
Lecture 3

Cause and Independence
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The story so far

We have developed a fast and effective algorithm for
probability propagation in belief networks, but it only
works for singly connected networks. Now we have
discovered from our distinguished medical expert that
our diagnostic network has a loop in in.

Network Inference Lecture 3 Slide 2



So what is the problem with loops?

When we calculate the joint
π message from L&A to D
we assume that L and A are
independent.

Unfortunately they are
not independent, so the
computation of P ′(D) will be
wrong.

So what does it mean to be independent?
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Independence

Independence is a clearly defined notion with well
defined measures.

Given two variables X and Y , if changing X does not
change Y and vice versa then X and Y are independent.

In a network if there is no path between two variables
they are independent.

Nodes E and F are
independent of nodes A,
B, C and D.
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Arcs and Independence

It is possible for two variables to be connected by a path
in a network and still be independent. This is because a
conditional probability matrix can express no
dependency. Consider

P(B|A) =

[
0.5 0.5
0.5 0.5

]
For any λ evidence on B say [b1,b2] we have that:

λB(A) = [b1,b2]

[
0.5 0.5
0.5 0.5

]
= [(b1 +b2)/2,(b1 +b2)/2]

In other words the λ message contains no evidence and
therefore A does not change when B changes.

Network Inference Lecture 3 Slide 5



Arcs and Independence

• So in theory, the absence of an arc in a network is
more significant than the presence of an arc.

• However in practice we should avoid having arcs
expressing very low dependency in networks.

• The maximum weighted spanning tree algorithm
(MWST) can be adapted to help with this problem.
Instead of continuing to include arcs until we create
a connected graph we can terminate the process
when the dependency becomes too low to be
significant.
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Dependency Separation (d-separation)

Any two variables X and Y which are not directly
connected by an arc are conditionally independent if
there is a set of nodes Z such that knowledge of Z makes
X and Y independent. The set Z is said to d-separate X
and Y .

Both nodes A and B d-
separate C and D.
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Cut-set conditioning

D-Separation gives us a possible way forward to
achieving accurate belief propagation in the case of
loops.

If we can identify a cut-set of nodes
that D-separate a loopy graph into
singly connected subgraphs, and
we instantiate those nodes we can
propagate probabilities accurately.

If we don’t have data for the cut-set nodes we can
calculate probabilities for each joint state of the cut set
and combine them with whatever prior information we
have
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Cut-set conditioning

So now we are back in business.

Node S is a good choice of
cutset for this graph.

We can instantiate it to each
of its four states in turn, and
propagate probabilities for
each state.

We can get an exact result
by combining the four
probabilities weighted by
P(S) - the prior probability
of S
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Blocked Paths

If a node is instantiated it will block some message
passing. Instantiating the centre node below prevents
any messages passing through it.
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Converging Paths

However, as we have already seen, converging paths are
blocked when there is no λ evidence for the child node,
but unblocked if the child has λ evidence or is
instantiated.

Lets look again at why this happens.

Network Inference Lecture 3 Slide 11



Converging Paths

To understand the behaviour of converging paths we look
at the equation for the λ message in our previous
example when there are two or more parents.

λL(G&S)= λ(L)P(L|G&S)

If node L is not instantiated or has not received any λ

evidence from its descendants then it will contain no
λ (L) evidence: λ (L) = (1,1,1). So:

λL(G&S)= (1,1,1)P(L|G&S) = (1,1,1,1,1,1)

This is because we are summing the columns of
P(L|G&S) which are probability distributions.
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Converging Paths

If we now condition the joint message to get an individual
λ message for G we use:

λL(gi) = ∑j(πL(sj)×λL(gi&sj))

Substituting λL(G&S) = (1,1,1,1,1,1) we get:

λL(gi) = ∑j πL(sj)

The sum is independent of i and hence the value of λL(gi)
is the same for all values of i, that is to say there is no λ

evidence sent to G.

Similarly no λ evidence is sent to S.
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Causal Directions

This result tells us something important about cause.
• Bayesian networks have a causal direction

associated with the arcs. The arrow points from
cause to effect.

• The notion of cause in a Bayesian network comes
from the idea of conditional probability:

P(A&B) = P(A)P(B|A)

• If P(B|A) = P(B) then A and B are independent, if not
we think of A causing (or influencing) B, since, given
A, B’s probability distribution has changed

• However there is nothing in the underlying
mathematical theory that helps us to determine
causal directions. Instead we usually turn to the
semantics of the application to do this.
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Causal Directions

• So far we have taken our causal directions from
knowledge about the root variables in our network.

• Knowledge of this kind can come from:
• Our understanding of the semantics (expert advice)
• Temporal sequences of events (Granger Causality)

• In certain circumstances, it is also possible to
determine cause by examining variable
independence.
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Possible configurations of connected triplets
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Non-colliders

For the non colliders A and B are conditionally
independent given C.

If C is instantiated no messages pass
from A to B.
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Colliders

However for a collider (multiple parent), the nodes A and
B are only independent if there is no information on C.

If C is instantiated then changing B
changes A and vice-versa.

Converging paths are blocked when there is no λ

evidence.

If C does not have λ evidence then
changing B will not change A and
vice-versa.
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Marginal Independence

Converging paths are blocked when there is no λ

evidence.

λ (C) = [1,1,1 · · ·1]

Given a data set for the triplet A−C−B we can measure
the dependence between A and B using all the data. (ie
with no information on C).

If this is low we may suspect that the configuration is a
multiple parent.
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Conditional Independence

C is instantiated:

λ (C) = [0,0,1 · · ·0]

Alternatively we can partition our data according to the
states of C, and then compute a set of dependency values
(one for each state of C).

If any one of these is high we may again suspect that the
configuration is a multiple parent.
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Practical Computation

Given a triplet, partition the data according to the states
of the middle node C, and calculate the dependency of
the other variables A,B for each set.

if Dep(A,B) small, and some Dep(A,B)C=cj is large then
the configuration is likely to be a multiple parent.

Network Inference Lecture 3 Slide 21



Computation from the joint probability matrix

Rather than compute the dependencies from the data we
can marginalise the joint probability of a triplet:

P(A&B) = ∑C P(A&B&C)

For any joint state [ai ,bj] we sum all the matrix entries
[ai ,bj,ck ].

We use P(A&B) to calculate the Dep(A,B) which is the
dependence of A and B with no information about C and
is called the marginal independence.
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Mutual Entropy

Since we are comparing probability distributions over
discrete variables the best way to find the dependency is
to use the Kullback-Liebler divergence.

Dep(A,B) = ∑A×B P(ai&bj)log2((P(ai&bj)/(P(ai)P(bj)))

As previously noted:

• It is zero when two variables are completely
independent

• It is positive and increasing with dependency when
applied to probability distributions

• It is independent of the actual value of the probability
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Computation from the joint probability matrix

Similarly we can use the joint probability matrix to
calculate the conditional probabilities:

P(A&B|C) = P(A&B&C)/P(C)

If we think of P(A&B&C) as having a column for each
state of C and a row for each joint state of A and B, then
we normalise each column into a probability
distribution.

We then compute a separate value of Dep(A,B) for each
column. Adding these together gives us a measure of
conditional dependence. If this is close to zero the
configuration is not a collider.
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Algorithm for determining causal directions

• compute the maximally weighted spanning tree
network

• for each connected triplet in the spanning tree
• compute the joint probability of the triplet
• compute the marginal dependence and conditional

dependence
• if the marginal dependence is low and the conditional

dependence is high put in causal directions
corresponding to a collider (multiple parent).

• propagate the causal arrows as far as possible. eg:
given:

If A and C are independent given B, B is the parent
of C and vice versa.
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Example of finding causal directions

Start by finding the spanning tree

Network Inference Lecture 3 Slide 26



Example of finding causal directions

Find all multiple parents using marginal independence

Network Inference Lecture 3 Slide 27



Example of finding causal directions

Propagate arrows where possible
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Example of finding causal directions

Continue to the leaf nodes
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Problems in identifying causal directions

• Our dependency measures are unlikely to give us a
decisive result (independent or dependent). We need
heuristic thresholds in practice.

• We may find few (or no) cases of multiple parents.

• If there is an unknown (or unaccounted) source of
dependency between two variables then the method
will give incorrect results.

• We need to compute joint probabilities of triples of
variables, hence there may computational problems.
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Learning Cause

• Well, it may not be the most effective algorithm ever
constructed, but at least we don’t need to listen to
that medical expert any more!

• And time is running out, so before she asks me any
more embarassing questions, I’ll finish with a brief
overview on some of the methods that are available
for propagating probabilities accurately in causal
networks.

• Overall there is a trade off between accuracy and
computation speed which gets more pronounced as
the number of variables in the network gets bigger.
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Loopy Belief Propagation

• For very big networks we may need to put up with
some inaccuracies and just propagate the evidence
for a set number of epochs, or until we satisfy some
measure of convergence.

• This was the approach we took for the random
Markov field segmentation algorithm.

• Alternatively we can propagate using the loop and
look for ways of correcting the result.

• This is a theoretically interesting idea, but to date no
one has found a way of making a correction when
loops are overlapping.

• There are also practical difficulties in determining
when a correction can be applied or not.
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Hidden Nodes (aka Latent Variables)

This is a practical method of taking loops out of a causal
network, but it does require statistical learning for which
lots of data is needed.

The process is to remove the least dependent link of a
multiple parent.
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Calculating the Conditional Probabilities

1. Given estimates of:
P(H |A),P(B|H),P(C|H) and a
set of data points [ai ,bj,ck ]

2. Use each bj,ck to compute
P ′(A) from the network,
calculate and accumulate an
error:

E = (P ′(A)−P(ai))
2

3. Minimise E over the data set
by adjusting the elements of
P(H |A),P(B|H),P(C|H)
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Calculating the Conditional Probabilities

For each conditional probability
P(cj|hk) we need to find a value
for:

∂E
∂P(cj |hk)

Then in each epoch we update
the conditional probabilities
using:

P(cj|hk)⇒ P(cj|hk)−µ
∂E

∂P(cj |hk)

Gradients may be calculated analytically or numerically.
A closed form equation for the gradients was developed
by Chee Keong Kwoh.
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Gradient Descent and Probabilities

Gradient descent has problems when applied to
probability distributions. After one cycle of updating:
• Distributions will no longer sum to 1
• Individual probability values may be greater than 1

or less than 0

The conditional probability matrices must be normalised
so that the columns sum to 1. This may compromise
finding an optimal solution.
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Join Trees

The join tree algorithm converts a causal network into a
singly connected Markov random field. It identifies
subsets of interdependent nodes and propagates
probabilities between them. First a dependency graph is
created:
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Join Trees

Next all maximal fully connected subsets (cliques) of the
nodes are found:

These cliques are the nodes of the Join tree which is an
undirected Random Markov field.
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Join Trees

Propagation can be carried out between the joined
variables in the cliques
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Join Trees

The join tree algorithm allows us to have the best of both
worlds.

• We can use causal models to incorporate our
knowledge in the data model or to investigate
causality in data sets that we want to model.

• We can use join trees for exact belief propagation
(without the need to see that join tree).

Unfortunately there is no free lunch. The join tree
algorithm is n-p hard. The more dependency there is in
the data the slower they are.
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Structure and Parameter Learning

• Networks combine both structure and parameters.

• We can express our knowledge (if any) about the data
by choosing a network structure.

• Alternatively we can learn our network structure
from data.

• We then optimise the performance by adjusting the
parameters (link matrices).
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Other machine learning formalisms

• Neural Networks
• Neural networks are a class of inference systems

which offer just parameter learning.
• Generally it is very difficult to embed knowledge into

a neural net, or infer a structure once the learning
phase is complete.

• Rule based systems (Logic)
• Traditional rule based inference systems have just

structure (sometimes with a rudimentary parameter
mechanism).

• They do offer structure modification through methods
such as rule induction.

• However, they are difficult to optimise using large
data sets.
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Inferring Cause

• Neural networks are most applicable when we have
no causal knowledge, but correspondingly we cannot
extract causal information from them.

• Rule based systems are most applicable when we
have good causal knowledge as they can represent it
well.

• Bayesian networks can incorporate known causal
relations, but also have the potential to learn cause
from data.
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Learning Cause

• The notion of learning cause from data caused
considerable interest in data mining applications -
for example genetics.

• Microarray data can measure simultaneous activities
of genes normal and cancerous cells. We could
potentially learn causal networks from these using
the methods described above.

• However to date the large number of variables, small
number of data sets and high experimental error has
meant the technique has not met with huge success.

• However it remains an intriguing idea as data
volumes and accuracy expands.
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Network Inference

Well that really is the end!

I hope you have enjoyed these lectures.
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