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Abstract. In several pattern recognition problems, particularly in image recognition
ones, there are often a large number of features available, but the number of training
samples for each pattern is significantly less than the dimension of the feature space.
This statement implies that the sample group covariance matrices often used in the
Gaussian maximum probability classifier are singular.  A common solution to this
problem is to assume that all groups have equal covariance matrices and to use as
their estimates the pooled covariance matrix calculated from the whole training set.
This paper uses an alternative estimate for the sample group covariance matrices,
here called the mixture covariance, given by an appropriate linear combination of
the sample group and pooled covariance matrices. Experiments were carried out to
evaluate the performance associated with this estimate in two recognition applica-
tions: face and facial expression. The average recognition rates obtained by using
the mixture covariance matrices were higher than the usual estimates.

1   Introduction

A critical issue for the Gaussian maximum probability classifier is the inverse of the sam-
ple group covariance matrices.  Since in practice these matrices are not known, estimates
must be computed based on the observations (patterns) available in a training set.  In some
applications, however, there are often a large number of features available, but the number
of training samples for each group is limited and significantly less than the dimension of
the feature space.  This implies that the sample group covariance matrices will be singular.

This problem, which is called a “small sample size problem” [5], is quite common in
pattern recognition, particularly in image recognition where the number of features is very
large. One way to overcome this problem is to assume that all groups have equal covari-
ance matrices and to use as their estimates the weighting average of each sample group
covariance matrix, given by the pooled covariance matrix calculated from the whole
training set.

This paper uses another estimate for the sample group covariance matrices [4], here
called mixture covariance matrices, given by an appropriate linear combination of the
sample group covariance matrix and the pooled covariance one.  The mixture covariance
matrices have the property of having the same rank as the pooled estimate, while allowing



a different estimate for each group.  Thus, the mixture estimate may result in higher accu-
racy.

In order to evaluate this approach, two pattern recognition applications were consid-
ered: face recognition and facial expression recognition. The evaluation used different
image databases for each application and a probabilistic model combines the well-known
dimensionality reduction technique called Principal Component Analysis (PCA) and the
Gaussian maximum probability classifier to investigate the mixture covariance matrices on
the referred recognition tasks.  Experiments carried out show that the mixture covariance
estimates attained the best performance in both applications considered.

2   Dimensionality Reduction

One of the most successful approaches to the problem of creating a low dimensional image
representation is based on Principal Component Analysis (PCA).  PCA generates a set of
orthonomal basis vectors, known as principal components, that minimizes the mean square
reconstruction error and describe major variations in the whole training set considered.

The reasoning behind applying PCA first for dimensionality reduction instead of ana-
lyzing the maximum probability classifier directly on the face or facial expression images
is based on the original high-dimensional space. As the number of training samples is
limited and significantly less than the number of pixels of each image, the high-
dimensional space is indeed sparsely represented, making the parameter estimation quite
complicated – this behaviour is called the curse of dimensionality [8].  Furthermore, many
researchers have confirmed that the PCA representation has good generalization ability
especially when the distributions of each class are separated by the mean difference
[1,6,7,9].

3   Maximum Probability Classifier

The basic problem in the decision-theoretic methods for pattern recognition consists of
finding a set of g discriminant functions d1 (x), d2 (x), ..., dg (x), where g is the number of
groups or classes, with the decision rule such that if the p-dimensional pattern vector x
belongs to the class i (1 ≤ i ≤ g), then di (x) ≥ dj (x), for all i ≠ j and 1 ≤ j ≤ g.

The Bayes classifier designed to maximize the total probability of correct classification,
where equal prior probabilities for all groups are assumed, corresponds to a set of dis-
criminant functions equal to the corresponding probability density functions, that is,
di(x)=fi(x) for all classes [8].  The most common probability density function applied to
pattern recognition systems is based on the Gaussian multivariate distribution
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where µi and Σi are the class i population mean vector and covariance matrix.  Usually the
true values of the mean and the covariance matrix are seldom known and must be esti-
mated from training samples.  The mean is estimated by the usual sample mean
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where jix , is observation j from class i, and ki is the number of training observations from

class i. The covariance matrix is commonly estimated by the sample group covariance
matrix defined as
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From replacing the true values of the mean and the covariance matrix in (1) by their re-
spective estimates, the Bayes decision rule achieves optimal classification accuracy only
when the number of training samples increases toward infinity [4].  In fact for p-
dimensional patterns the sample covariance matrix is singular if less than p + 1 training
samples from each class i are available, that is, the sample covariance matrix can not be
calculated if ki is less than the dimension of the feature space.

One method routinely applied to solve this problem is to assume that all classes have
equal covariance matrices, and to use as their estimates the pooled covariance matrix.
This covariance matrix is a weighting average of each sample group covariance matrix
and, assuming that all classes have the same number of training observations, is given by
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Since more observations are taken to calculate the pooled covariance matrix Spooled , this
one will potentially have a higher rank than Si and will be eventually full rank.  Although
the pooled estimate does provide a solution for the algebraic problem arising from the
insufficient number of training samples in each group, assuming equal covariance for all
groups may bring about distortions in the modeling of the classification problem and con-
sequently lower accuracy.

4   Mixture Covariance Matrix

The choice between the sample group covariance matrix and the pooled covariance one
represents a restrictive set of estimates for the true covariance matrix.  A less limited set
can be obtained using the mixture covariance matrix.

4.1   Definition

The mixture covariance matrix is a linear combination between the pooled covariance
matrix Spooled and the sample covariance matrix of each class Si.  It is given by
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The mixture parameter wi takes on values 0 < wi ≤ 1 and is different for each class.  This
parameter controls the degree of shrinkage of the sample group covariance matrix esti-
mates toward the pooled one.

Each Smixi matrix has the important property of admitting an inverse if the pooled esti-
mate Spooled does so [2]. This implies that if the pooled estimate is non-singular and the
mixture parameter takes on values wi > 0, then the Smixi will be non-singular.

Then the remaining question is: what is the value of the wi that gives a relevant linear
mixture between the pooled and sample covariance estimates ?  A method that determines
an appropriate value of the mixture parameter is described in the next section.

4.2   The mixture parameter

According to Hoffbeck and Landgrebe [4], the value of the mixture parameter wi can be
appropriately selected so that a best fit to the training samples is achieved.  Their tech-
nique is based on the leave-one-out-likelihood (L) parameter estimation.

In the L method, one sample of the class i training set is removed and the mean and co-
variance matrix from the remaining ki – 1 samples are estimated.  Then the likelihood of
the excluded sample is calculated given the previous mean and covariance matrix esti-
mates.  This operation is repeated ki – 1 times and the average log likelihood is computed
over all the ki samples.  Their strategy is to evaluate several different values of wi in the
range 0 < wi ≤ 1, and then choose wi that maximizes the average log likelihood.

The mean of class i without sample r may be computed as
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The notation \r indicates the corresponding quantity is calculated with the rth observation
from class i removed.  Following the same idea, the sample covariance matrix and the
pooled covariance matrix of class i without sample r are
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Then the average log likelihood of the excluded samples can be written as follows:
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where ( ))(,| \\, iririri wSmixxxf  is the Gaussian probability function defined in (1) with

rix \ mean vector and )(\ iri wSmix covariance matrix defined as
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This approach, if implemented in a straightforward way, would require computing the
inverse and determinant of the )(\ iri wSmix for each training sample.  As the )(\ iri wSmix is

a p by p matrix and p is typically a large number, this computation would be quite expen-
sive.  Hoffbeck and Landgrebe [4], using the Sherman-Morrison-Woodbury formula [3],
have showed that it is possible to significantly reduce the required computation by writing
the mixture covariance matrix in a form as follows:
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Once the mixture parameter wi that maximizes the average log likelihood is selected,
the proposed covariance matrix estimate is calculated using all the training samples and
replaced into the maximum probability classifier defined in (1).

5   Experiments

Two experiments with two different databases were performed.
In the face recognition experiment the ORL Face Database containing ten images for

each of 40 individuals, a total of 400 images, were used. The Tohoku University has pro-
vided the database for the facial expression experiment.  This database is composed of 193
images of expressions posed by nine Japanese females.  Each person posed three or four
examples of each six fundamental facial expression: anger, disgust, fear, happiness, sad-
ness and surprise.  The database has at least 29 images for each fundamental facial expres-
sion. For implementation convenience all images were first resized to 64x64 pixels.

The experiments were carried out as follows. First PCA reduces the dimensionality of
the original images and secondly the Gaussian maximum probability classifier using one
out of the three covariance estimates (Si, Spooled and Smixi) was applied.  Each experiment
was repeated 25 times using several PCA dimensions.  Distinct training and testing sets
were randomly drawn, and the mean and standard deviation of the recognition rate were
calculated.

The face recognition classification was computed using for each individual 5 images to
train and 5 images to test.  In the facial expression recognition, the training and test sets
were respectively composed of 20 and 9 images.  The size of the mixture parameter (0 <
wi ≤ 1) optimization range was taken to be 20, that is wi = [0.05, 0.10, 0.15, …, 1].



6   Results

Tables 1 and 2 present the training and test average recognition rates (with standard de-
viations) of the face and facial expression databases, respectively, over the different PCA
dimensions.

Since only 5 images of each individual were used to form the face recognition training
set, the results relative to the sample group covariance estimate were limited to 4 PCA
components. Table 1 shows that in all but one experiment the Smix estimate led to higher
accuracy than did both the pooled covariance and sample group covariance matrices. In
terms of how sensitive the mixture covariance results were to the choice of the training and
test sets, it is fair to say that the Smix standard deviations were similar to the other two
covariance estimates.

Table 2 shows the results of the facial expression recognition. For more than 20 com-
ponents when the sample group covariance estimate became singular, the mixture covari-
ance estimate reached higher recognition rates than the pooled covariance estimate.
Again, regarding the computed standard deviations, the Smix estimate showed to be as
sensitive to the choice of the training and test sets as the other two estimates.

Table 1. Face Recognition Results

Table 2. Facial Expression Recognition Results

PCA Sgroup Spooled Smix 

Components Training Test Training Test Training Test 

4 99.5 (0.4) 51.6 (4.4) 73.3 (3.1) 59.5 (3.0) 90.1 (2.1) 70.8 (3.2) 
10   96.6 (1.2) 88.4 (1.4) 99.4 (0.5) 92.0 (1.5) 
20   99.2 (0.6) 91.8 (1.8) 100.0 (0.1) 94.5 (1.7) 
30   99.9 (0.2) 94.7 (1.7) 100.0 (0.0) 95.9 (1.5) 
40   100.0 (0.0) 95.4 (1.5) 100.0 (0.0) 96.2 (1.6) 
50   100.0 (0.0) 95.7 (1.2) 100.0 (0.0) 96.4 (1.5) 
60   100.0 (0.0) 95.0 (1.6) 100.0 (0.0) 95.8 (1.6) 
70   100.0 (0.0) 94.9 (1.6) 100.0 (0.0) 95.4 (1.6) 

 

PCA Sgroup Spooled Smix 

Components Training Test Training Test Training Test 

5 41.5 (4.2) 20.6 (3.9) 32.3 (3.0) 21.6 (3.8) 34.9 (3.3) 21.3 (4.1) 
10 76.3 (3.6) 38.8 (5.6) 49.6 (3.9) 26.5 (6.8) 58.5 (3.7) 27.9 (5.6) 
15 99.7 (0.5) 64.3 (6.4) 69.1 (3.6) 44.4 (5.3) 82.9 (2.9) 49.7 (7.7) 
20   81.2 (2.6) 55.9 (7.7) 91.4 (2.8) 61.3 (7.1) 
25   86.9 (2.8) 64.9 (6.9) 94.8 (2.2) 68.3 (5.1) 
30   91.9 (1.7) 70.1 (7.8) 96.8 (1.3) 72.3 (6.2) 
35   94.3 (1.7) 72.0 (7.4) 97.7 (1.1) 75.6 (5.5) 
40   95.9 (1.4) 75.6 (7.1) 98.3 (1.1) 77.2 (5.7) 
45   96.7 (1.3) 78.4 (6.5) 98.6 (0.8) 79.1 (5.4) 
50   97.6 (1.0) 79.4 (5.8) 99.2 (0.7) 81.0 (6.6) 
55   98.5 (0.9) 81.6 (6.6) 99.5 (0.6) 82.8 (6.3) 
60   99.1 (0.8) 82.1 (5.9) 99.6 (0.6) 83.6 (7.2) 
65   99.5 (0.6) 83.3 (5.5) 99.8 (0.4) 84.5 (6.2) 

 



7   Conclusion

This paper used an estimate for the sample group covariance matrices, here called mixture
covariance matrices, given by an appropriate linear combination of the sample group co-
variance matrix and the pooled covariance one.  The mixture covariance matrices have the
property of having the same rank as the pooled estimate, while allowing a different esti-
mate for each group.

Extensive experiments were carried out to evaluate this approach on two recognition
tasks: face recognition and facial expression recognition.  A Gaussian maximum probabil-
ity classifier was built using the mixture estimate and the typical sample group and pooled
estimates.  In both tasks the mixture covariance estimate achieved the highest accuracy.
Regarding the sensitiveness to the choice of the training and test sets, the mixture covari-
ance matrices presented similar performance to the other two usual estimates.
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