

Lecture 1

Graph Models

Network Inference Lecture 1 Slide 2

Communication Networks

Networks have always been with us, and have important
social and strategic functions.

The Romans built the
first European road
network.

It brought civilisation
and prosperity to many
countries - and huge
wealth to Rome.

Communication equated with transport in those days!

Network Inference Lecture 1 Slide 3

Communication Networks

Communication networks in their own right have evolved
dramatically over the last 250 years:
• Semaphore signalling towers (London-Portsmouth in

15 mins)
• Wheatstone electrical telegraph 1830.
• Telephone 1876
• The radio telegraph (Marconi) 1909
• Satellite communication (Sputnik 1957)
• ARPA Net 1963
• Fibre optic nets 1970s

Network Inference Lecture 1 Slide 4

Communication Networks

There are also biological communications networks.

In the ninteenth century scien-
tists learnt how to stain neurones
to make them visible under the
microscope.

They discovered that the brain
was a highly complex network

It looks as if networks are an
important component of decision
making.

Network Inference Lecture 1 Slide 5

Communication Networks

Functional medical imag-
ing has been able to map
the areas of the brain
invloved in thought pat-
terns:

Diffusion tensor medical
imaging has been able to
identify connection path-
ways within the brain:

and there are genetic networks, vascular networks,
endocrine networks, social networks, etc. etc.

Network Inference Lecture 1 Slide 6

Why Study Networks

We can use the data we gain from studying networks to:
• Try to understand how they function, for example by

investigating spiking neural rate models.

• Create biologically inspired machines, for example
Deep Neural Networks

• Use network inference to solve engineering problems.

We will start by looking at two examples network
inference.

Network Inference Lecture 1 Slide 7

The Tanner graph

• The Tanner graph is a graphical model that was
designed for error recovery in parity checking.

• It is a bi-partite graph - ie it has two node types and
each node connects only to its opposite type.

• The circles represent bits
and the squares represent
parity checks.

• The squares evaluate to 1 if
the sum of the bits is even.

Network Inference Lecture 1 Slide 8

Parity checking as an inference problem

Suppose the bits are transmitted down a noisy channel
and let Pf be the probability that a bit is flipped during
transmission.

• Let Yi be the measured (received) bit values.
• Let Xi be the true (transmitted) bit values which we

want to recover

then:

P(Xi |Yi) = 1−Pf if Xi = Yi
= Pf otherwise

Network Inference Lecture 1 Slide 9

Parity checking as an inference problem

So given a possible bit string (X1,X2,X3, ...Xn) we can
calculate a probability of it being correct using:

P(X1,X2,X3, ...Xn) =
n

∏
j=1

P(Xj|Yj)

If we did not have any parity constraints then the most
probable bit string is the one for which Xi = Yi for all the
bits - ie the string we received.

Network Inference Lecture 1 Slide 10

Parity checking as an inference problem

Now suppose that bits 1,2
and 3 are data bits and 4, 5
and 6 are parity bits.

The parity bits are set so that sum of the three bits in
each group is even. This can be expressed as a
constraint function for each square:

Ψ(X1,X3,X5) = 1− (X1 +X3 +X5)mod2

Network Inference Lecture 1 Slide 11

Parity checking as an inference problem

We want to ensure that if
there is a parity check failure
the we reject the received bit
string completely.

To do this we write the joint
probability distribution of a
bit string as:

P(X1,X2 · · ·X6) = Ψ(X1,X3,X5)Ψ(X1,X3,X5)Ψ(X1,X3,X5)∏
n
j=1 P(Xj|Yj)

In the event that the received bit string fails a parity
check the next most probable bit string is selected.

Network Inference Lecture 1 Slide 12

The Tanner graph as a factor graph

The Tanner graph is a factorisation of a probability
distribution, in our example it has 9 factors:

P(X1,X2 · · ·X6) = Ψ(X1,X3,X5)Ψ(X1,X3,X5)Ψ(X1,X3,X5)∏
n
j=1 P(Xj|Yj)

This is made clearer by including the individual bit
probabilities as boxes (factors) in the graph:

Network Inference Lecture 1 Slide 13

Factor Graphs

Factorisation of probability distributions is a
fundamental idea in probabilistic inference, and we will
return to it later.

The factor graph is a the most general graphical way to
express probabilistic inference problems.

Circles represent data and squares represent factors
which multiply together to form the joint probability of
the data

P(X1,X2,X3, ...Xn) =
m

∏
j=1

fj

Where each fj is a function of a subset of the variables.

Network Inference Lecture 1 Slide 14

Markov Random Fields

Markov Random Fields are graphical models in which
each node depends only on its immediate neighbours.

They are expressed as a factorisation into subsets Vj
each with a potential function:

P(X1,X2,X3, ...Xn) =
1
Z

m

∏
j=1

Ψj(Vj)

Where Z is a normalisation constant:

Z = ∑
X

m

∏
j=1

Ψj(Vj)

Network Inference Lecture 1 Slide 15

Markov Random Fields

The normalisation constant Z gives us flexibility in the
definition the factors in a Markov Random Field.

Z = ∑
X

m

∏
j=1

Ψj(Vj)

However this comes at a computational cost, as for large
inference problems Z is difficult (possibly infeasible) to
compute.

Network Inference Lecture 1 Slide 16

Markov Random Fields

Each node in a MRF can correspond to a single variable
or a set of variables, and each arc implies a relationship
between the variables it joins.

For example an arc might indicate that two variables are
strongly correlated.

Network Inference Lecture 1 Slide 17

Pairwise Markov Random Fields

A pairwise Markov random field has all its variables
joined in cliques of size 2:

but not:

The corresponding factor graph has factors that join at
most two variables.

Network Inference Lecture 1 Slide 18

Example - image segmentation and restoration
Pairwise Markov Random Fields
have been used successfully in
image processing for medical diag-
nosis.

Segmentation: determine which
class pixels belong to:
• GM: Grey Matter (cortical

neurones)
• WM: White Matter (connective

tissue)
• CSF: Cerebral Spinal Fluid

Restoration: correct pixels that are
wrong due to imaging errors and
artefacts.

Network Inference Lecture 1 Slide 19

Example - image segmentation and restoration

In the image segmentation problem each pixel is a
discrete variable which can have one of three possible
values or states. The intensity ranges of these states in a
medical image will overlap, meaning that thresholding
the image does not give an accurate segmentation.

Network Inference Lecture 1 Slide 20

Example - image segmentation and restoration

Each pixel in the image is a variable
in the inference problem. The filled
circles represent actual pixel values
and are labelled Yi.

The model (segments or restored
image values) is represented by the
empty circles Xi.

The Xi values are calculated using
the pixel measurements and the
neighbour’s messages.

Network Inference Lecture 1 Slide 21

Factor graph of the Pairwise MRF

The pairwise Markov random field, being just a
factorisation of a probability distribution can be
represented as a factor graph.

Network Inference Lecture 1 Slide 22

Image Segmentation as Probabilistic Inference

We need to define two types of factor which are
commonly called compatability functions.

Φ(Xi ,Yi) - relates the observed and hidden values. It is
rather like a conditional probability P(Xi |Yi). It expresses
the probability of the pixel belonging to a particular class
(WM, GM, CSF) given the measured pixel value Yi.

Ψ(Xi ,Xj) - expresses the compatibility between adjacent
pixels. Any pixels not connected will have a Ψ(Xi ,Xj)
value of 1 expressing no information. For connected
pixels this compatibility function is like a joint
probability of the adjacent states being neighbours.

Network Inference Lecture 1 Slide 23

Image segmentation as Probabilistic Inference

Given an image Y = (Y1,Y2, ..Yn)
And a segmentation X = (X1,X2, ..Xn)
We can define a joint probability distribution:

P(X ,Y) =
1
Z ∏

i
Φj(Xi ,Yi)∏

i,j
Ψj(Xi ,Xj)

and find the values of Xi that give the maximum
probability (ie the most likely segmentation)

Oh Dear!! We are in trouble! ???

The high cost of computing Z makes this direct approach
computationally infeasible.

Network Inference Lecture 1 Slide 24

Belief Propagation

Belief propagation overcomes the computational
difficulties of using a global joint probability distribution
by making local computations.

In the case of image segmentation each pixel could be in
one of three possible states: “grey matter (GM)”, “white
matter (WM)” and “fluid (CSF)”. Its belief is just the
probabilty distribution over theses states.

In belief propagation each variable will send a message to
each of it’s neighbours and its neighbours will then
update their belief.

The belief in a variable is just its posterior probability
distribution.

Network Inference Lecture 1 Slide 25

Belief propagation in MRFs

We write the belief in one state of a
variable (eg GM, WM or CSF) as:

b(Xi(s)) =
1
Z

Φ(Xi(s),Yi) ∏
k∈N(i)

mk(Xi(s))

Where:
• Xi(s) means state s of node Xi

• mk means a message (or evidence) from neighbour k
• N(i) is the set of neighbours of i

Network Inference Lecture 1 Slide 26

Belief propagation in MRFs

It is also convenient to define:

b\j(Xi(s)) =
1
Z

Φ(Xi(s),Yi) ∏
k∈N(i)\j

mk(Xi(s))

Where: \j means excluding neighbour j

If node i is going to send a message to node j it must
exclude any information it got from j

Network Inference Lecture 1 Slide 27

Belief propagation in MRFs

Finally we can define the message that node i will send to
node j.

mi = b\j(Xi)Ψ(Xi ,Xj)

Where:
• mi is a vector message from Xi for the states of Xj

• b\j(Xi) is a vector of the beliefs in the states of Xi
excluding the evidence from Xj

• Ψ(Xi ,Xj) is the compatibility matrix.

Network Inference Lecture 1 Slide 28

Terminating Belief Propagation

In one epoch of belief propagation each node may send a
message to each of it’s neighbours. But how many
epochs do we need?

There is no definitive answer to this question as the
process is highly data dependent.

One possibility is to record the total change in belief of
each pixel in each epoch, and terminate when this
change reaches a minimum.

This is the problem of Loopy Belief Propagation and is
common in network inference.

Network Inference Lecture 1 Slide 29

Belief propagation in MRFs

Notice that part of the belief of each
variable Φ(Xi(s),Yi) is fixed for all
epochs.

b(Xi(s)) =
1
Z

Φ(Xi(s),Yi) ∏
k∈N(i)

mk(Xi(s))

This will hlep to stabilise the process leading to
convergence.

Network Inference Lecture 1 Slide 30

Computational characteristics of Graphical
Models

Without using a graphical model a probabilistic inference
about a variable may be expressed as a sum over the
entire joint distribution of the variables

But this is clearly infeasible for even moderate sized
problems.

However the graphical model has given us a feasible
approach to making inferences by expressing the
topology of the variables.

Network Inference Lecture 1 Slide 31

Extracting Networks from Data

In both the previous examples the network was designed
to match the inference problem.

We used the fact that there is more likely to be a
relationship between adjacent pixels, than between
distant pixels.

Another interesting application of graph models is in
discovering relationships between variables in a data set.

Network Inference Lecture 1 Slide 32

The Affinity Matrix

Given that we have a data set in which there are n
variables and N data points (samples) we can construct
two possible affinity matrices:

• The variable affinity matrix which has dimension
n×n and each entry expresses the affinity (or
similarlty) between a pair of variables.

• The sample affinity matrix which has dimension
N ×N and each entry expresses the affinity (or
similarlty) between a pair of samples.

Network Inference Lecture 1 Slide 33

An example: Gene Regulatory Networks

Each gene is a spot on a glass slide whose colour
indicates the difference between a normal and cancerous
sample. Each gene has a single measured number
ranging (potentially) from −∞ (cancerous sample only) to
+∞ (normal sample only).

There are typically 20000 genes in an experiment.
Network Inference Lecture 1 Slide 34

Modelling Regulatory Networks

The most widely adopted approach is a hierarchical one:

However there are many problems
• Experimental Error
• Time Resolution
• Overlapping patterns
• Large numbers of genes, but few experimental runs

Network Inference Lecture 1 Slide 35

The Microarry-Microarray Affinity Matrix

One way to build an affinity matrix is to define a
distance: D(µi ,µj).

For example we could define the distance between a pair
of microarrays (patient cases) in the same study as the
Euclidian distance between the gene values.

This could be converted to an affinity value by using a

Gaussian A(µi ,µj) =
1

σ
√

2π
e−(

D(µi ,µj)

2σ2)2

Network Inference Lecture 1 Slide 36

The Gene-Gene Affinity Matrix

Another method is to used covariance directly. Let an
N ×n data (or design) matrix D be composed of N sample
points (microarrays) with n variables (genes). Each row is
one sample of our data set.

D =

150 152 · · · 254 255 · · · 252
131 133 · · · 221 223 · · · 241
· · · · ·
· · · · ·

144 171 · · · 244 245 · · · 223

N ×n

Suppose the mean of the columns of D (the average
image) is:

[120 140 · · · 230 230 · · · 240]

Network Inference Lecture 1 Slide 37

Mean Centring the data

The origin is moved to the mean of the data by
subtracting the column average from each row.

D=

150−120 · · · 254−230 · · · 252−240
131−120 · · · 221−230 · · · 241−240

· · ·
· · ·

144−120 · · · 244−230 · · · 223−240

N ×n

This creates the mean centred data matrix:

U =

30 12 · · · 24 25 · · · 12
11 −7 · · · −9 −7 · · · 1
· · · · ·

24 31 · · · 14 15 · · · −17

N ×n

Network Inference Lecture 1 Slide 38

Calculating the covariance matrix

The covariance matrix Σ can be calculated easily from
the mean centered data matrix:

Σ =UTU/(N −1)

N is the number of data points (microarrays) and the
covariance matrix has dimension n×n.

Notice that we can make a different estimate of the
microarray-microarray affinity matrix by computing:

Σ =UUT/(n−1)

Network Inference Lecture 1 Slide 39

Getting a Network from an Affinity Matrix

Having created an affinity matrix we can extract a
network in different ways.

In every case we will probably want to apply a threshold
below which we consider the gene pairs to be unrelated.

The threshold will determine the number of arcs in the
graph.

We may wish to combine some prior knowledge (in this
case known gene interactions) with the experimental
results.

Network Inference Lecture 1 Slide 40

The Maximally Weighted Spanning Tree

For some applications we may want to extract just a
spanning tree. To do this we can use the maximally
weighted spanning tree algorithm:
• From the matrix extract a list of all gene pairs and

their affinities.
• Sort the list in descending order of affinity
• Add arcs to the graph in the order they appear on the

sorted list, but discarding arcs which if added form a
loop.

The result is the tree that expresses the strongest
dependency between the variables.

Network Inference Lecture 1 Slide 41

Dependency between Discrete Variables

We used discrete variables in the image segmentation
example - each variable (pixel) could take one of three
values or states: GM, WM or CSF, and belief propagation
calculates a probability distribution over the states.

We can use conditional probability to determine degree of
dependency of a pair of discrete variables. If they are
independent:

P(D&S) = P(D)×P(S)

but if they are dependent in any way:

P(D&S) = P(D)×P(S|D)

Comparing P(S&D) with P(S)×P(D) is the basis of these
dependency measures.

Network Inference Lecture 1 Slide 42

Dependency Measurement using an L1 metric

A joint probability, such as P(B&A), may be smaller or
larger than the product of the individual probabilities
(P(B)×P(B)). For the simplest dependency measure we
take the magnitude of the difference.

Dep(A,B) = |P(A&B)−P(A)P(B)|

Network Inference Lecture 1 Slide 43

Summing over the joint states

In order to compute:

Dep(A,B) = |P(A&B)−P(A)P(B)|

we need to sum over the joint states of the variables:

Dep(A,B) = ∑A×B |P(ai&bj)−P(ai)P(bj)|

This means we need to compute the distributions
P(A&B), P(A) and P(B) from the data set.

Network Inference Lecture 1 Slide 44

Computing P(A&B)

From the data set we first find the co-occurence matrix:

We convert this to probabilities by dividing by the
number of data points. (74 in this example)

Network Inference Lecture 1 Slide 45

Computing P(A) and P(B) by marginalisation

Network Inference Lecture 1 Slide 46

Other measures of dependency

• The measure we have used so far is an unweighted
L1 metric.

• Its characteristic is that as the probabilities become
small they contribute less to the dependency.

• This effect reflects the fact that we have little
information on rare events

Network Inference Lecture 1 Slide 47

The Weighted L1 Metric

Another metric is formed by weighting the difference in
magnitude by the joint probability:

Dep(A,B) = ∑A×B P(ai&bj)×|P(ai&bj)−P(ai)P(bj)|

The effect is to further reduce the contribution to the
dependency measure where probabilities are low.

Network Inference Lecture 1 Slide 48

The L2 Metric

L2 metrics use the squared differences:

Dep(A,B) = ∑A×B(P(ai&bj)−P(ai)P(bj))
2

There is a weighted form:

Dep(A,B) = ∑A×B P(ai&bj)× (P(ai&bj)−P(ai)P(bj))
2

Network Inference Lecture 1 Slide 49

Mutual Entropy

The most widely used measure in comparing probability
distributions is Mutual Entropy. It is also called Mutual
Information or the Kullback-Liebler divergence.

Dep(A,B) = ∑A×B P(ai&bj)log2((P(ai&bj)/(P(ai)P(bj)))

• It is zero when two variables are completely
independent

• It is positive and increasing with dependency when
applied to probability distributions

• It is independent of the actual value of the probability

Network Inference Lecture 1 Slide 50

