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Probability Propagation.
In the following Bayesian network the variables are all binary, with, for example,
variable A having states a; and a;.

The conditional probabilities are given consistently in the form:

D|A&B) = P(di|ai&eby) P(di|ai&ebs) P(di]agdeby)  P(dy]az&ebs)
P(D| = | P(dy|ar&by) P(ds]ar&by) P(da]as&eh) P(da|askeds)

and are

P(A) =[0.1,0.9]
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The equations for propagating probabilities in Bayesian networks are:
The )\ message from child C to parents A and B is given by:
Aclar) =Y me(b;) > Plexlaibeb;)Mck)
j=1 k=1
In the case where we have a single parent (A4) this reduces to:
Ao(ai) =Y Plexlas)Mer)
f=1

and for the case of the single parent we can use the simpler matrix form:
Mc(A) = A(C)P(C|A)
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The matrix form for multiple parents relates to the joint states of the parents.
Ac(A&B) = A(C)P(C|A&B)

It is necessary to separate the A evidence for the individual parents with a scalar
equation of the form:

Ac(a;) = Zime(bj)Ac(aikb;)

The 7 evidence to child node C from two parents A and B is given by:
!

m(ck) = Z Z P(cr|ai&b;)me(ai)me (b))

i=1 j=1

This can be written in matrix form as follows:
7(C) = P(C|A&B)rc(A&B)

where
me(aideh;) = me(as)me(b;)
The single parent matrix equation is:

m(C) = P(C|A)rc(A)

a Find the values of the 7 evidence for node D after initialisation and before any
nodes are instantiated.

b Node D is instantiated to state d; and all other nodes remain uninstantiated.
Calculate the posterior probability of node A when propagation terminates.

¢ Node E is now instantiated to state e;. Calculate the 7 evidence for node F
when propagationn finishes.

d i) For what instantiations would the message passing algorithm fail to
terminate.

ii) Which single node would form a cutset ensuring propagation always
terminates.

e i) Explain what is meant by the Markov blanket of a node.

ii) What is the Markov blanket of node D?

The five parts carry equal marks.
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€

Join Tree Algorithm

For the Bayesian network defined in questionl find the moral graph and its

cliques.

Fill up a table in the following format for each clique found in part a:

W R

S

Y

where W, R and S are sets of varibles used in the join tree algorithm with the
usual naming conventions and W is the potential function of the clique.

Explain what is meant by the running intersection property. Find all join trees
that display the running intersection property.

Calculate the initial potential table for one three node clique of a join tree found

in part C.

Explain why the moralisation step is necessary in the join tree algorithm.

The five parts carry equal marks.
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3 Graphical Models and Mixture Models

A Markov random field is defined as a factorisation of a probability distribution
with the following equation:

ra - 1 L s
P(X,Y) =2 [ ¥(X: X)) [[ o(X:, ) (1)
i,J i
a  Explain the purpose of the functions ¥ and ®.

b  The diagram shows a small part of a pairwise Markov random field used for
medical image segmentation. Explain briefly how image segmentation is
achieved using this model.
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c i) Draw the factor graph corresponding to the Markov random field of part b,
labeling typical nodes and factors using the standard labeling conventions.

ii) Explain why it is often not possible to calculate the normalisation constant
Z in equation 1.

d A mixture model is one in which a probability distribution is represented as a
weighted sum of Gaussian distributions. It is written as:
M

p(l) =D ap(xld;)

where there are M probability distributions in the mixture and a; are the mixing
weights that have the property Eﬁ 1 @; = 1, and the symbol §; denotes the
vector of unknown parameters that defines each individual distribution.

Explain, with the aid of a suitable diagram, why mixture models may be prone to
overfitting.

e  Write down an expression for the log likelihood of the mixture model defined in
part d for a data set with IV variables. Explain why the log liklihood is preferred
to the likelihood.

The five parts carry equal marks.
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4  Principal Component Analysis.

The following very simple problem has three variables and just two data points
set out in the table below.

X|Y|Z
1{0](3
§12 41

a  Find the mean-centred data matrix U = [X — Xm,¥ — ¥m,Z — Zm), hence find
the co-variance matrix UTU

b For real problems, where sample sizes are much smaller than the number of
variables, it is common to use the Karhunen-Lowe transformation to find
principal components. Use the matrix U of part a to find the matrix A = UUT
and calculate its principal eigenvector. (First calculate the eigenvalues using
det(A — M) = 0, then solve (A — AI')e = 0 to find the eigenvectors.)

¢ Using the eigenvector found in part b and the mean centered data matrix of part
a, find the principal eigenvector of the covariance matrix of part a. Check that
this is indeed an eigenvector of the covariance matrix, and find its corresponding
eigenvalue.

d When PCA is used for face recognition it is normal to discard some of the
eigenfaces that are found from the covaraince matrix. Briefly describe a criterion
for deciding how many of the eigenfaces should be retained.

¢ Explain briefly how a 3D active appearance model of the human face can be

implemented, indicating what its input variables are and how PCA is used in its
construction.

The five parts carry equal marks.
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