
Introduction to Perl: Eighth Lecture

Duncan C. White (d.white@imperial.ac.uk)

Dept of Computing,
Imperial College London

January 2015

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 1 / 24

Contents

The main topic for today is data structures on demand, by means
of program transformations that guarantee to preserve correctness:

In languages such as Haskell, data structures are very easy to use
(lists and tuples built-in) and define (recursive data types).

In languages like C, building data structures seems hard (which is
why you should build a toolkit), so you tend to only build data
structures for the macro-scale.

In Perl, data structures are even easier to use than in Haskell - so
simple that building optimal data structures - and changing them
when you change your mind - becomes a useful programming
technique in it’s own right.

I call this the Agile Data Structures approach.

We’ll also talk briefly about testing, benchmarking and profiling, and
then wrap up the course.

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 2 / 24

Data Structures On Demand Finding Unique Elements

While writing a single function, you often write code that
computes a single answer. Sometimes you can transform this
code by building a data structure enabling you to lookup all
answers of that kind.

For example, given an unsorted array of numbers:
@array = (17, 5, 3, 17, 2, 5, 7, 6, 6, 10, 3);

Consider finding unique values from such an array. We might
write the following naive code (eg1):

build @uniq, an array of all unique elements of @array

my @uniq;

foreach my $i (0..$#array) # foreach index i in @array

{

count how many elements array[j] (i!=j) are the same as array[i]

my $count = 0;

foreach my $j (0..$#array)

{

$count++ if $i != $j && $array[$i] == $array[$j];

}

unique if $count == 0

push @uniq, $array[$i] if $count == 0;

}

This is very C-style code! index based, unclear, 13 lines long,
could harbour bugs. Worse still, it’s O(N2).

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 3 / 24

Data Structures On Demand Program Transformations

Our first transformation is to notice that we can eliminate the
$i != $j test, and compare the count with one not zero (eg2):

build @uniq, an array of all unique elements of @array

my @uniq;

foreach my $i (0..$#array) # foreach index i in @array

{

how many elements array[j] are the same as array[i] (inclusive)

my $count = 0;

foreach my $j (0..$#array)

{

$count++ if $array[$i] == $array[$j];

}

unique if $count == 1 (array[i] itself)

push @uniq, $array[$i] if $count == 1;

}

Next, notice that we no longer use indices i and j separately from
array [i] and array [j], so we can now loop over the values (eg3):

build @uniq, an array of all unique elements of @array

my @uniq;

foreach my $x (@array)

{

how many elements y are the same as x (including x)?

my $count = 0;

foreach my $y (@array)

{

$count++ if $x == $y;

}

unique if $count == 1 (x itself)

push @uniq, $x if $count == 1;

}

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 4 / 24

Data Structures On Demand Program Transformations

Our next transformation is to notice that the inner loop can be
replaced with a call to grep (eg4). Recall that grep constructs a
list, and assigning that list to a scalar $count delivers the number of
elements in the list:

build @uniq, an array of all unique elements of @array

my @uniq;

foreach my $x (@array)

{

how many elements are the same as x (including x)?

my $count = grep { $_ == $x } @array;

unique if $count == 1 (x itself)

push @uniq, $x if $count == 1;

}

All the above transformations have improved the clarity of the
code, we’re much more confident that this is correct now.
However, still O(N2) - because grep (and map) count as O(N).

But now we make a simple observation: Over the course of the
foreach loop, we calculate the frequency of every array element.

So why not pre-calculate the element frequencies ahead of time?
This suggests a new data structure (a bag or frequency hash):

my %freq; # array element -> frequency of that element

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 5 / 24

Data Structures On Demand Unique Elements: a New Data Structure

To populate %freq we write:
my %freq;

foreach my $x (@array)

{

$freq{$x}++;

}

Once we have %freq our code is:
my @uniq;

foreach my $x (@array)

{

push @uniq, $x if $freq{$x} == 1;

}

Bringing this all together, this gives eg5, which is clearly O(N)!

Next, the %freq building code may be more idiomatically written:
my %freq; $freq{$_}++ for @array; # build array element -> frequency of that element

Finally, we notice that the main loop is another grep:
my @uniq = grep { $freq{$_} == 1 } @array; # build @uniq, all unique elements of @array

These two lines are the heart of our final clear simple O(N)
version eg6. Compare this to our original 13 line O(N2) eg1!

Of course, we had to allocate a modest extra amount of space
for the frequency hash. But it’s definitely worth it!

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 6 / 24

Data Structures On Demand Non-unique Elements

Suppose we want an array of the distinct non-unique values
instead. Non-unique values (ignoring distinct) are easy, simply
change freq == 1 to freq > 1:

my %freq; map { $freq{$_}++ } @array;

my @nonuniq = grep { $freq{$_} > 1 } @array;

However, this includes each non-unique element many times.
For example, if @array = (1,1,1,2,2) then @nonuniq = (1,1,1,2,2) whereas
distinct suggests that we wanted @nonuniq = (1,2).
To remove duplicates from @nonuniq, we can use a standard turn it
into a set and extract the keys idiom:

my %set = map { $_ => 1 } @nonuniq;

@nonuniq = keys %set;

Recall that keys %set delivers the keys in an unpredictable order. We
could say sort keys %set, but our code would become O(NlogN).
An O(N) alternative - that delivers the distinct values in the
order they were present in the original array - is to replace the set
of all items in the array with a set of all items seen so far (eg7):

my %freq; map { $freq{$_}++ } @array; # build element -> frequency hash

my %seen; # what elements have we already seen?

my @nonuniq = # build distinct non-unique elements

grep { $freq{$_} > 1 && ! $seen{$_}++ } @array;

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 7 / 24

Data Structures On Demand Changing the Data Structure

Finally, after building and using %freq, suppose we realised that
other parts of the program need to locate all the positions in the
original array @array at which a specific value appeared.

We need a different temporary data structure:
my %indexlist; # array element -> list of positions in original array

Recall that the array contains:
@array = (17, 5, 3, 17, 2, 5, 7, 6, 6, 10, 3);

Our desired %indexlist comprises:
17 => [0, 3], 2 => [4],

6 => [7, 8], 7 => [6],

5 => [1, 5], 3 => [2, 10],

To build %indexlist we might write naive code (eg8):
initialize all ’inner’ array refs to [], maybe several times each

foreach my $value (@array)

{

$indexlist{$value} = [];

}

can now freely push positions onto @{$indexlist{$value}}

foreach my $index (0..$#array)

{

my $value = $array[$index];

my $aref = $indexlist{$value};

push @$aref, $index;

}

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 8 / 24

Data Structures On Demand Changing the Data Structure

In fact, the first loop is not needed because Perl auto-vivifies
array and hash references when needed, as this snippet shows:

my $ref = undef; @$ref = (1,2,3); print "@$ref\n"’;

So that gives us:
push positions onto @{$indexlist{$value}} freely

foreach my $index (0..$#array)

{

my $value = $array[$index];

my $aref = $indexlist{$value};

push @$aref, $index;

}

$value is only used once, fold it in:
foreach my $index (0..$#array)

{

my $aref = $indexlist{$array[$index]};

push @$aref, $index;

}

Writing the foreach loop as a procedural map, we end up with the
following more idiomatic version:

my %indexlist; map { my $aref = $indexlist{$array[$_]}; push @$aref, $_ } 0..$#array;

If you’re happy to push it one stage further, fold $aref in too:
my %indexlist; map { push @{$indexlist{$array[$_]}}, $_ } 0..$#array;

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 9 / 24

Data Structures On Demand Redundancy and Minimalism

Now, given that $freq{$v} == @{$indexlist{$v}}, ie. $v’s frequency is the
length of $v’s position list, do we need to keep %freq?
A minimalist would remove %freq, to avoid redundancy. Our
uniqueness detector would then be:

my @uniq = grep { @{$indexlist{$_}} == 1 } @array;

Personally, I’d keep both - and build them together (eg9):
my(%indexlist, %freq);

map { $freq{$array[$_]}++; push @{$indexlist{$array[$_]}}, $_; } 0..$#array;

Let’s pause for a moment and take stock of what we’ve done:

In a series of very small example programs (each < 20 lines long)..
We’ve shown how to gradually transform low level algorithmic
code, into shorter, clearer, more obviously correct code...
Using temporary data structures (scaffolding) and higher-order
functions such as grep and map...
To make the original problem much easier to solve..
Sometimes even making the code faster and more efficient.

This is a sufficiently rare combination of good characteristics that
it’s worth celebrating, noting that it’s only possible because Perl
makes building optimal data structures so simple.

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 10 / 24

Data Structures On Demand Scaling Agile Data Structures Up

Please note that this technique isn’t only appropriate on the
small scale - let’s scale it up. We said that we were working
inside functions, let’s make that explicit now:

#

@uniq = unique_values(@array):

Deliver all non-repeated values from @array

in the SAME ORDER they were present in @array

#

fun unique_values(@array)

{

my %freq; $freq{$_}++ for @array; # array element -> frequency

my @uniq = grep { $freq{$_} == 1 } @array; # @uniq, unique elements

return @uniq;

}

#

@nonuniq = distinct_nonunique_values(@array):

Deliver all repeated (non-unique) values from @array

once each (i.e. distinct), in the SAME ORDER as they

were first found in @array

#

fun distinct_nonunique_values(@array)

{

my %freq; $freq{$_}++ for @array; # array element -> frequency

my %seen; # elements we’ve already seen

my @nonuniq = grep # distinct non-unique elements

{ $freq{$_} > 1 && ! $seen{$_}++ } @array;

return @nonuniq;

}

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 11 / 24

Data Structures On Demand Scaling Agile Data Structures Up

Plus a bonus function (and a test case, giving eg10):
#

@distinct = distinct_values(@array):

Deliver all distinct values from @array,

in the SAME ORDER as first found in @array.

#

fun distinct_values(@array)

{

my %seen; # elements already seen

my @distinct = grep { ! $seen{$_}++ } @array;# distinct elements

return @distinct;

}

In reality, there’d be many more such functions, some building
and using %indexlist instead of, or as well as, %freq.

Although there’s nothing wrong with building %freq and friends
independently each time we need them, we might wonder
whether we should break such code out:

#

%freq = build_freq_hash(@array):

Build a frequency hash of the elements of @array, i.e. a hash

mapping each element (key) to the frequency of that element in @array,

#

fun build_freq_hash(@array)

{

my %freq; $freq{$_}++ for @array; # array element -> frequency

return %freq;

}

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 12 / 24

Data Structures On Demand Scaling Agile Data Structures Up

Now replace that code fragment in other functions with calls:
my %freq = build_freq_hash(@array);

Having build_freq_hash() available as a separate function opens up the
possibility of prolonging the lifetime of %freq. Perhaps someone
will call both unique_values() and distinct_nonunique_values() with the same
array, so why calculate %freq twice?
Perhaps the caller should do the following:

my %freq = build_freq_hash(@array);

my @uniq = unique_values(\%freq, \@array);

my @nonuniq = distinct_nonuniq_values(\%freq, \@array);

Or, if the order of elements is unimportant, just pass in %freq:

my %freq = build_freq_hash(@array);

my @uniq = unique_values(%freq);

my @nonuniq = distinct_nonuniq_values(%freq);

In the latter case, as well as build_freq_hash() above, we’d have:
#

@uniq = unique_values(%freq):

Deliver all non-repeated values from a %freq hash

in an undetermined order

#

fun unique_values(%freq)

{

my @uniq = grep { $freq{$_} == 1 } keys %freq;

return @uniq;

}

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 13 / 24

Data Structures On Demand Scaling Agile Data Structures Up

Plus the remaining functions, rewritten to take %freq:
#

@nonuniq = distinct_nonunique_values(%freq):

Deliver all repeated (non-unique) values from %freq

in an undetermined order

#

fun distinct_nonunique_values(%freq)

{

my %seen; # elements we’ve already seen

my @nonuniq = grep # distinct non-unique elements

{ $freq{$_} > 1 && ! $seen{$_}++ } keys %freq;

return @nonuniq;

}

#

@distinct = distinct_values(%freq):

Deliver all distinct values from %freq

in an undetermined order

#

fun distinct_values(%freq)

{

return keys %freq;

}

Adding a test case gives us eg11.

Note the much simpler distinct_values() implementation now that we
don’t care about the order - also note how we changed the
comments for each function to say “in an undetermined order”.

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 14 / 24

Testing, Benchmarking and Profiling Perl Testing Perl programs

Perl has several unit testing modules, the simplest is called
Test::Simple, but we’ll take a quick look at it’s big brother Test::More.

First of all, the basic concept of testing is that you already know
what the correct (expected) answer is!

Test::More has many test functions, we only need three:

plan tests => N: How many tests are there in total?
use_ok(’module_name’): Can the given module be successfully loaded?
is($got, $expected, $testdescription): Tests that the string $got (usually
generated from a function you wish to test), is the same as the
expected string $expected, printing out the given test description.

What shall we test? How about our frequency/unique/distinct
values functions, turned into a module frequtils.

A minimum test might first check that we can load the module:
use Test::More;

plan tests => 2; # how many tests?

use_ok(’frequtils’); # first test.. load module?

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 15 / 24

Testing, Benchmarking and Profiling Perl Testing Perl programs

Followed by:
#

my $str = as_string(%hash):

Produce a predictable plain text form of a hash.

we’ve chosen comma separated key:value pairs,

sorted by key

#

fun as_string(%hash)

{

my @k = sort keys %hash;

return join(",", map { "$_:$hash{$_}" } @k);

}

my @array = (1,2,1,3);

my $input = "1,2,1,3";

my $expected = "1:2,2:1,3:1";

my %freq = build_freq_hash(@array);

my $output = as_string(%freq);

is($output, $expected, # second test.. right result?

"build_freq_hash($input)=$output");

This forms eg12. Running it, we get output:
1..2

ok 1 - use frequtils;

ok 2 - build_freq_hash(1,2,1,3)=1:2,2:1,3:1

Let’s check that the test framework is working, by adding
$output .= ",6:1" just before the is..

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 16 / 24

Testing, Benchmarking and Profiling Perl Testing Perl programs

As expected, now we get something scarier:
1..2

ok 1 - use frequtils;

not ok 2 - build_freq_hash(1,2,1,3)=1:2,2:1,3:1,6,1

Failed test ’build_freq_hash(1,2,1,3)=1:2,2:1,3:1,6,1’

at ./eg12 line 36.

got: ’1:2,2:1,3:1,6,1’

expected: ’1:2,2:1,3:1’

Looks like you failed 1 test of 2.

Scaling this up to more tests of build_freq_hash(), we need to
generalise how tests are represented:

my @freqtests = (# array of (arrayref, expectedstring) pairs

[1], "1:1",

[2], "2:1",

[1,2], "1:1,2:1",

[1,2,1], "1:2,2:1",

[1,2,1,2], "1:2,2:2",

[1,2,1,3], "1:2,2:1,3:1",

);

plan tests => 1 + @freqtests/2; # how many tests?

use_ok(’frequtils’); # first test.. load module?

Need to write new code to run all tests:

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 17 / 24

Testing, Benchmarking and Profiling Perl Testing Perl programs

This is simply (eg13):
#foreach (arrayref,expectedstring) in @freqtests

while((my $inputarray, my $expected, @freqtests) = @freqtests)

{

my $input = join(’,’, @$inputarray);

my %freq = build_freq_hash(@$inputarray);

my $output = as_string(%freq);

is($output, $expected, "build_freq_hash($input)=$output");

}

Running it, we get output:
1..7

ok 1 - use frequtils;

ok 2 - build_freq_hash(1)=1:1

ok 3 - build_freq_hash(2)=2:1

ok 4 - build_freq_hash(1,2)=1:1,2:1

ok 5 - build_freq_hash(1,2,1)=1:2,2:1

ok 6 - build_freq_hash(1,2,1,2)=1:2,2:2

ok 7 - build_freq_hash(1,2,1,3)=1:2,2:1,3:1

Suppose we wish to generalise further: allow each test to specify
which function to test, via a 3rd field:

my @tests = (# array of (type, arrayref, expectedstr) triples

"freq", [1], "1:1", # build_freq_hash() tests

"freq", [1,2,1,3], "1:2,2:1,3:1",

"dist", [1,2,1,3], "1,2,3", # distinct_values() tests

"uniq", [1,2,1,3], "2,3", # unique_values() tests

"dnu", [1], "", # distinct_nonunique_values() tests

"dnu", [1,2,1,2], "1,2",

);

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 18 / 24

Testing, Benchmarking and Profiling Perl Testing Perl programs

Next, we extend our test framework to extract the 3rd field:
#foreach (type,arrayref,expectedstring) triple in @tests

while((my $type, my $inputarray, my $expected, @tests) = @tests)

{

my $input = join(’,’, @$inputarray);

to be continued

}

Now, we must choose what action to take based on $type. Let’s
use coderefs and data-driven programming:

my %testtype = (# type -> [coderef, funcname]

’freq’ => [\&wrap_freq, ’build_freq_hash’],

’uniq’ => [\&wrap_uniq, ’unique_values’],

’dnu’ => [\&wrap_nonuniq, ’distinct_nonunique_values’],

’dist’ => [\&wrap_distinct, ’distinct_values’],

);

To use this data structure, we carry on in the foreach my $teststr (@tests)

body (from # to be continued):
...

to be continued

my($testfunc, $funcname) = @{$testtype{$type}};

my $output = $testfunc->(@array);

is($output, $expected, "$funcname($input)=$output");

}

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 19 / 24

Testing, Benchmarking and Profiling Perl Testing Perl programs

This only leaves the definitions of the four wrap functions. Here’s
wrap_freq():

#

$str = wrap_freq(@array):

call build_freq_hash(@array) and then build

and return a predictable (sorted) representation

of the result to compare against, as a string

#

fun wrap_freq(@array)

{

my %freq = build_freq_hash(@array);

return as_string(%freq);

}

The other 3 are left for you to find in the example tarball.

This is eg14 - run it, we get output:
1..25

ok 1 - use frequtils;

...

ok 4 - build_freq_hash(1,2)=1:1,2:1

...

ok 13 - distinct_values(1,2,1,3)=1,2,3

...

ok 19 - unique_values(1,2,1,3)=2,3

...

ok 23 - distinct_nonunique_values(1,2,1)=1

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 20 / 24

Benchmarking Perl code

Perl has a module called Benchmark, with a partially OO
interface and a procedural interface.

A Benchmark->new object returns the current time, use it as (eg15):
use Benchmark;

my $t0 = Benchmark->new; # start

... put your code here ...

my $x = 100; for(my $i=0; $i<100000000; $i++) { $x++; }

my $t1 = Benchmark->new; # stop

my $ts = timestr(timediff($t1, $t0));

print "the code took: $ts\n";

Given several alternative algorithms whose efficiency you want to
compare, use the procedural interface (eg16) to run and report:

use Benchmark qw(:all);

my $duration = shift @ARGV || 4;

timethese(-$duration, # run for at least duration CPU seconds

{

’x++’ => sub { my $x = 100; $x++ },

’x+=1’ => sub { my $x = 100; $x += 1 },

});

There’s another example (eg17) using a different benchmark
function, $benchmark_object = countit($time, $coderef), to do more flexible
benchmarking. Left for you to investigate.

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 21 / 24

Profiling Perl

Perl’s best profiler module is Devel::NYTProf (written by the New York
Times). Run one of your Perl programs (eg14 let’s say) with:

perl -d:NYTProf eg14

Your program will run 2-3 times slower than usual, then when it
finishes, you’ll find the nytprof.out file, containing the profiling data.
Now run a post-processor, nytprofhtml -open. This will produce an
HTML report, and open a web browser browsing it. Look at
http://www.doc.ic.ac.uk/~dcw/perl2014/nytprof/ for an example of a larger Perl
program under profiling, you see a table of where time was spent:

Calls P F Exclusive Inclusive Subroutine

Time Time

14145230 4 1 21.3s 21.3s NewBoard::cellstatus

5584 3 2 12.7s 27.5s NewBoard::changeregioncolour

5585 4 3 12.3s 25.1s NewBoard::extendregion

5528 2 1 4.73s 4.73s Clone::clone (xsub)

2811488 1 1 4.51s 4.51s NewBoard::markcellcolour

674063 7 2 1.09s 1.09s NewBoard::cell

Then click on any function to see a line by line breakdown of the
number of times a line was run, and the time it took.
Once you know the hotspots, you can consider selectively
optimizing them. As in any language, repeated profiling and
optimization passes can give dramatic speedups.

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 22 / 24

Course Wrapup What haven’t we mentioned?

Perl features such as:

typeglobs - manipulating symbol tables.
Autoloading - defining a subroutine AUTOLOAD which handles missing
subroutines!
Compile time vs run time distinctions, BEGIN and END blocks.
Writing Perl code on the fly via eval.
Exception handling via eval and die.
Perl one-liners (enough times).

Using the Perl debugger (perldoc perldebug and perldoc
perldebtut).

Perl and graphics - building GUIs using Tk or Gtk, visualizing
directed graphs via GraphViz and it’s friends, constructing image
files via GD (useful for CGI programs generating dynamic images).

Parser generators using Perl - especially the awesome yacc-like
module Parse::RecDescent.

Perl threads - semaphores, condition variables, mutexes, thread
queues etc.

Interfacing external C libraries into Perl via XS or Inline::C.

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 23 / 24

Course Wrapup Finding More Information about Perl

Checkout the Extra Notes document on my website, contains
material that didn’t fit in the main lectures. New this year:
lecture 6’s Person/Programmer example done in Moose, a new
alternative OO system for Perl.
O’Reilly’s site http://www.perl.com/ (The Perl Resource) is a
wonderful source of Perl information, containing links to a
multitude of Perl information.
Our old friend CPAN: http://www.cpan.org/.
The wonderful Perl Journal at http://tpj.com/ which started
out as a quarterly paper journal and recently changed to a
monthly e-zine in PDF format, still on subscription.
The Perl Directory at http://www.perl.org/ is a directory of
links to other Perl information and news.
The Perl Monks at http://www.perlmonks.org/ is a
forum-based discussion site for all matters Perlish.
That’s all folks! Enjoy your Perl programming - and remember
the Perl motto: There’s More Than One Way To Do It!
And they’re all really good fun!

Duncan White (CSG) Introduction to Perl: Eighth Lecture January 2015 24 / 24

	Contents
	Data Structures On Demand
	Finding Unique Elements
	Program Transformations
	Unique Elements: a New Data Structure
	Non-unique Elements
	Changing the Data Structure
	Agile Data Structures
	Redundancy and Minimalism
	Scaling Agile Data Structures Up

	Testing, Benchmarking and Profiling Perl
	Testing Perl programs

	Benchmarking Perl code
	Profiling Perl
	Course Wrapup
	What haven't we mentioned?
	Finding More Information about Perl

