
Coursework : Practical Data Analysis using Python

Overview

The coursework for the Intelligent Data Analysis and Probabilistic Inference Course has two objectives. Firstly
it is intended to help you fully understand some of the algorithms covered in the course by doing some practical
data analysis work, and secondly it serves as an introduction to Python which is an excellent environment for
doing numerical analysis. Python has a powerful syntax that allows you to write code that looks very much like
the equations found in the notes. It provides an interface to a highly robust and fast numerical programming
library. The syntax has some similarities to Matlab but Python is available for free. There are many good online
tutorials which you may want to work through if you find the coursework notes too terse.

Dates

The coursework is divided into four parts with hand in dates spaced fairly evenly throughout the term. The
suggested start dates and the hand in dates are as follows:

Part Start Hand In
1 after lecture 2: (16th Jan) 30th Jan
2 after lecture 6: (30th Jan) 13th Feb

Note that we have yet to finalise the third and fourth parts of the coursework. Full details full details of the third
and fourth parts will be given in a separate handout.

Group Working

You are encouraged to work in pairs or in groups of three. Group working can be enjoyable and is an effective
way of learning providing everybody in the group participates. If you work in a group then you submit just
one solution to CATE for each exercise. You don’t have to be in the same group for all four courseworks. For
example you could do number one by yourself and the other three in a group with two of your friends.

Submitting work

All four courseworks will be submitted electronically only. For each you will submit two files. One will be
your python script in text format. The other will be a results file. For courseworks 1 this is a simple text file,
but for courseworks 2 you will need to submit a .pdf file.

Assessment

There is a total of 100 marks available for the coursework. The handouts for each exercise give you a breakdown
of the marks available for each part. The intention is that you can score up to 60% easily, and with a bit more
effort get an A grade, however after that the going gets a little harder. Some of the parts are marked as hard, so
you may choose to leave them out if you are under pressure to meet other deadlines, though most students in
the past have done everything and received high overall marks. As a compensation to those who want to work
alone each exercise will have two bonus marks for individual solutions and one bonus mark for groups of 2.
This means that if you work in a group of 2 you can score a maximum of 96% and in a group of 3 you can score
a maximum of 92%. On the other hand you may well be able to complete more of the exercises in a group.

Some of the exercises were set last year so please if you do by chance get access to a solution destroy it and
work the exercises from scratch. I have copies of all last year’s submissions and can automatically check for
any copying. Also if you work as a group please don’t try to claim individual submissions. This would be
considered as plagiarism by the college and can result in severe penalties.

Coursework Files

The files that you need for the coursework are available from the course web page:
http://www.doc.ic.ac.uk/ dfg/ProbabilisticInference.

You should download copies of these to your working directory. The files are as follows:
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• There are two python scripts with extension .py. One is a library of functions for doing input and output
of different kinds of data. The other is a skeleton solution for the first two courseworks, to which you
will add your own code. You should look through these to work out what they are doing.

• There are two files of discrete data. One is a small and highly dependent data set for recognition of four
developmental stages of neurones grown in culture from five measured variables. The other is a larger
data set of measurements on patients suffering from Hepatitis C.

The format of the last two files is as follows:
Number of Variables
Number of Root nodes
for each variable The number of states of each variable
Number of Data Points
for each data point

for each variable the state
All data items (shown in italics above) are integers and are separated either by a space or a carriage return. The
states and variables are numbered consecutively from 0 upwards.

Example:
4 the data file has four variables
2 there are two root nodes (the root nodes will always be placed first in the variables)
5 2 4 2 variable 0 has 5 states, variable 1 has 2 states etc
7 there are seven data points
2 0 3 1 data point 1 variable 0 (a root) is in state 2, variable 1 (a root) is in state 0 etc.
4 1 3 1 data point 2
4 0 0 1 etc.
0 0 3 0
3 0 2 1
1 1 2 1
2 0 2 1

Working Environment

The suggested environment for doing this coursework is Ubuntu Linux, but you can also do it in the windows
and mac operating systems. On Ubuntu it is convenient to use ’Kate’ which you can start from the Applica-
tions/Other menu, or by right clicking on a .py file and choosing ’Kate’ from the ’open with’ option. When
kate is running, open the terminal at the bottom of the window by clicking on it. You can then edit the file in
the top window, save it and then execute it by typing ’python myprog.py’ in the terminal.
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Coursework Part 1: The Naive Bayesian Network

In the first coursework we will look at calculating joint and conditional probability tables (link matrices) and
making inferences with a naive Bayesian network.

Take a look at the first four functions in DAPICourseworkLibrary.py to make sure you understand what is
going on. You may find the python syntax self explanatory, but if not you can find several good online tutorials
through google. The first function reads a data file in the above format, extracting the data so that it can be
used. It is extensively commented to help you understand what is going on. The second writes a data array to
a file, appending it to what is there already. The data is written out in a fixed floating point format which is
suitable for printing probabilities. The third appends a list (one dimensional array or vector) to a text file and
the fourth appends a string to a text file. These allow you to save your results in a text file and add comments
to them. Thus you can put together your results in a suitable form for submitting your solution to CATE.

Now take a look at the file DAPICourseworkSkeleton.py. The first five functions are to be completed for
coursework 1 as detailed below. They are all quite short, the longest part in my solution is 11 lines.

Task 1.1: 4 marks

Complete the definition of function Prior. It should calculate the prior distribution over the states of the variable
passed as the parameter ’root’ in the data array. The first line simply sets up an array for the result with zero
entries.

Task 1.2: 5 marks

Complete the definition of CPT which calculates a conditional probability table (or link matrix) between two
variables indicated by parameters varP (the parent) and varC (the child). In the skeleton the conditional proba-
bility table is simply initialised to zeros.

Task 1.3: 4 marks

Complete the definition of function JPT which calculates the joint probability table of any two variables. The
joint probability is simply the frequency of a state pair occurring in the data. So for state a0 of variable A and
state b3 of variable B, if N(a0&b3) is the number of data points containing both a0 and b3 then P (a0&b3) =
N(a0&b3)/noDataPoints. The table should be arranged so that for P (A&B) the states of A are rows and
the states of B are columns.

Task 1.4: 4 marks

Complete the function JPT2CPT which calculates a conditional probability table from a joint probability table.
This is purely a matter of normalising each column to sum to 1. In effect we use the equation P (A|B) =
P (A&B)/P (B).

Task 1.5: 6 marks (harder)

Finally complete the function Query which calculates the probability distribution over the root node of a naive
Bayesian network. To represent a naive network in Python we will use a list containing an entry for each node
(in numeric order) giving the associated probability table: [prior, cpt1, cpt2, cpt3, cpt4, cpt5]. You can calculate
the prior of the root and the conditional probability tables between each child variable and the root using your
solutions to Tasks 1 and 2. A query is a list of the instantiated states of the child nodes, for example [1,0,3,2,0].
The returned value is a list (or vector) giving the posterior probability distribution over the states of the root
node, for example [0.1,0.3,0.4,0.2].

Results File

You should finish by writing a main program part at the end of the skeleton file. Some example code is there to
help you do this. You should use the Neurones.txt data set, and create a results file containing:
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1. A title giving your group members

2. The prior probability distribution of node 0 in the data set

3. The conditional probability matrix P (2|0) calculated from the data.

4. The joint probability matrix P (2&0) calculated from the data.

5. The conditional probability matrix P (2|0) calculated from the joint probability matrix P (2&0).

6. The results of queries [4,0,0,0,5] and [6, 5, 2, 5, 5] on the naive network

Rename your python file “DAPICoursework01.py” and submit it and your results file named “DAPIRe-
sults01.txt” using CATE.

Some confusing things when starting python

Python uses the list as its primary data structure, and this provides a very flexible mechanism for representing
and manipulating data. However, in numerical analysis we are primarily concerned with using vectors and
matrices. The python module “numpy” provides support for this activity. For example, if we want to use a 2 by
3 array we would define it as a list of lists:

myList = [ [3,4,7], [2,1,3]]

We can convert it to a Matrix by using

myMatrix = numpy.array(myList)

This function creates a new data structure with attributes like rows (myMatrix.shape[0]) and columns (myMa-
trix.shape[1]), and methods, for example:

myMatrix.transpose()

Numpy contains many other useful functions, for example to compute a matrix product:

myMatrixProd = numpy.dot(myMatrix, myMatrix.transpose())

A python module is simply a set of python function definitions. In order to use a module you must import it.
There are different ways of doing this. For example:

import numpy

allows you to use all the functions defined in numpy, but you must explicitly reference them as numpy functions.
For example we write numpy.dot for the dot product. Numpy contains a reference to the linear algebra module
named linalg and in coursework part four you need the eigenvector function eig. You reference this by writing
numpy.linalg.eig You can alternatively write:

from numpy import *

If you do this you can use the functions in numpy without the reference, ie just dot for the dot product.
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Coursework Part 2: The Maximally Weighted Spanning Tree

This coursework is concerned with the spanning tree algorithm for finding a singly connected Bayesian network
from a data set. The material you need will be completely covered by Lecture 6 of the course. You can use the
same skeleton program that was set up for Coursework 1, continuing to fill in code where indicated. You will
need to use the function that you wrote to compute the joint probability distribution of a pair of variables. If
your original solution was wrong and you are stuck then email me and I will give you some working code to
do this (after the hand in date for coursework 1).

Task 2.1: 6 marks

Complete the function “MutualInformation” which calculates the mutual information (or Kullback Leibler
divergence) of two variables from their joint probability table. The process involves marginalising the joint
probability table and then applying the formula as described in Lecture 6.

Task 2.2: 5 marks

Complete the function “DependencyMatrix” which uses mutual information as a measure and creates a sym-
metric matrix showing the pairwise dependencies between the variables in a data set.

Task 2.3: 6 marks

Complete the function “DependencyList” which turns the dependency matrix into a list or arcs ordered by their
dependency. Your list items should be triplets: [dependency, node1, node2]. Using your dependency list draw
by hand the Bayesian network that you would get for the HepatitisC data set. Make an image file of your
network (either by scanning your hand drawing or using a drawing package (eg powerpoint or open office)).

Task 2.4: 6 marks (difficult)

Starting with a dependency list find the maximally weighted spanning tree automatically, and append it as a list
to your results file. Don’t wory about implementing marginal independence to find the causal directions.

Results File

You should finish by writing a main program part at the end of the skeleton file which will add the following
items to your results file:

1. A title giving your group members

2. The dependency matrix for the HepatitisC data set

3. The dependency list for the HepatitisC data set.

4. Ths spanning tree found for the HepatitisC data set (if you attempted task 2.4).

Assemble the results listed above with the network picture into a .pdf file (You can do this with word, open
office or latex). Rename your python file “DAPICoursework02.py” and submit it and your results file named
“DAPIResults02.pdf” using CATE.
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