a, $b, $c) = @fred;

This copies $fred[0] to $a, $fred[1] to $b and $fred[2] to $c. Any
remaining elements in the array are ignored. If @fred has (say) only
2 elements then $c is set to the undefined value.

An array can be used to soak up the remainder:
my($a, $b, @c) = @fred;

Can even put the remainder back in @fred:

my($a, $b); or... (my $a, my $b, @fred) = @fred;

($a, $b, @fred) = @fred;

Tupling gives you a very easy swap operation:
($x, $y) = ($y, $x);

which takes y and x, forms them into a two-element list, and
assigns the first two elements of that list back into x and y.

In summary, Perl arrays act as dynamic arrays, tuples, stacks and
queues (as we’ll see later).

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 6 / 24

Arrays and Lists Scalar/List Context

Some operators behave differently when placed in scalar context
or in list context. List context is where a list is expected rather
than a scalar eg. assigning to an array evaluates the RHS in list
context. Also, arguments of print() are evaluated in list context.

<> is one such operator:

In scalar context, eg $line = <$in>, it reads a single line.
In list context, eg @line = <$in>, it reads the rest of the input,
returning an array of lines - still with all the newlines.
Fortunately, chomp @line chomps the newline from every line.

Similarly, array assignment:

Assigning array to array, eg. @x = @y, copies the entire array.
Assigning an array to a scalar, eg my $count = @y, means set $count to
the number of elements in @y. i.e. the length of the array.
Why? Because Larry Wall thought: what is the most commonly
used scalar property of an array? and answered the length.

You can force a scalar context when you’re not sure what Perl
would do by wrapping an expression in the function scalar().

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 7 / 24

Hashes (aka Dictionaries, Maps, Associative Arrays)

Declare a hash variable by my %fred, such a hash occupies a different
namespace from $fred and @fred.

A hash stores (key, value) pairs - for each string scalar (the key),
it stores an arbitrary scalar (the value).

Think: a two-column database table stored in memory, from
unique keys to non-unique values, indexed on keys:

Key Value
dcw 225
ldk 225
sza 225
mjw03 228
....

Hashes have a highly efficient indexing system so you can look up
a key’s associated value very quickly. Hashes are implemented as
hash tables, hence the name.

No equivalent mechanism of looking up which key(s) corresponds
to a particular (non unique) value.

If your values happen to be unique too: use two hashes, one
mapping k->v and the other mapping v->k.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 8 / 24

Hashes (aka Dictionaries, Maps, Associative Arrays)

A hash literal can be written as a list of pairs with the
key => value (fat comma) syntactic sugar:

my %roomno = (

"dcw" => "225", "ldk" => "225",

"sza" => "225", "mjw03" => "228"

);

The entire hash may be cleared by:
%roomno = ();

To add a single (key, value) pair into a hash, do:
$roomno{"susan"} = "566";

Perl allows you to omit the key quotes: $roomno{susan} = "566";

Our original hash literal example could be written as:
my %roomno = ();

$roomno{dcw} = "225"; $roomno{ldk} = "225";

$roomno{sza} = "225"; $roomno{mjw03} = "228";

To check whether a key is present in the hash, use exists, eg:
print "elvis has left the building\n" unless exists $roomno{elvis};

To retrieve a particular value from a hash, use:
my $room = $roomno{$person};

If the key $person is not present in the hash, the undefined
value is returned.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 9 / 24

Hashes (aka Dictionaries, Maps, Associative Arrays)

To delete a single (key, value) pair from a hash:
delete $roomno{dcw};

To process an entire hash, you can use the keys() function:
foreach my $key (keys %roomno)

{

my $value = $roomno{$key};

print "$key in room $value\n";

}

keys %roomno builds a list containing all keys of %roomno. Could be huge!

Note: keys come out in an efficient hash-table traversal order -
not alphabetical order! Hence, you often see:

foreach my $key (sort keys %roomno) # foreach sorted key in %roomno

{

my $value = $roomno{$key};

print "$key in room $value\n";

}

The idiomatic way to process both keys and values, in any order,
is to use the each() function and a while loop:

while(my($key,$value) = each %roomno) # foreach (key,value) pair in %roomno

{

print "$key in room $value\n";

}

See eg2 for a longer example of how to use hashes.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 10 / 24

Special Variables Environment Variables

Perl has many special variables (see perldoc perlvar for a complete list).
Here are a few of the most useful:

In Unix, environment variables are arbitrary (name, value) pairs,
created by setenv NAME value commands in the shell (by convention,
uppercase names).

To see the current set of environment variables, type env at the
command line. A list of NAME=value pairs fly past.

Once set, environment variables are passed around automatically
to every Unix process in the current session. Perl makes these
variables accessible via a single hash called %ENV.

For example, an important environment variable is HOME (the
pathname of your home directory). Get this by:

my $home = $ENV{HOME} || die "no home?\n";

Other platforms – such as Windows – also have environment
variables, Perl on those platforms can access environment
variables in the same way, but of course what environment
variables exist and what they mean) are different.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 11 / 24

Special Variables The Argument Vector

When you invoke one of your Perl programs, you can place
arguments on the command line, eg:

myprog first second third

When you do this, Perl makes the strings first, second and
third available in a special array called @ARGV. Specifically:

$ARGV[0] = "first";

$ARGV[1] = "second";

$ARGV[2] = "third";

As usual, @ARGV evaluated in a scalar context gives the number of
elements (in the example, 3).

The array function shift() can be used on @ARGV:
my $arg = shift @ARGV;

This sets $arg to element 0 of the array, and removes that element
from the array, shifting the other elements down one.

Of course: it’s up to the program to decide what the strings
mean!

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 12 / 24

Special Variables The Argument Vector

If they are filenames to be opened and processed, the open and
process every line in every file idiom is often used:

foreach my $arg (@ARGV)

{

open(my $in, ’<’, $arg) || next;

while(my $line = <$in>)

{

chomp $line;

now process $line

}

close($in);

}

This (processing several files, not caring where one ends and the
next begins) is so common that Perl has a special shorthand:

while(my $line = <>)

{

chomp $line;

now process $line

}

Exercise: generalise one of the earlier STDIN or single-file
processing programs to take one or more command line
arguments using either of these idioms.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 13 / 24

Special Variables The Implicit Variable

You may find a puzzling shorthand, as in eg3:
while(<>)

{

chomp;

print "found ’$_’\n" if /dun[ck]/i;

}

Where are we storing the line we read with <>?
What are we chomping?
What are we case-insensitively matching /dun[ck]/ against?
What’s that $_ interpolated into the print?

$_ is the implicit variable: the default argument to many
functions:

The default variable where <> stores its input line.
The default variable that chomp modifies.
The default variable to match a regex against.
The default value to print if none is given.
The default foreach variable, as in foreach (@array).
.. and many more cases.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 14 / 24

More Perl One-Liners

The entire framework:
while(<>)

{

chomp;

DO SOMETHING

}

may be wrapped around your Perl one-liner using perl’s -nle

flags. So:
perl -nle ’print qq(found "$_") if /dun[ck]/i’ list_of_files

is a poor man’s customised grep.

A useful feature to use with -nle oneliners is Perl’s END { block }

syntax, which runs (you guessed it) after all input is exhausted.
This allows you to do things like:

perl -nle ’$sum += $_; END {print $sum}’ list_of_files

Another useful Perl flag to use with -nle is -a - this autosplits every
line on whitespace into an array of fields, allowing you (for
example) to sum up column 5 of ls -al’s output:

ls -al | perl -lane ’$sum += $F[4]; END {print $sum}’

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 15 / 24

Regular Expressions

We saw in the first session that we could write:
if($name =~ /^Dun[ck]/)

This is an example of matching a string against a regular
expression (or regex), as in the Unix filters sed, grep and awk.

A regular expression is a way of describing a class of similar
strings in a very compact pattern notation. In the above example,
the match will succeed if the current value of $name starts with:

A capital ‘D’ [must be the very first character],
The lower case letters ‘u’ and ‘n’ as the next two characters,
then either a lower case ‘c’ or a ‘k’.

A whole regex is (usually) placed inside a pair of ‘/’ signs.
Within the slashes, characters are interpreted pretty much like in
a double-quoted string. In particular, variables are interpolated
before pattern-matching occurs.

A regex is made up of single character patterns, grouping
patterns, alternation patterns, anchoring patterns and bracketing
patterns. We’ll look at each in turn.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 16 / 24

Regular Expressions Single character patterns

‘.’ matches any single character.

A single printable character matches itself (except
meta-characters like ‘.’, ‘*’ etc, which may be preceded by a
backslash when you really want to match the character itself!).

[set] matches any single character in the set.
For example, [aeiou] matches any single lower-case vowel.

Also, the set may contain items of the form a-f, which is a
shorthand for abcdef.
For example, [a-z#%] matches any single lower-case letter, a
hash-mark, or a percent sign.

If a set starts with a ‘^’ character (eg. [^a-z#%]), the set is
negated - the pattern matches any character NOT in the set.

Several useful character classes are predefined:
Digit \d [0-9]

Non-digit \D [^0-9]

Word \w [a-zA-Z0-9_]

Non-word \W [^a-zA-Z0-9_]

Whitespace \s space or tab

Non-whitespace \S not space or tab

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 17 / 24

Regular Expressions Grouping Patterns

Sequence of single-character patterns: matches a
corresponding sequence of characters. eg. /[a-z]bc/ matches any
lower case letter, followed immediately by a ‘b’, followed
immediately by a ‘c’, anywhere in the string.

Optional: ‘?’ makes the previous pattern optional - i.e. match
zero or one times. eg. /he?llo/ matches ‘hello’ or ‘hllo’.

Zero-or-more: ‘*’ makes the previous pattern apply any
number of times (from 0 upwards). eg. /he*llo/ matches ‘hllo’,
‘hello’, ‘heello’ etc. It consumes the maximum number of
‘e’s possible (it’s greedy).

One-or-more: ‘+’ means match 1 or more times. eg. /he+llo/

matches ‘hello’, ‘heello’, ‘heeello’ etc but not ‘hllo’.

If the greediness of ‘*’ and ‘+’ is ever a problem, use *? or +?
to consume as few characters as possible.

A regex can contain several of these operators: eg: /h[uea]*l+o/

matches ‘hlo’, ‘hullo’, ‘hulllllo’, ‘heeelo’,
‘heuaueaaeuelllllllo’ etc.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 18 / 24

Regular Expressions Anchoring Patterns; Using Regexps

Placing ‘^’ at the start of a regex matches the start of the
string. Similarly, ‘$’ at the end of a regex matches the end of
the string.
‘\b’ constrains the regex to match only at a word boundary.
Without any anchoring, the regex can match anywhere.

There are two main ways of using regexes:

To check whether a string matches a regex. We specify the
string to match against using the =~ operator, or the not match
operator !~:

print "<$str> matches\n" if $str =~ /h[eua]*l+o/;

If a regex match is followed by i, as in /h[eua]*l+o/i, the matching is
done case insensitively.
Secondly, a regex can be used to search and replace all
occurrences of a regex within a string (again, we specify the
string to modify using the =~ operator):

$str =~ s/[aeiou]+/a/g;

The trailing g makes Perl replace ALL vowel sequences in $str

with ‘a’. Without the g Perl would only replace the first match.
Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 19 / 24

Regular Expressions Testing Regexes

As a general way of testing regular expressions, I recommend a
program like eg4:

#!/usr/bin/perl

#

eg3: regex test harness..

#

print "Please enter a string: ";

my $str = <STDIN>;

chomp $str;

print "\nat start : <$str>\n";

test search and replace:

$str =~ s/^\s+//;

print "\nafter s///: <$str>\n";

test pattern match:

print "\n<$str> matches hello regex\n" if $str =~ /h[eua]*l+o/;

This whole program exists in order to let you test search and
replace and/or pattern matches using a string entered at the
keyboard. By the way, s/^\s+// is a useful regex - worth committing
to memory - that removes any leading whitespace. Similarly,
s/\s+$// removes trailing whitespace.

I strongly recommend that you use this program to test lots of
different regexes and their behaviour against various strings.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 20 / 24

Regular Expressions Alternation and Bracketing Patterns

A regex of the form /h[eua]*llo|wo+tcha/ matches either /h[eua]*llo/ or
/wo+tcha/. Note that /a|b|c|g/ should be written as /[abcg]/ instead for
efficiency.

Brackets may be placed around any complete sub-pattern, as a
way of enforcing a desired precedence. For example, in
/so+ng|bla+ckbird/ obviously bird is only part of bla+ckbird).

If you meant ”/so+ng|bla+ck/ followed by /bird/”, then write that as
/(so+ng|bla+ck)bird/.

If you want a repetition of anything longer than a single
character pattern, you need brackets, as in /(hello)*/. Without
brackets, /hello*/ means /hell/ followed by /o*/ of course!

Brackets have another useful side effect: they tell Perl’s regex
engine to remember or capture the text fragment that matched
the inner pattern for later reporting or reuse. eg:

my $str = "I’m a melodious little soooongbird, hear me sing";

print "found <$1>\n" if $str =~ /(so+ng|bla+ck)bird/;

After the match succeeds, the capture buffer variable $1 contains
soooong - the part of $str matching the bracketed regex.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 21 / 24

Regular Expressions Bracketing: Capturing parts of the matched text

Aside: to turn capturing off, while retaining the grouping
behaviour: use (?:inner), eg. /(?:so+ng|bla+ck)bird/.

Use up to nine bracketed sub-patterns in a single pattern match -
capture variables $1 to $9 - available for use as soon as the
pattern match has succeeded.

Capture buffers can be used in a search and replace operation:
$str =~ s/^\s*(\w+)\s+(\w+)/$2 $1/;

which swaps the first two space separated words in the string (if
there are two space separated words at the start of the string).

Another example: /first(.*)second/ matches exactly the same strings
as /first.*second/, but remembers the particular sequence of
characters found between first and second as $1.

If the string contains several occurrences of first and second,
greediness causes the regex to match the leftmost first and the
rightmost second:

.....first...first...second...first...second........

^^^^^!!!!!!!!!!!!!!!!!!!!!!!!!!!!^^^^^^

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 22 / 24

Regular Expressions Bracketing: Capturing parts of the matched text

We can also reuse a capture buffer (under the syntax \1) to
enforce the same literal text is found twice in a pattern match:

/first(.*)second\1/

This will only match strings like:
...........firstXYZsecondXYZ...............

but not strings like:
...................firstABCsecondXYZ...........

Test eg4 out with a variety of inputs and regexes and check you
understand how they work.

If your pattern contains lots of ‘/’ characters - while you can
write each as ‘\/’ - it’s easier to change the regex quote
character:

$str =~ m%^/([^/]+)/%;

$str =~ s!/[^/]*$!!;

Here, the character immediately following ‘m’ (for match) or
‘s’ (for search and replace) is used as the regex quote character.

That’s a basic overview of Perl regexes; there are loads more
features (more are added every year). perldoc perlre for more details.

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 23 / 24

Another Useful operator: tr

$str =~ tr/firstcharlist/secondcharlist/[cds]

tr is the character transliterator. It works very like the Unix filter
tr - turning each occurrence of a character from the first
character list into the corresponding character from the second
character list.
eg: tr/aB/Ab/ uppercases every ‘a’ and lowercases every ‘B’.
tr is rather like a series of regexes that only use character classes
- the above example is equivalent to s/a/A/g followed by s/B/b/g. But
tr is much more efficient.
tr// is bound to a variable using the =~ syntax (like regexes).
Like s///, tr// also returns a scalar value - a count of how
many characters were modified/deleted.
Let’s give some examples:

$str =~ tr/A-Z/a-z/ lowercase every character in $str.
$str =~ tr/xyz/ZYX/ turn every occurence of x into Z, y into Y and z into X.
$str =~ tr/A-Z//d delete all upper case letters.
$str =~ tr/A-Z//cd delete all characters except upper case letters.
$str =~ tr/aeiou/V/ replace any lower case vowel with a ‘V’.
$str =~ tr/aeiou/V/s replace each sequence of vowels with a single ‘V’.
$count = ($str =~ tr/a-z/a-z/) Set $count to the number of lower case letters found in $str (without

changing $str).

Duncan White (CSG) Introduction to Perl: Third Lecture January 2015 24 / 24

	Contents
	A better way to run Perl Programs
	 Arrays and Lists
	Arrays as Tuples
	 Scalar/List Context

	 Hashes (aka Dictionaries, Maps, Associative Arrays)
	Special Variables
	Environment Variables
	The Argument Vector
	The Implicit Variable

	More Perl One-Liners
	 Regular Expressions
	Single character patterns
	Grouping Patterns
	Anchoring Patterns; Using Regexps
	Testing Regexes
	Alternation and Bracketing Patterns
	Bracketing: Capturing parts of the matched text

	Another Useful operator: tr

