
Lecture 2:

Causal Networks
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Probability and Statistics

Statistics emerged as an important mathematical
discipline in the late nineteenth and early twentieth
century.

Probability is much older and has been studied as long
ago as man took an interest in games of chance.

Our story starts relatively recently with the famous
theorem of the Rev. Thomas Bayes, published in 1763.
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Independent Events

For independent events S and D:

P(D&S) = P(D)×P(S)

(read “disease” for D and “symptom” for S)
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Dependent Events

However in cases where S and D are not independent we
must write:

P(D&S) = P(D)×P(S|D)

where P(S|D) is the probability of the symptom given that
the disease has occurred.
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Bayes’ Theorem

Now since conjunction is commutative:

P(D&S) = P(S)×P(D|S) = P(D)×P(S|D)

and re-arranging we get:

P(D|S) = P(D)×P(S|D)/P(S)

(Bayes’ Theorem)
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Bayes’ Theorem as an Inference Equation

P(D|S) = P(D)×P(S|D)/P(S)

• P(D|S): The probability of the disease given the
symptom is what we wish to infer.

• P(D) is the probability of the disease (within a
population) this is a measurable quantity.

• P(S|D) is the probability of the symptom given the
disease. We can measure this from the case histories
of the disease.

• P(S) can also be measured, but fortunately does not
need to be.
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Notation

Note that:

P(D&S) = P(D)×P(S)

is a scalar equation with two variables: S and D

For much of this course we will use discrete variables. A
discrete variable can only have one of a finite number of
values (or states), which we denote by lower case letters:
s1, s2, s3 etc.

In the simplest case a variable may take just two values
(true or false) which we denote by lower case letters, eg:

dt and df .
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Normalisation

Suppose that D can take two values (or states): dt and
df , and S can take more states: s1, s2 etc. Then for any
state of S, say si we can write:

P(dt |si)+P(df |si) = 1

and by applying Bayes’ Theorem we can find an
expression for P(si)

P(si |dt)P(dt)/P(si)+P(si |df )P(df )/P(si) = 1
P(si) = P(si |dt)P(dt)+P(si |df )P(df )

Given values for P(S|D) and P(D) we can calculate P(S)
for any state of S. This can be done regardless of the
number of states that D and S can take.
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Prior and Likelihood Information

We can write 1/P(S) as α to remind us it is just a
normalising constant:

P(D|S) = α×P(D)×P(S|D)

• P(D) is prior information, since we knew it before we
made any measurements.

• P(S|D) is likelihood information, since we find its
value from measurement of symptoms.
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Bayesian Inference (in its most general form)

• Convert the prior and likelihood information to
probabilities;

• Multiply them together;

• Normalise the result to get the posterior probability
of each hypothesis given the evidence;

• Select the most probable hypothesis.
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More Variables

• When we derived Bayes theorem we had just one
hypothesis and one piece of evidence.

• Suppose now that we have evidence from more than
one source. Bayes’ Theorem is now written:

P(D|S1&S2&S3 · · ·&Sn) =
P(D)P(S1&S2 · · ·Sn |D)

P(S1&S2&S3 · · ·Sn)
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Conditional Independence

• The term: P(S1&S2 · · ·Sn |D) is of little use for
inference since for large n we are unlikely to be able
to estimate it.

• To get round the problem we normally make the
assumption that the different Si are independent
given a value for D. This enables us to write:

P(S1&S2..Sn |D) = P(S1|D)P(S2|D) · · ·P(Sn |D)

• However this assumption does not necessarily hold
in practice.
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Bayesian Inference Equation

As before we can use normalisation to eliminate:

P(S1&S2& · · ·&Sn)

and so Bayes theorem becomes:

P(D|S1&S2..&Sn) = αP(D)P(S1|D)P(S2|D) · · ·P(Sn |D)
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Graphical Notation

• We can represent this equation as a graphical model
called a Bayesian network.

• Variables (measures or hypothesised) are
represented by circles. Nodes are joined to their
parents by conditional probabilities. The arrow
directions represent causality, in this case the
disease is the cause of the symptoms.

Network Inference Lecture 2 Slide 14



Discrete vs Continuous Variables

Our variables (hypothesis or evidence) fall into one of two
categories:

• Discrete variables take one of a finite number of fixed
values or states.

• Continuous variables can take any real value within
some range.

Bayesian nets can have a mixture of discrete and
continuous variables, but for simplicity we will consider
only discrete.
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A simple example

A medical expert told me that smoking causes symptoms
such as damage to the lungs, dypsnea and aneurysm.

Node Interpretation Type Value
S Smoking Discrete (3 states) Non, Moderate, Heavy
X Chest XRay Discrete (4 state) Clear, Slight, Moderate, Severe
D Dypsnea Discrete (12 states) Baseline Dyspnea Index
A Aneurysm Discrete (12 states) 0cm 0.2cm · · · 2.2cm
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Link Matrices

Each node in the network has an associated link matrix
(or conditional probability table) which connects it to its
immediate parents (or causes). For the link from D to C
we have:

P (X|S) =


P(x1|s1) P(x1|s2) P(x1|s3)
P(x2|s1) P(x2|s2) P(x2|s3)
P(x3|s1) P(x3|s2) P(x3|s3)
P(x4|s1) P(x4|s2) P(x4|s3)


Note that the link matrices are written in bold face to
distinguish them from the scalar probabilities written,
for example, in Bayes’ theorem.
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Prior Probability of the Roots

• The root nodes of a network do not have any parents.
Instead of a link matrix they have a vector giving the
prior probabilities of the states, eg:

P (S) = [P(s1),P(s2),p(s3)]

• This can be thought of a link matrix to empty
parents.
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Finding the link matrices from data

• We can find the values of the conditional
probabilities in the link matrices by experiment.

• To do this we need a large number of cases in which
we know the values of all the variables

• For example, the medical records in a hospital might
have many patient records of S, X and A.

Suppose that there are N(x2&d4) points in our data set
where variable D is in state d4 and variable X is in state
x2. Then we can calculate P(d4|x2) as follows:

P(d4|x2) = N(x2&d4)/N(x2)
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Problems in finding the link matrices

• If a network is to represent the variables in an
inference problem accurately it may be necessary to
have a large number of states for each variable.

• The size of whole network state space is the product
of the number of states of each variable. It grows
exponentially.

• As the number of conditional probabilities we need to
estimate grows, so does the size of the data set that
we need to estimate them objectively
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Naive Bayesian Network

• Networks of the sort we have considered so far are
referred to by a number of names:

• Naive Bayesian Network
• Bayesian Classifier
• Simple Bayesian Network

• They are in many ways the most useful and should
be used wherever possible

• They give us a simple way of combining different
variables that relate to the same cause.
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Using a naive Bayesian network

• Setting a node to a measured value is called
instantiation.

• Once a node has been instantiated, we can look up
the values for the conditional probabilities in the link
matrices.

• Calculating the probabilities of the states of the
hypothesis is done by multiplying together the
conditional probabilities of the instantiated nodes
and the prior probability of the hypothesis node and
normalising.
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Decision Trees

• The next level of complexity in Bayesian networks is
to introduce intermediate nodes between the root
node and the leaf nodes.

• Suppose our friendly medical expert has just told us:

“dypsnoea and lung damage frequently go together,
their cause being lung cancer”

• We can refine our network into a more complex
structure where we explicitly model the relation
between them.
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The Smoker’s Decision Tree

The nodes X and D are related by a common cause - lung
cancer.
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Adding the L Node

• In adding a new node we have to decide how many
states it has.

• It could be simply binary (true or false), but for better
generality we could have three states (or more):

• l1 interpreted as probably not cancer
• l2 interpreted as could be cancer
• l3 interpreted as probably cancer

• To estimate the link matrices we need to consult the
hospital data base of patient records.

• Using the network is a little more complex.
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Calculating the probability of L

• For the S node and its two children we have:

P(S|L&A) = αP(S)P(L|S)P(A|S)

• For the L node we have:

P(L|X&D) = αP(L)P(X |L)P(D|L)

• But now we have a problem since we don’t want to
use a fixed prior probability for L.

• Instead we need to use the evidence that comes from
L ’s parent S.
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The Likelihood of L

• From Bayes theorem (last slide) we have

P(L|X&D) = αP(L)P(X |L)P(D|L)

• We have likelihood information about L from X and
D:

λ (L|X&D) = P(X |L)P(D|L)

• The likelihood information is evidence, but it does
not form a probability distribution. We will call it λ

evidence.
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The evidence for L from S

Suppose that we are reasoning about a particular patient
and we know that he is a heavy smoker. We can now
write the probability distribution over the states of S.

P ′(S) = (0,0,1)

and this provides specific information that we can send
to node L which takes the place of a prior probability. It
is:

π(S) = (P(l1|s3),P(l2|s3),P(l3|s3))
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The total evidence for L

Let us now suppose that we have a value x2 for X and a
value d3 for D.

λ (L) = (P(x2|l1)×P(d3|l1),P(x2|l2)×P(d3|l2),P(x2|l3)×P(d3|l3))

π(L) = (P(l1|s3),P(l2|s3),P(l3|s3))

and putting it all together:

P ′(L) = α×λ (L)×π(L)

The notation P ′(L) is called a posterior probability and
just means the probability given all the evidence we have.
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Conditioning

Conditioning means calculating
probabilities for a given set of
conditions.

Let’s now consider another
example in which X = x2, D =d3
and A = a1, and both L and S
are unknown.

Evidence for variable L now
comes all the way from A.
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Conditioning

We do not know whether
the patient is a smoker or
not, but we do have evidence
from node A and from the
prior probability of S:

We write the total evidence
for S excluding any evidence
from L as:

πL(S) = P(S)λA(S)

We call this the π message from S to L.
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Conditioning Example

Given P(S)= (0.6,0.2,0.2)
and λA(S)= (0.8,0.2,0.05)

πL(S)= (0.48,0.04,0.01)

The π message from S to L
is sent (turned into evidence
for L) by multiplying by
the conditional probability
matrix:

π(L)= P(L|S)πL(S)
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Conditioning Example

Writing out the equation in full we get:

π(L)=

 P(l1|s1) P(l1|s2) P(l1|s3)
P(l2|s1) P(l2|s2) P(l2|s3)
P(l3|s1) P(l3|s2) P(l3|s2)

 0.48
0.04
0.01


so:

π(l1) = 0.48×P(l1|s1)+0.04×P(l1|s2)+0.01×P(l1|s3)

π(l2) = 0.48×P(l2|s1)+0.04×P(l2|s2)+0.01×P(l2|s3)

π(l3) = 0.48×P(l3|s1)+0.04×P(l3|s2)+0.01×P(l3|s3)

The π evidence is a weighted sum of the entries in the
link matrix.
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What about the evidence from X and D?

We have already seen how
the lambda evidence is
collected by L from S and D.

This is information about
node L, and clearly will have
some effect on our belief in
its parent S.

However, we don’t have a
definite value for L, only a
probability distribution over
its states.
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Conditioning again

Let’s suppose that:

λ(L)= (0.5,0.2,0.1)

This is all the evidence we
need to send to S - it already
has the evidence from
π(L). We send it by pre-
multiplying the conditional
probability matrix by λ (L)

λL(S)= λ(L)P(L|S)
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Conditioning Example

Writing out the equation in full we get:

λL(S)= [0.5,0.2,0.1]

 P(l1|s1) P(l1|s2) P(l1|s3)
P(l2|s1) P(l2|s2) P(l2|s3)
P(l3|s1) P(l3|s2) P(l3|s2)


so:

λL(s1) = 0.5×P(l1|s1)+0.02×P(l2|s1)+0.01×P(l3|s1)

λL(s2) = 0.5×P(l1|s2)+0.02×P(l2|s2)+0.01×P(l3|s2)

λL(s3) = 0.5×P(l1|s3)+0.02×P(l2|s3)+0.01×P(l3|s3)

The λ evidence is a weighted sum of the entries in the
link matrix.
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Final Probability Distributions

Having propagated the evidence from all three
instantiated nodes X , D and A we can now calculate the
probability distributions over the unknown nodes:

P ′(L)= α×π(L)×λX(L)×λD(L)

P ′(S)= α×P(S)×λL(S)×λA(S)

And we can now use these distributions to make
inferences.
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Evidence

• Every node in the graph will have a vector of λ

evidence and a vector of π evidence.
• The evidence is unnormalised probability. If

normalised the λ evidence would be the probability
of the node given all the information comming from
its descendents.

• If normalised the π evidence would become the
probability of the node given all the information
comming from its parents and their ancestors and
descendents.
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Instantiation and Evidence

• If a node is instantiated (measured) it is known to be
in a particular state and its λ evidence and π

evidence will contain 1 for the instantiated state and
zero for all others.

λ (X) = (0,0,1,0)
• A node can have virtual evidence. If there is

uncertainty about a particular measurement we can
express that by specifying a liklihood distribution
over the states:

λ (X) = (0.1,0.2,0.5,0.2)
• If a node has no evidence its states are equiprobable:

λ (X) = (1,1,1,1)
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Incorporating more Nodes

• One of the best features of Bayesian Networks is that
we can incorporate new nodes as the data becomes
available.

• Suppose we discover that coughing (C) is a symptom
of lung cancer.

• This could simply be treated as another node.
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Incorporating more Nodes

If we add this new node we only need to find one new
conditional probability matrix. All the others remain
unchanged.
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Summary

Given a set of n discrete random variables
V = (V1,V2 · · ·Vn) and a large data sets we can:

• build an affinity matrix from the data set and deduce
a dependency graph.

• with the help of an expert we can add causal
directions to the graph.

• use our data set to find conditional probability
matrices linking nodes to their parents.

• for any measured subset of the variables we can find
probability distributions over the states of all the
others.

An impressive achievement you will agree - but !!
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Summary

Just as I was on my way to the pub to celebrate, I met
my friendly medical expert again. She said to me:

“Haven’t you heard? Those brilliant
microbiologists have just discovered that
cancer is more likely to be caused by a
genetic defect than by smoking”

So now it’s back to the drawing board . . . again!!!
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Multiple Parents

• Up until now our networks have been trees, but in
general they need not be. In particular, we need to
cope with the possibility of multiple parents.

• Multiple parents can be thought of as representing
different possible causes of an outcome.

• In our example we want to express the idea that lung
cancer can be caused either by a genetic defect or by
smoking.
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Multiple Parents

We can incorporate a new two state node G in the graph
which indicates a genetic defect.

Notice that we need to replace the link matrix P(L|S) by a
new matrix P(L|G&S).
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Multiple Parents

Conditional probabilities, with multiple parents must
include all the joint states of the parents. Thus for the
P(L|G&S) node we will have:

 P(l1|g1&s1) P(l1|g1&s2) P(l1|g1&s3) P(l1|g2&s1) P(l1|g2&s2) P(l1|g2&s3)
P(l2|g1&s1) P(l2|g1&s2) P(l2|g1&s3) P(l2|g2&s1) P(l2|g2&s2) P(l2|g2&s3)
P(l3|g1&s1) P(l3|g1&s2) P(l3|g1&s3) P(l3|g2&s1) P(l3|g2&s2) P(l3|g2&s3)



As before each row is for one state of the child node. This
time we have one column for each joint state of the
parents.
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π messages with multiple parents

As before we can calculate a
π message from each parent to
node L

πL(G) = P(G)

πL(S) = P(S)×λA(S)

But now we need to pass the messages using the joint
conditional probability matrix.
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Finding a joint distribution over the parents

We calculate the joint distribution of π messages over the
states of the parents by assuming that πL(G) and πL(S)
are independent:

πL(G&S) = πL(G)×πL(S)

Remember that this is a scalar equation with variables G
and S. In vector form the joint evidence is:

πL(G&S)=



πL(g1&s1)
πL(g1&s2)
πL(g1&s3)
πL(g2&s1)
πL(g2&s2)
πL(g2&s3)

=



πL(g1)×πL(s1)
πL(g1)×πL(s2)
πL(g1)×πL(s3)
πL(g2)×πL(s1)
πL(g2)×πL(s2)
πL(g2)×πL(s3)
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The independence of πL(G) and πL(S)

• In this simple example G and S have no other path
linking them, and hence if we do not consider the
evidence from L then πL(G) and πL(S) must be
independent.

• If they had, for example, a common parent, then our
assumption about the independence of πL(G) and
πL(S) would no longer hold.

• We have therefore made an implicit assumption that
there are no loops in our network.
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π messages with multiple parents

We can now complete sending
the π message to L with the
same vector equation we used
before:

π(L)= P(L|G&S)πL(G&S)

and as before:

P ′(L)= α×π(L)×λX(L)×λD(L)
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λ messages with multiple parents

A child with multiple parents
sends a message to the joint
states of its parents.

For a single parent:

λA(S)= λ(A)P(A|S)

For multiple parents:

λL(G&S)= λ(L)P(L|G&S)
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λ messages with multiple parents

The joint message λL(G&S) that we have calculated is:

[λ (g1&s1),λ (g1&s2),λ (g1&s3),λ (g2&s1),λ (g2&s2),λ (g2&s3)]

The evidence we have for G and S excluding any evidence
from L are the π messages that we calculated. We use
these to condition the joint λ message.

λL(g1) = πL(s1)λL(g1&s1)+πL(s2)λL(g1&s2)+πL(s3)λL(g1&s3)

λL(g2) = πL(s1)λL(g2&s1)+πL(s2)λL(g2&s2)+πL(s3)λL(g2&s3)
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λ messages with multiple parents

In more general terms we can write the individual λ

messages to the two parents as:

λL(gi) = ∑j(πL(sj)×λL(gi&sj))

λL(sk) = ∑h(πL(gh)×λL(gh&sk))

Notice that if the joint λ message contains no evidence ie
λL(gi&sj) = 1 for all i, j, then these individual λ messages
contain no evidence.

λL(gi) = ∑j πL(sj)

λL(sk) = ∑h πL(gh)
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Summary

Well at last it looks like we have a completely general
purpose belief propagation system for causal networks
based on just five equations:

• The π message:

πC(ai) =


1 if A is instantiated for ai
0 if A is instantiated but not for ai
P ′(ai)/λC(ai) if A is not instantiated

• The π evidence:

For a single parent: π(L)= P(L|S)πL(S)

For multiple parents: π(L)= P(L|G&S)πL(G&S)

(where πL(G&S) = πL(G)×πL(S))
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Summary

• The λ evidence:

λ (lk) =


1 if L is not instantiated and has received no λ messages
1 if L is instantiated as lk
0 if L is instantiated but not as lk
∏i λDi (ck) if L is not instantiated

• The λ message:

For a single parent: λA(S)= λ(A)P(A|S)

For multiple parents: λL(G&S)= λ(L)P(L|G&S)
(where λL(sk) = ∑h(πL(gh)×λL(gh&sk)))

• The posterior probability: P ′(L) = α×λ (L)×π(L)
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Summary

Well that seems to be a satisfactory conclusion to
everything - but?? - isn’t that my friendly medical expert
sitting in the back of the lecture theatre? What is she
asking now?

“Didn’t you know that patients with
an aortic anuerism often suffer from
dypsnoea?

Oh No !!! - that’s really put the cat among the pidgeons!

Find out why next lecture.
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